
USENIX Association

Proceedings of the
BSDCon 2002

Conference

San Francisco, California, USA
February 11-14, 2002

THE ADVANCED COMPUTING SYSTEMS ASSOCIATION

© 2002 by The USENIX Association All Rights Reserved For more information about the USENIX Association:
Phone: 1 510 528 8649 FAX: 1 510 548 5738 Email: office@usenix.org WWW: http://www.usenix.org

Rights to individual papers remain with the author or the author's employer.
 Permission is granted for noncommercial reproduction of the work for educational or research purposes.

This copyright notice must be included in the reproduced paper. USENIX acknowledges all trademarks herein.

Log Monitors in BSD UNIX

Brett Glass, Glassware
P.O. Box 1693

Laramie, WY 82073-1693
http://www.brettglass.com/mailbrett.html

BSDCon 2002 slides at http://www.brettglass.com/logmonitors/

Abstract

A log monitor is a process, or daemon, which monitors log messages produced by a computer system and

the programs which run on it. A properly designed log monitor can recognize unusual activity (or

inactivity), alert an administrator to problems, gather statistics about system activity, and/or take automatic

action to contain a threat. It can even "learn," over time, what is normal and identify message traffic that

may betray an abnormal situation. Languages which facilitate string processing and pattern matching, such

as Perl and SNOBOL4, are good choices for the implementation of log monitors for this reason. Included

in this paper is source code for a log monitor that identifies and blocks attacks from Code Red,

sadmind/IIS, Nimda, and similar worms. Policy issues -- including the usefulness of "amnesty" to prevent

inadvertent blocking of innocent third parties -- are discussed. The work described in this paper --which is

still progressing at this writing -- will hopefully culminate in the release of a general purpose log

monitoring facility.

[Note: Because the camera-ready copy of this paper was submitted two months prior to the BSDCon 2002

conference to allow time for printing, and was required to conform to strict size limits, the version which

appears online may contain more detail as well as new information gleaned from ongoing work. For the

latest version, and/or to follow up the many references via HTML links, access the master copy at

http://www.brettglass.com/logmonitors/paper.html on the World Wide Web.]

1 Introduction

System administrators' time is valuable. Few, if

any, can afford to spend many hours each day

poring over the voluminous log files generated by

systems and network applications. Yet, if an

administrator fails to recognize quickly and

respond to anomalous events chronicled in log

messages, systems or entire networks can be

abused, "hijacked" for use in illicit activities,

and/or removed from service by malicious parties.

Log monitors aid the administrator by

automatically filtering and digesting the flood of

log information -- and, in some cases, responding

on his or her behalf.

2 What is a Log Monitor?

A log monitor is an agent which responds

automatically to conditions revealed by one or

more system log messages. The response may

consist of autonomous action to handle a situation

and/or the notification of a human administrator.

A stateful log monitor is a log monitor that infers

the presence of a condition requiring attention by

compiling data from more than one log message. It

may simply note the number and/or frequency of

log messages related to a particular type of activity

or may generate more sophisticated cumulative

statistics from those messages.

2.1 Capabilities of Log Monitors

What can a log monitor do? Among other things, it

can:

! Detect abnormal usage patterns

! Recognize system or network abuse (e.g.

spamming and mail bombing)

! Catch worms and other malware

! Detect vulnerability scans (e.g. port scans)

! Detect intruders (or attempted intrusions)

! Detect resource shortages (e.g. slow

response times, out-of-memory conditions,

out-of-disk conditions, inadequate swap

space)

! Detect imminent or actual system failures

! Compile statistics in real time (including

running averages, etc.)

! React to conditions by notifying an

administrator and/or taking immediate

action

While it is useful for a log monitor to be able to

recognize failures or threats for which it has been

given a human-crafted "signature," it can also

incorporate more subtle heuristics. By

accumulating statistics about what constitutes

"normal" activity, log monitors may be able to

recognize anomalous behaviors that a human

system administrator might at first overlook, such

as the cessation of events which normally happen

with a given frequency.

2.2 Examples of Existing Log Monitors

swatch ("Simple Watchdog") [1] , developed by

Stephen Hansen and Todd Atkins of Stanford

University, and 2swatch [2], an enhanced

version of swatch developed by the Pacific

Institute for Computer Security (PICS) research

group at the San Diego Supercomputer Center, are

two very simple general-purpose log monitors.

swatch accepts a configuration file whose entries

consist of patterns and lists of actions. (A sample

pattern/action block is shown in Listing 1.)

watchfor /ANONYMOUS FTP LOGIN REFUSED FROM (\S*)/
 mail addresses=admin,subject=Attempted anonymous FTP from $1
 exec blackhole $1

Listing 1: Sample pattern/action block for swatch

It then "tails" a system log file looking for the

regular expression specified in the "watchfor" line

of the block. If the expression is matched, swatch

takes the series of actions that follow. Possible

actions include producing a beep, writing a

message in a specified color to the console,

sending an e-mail message including the log entry

that was matched, or executing an arbitrary

command. (In the example above, the $1 causes

the text matched by the subexpression within the

first set of parentheses to be interpolated.)

swatch incorporates features to allow throttling

and to recognize patterns only during certain hours

of the day and/or days of the week.

