
USENIX Association

Proceedings of the
XFree86 Technical Conference

Oakland, California, USA
November 8–9, 2001

THE ADVANCED COMPUTING SYSTEMS ASSOCIATION

© 2001 by The USENIX Association All Rights Reserved For more information about the USENIX Association:
Phone: 1 510 528 8649 FAX: 1 510 548 5738 Email: office@usenix.org WWW: http://www.usenix.org

Rights to individual papers remain with the author or the author's employer.
 Permission is granted for noncommercial reproduction of the work for educational or research purposes.

This copyright notice must be included in the reproduced paper. USENIX acknowledges all trademarks herein.



Font Subsettingand Downloading in the PostScript Printer Dri ver of Qt/X11

SivanToledo
Schoolof ComputerScience, Tel-Aviv University

Tel-Aviv 69978,Israel

LarsKnoll
Trolltech AS

WaldemarThranesgate98,N-0175Oslo,Norway

Abstract

This paper describesthe font discovery, subset-
ting, anddownloadingmechanismin Qt/X11. The
mechanismaddressesa majorusability issue:prior
to the implementationof this mechanism,usersof
Qt applications(and henceusersof KDE) could
not print non-Latintext, andcouldonly print Latin
text in fonts that arebuilt into mostprinters. The
new mechanismallows usersto print text in any
script that Qt/X11 supports,which includeswest-
ern scripts(primarily Latin, Cyrillic, and Greek),
Arabic, Hebrew, andeast-Asianscripts. The new
mechanismalsoallows usersto print Latin text us-
ing almostany PostScriptType1 or TrueTypefont
that X11 supports. The mechanismusually finds
font files without any configurationbeyondthatre-
quiredto usethefontsunderX11.

1 Intr oduction

Qt/X11, the X toolkit that KDE uses,includesa
printerdriver thatallows applicationsto rendertext
and graphicson a PostScriptdevice. Prior to Qt
version2.3.0, this printer driver had very limited
WYSIWYG text-renderingcapabilities. It could
only render text if it could guesscorrectly the
PostScriptfont namefrom theXLFD name,andif
thefont wasresidentat theprinter. Essentially, the
driver only supporteda limited rangeof standard
Latin fonts andonesymbol font. This meant,for

example, that userscould useKonqueror, KDE’s
webbrowser, to view Hebrew webpages,but could
not print them. Userscould alsonot usenonstan-
dardLatin fontsin otherwisesophisticatedapplica-
tions,suchasKWordandKPresenter, KDE’sword
processorand presentationprograms. This situa-
tion, which is still quitecommonin X applications,
is clearlybelow thecurrentlevel of users’expecta-
tions.

Versions2.3.0 and later of Qt/X11 include a font
discovery, subsetting,anddownloadingmechanism
thatrectifiesthis problem.Themechanismenables
trueWYSIWYG text renderingin print jobsfor all
Qt (andthereforeKDE) applicationsrunningunder
X, aslongastheX fontsthatthey usearegenerated
from TrueType or Type1 fonts. Figure 1 demon-
stratesthiscapability.

Thefont downloadingandsubsettingmechanismin
thedriver

1. Findsthefont file correspondingto a givenX
screenfont, and

2. usesthe font file to inserta scalabledescrip-
tion of the glyphs that are usedin the docu-
ment into the PostScriptoutput. This opera-
tion is referredto as subsettingthe font and
downloadingit into theprint file.

We hadthreemain designgoalsin mind whenwe
designedandimplementedthismechanism:



Figure1: A simpleQt exampleprogramrunningunderX11 (left) andits printedoutput(right). Theprinted
outputon theleft shows only partof theprintedpage.

1. Support for the most commonscalablefont
formats:TrueTypeandPostScriptType1.

2. Supportfor Unicode,whichQt usesinternally
for almostall strings.

3. The ability to print with any TrueType or
PostScriptType 1 font that X11 useswithout
any configurationfiles beyond thoserequired
to simply usethefontsunderX11.