2swatch extends swatch by offering the

possibility of deferred as well as immediate action.

2swatch can accumulate a series of messages

matching a pattern into a report that is e-mailed as

a single message. This prevents mail systems from

being flooded with e-mail messages that each

contain a single log entry. Unfortunately, neither

swatch nor 2swatch can perform stateful

monitoring beyond their respective throttling and

accumulation functions, though it is of course

possible to implement statefulness via cleverly

designed external programs or scripts. Nor can

these two programs, by themselves, correlate

entries from more than one log. A final drawback

of these two programs is that they have been

released under licensing terms (the GPL and a

unique "no commercial use" license, respectively)

which hamper or prohibit their reuse in

commercial products.

The primary objective of the work described in this

paper is to develop a generalized and portable

framework which eases the creation of customized

log monitors and overcomes the limitations

described above. It is intended that the results of

this work, which is initially being performed on

FreeBSD, be released under "truly free" (i.e. MIT-

or BSD-style) licensing terms so as to permit

adaptation to other operating systems and

commercial as well as non-commercial reuse.

2.3 Log Monitors vs. Log Analyzers

A log analyzer differs from a log monitor in that it

does not operate in real time (or nearly real time)

but is run against system logs after the fact. Many

such utilities exist, especially for Web and mail

servers. At this writing, log analyzers are more

common than log monitors. Most implementations

of BSD UNIX come with primitive but helpful log

analysis scripts that report significant log events to

an administrator via e-mail. These scripts are often

found at /etc/daily, /etc/weekly, and

/etc/monthly and are usually run at

appropriate intervals by the cron(8) [3] daemon.

(In recent versions of FreeBSD, the default

/etc/crontab file instead activates Trainer and

Somers' periodic(8) [4] utility, which in turn

runs these scripts from the /etc/periodic

directory.) Apache's logresolve program

performs a simple analysis of Apache log files that

consists primarily of efficient reverse domain

name resolution. Tom Boutell's Wusage [5] web

log analysis utility, released as Shareware, is a

much more sophisticated log analyzer for Apache;

it can generate daily, weekly, monthly, and annual

reports.

Some log analyzers are designed to "wake up"

periodically and scan the latest entries in a system

log, acting, if appropriate, upon what they "see."

(Kai's Spamshield [6] , which detects incoming

spam and blocks the sender via a "blackhole"

route, is an example.) If the interval between scans

is sufficiently short, such log analyzers can

perform some of the functions of a log monitor,

detecting and handling conditions which require

timely but not instantaneous attention.

3 Log Monitors and BSD syslogd

In BSD, the kernel and most daemons traditionally

log their activities via syslogd, the system

logging daemon, originally written by Eric Allman.

Messages from the kernel are received via the

pseudo-device /dev/klog, while messages

from applications are received via the UNIX

domain socket /var/run/log or via UDP

socket 514. In the early, more trusting days of the

Internet, syslogd listened on this socket and by

default accepted any message that came in. But in

most modern UNIX implementations it does not

do this, because -- as stated in many versions of

the syslogd manual pages -- it was "equivalent

to an unauthenticated remote disk-filling service."

[7]

3.1 syslogd Facilities, Priorities, and Tags

The standard Berkeley syslogd(8) [8] is

configured via the file /etc/syslog.conf,

which specifies the disposition of log messages. In

traditional Berkeley UNIX, the messages are

sorted according to a facility code and a priority or

severity level. These parameters are used to route

each log message to one or more destinations,

including the system console, the terminals of

specific users, other machines, files, and/or

programs. Modern UNIX and UNIX-like systems

have many more facilities than were contemplated

in the original UNIX logging scheme. Nonetheless,

most implementations have hewn to the traditional

list of facilities defined in 4.4BSD for the sake of

compatibility and tradition. A few (such as

FreeBSD) have added additional facility codes,

including console, ntp, and security, and

DEC ULTRIX uses facility number 10

(authpriv in many versions of BSD) to log

events for its AdvFS filesystem. [9] Unfortunately,

these additions and conflicts may hinder software

portability. What's more, the facilities which were

added frequently do not reflect a consistent design

philosophy. It is unclear, for example, why the

authors of FreeBSD's syslogd implementation

felt that NTP was deserving of its own facility

code while DNS, DHCP, PPP, and HTTP (or, for

that matter, any of the many other protocols listed

in /etc/services) were not.

Further confusing the issue of how to classify log

messages is the fact that many recent versions of

syslogd have added the ability to sort messages

via strings called "tags," which are transmitted to

the logging daemon along with each message. Tags

usually (but not always) contain the name of the

program that generated the message. (At this

writing, the ability to sort messages by tag is

available in OpenBSD and FreeBSD but not in

NetBSD.) To facilitate logging across networks,

some implementations of syslogd add yet

another sorting criterion: they allow messages to be

dispatched according to the name of the host from

which they originated.

As if all of this weren't enough, there's yet another

fly in the ointment. While Berkeley syslogd

itself is able to sort messages by facility, severity,

tag, and originating host, it does not record the

facility and severity level in each log message, and

in most implementations there is no way to make it

do so. This makes it difficult for a log monitor

(and, in some cases, for humans) to use these same

criteria to sort messages that syslogd has

aggregated into a single log file. The version of

syslogd found in recent versions of FreeBSD is

one of the few that provides a solution to this

problem. If the daemon is started with the -v

("verbose") command line option, the facility and

priority level are logged as numbers. Specifying -v

twice causes them to be shown by name between

angle brackets (e.g. <auth.notice>). The latter

choice, while it consumes a bit more disk space,

makes the logs much easier both to read and to

monitor. It would be a relatively simple matter to

add similar capabilities to other syslogd

implementations.

3.2 Monitoring Techniques for Use With
syslogd

A log monitor can monitor the output of

syslogd in one of three ways. The most

common technique is to "tail" the log, either by

accepting the output of the "tail -f" as input or by

incorporating a module that provides equivalent

functionality (e.g. Matija Grabnar's File::Tail [10]

for Perl). The downsides of this technique are

twofold. First, the application (or the tail(1)

utility) must "poll" the file at regular intervals to

see if it has grown. This consumes resources even

if there is nothing to be done. Secondly, if the log

file is "rotated" (most often done by renaming it

and creating a new file for future input), the

application may be left "watching" the old file

(which is no longer growing) and miss all

subsequent messages. (This is a problem of some,

but not all, "tail" implementations.)

Another technique is to open the log file every so

often, collect the last n lines, and then close the

file. This technique avoids problems when logs are

rotated, but may cause the log monitor to miss

important messages if the log has grown more

quickly than expected (as can happen during an

unusual situation). Repeated opening and closing

of the file also creates substantial overhead.

The best technique, when it is possible to use it, is

to instruct syslogd to pipe messages directly to a

log monitor process. This option is not available in

all implementations of syslogd; however, it is

present in FreeBSD's syslogd and BalaBit's

syslog-ng [11] and can be easily added to

other logging daemons. Some versions of syslogd,

including the Berkeley-derived Linux syslogd

and Core-SDI's modular syslog (msyslog) [12] ,

cannot pipe directly to an arbitrary program but

can send output to a named pipe where an

application is listening.

FreeBSD's syslogd makes piping to applications

especially easy by handling nearly all of the

logistics for the programmer. Because syslogd

handles the logistics of distributing each log

message to the required destinations (including the

log monitor), the log monitor process is unaffected

by log file rotation. It merely has to be prepared to

save its state and exit if syslogd restarts (see

below).

One feature of syslogd which may actually

defeat the purpose of a log monitor is automatic

output compression. When syslogd sees two or

more identical messages bound for the same

destination, it outputs the first and then counts (but

does not output) the duplicates. After a

predetermined delay, it outputs a message of the

form "Last message repeated n times" indicating

the number of copies received during the delay

period. If still more copies of the same message

arrive, the process is repeated with a longer delay

between reports. Ironically, this feature -- which

cannot be turned off in any version of syslogd

known to the author -- is just the opposite of what

is needed for effective log monitoring. (It is

precisely when an unexpected flood of repeated

messages arrives that it is most useful for a log

monitor to take prompt, autonomous action. But if

notice of those messages are delayed, it cannot do

so.) The author has submitted a patch to the

FreeBSD Project which disables repeat counting

on messages piped to a program. (With the patch

in place, if the same messages also go to a file or

terminal, compression will still occur on those

outputs.) It may also be desirable to disable

compression when logging to a remote host, since

-- while this would cause an increase in network

traffic -- it would facilitate the implementation of

remote log monitors. Similar modifications should

be made to other logging daemons that direct

output either to programs or to named pipes, to

facilitate the use of log monitors.

3.3 Processing Piped Output from
FreeBSD's syslogd: Caveats and Tricks

While implementing his first group of trial log

monitors under FreeBSD, the author learned by

experience how to deal with the quirks of this

particular logging daemon and operating

environment. FreeBSD's syslogd does not start a

program to which messages are "piped" until it has

output for it. When it does start such a program, it

executes it via sh(1)so that command line

processing may performed. To avoid the overhead

of a vestigial shell process, it is best to use the

"exec" command (as shown above) to launch the

log monitor script or program. The log monitor

should expect to receive messages via standard

input; its standard output and standard error file

handles will be redirected to /dev/null.

Secure programming practices are of the utmost

importance when one is creating log monitors.

Piped applications started by FreeBSD's syslogd

run with the same uid as syslogd itself --

normally root. Because a key function of log

monitors is to take adminstrative action as a result

of what they observe in a stream of log messages,

they often must run as the superuser and may not

be able to accomplish their intended functions if

they "drop" privileges for safety. (In a

capabilities-based system, it may be possible for a

log monitor to drop capabilities that the author

knows it will never use.) It is therefore especially

important to avoid potential buffer overflows,

format string vulnerabilities, and security holes that

might arise when unfiltered input is passed directly

to system APIs or programs. "Tainting" and/or

extremely careful validation of input is strongly

recommended.