As the papershows, we have essentiallyachieved
our goals. While the first two goalsare self ex-
planatory, the third requiressomeexplanation. A
mechanismthat requiresadditional configuration
files fails when they are missingor defective. A
mechanismthatrequiresno configurationis, there-
fore, muchmorerobust. We wantedto maximize
the chancesthat a font that the user seeson the
screenis downloadedcorrectly to a print job, and
the lack of configurationfiles helpsusachieve this
goal.

Therestof thepaperis organizedasfollows. Sec-
tion 2 presentsbackgroundonfontsandontext ren-
deringin PostScript.Section3 describestheover-
all structureof Qt/X11’sprinterdriver, to whichwe
haveaddedthenew mechanism.Themechanismit-
self is describedin Section4. Section5 suggestad-
ditional featuresthat would benefitusersif added
to the font-handlingmechanismthat we describe.
Section6 explains why the existenceof multiple

printer drivers in the X world, eachwith its own
font-handlingmechanism,harmsusers. The sec-
tion suggeststhatthesemechanismsbeunifiedinto
a single font-subsetting-and-downloading mecha-
nism.Section7 summarizedthepaper.

2 Background

2.1 Font Files

Digital fontsallow programsto rendertext on out-
putdevicessuchasmonitorsandprinters.A digital
font consistsof threemaincomponents,which can
residein asingleor in multiplefiles. Thefirst com-
ponentconsistsof glyph descriptions, which de-
scribetheshapeof letters,partsof letters,or groups
of letters.Thesecondcomponentof a font is anen-
codingor asetof encodings.An encodingmapsthe
charactersof a characterset,suchasASCII or Uni-
code,to glyphs. The third componentconsistsof
metricsandotherlayoutinformation,which assists
theapplicationin layingouttext. Fontsalsocontain
auxiliary information,suchasthenameandstyleof
thefont, copyright information,andsoon.

Most fonts today containscalableglyph descrip-
tions using either cubic or quadraticsplines. A
softwarecomponentcalleda rasterizerusesthese
curves to decidewhich pixels are coveredby the



glyph andshouldbe paintedandwhich shouldbe
left unpainted. So-calledantialiased rasterizers
paintpixels in several colorsto simulatetheeffect
of partially-coveredpixels.Glyphdescriptionsusu-
ally usuallycontaindatacalledhints in additionto
the splines. Hints help the rasterizerdraw better-
looking glyphs at low resolutions. Bitmap glyph
descriptionsthat specifyexplicitly which pixels to
paint,andwhichwereoncecommon,arebecoming
rarer. Somefont formatsallow compositeglyphs,
which representa singlecharacterusingappropri-
ately placedbaseglyphs. For example,the glyph
for thecharacter’a with agrave accent’canberep-
resentedby translatedreferencesto theglyphrepre-
senting’a’ andto theglyphrepresentingtheaccent.

An encodingmapsthecharactersof a characterset
to glyphsin thefont. Glyphsarespecifiedusingin-
dicesor usingsymbolicnames.Somefont formats
avoid the useof encodingsby putting the glyphs
in an arraywhosesize is the lengthof the encod-
ing, so glyph indicesdirectly correspondto char-
actercodes. But most font formatstoday include
explicit encodings. The encodingis usedby the
rasterizer, which usesit to draw the correctglyph
for eachcharacter. Theapplicationsometimesuses
theencodingaswell in orderto accessmetric and
layoutinformationassociatedwith specificglyphs.

All fontscontainat leastonekind of glyph-specific
metrics—thewidth of eachglyph. The width of
the glyph allows text-layout applicationsto mea-
sure text in order to computeline breaksand to
justify text, andit allows therendererto determine
where to draw the next glyph. Many fonts con-
tain othermetrics,suchasmetricsfor vertical text
layout, for pair kerning(bringing specificpairsof
glyphsclosertogetheror further apart)andso on.
Somefontsalsocontainadditionaltext-layoutdata,
suchasligaturesubstitutioninformation(replacing
consecutiveglyphsby asingleglyphthatrepresents
multiple letters,suchasa glyph representingan’f ’
followedby an’i’, asin file), glyph positioningin-
formation(for attachingmultiplediacriticsto asin-
gle letter, for example),andglyph substitutionin-
formation(whenmultiple glyphsareavailable for
representingasingleletter).