Should an application which receives piped output

from syslogd terminate of its own accord, it

will be restarted when there is more input for it.

However, syslogd may itself need to request that a

log monitor terminate. (The most common

situation in which this will occur is when

syslogd receives a "hangup" signal -- SIGHUP

-- indicating that it must restart and reread its

configuration file.) syslogd indicates its desire

to shut down the log monitor by closing the pipe it

has created to the log monitor's standard input. The

log monitor then has a predetermined amount of

time -- 60 seconds in most implementations -- to

save any state it wishes to preserve and terminate.

If it takes longer, syslogd will attempt to kill it by

sending it a "terminate" signal -- SIGTERM. To

ensure that syslogd is able to kill a log

monitor that is frozen, it is advisable for a log

monitor not to catch SIGTERM unless it may need

a very long time to save its state.

4 Log Monitors and Apache

The Apache Web server [13] is perhaps most

widely deployed application for UNIX-like

operating systems which does not normally log via

syslogd. (Apache can be easily configured to

log errors via syslogd, but there is no built-in

option that allows the logging of all traffic this

way.) Fortunately, Apache's own logging facilities

are more powerful and flexible than those of

syslogd itself, so logging output via syslogd

is rarely necessary.

Apache can pipe log messages to external

programs on all UNIX and UNIX-like platforms,

making the implementation of log monitors, log

rotators, and other such utilities very

straightforward even on systems whose syslogd

implementation does not support piped commands.

4.1 Creating Primitive Log Monitors
Within Apache

Apache's logging modules also provide conditional

output, pattern matching, and custom formatting.

These features not only facilitate the use of

external log monitors but in some cases allow

primitive log monitors to be implemented directly

within Apache itself. The fragment in Listing 2,

when added to the httpd.conf server

configuration file (either in the main body or

within the <VirtualHost> directives), will

automatically block traffic from worms such as

Nimda [14] , Code Red [15] , and sadmind/IIS

[16] .

Flag requests for URIs containing common strings from Nimda-like worms
(including Code Red, sadmind/IIS). Note that the patterns below are regexes;
remember to escape dots and other characters with special significance!
SetEnvIf Request_URI "/winnt/system32/cmd\.exe" worm
SetEnvIf Request_URI "/scripts/root\.exe" worm
SetEnvIf Request_URI "/MSADC/root\.exe" worm
Don't use the following patterns if you use "upreferences" in URIs
SetEnvIf Request_URI "/\.\." worm
SetEnvIf Request_URI "\.\./" worm

Block attackers who send the patterns above within URIs. The command below
uses a blackhole route. It's more efficient to firewall (the command
will vary depending upon the firewall in use) or to use SSH to add rules to
an upstream firewall to block the attacker, but this method has the
advantage that it is relatively independent of configuration. If several
commands must be executed, or if postprocessing of output is desired, it
is best to invoke a script or compiled program rather than doing all the
work from within httpd.conf.
 CustomLog "|exec sh" "route -nq add -host %a 127.0.0.1 -blackhole" env=worm

Note that no input from the client is used in the shell command, so this
set of directives is not subject to exploits via crafted strings. If strings
from the client were used, stronger input validation would be in order.

Listing 2: Worm blocker implemented entirely within Apache's httpd.conf

While BSD and Apache cannot be "infected" by

the worms targeted by the directives in Listing 2, a

worm can nonetheless tax a Web server by

consuming processes in the Apache process pool,

glutting system logs with error messages, and

infecting susceptible machines elsewhere on the

network.

The configuration shown in Listing 2 uses

Apache's SetEnvIf [17] directive (implemented by

the module mod_setenvif) to perform regular

expression matching on incoming URIs. It then

uses the CustomLog [18] directive (implemented

in mod_log_config) to do conditional logging

based on the results of the match. When a worm is

detected, Apache pipes a specially formatted "log

message" -- actually a command -- to a shell for

execution. (The "exec sh" may at first glance seem

redundant. However, it is necessary to restart the

shell -- which is initially invoked so as to accept a

command as an argument -- so that it will accept

commands via standard input instead.) The

command creates a "blackhole" route on the host

machine and locks out the attacker. If the Web

server does double duty as the gateway between

the Internet and an office LAN (as is often the case

in small office/home office networks), blackholing

the attacker will also protect the machines that sit

"behind" the server. If there is a firewall upstream

of the Web server, it may be desirable to replace

the command that creates a blackhole route with

one that causes the firewall to block the attacker.

While the author had great success with this simple

log monitor (which he crafted during the early

morning hours of 18 September, 2001 when

Nimda began to spread), it clearly has many

deficiencies. For example, it does not check to see

whether an attack is coming from the Web server's

own address (which can easily happen if the

machine is doing double duty as a NAT router or

dial-up server.) to prevent it from blackholing

itself! Nonetheless, this example is a valuable

proof of concept. It demonstrates that the ability to

apply a general pattern matching facility to log

messages, and then execute commands based on

those messages, are sufficient to allow the creation

of a useful, if not perfect, log monitor. More

sophisticated tools -- such as languages with

built-in pattern matching -- make it even easier to

write quite sophisticated agents.

4.2 Monitoring Techniques for Use With
Apache

To construct effective log monitors for use with

Apache, one must understand the conventions it

uses when piping log output to applications. Like

syslogd, Apache expects piped applications to

be trustworthy. It runs them with the permissions

accorded to Apache's master process, which

usually runs as the superuser. (Apache, in its

recommended configuration, maintains a single

privileged "master" process which forks a pool of

unprivileged processes to handle incoming

requests.) As mentioned earlier, a log monitor

often requires this high privilege level if it is to

take autonomous administrative action. Thus, good

programming practices are of paramount

importance.

Unlike syslogd, Apache starts piped

applications as soon as it has finished reading its

configuration file. This gives them time to start up

before receiving the first message, improving

response time at the expense of overhead. If a

piped application terminates, Apache restarts it the

next time a message is to be delivered to it. Like

syslogd, Apache normally uses sh(1) to parse

command lines and set up file redirection for piped

commands.

It is important to remember, when writing log

monitors for Apache, that users' log formats may

vary. It is therefore best to use a custom log format

that the log monitor expects -- or, alternatively, to

monitor the error log, whose format cannot be

customized and is therefore almost fixed. (One

aspect of the error log format can be changed via

configuration: the way hosts are identified. If

HostNameLookups [19] is on, domain names are

output instead of numerical IP addresses.) Note

that Apache allows error log messages to be sent

only go to one destination. (If there is more than

one ErrorLog directive, each overrides the

previous ones rather than supplying an additional

destination.) Fortunately, Apache also records

errors in the access logs, so using ErrorLog to feed

messages to a log monitor still allows a human to

review messages denoting errors.

4.3 An Extensible Worm Blocker/IDS for
Apache

After implementing the "quick and dirty" Apache

worm blocker described above, the author decided

to create a more powerful, extensible, and

maintainable one. SNOBOL4 [20] [21] was chosen

because of this language's prodigious pattern

matching, text handling, and parsing abilities.

The 28 executable lines of SNOBOL4 in Listing 3

detect infection attempts from worms such as Code

Red, Nimda , and sadmind/IIS and "blackhole" the

attacking machine. Unlike the earlier example,

however, this SNOBOL program completely

parses, and validates the fields of, each Apache

ErrorLog message before taking action. This

eliminates any chance of a "false positive," which

might occur if a regular expression in the earlier

example happens to match part of a legitimate

request.

* An Extensible worm blocker/IDS for Apache in SNOBOL4
* Copyright (c) 2001 by Brett Glass
* Released under the "MIT" license; see http://www.opensource.org/licenses/mit-license.html
*
* This program accepts the piped error output from the
* Apache Web server and spots lines indicating an attack
* from Nimda.A or similar worms, including Code Red,
* sadmind/IIS, and Nimda.E. It can then firewall or
* blackhole the attacking host. Add it to your Apache
* configuration by inserting a line such as
*
* ErrorLog "|exec snobol4 -b /usr/local/bin/wormblock.sno"
*
* Also, make sure that HostNameLookups is off so that the
* log messages contain numeric IP addresses.
*
* This program is designed to be easily extensible to catch
* a wide variety of potential exploits.
*

* An Apache error log message generated by the Nimda worm
* might look like this (wrapped for readability):
*
* [Thu Nov 1 12:46:07 2001] [error] [client 12.98.224.154]
* File does not exist: /usr/local/www/data/textorics/scripts/
* ..%5c../winnt/system32/cmd.exe
*
* Build up SNOBOL patterns for Apache ErrorLog messages.
* Use the pattern "WS" for whitespace (tabs or blanks)
 WS = SPAN(' ' CHAR(9))
 DIGITS = '0123456789'
 WEEKDAY = 'Mon' | 'Tue' | 'Wed' | 'Thu' | 'Fri' | 'Sat' | 'Sun'
 MONTH = 'Jan' | 'Feb' | 'Mar' | 'Apr' | 'May' | 'Jun' |
+ 'Jul' | 'Aug' | 'Sep' | 'Oct' | 'Nov' | 'Dec'
 DAYOFMONTH = (SPAN(DIGITS) $ NUMBER) *LE(NUMBER,31) *GE(NUMBER,1)
 HOUR = (SPAN(DIGITS) $ NUMBER) *LE(NUMBER,23)
 MINUTE = (SPAN(DIGITS) $ NUMBER) *LE(NUMBER,59)
 SECOND = MINUTE
 DAYTIME = HOUR ':' MINUTE ':' SECOND
 YEAR = SPAN(DIGITS)
 DATEANDTIME = '[' WEEKDAY WS MONTH WS DAYOFMONTH WS DAYTIME WS YEAR ']'
 OCTET = (SPAN(DIGITS) $ NUMBER) *LE(NUMBER,255)
 IPADDRESS = OCTET '.' OCTET '.' OCTET '.' OCTET
 ERRSTR = '[error]'
 CLIENTINFO = '[client' WS (IPADDRESS . CLIENTIP) ']'
 FILEERR = 'File does not exist:'
 FILENOTFOUNDERROR = DATEANDTIME WS ERRSTR WS CLIENTINFO WS
+ FILEERR WS REM . PATH
 DANGEROUSPATH = '/winnt/system32/cmd.exe' | '/scripts/root.exe' |
+ '/MSADC/root.exe' | "/.." | "../"
LOOP LOGLINE = INPUT* Anchor the matching of the error message for efficiency
 &ANCHOR = 1
* We're using unevaluated expressions ("thunks") and so must do full scans
 &FULLSCAN = 1
LOGLINE FILENOTFOUNDERROR :F(LOOP)
* Scan the path, using an unanchored match, for strings betraying a worm
 &ANCHOR = 0
 &FULLSCAN = 0
 PATH DANGEROUSPATH :F(LOOP)
 HOST(1,'logger -t wormblock -pauth.notice Nimda or similar attack detected!'
+ 'Blocking IP address ' CLIENTIP)
 HOST(1,'route -nq add -host ' CLIENTIP ' 127.0.0.1 -blackhole')
 :(LOOP)