We now explain the main featuresof the most
widely-usedscalablefont formatsin usetoday.

TrueTypeFonts. TrueType fonts [8] storeall the
font information in a singledatafile (usually
with suffix ttf) containingtables(datastruc-
tures)that containglyph descriptions,encod-
ings,andsoon. Theglyphsaredescribedus-
ing quadraticsplinesandcompositionof base
glyphs. Glyphsarereferredto using indices,
although many TrueType fonts also specify
namesfor the glyphs. TrueType fonts are
hinted using programsin a specialprogram-
ming language.Theseprogramscanmove the
controlpointsof thesplinesto fit bettera low
resolutionpixel grid. The metricsof the font
can also be modified using theseprograms,
so a 10-point font may have different glyph
widths at 100 PPI (pixels per inch) than at
1200PPI.MostTrueTypefontscontainaUni-
code encoding,and somecontain additional
encodings.TrueTypecollection fonts (exten-
sion

PostScript Type1 Fonts. Type 1 fonts [1, 6],
which will be describedin more details be-
low, storefont datain two datafiles. Onedata
file, with suffix pfb or pfa, storesthe en-
coding,glyph descriptions(in eitherbinaryor
ASCII, hencethe two suffixes),andthe width
of glyphs. Another file containsadditional
metric andlayout information. The auxiliary
file may be binary (a pfm file) or ASCII (a
afm file). Glyphsarereferredto usingsym-
bolic names,andthey aredescribedusingcu-
bic splines or using translatedcomposition.
Hints in Type 1 fonts are declarative, which
meansthat the font designerdeclaresexplic-
itly certainimportantfeaturesof theglyph,but
it is up to the rasterizerto decidehow to use
this information.For example,a hint mayde-
clarethat the two counters(emptyspaces)in
theletter’m’ shouldbeexactlyequalin width.
Type1 fontsare8-bit fonts,which meansthat
they usean encodingthat mapscharactersin
therange0–255tonamedglyphs.MostType1
fontscontainunencodedglyphs,whichmeans



that no charactermaps to them. Programs
canreencodethefont, or replaceits encoding,
which allows themto accessall theglyphsin
thefont.

OpenTypeFonts. There are two types of Open-
Type fonts [9]. The first type is a TrueType
font with additionaltables,mostly tablesthat
contain advancedlayout information. Such
fontsarealsovalid TrueType fontsso thecan
beprocessedusingany programthatprocesses
TrueType fonts. Therefore,from hereon we
refer to OpenType fonts with TrueType out-
lines as TrueType fonts.Thesecondtype is
similar to TrueTypefontsexceptthattheglyph
descriptionsandthehintsusea representation
similar to that of Type 1 fonts. Thesefonts,
which have anotf format,allow for lossless
conversionof Type 1 fonts to ’almost’ True-
Type format. OpenType fonts are relatively
new, but quitea few fontsareavailablein this
formatfrom Adobe.Many of theseOpenType
fonts containadvancedtypographicfeatures,
suchasold-stylefigures,smallcapitals,glyph
variants,andsoon.

2.2 PostScript Text Rendering

PostScript documents are programs in the
PostScript language that contain rendering
commands. A Font is describedin PostScript
using a dictionary, the main datastructurein the
PostScriptlanguage.

Four main PostScriptcommands(with somevari-
ants) rendertext. The findfont commandre-
trievesan alreadydefinedfont. Thescalefont
commandscalesa font to a given point size. The
setfont assignsa previously found and scaled
font to be the fonts in which subsequenttext will
berendered.Theshow commanddrawsastringof
text in thecurrentfont.

QT/X11’s printer driver actually usesa variantof
theshow commandcalledashow. Thiscommand
hasthreearguments,

���
,
���

, andastring.Thecom-
mandrendersthestringbut adds

���
to thewidth of

eachcharacterand
���

to its “vertical width”. This
allows thedriver to fit a string into a given length.
Thedriverusesthisability to ensurethattext onpa-
per takesexactly the samehorizontalspaceasthe
sametext on thescreen,eventhoughthe lengthon
thescreenis constrainedto wholepixels.