* Note that a blackhole route is a brute force blocking method. It
* allows the first SYN to arrive but blocks the outgoing SYN-ACK,
* causing the TCP three-way handshake to fail. Its advantage is
* that it works on nearly any system regardless of configuration.

* If you're running a firewall, you can replace the route command
* above with ones that add firewall rules. Here are samples for
* FreeBSD's ipfw:
* HOST(1,'/sbin/ipfw -q add deny all from any to ' CLIENTIP)
* HOST(1,'/sbin/ipfw -q add deny all from ' CLIENTIP ' to any')
* The commands for ipf and pf are similar.
* If you want to block attacks at a different machine (say, the
* firewall that guards your entire network), you can use SSH to send
* the firewall similar commands. The exact commands required will
* depend upon your network and firewall configurations.

END

Listing 3: Extensible worm blocker/IDS for Apache in 28 lines of SNOBOL4

The example in Listing 3 was written for Philip

Budne's free Macro SNOBOL4 for UNIX [22] ,

which compiles on most BSD UNIX

implementations and is present in the NetBSD and

FreeBSD ports collections. It is readily portable to

other implementations of the language including

Catspaw SPITBOL [23] . The author has found

SNOBOL4 to be extremely useful for log

monitoring -- even more so than Perl -- because its

extremely powerful recursive pattern matching

allows it to completely parse a log message by

executing a single line of code. SNOBOL4 also

allows more extensive input validation to be done

within a pattern than can easily be done within a

Perl regular expression. For example, in the

patterns DAYOFMONTH, HOURS, MINUTES,

and SECONDS patterns, the GE() and LE()

predicates are applied to strings of digits during

pattern matching to ensure that the numbers they

represent are within allowable limits. SNOBOL's

pattern matching engine can backtrack (or indicate

failure) if these conditions are not met.

4.4 Refinements to the Initial Design

Note that the code in Listing 3, like that in Listing

2, immediately and unconditionally blocks any

host which attacks the server on which it is

running. As noted earlier, this could be an

unfortunate administrative decision under certain

circumstances. For example, if an infected dial-up

user is blocked, subsequent users of that dial-up

line will not be able to reach the site. If an

attacking machine is behind a NAT router or a

proxy, every other user arriving from the same site

may be blocked. (This is a particular concern in the

case of AOL, which passes all HTTP requests

through caching proxies to conserve bandwidth

and anonymize users.) Also, a malicious third

party could post (or e-mail to users) links which,

when followed, caused a block to be put in place.

Fortunately, it is relatively simple to make

refinements to the log monitor shown above to

handle these problems. A "do not block" list can be

added to ensure that the machine does not block

itself. By requiring two or more hits from an IP

address before blocking it, the monitor can reduce

the chances of an accidental block or of a block

caused by a maliciously distributed link. Use of the

MAPS Dial-up List (DUL) [24] to recognize

dial-ups, plus an "amnesty" policy, can protect

against long term blocking of dial-ups, though at

the expense of a few more hits from worms.

Other refinements suggested during previous

presentations of this work include:

! The ability to notify an administrator of

the current block list (and/or "repeat

offenders") so that s/he can notify

administrators by phone or e-mail;

! The ability to mail or page an

administrator when an attack is detected

from a host on the "do not block" list (or

under other conditions);

! The ability to gather statistics (such as the

number of hits received from a particular

Web address or subnet per hour) and

automatically notice anomalies;

! The ability to place the log monitor on a

separate machine, so as to preserve both

copies of logs and information about

attacks or malfunctions in the event of

catastrophic system failure or tampering;

and

! The ability to view a display and/or reports

detailing the log monitor's actions.

All of these refinements are easy to add due to the

flexibility of the SNOBOL4 language, which

provides associative arrays, record types, indirect

references, and other features typically found in

high level interpreted languages.

5 Creating a Generalized Logging and Log
Monitoring Facility

The goal of the author's ongoing research,

however, is not to perfect any one special-purpose

log monitor. It is, rather, to learn, via the creation

of a diverse collection of log monitors, what

features are desirable in a generalized logging and

log monitoring facility. The long term goal is to

create a single facility -- much more powerful than

the swatch and 2swatch scripts mentioned

earlier -- which can subsume the functions of

simple log monitors and facilitate the generation of

more sophisticated ones. Such a facility should be

usable across a wide range of operating system

platforms, and should allow the creation of

monitors via a process which consists as much as

possible of configuration rather than programming.

Features of this facility are expected to include:

! Compatibility with the "legacy" logging

facilities and facility/severity codes of

current UNIX implementations;

! The ability to apply pre-written message

parsing templates to messages (akin to the

"distillation" process used by Lire [25]

but performed in real time) so that rules

can refer to message field by name;

! The ability to identify and report messages

which were not parsed (possibly indicating

an obsolete template and/or a software

problem);

! The ability to access all information

associated with a log message and the

process that generated it -- including the

identity of the program, effective user and

group ids, facility and severity codes,

point of origin (if not on the local system),

etc.;

! Accumulation of statistics (e.g. number of

e-mail messages received from a specific

user or IP address) for use in rules;

! The ability to correlate log messages and

statistics produced by different

applications, e.g. a POP server and an

SMTP server;

! The ability to generate one or more

periodically refreshed displays (e.g. bar

graphs) based on log statistics;

! The ability to query external databases

such as DNS blacklists;

! The ability to maintain, save, and restore

internal databases (e.g. of blocked hosts

and times at which they were blocked) and

report their contents at runtime;

! The ability to "fire" rules at specific times

or intervals as well as in response to

messages;

! The ability to send log messages to, and

accept them on or from, arbitrary UDP or

TCP ports;

! The ability to log to another machine via

an encrypted connection (e.g. through SSH

or SSL);

! Stronger authentication than that

implemented in current versions of

syslogd (most of which use source IP

address and port number);

! Flexible notification facilities, including

the ability to send notices via e-mail,

pager, IRC, and instant messaging

systems;

! The ability to issue commands to firewalls,

routers, bridges, managed hubs, and

remote power controllers; and

! The ability to allow or deny users access to

facilities (e.g. by changing group

memberships, changing a user's login shell

to /etc/nologin, or removing and

restoring passwords).

Input from system architects and administrators

regarding suggested features and functionality is

welcome.

6 Conclusions

Any computer system which is connected to the

Internet, and/or subject to misuse by its users,

requires constant vigilance to fend off attacks and

thwart abuse. Because system administrators

cannot be expected to monitor system activity

24x7, intelligent agents -- or log monitors -- can

alert them to situations that require attention and

"hold the fort" until help arrives. Log monitors can

also perform highly routine chores -- such as

blocking worms and spammers – automatically.

While a handful of "plug and play" log monitors

now exist, none contain the features necessary to

allow them to perform sophisticated stateful

monitoring. The author's goal is to fill this gap by

implementing a collection of complex log

monitors and then creating a generalized facility

which can subsume all of their functions.

To ease the implementation of log monitors, the

logging facilities in different UNIX

implementations -- which have diverged in subtle

ways and often hide useful information from

administrators and intelligent agents alike -- should

be updated or replaced with a more modern

scheme that is backward-compatible with what

exists today. It will then be much easier to

implement a generalized log monitoring facility

that runs on a wide variety of platforms.

Of course, no log monitoring system can

completely replace the insight or talents of a

human administrator. As Bruce Schneier, founder

of Counterpane Network Security, writes in a

white paper posted at

http://www.counterpane.com/msm.html :

Network attacks can be much more subtle

than a broken window. Much depends on

context. Software can filter the tens of

megabytes of audit information a

medium-sized network can generate in a

day, but software is too easy for an attacker

to fool. Intelligent alert requires people.

People to analyze what the software finds

suspicious. People to delve deeper into

suspicious events, determining what is

really going on. People to separate false

alarms from real attacks. People who

understand context.[26]

The correct approach, therefore, is not one that

eliminates people but one that uses intelligent

agents -- log monitors -- as a first line of defense.

This frees skilled administrators from the tedium

of reviewing logs, so that they may focus on the

bona fide anomalies detected by log monitors and

on other problems more worthy of their talents.

7 Acknowledgments

Thanks to the many attendees of BSDCon Europe

2001 who provided many useful suggestions

regarding this ongoing work, and to "shepherd"

Gregory Neil Shapiro who guided the preparation

of this paper. Thanks also to the authors and

maintainers of the BSDs and of the other utilities

mentioned in this document for their contributions

to the state of the art. Trademarks mentioned in

this document are the property of their respective

owners.

References

[1] Stephen E. Hansen and E . Todd A tkins. Centralized System

Monitoring With Swatch. In Proceedings of the Seventh Systems

Administration Conference (LISA), Mon terey, CA, Nov. 1993. Paper

URL: h ttp://www.stanford.edu /~atkins/swatch/lisa93.html . Software

at URL: ftp://ftp.stanford.edu/general/security-tools/swatch.

[2] Pacific Institute for Computer Security (PICS) research group, San

Diego S upercomputer Center (SDSC). 2swatch . Software at UR L:

ftp://ftp.sdsc.edu /pub/sdsc/security/PICS/2sw atch/.

[3] Paul V ixie and contributors. cron. FreeBS D 5.0 -current version

documented at URL:

http://www.FreeBSD.org/cgi/man .cgi?query=cron& apropos=0&sektio

n=8 &man path=FreeBSD+5.0 -current& format=html.

[4] Paul Traina and Brian Somers. periodic. FreeBSD 5.0-current

version documented at URL:

http://www .FreeBSD .org/cgi/man.cgi?query=periodic&apropos=0& se

ktion=8&manpath =FreeBSD+5.0-cu rrent& format=html.

[5] Tom Boutell. Wusage. S oftware and documen tation at URL:

http://www.boutell.com/wusage/.

[6] Kai Schlichting. Kai's Spamshield. Software and documentation at

URL: http://spamshield .conti.nu/.

[7] Eric Allman, The University of Califonia at Berkeley, The

FreeBSD Project and contributors. syslogd. FreeBSD 5.0-current

version documented at URL:

http://www .FreeBSD .org/cgi/man.cgi?query=syslogd&apropos=0& se

ktion=8&manpath =FreeBSD+5.0-cu rrent& format=html.

[8] Eric Allman , University of California at Berkeley and contributors.

syslogd. 4.4BSD Lite2 version documented at URL:

http://www .FreeBSD .org/cgi/man.cgi?query=syslogd&apropos=0& se

ktion=8&manpath =4.4 BSD+Lite2& format=html.

[9] Eric Allman, The University of Califonia at Berkeley, The

FreeBSD Project and contributors. syslogd.conf. FreeBSD 5.0-current

version documented at URL:

http://www.FreeBSD.org/cgi/man.cgi?query=syslog.conf&apropos=0

&sektion=5 &man path=FreeBSD+5.0 -current& format=html.

[10] Matija Grabnar. File::Tail. S oftware at URL:

http://www .cpan.org/modules/by-module/File/File-Tail-0.98.tar.gz.

[11] BalaBit IT Ltd. syslog-ng. Software and documentation at URL:

http://www.balabit.hu /en/downloads/syslog-ng/.

[12] Core-SDI. msyslog. Software and documentation at URL:

http://community.cores t.com/pub/msyslog/.

[13] The A pache Software Foundation. Apache HTTPD Server

Project. S oftware and documen tation at URL: h ttp://www.apach e.org/.

[14] Computer Emergency Respon se Team (CER T). Advisory

CA-2001 -26: Nimda Worm. At URL:

http://www.cert.org/advisories /CA-2001-26 .html.

[15] Computer Emergency Respon se Team (CER T). Advisory

CA-2001-19: "Cod e R ed" W orm E xploiting B uffer O verflow In IIS

Indexing Service DLL. At URL:

http://www.cert.org/advisories /CA-2001-19 .html.

[16] Computer Emergency Respon se Team (CER T). Advisory

CA-2001 -11: sadmind/IIS W orm. At URL:

http://www.cert.org/advisories /CA-2001-11 .html.

[17] The A pache Software Foundation. mod_setenvif. Documentation

at URL:

http://h ttpd .apache.org/docs/mod/mod_seten vif.html# setenvif.

[18] The A pache Software Foundation. mod_log_config.

Documentation at URL:

http://httpd.apache.org/docs/mod/mod_log_ config.html#customlog.

[19] The A pache Software Foundation. Apache Core Features.

HostNameLookups directive. At URL:

http://httpd.apache.org/docs/mod/core.html#hostnamelookups.

[20] R. E. Griswold, J. F. Poage, I. P. Polonsky. The SNO BOL4

Programming Language, 2nd Edition. Bell Telephone

Laboratories/Prentice-Hall, 1971.

[21] Phil Budn e. Phil's SNOB OL Resources Page. At URL:

http://people.n e.mediaon e.net/ph ilbudne/snobol.html.

[22] Phil Budne. Macro Implementation of SNOBOL4 in C

(C-M AINBOL). S oftware and documen tation at URL:

http://people.n e.mediaon e.net/ph ilbudne/src.h tml#snobol.

[23] Mark Emmer. Catspaw S PITBOL. Information at URL:

ftp://ftp.snobol4.com/specshet.pdf

[24] Mail Abuse Prevention System (mail-abuse.org). MAPS DUL

Introduction. At URL: http://www.mail-abuse.org/dul/intro.htm.

[25] LogReport Foundation. Report Production Line. At URL:

http://www .logreport.org/documentation/about=architecture.

[26] Bruce Schneier. M anaged Security Mon itoring: N etwork S ecurity

for the 21 st Cen tury . At U RL: h ttp://www.cou nterpane.com/msm.h tml.