2.3 PostScript Fonts

Thirteen fonts (Times, Helvetica and Courier in
4 stylesand Symbol) are built into all PostScript
devices. Most PostScriptdevices have additional
built-in fonts. But to rendertext in a font that is
not built into the device, the PostScriptdocument
mustincludea representationof thefont. Thepro-
cessof includinga representationof thefont in the
PostScriptfile is calledfontdownloading.

PostScript interpreterssupport several types of
downloadablefonts.

Type1 Fonts. PostScriptdocumentmay include
Type 1 fonts in ASCII representation. The
PostScriptdocumentincludesonly the glyph
descriptionsand the encoding, not the ad-
ditional metric and layout information. All
PostScriptdevicessupportType1 fonts.

Type3 Fonts. Thesefonts [6] are the most gen-
eral glyph representationof any PostScript
fonts. To rasterizea glyph in a Type 3 font,
thePostScriptinterpreterinvokesa procedure
that the font provides. The procedureis in-
vokedwith two arguments,thefont dictionary
and the characterto be drawn (or the name
of the glyph in Level-2 and -3 PostScript).
The procedurecan use all the tools of the
PostScriptlanguageto draw theglyph. It can
invoke otherprocedures,draw bitmapimages,
anddraw shapesdefinedby cubic splines. It
can also determinethe pixel grid that is be-
ing paintedand adaptthe glyph to the pixel
grid. BecauseType3 fonts canutilize all the
power of thePostScriptlanguage,font raster-
izers that do not include a PostScriptinter-
pretercannotprocessthem. In particular, un-



like Type1 fonts,which canbeusedon Win-
dows, Mac, and X11 systems,Type 3 fonts
cannotbe usedin thesewindowing environ-
ments. They areprimarily usedto download
non-Type-1 fonts into PostScriptdocuments.
For example,Dvips generatesType 3 fonts
to download bitmappedfonts into PostScript
documents,andsomeWindowsprinterdrivers
generateType 3 fonts to downloadTrueType
fonts into PostScriptdocuments.Like Type1
fonts,Type3 fontsalsousean8-bit encoding
vector.

Type42 Fonts. Type42 fonts[5, 6] arePostScript
wrappersfor TrueType fonts. A Type42 font
dictionary containsPostScriptstring (or sev-
eralstrings)thatencodetheoriginalTrueType
font, a datastructurethat mapsglyph indices
to symbolic names,and an 8-bit encoding
vectorthat mapscharactersto namedglyphs.
Somelevel-1and-2 PostScriptdevicescannot
rasterizeType42fonts;All level-3devicesand
many level-2onescan;GhostScriptcan.There
aretwovariantsof Type42fonts:with orwith-
outaGlyphDirectory. UsingaGlyphDirectory
is moreflexible but notall devicesthatsupport
Type42 fontssupportsGlyphDirectories.

Type0 Fonts. Type0 fonts[6] arecompositefonts
that are designedfor supporting character
setswith more than 256 characters.Type 0
fontscontainnoglyphdescriptionsor metrics.
They only contain a mapping from charac-
tersto glyphsin oneor more8-bit basefonts.
For example, a Type 0 font may map Uni-
codecharactersto glyphsfrom severalType1
fonts. Compositefonts supportseveral map-
ping mechanisms.The mappingmechanism
that we useis called an 8/8 mapping. Each
characterto be renderedis representedusing
two bytes,wherethefirst byteselectsthebase
font andthesecondselectstheglyphusingthe
basefont’s 8-bit encodingvector. Othermap-
ping mechanismsallow for othersplittingsof
8-bit and16-bitcharacters,aswell asfor state-
full characterencodingsand for CID map-
pings,describedbelow.

CID Fonts. CID fonts [3, 2, 6] arespecialType0

fontsthataredesignedto allow asingleencod-
ing to map charactersto the glyphsof many
fonts. A CID font containsglyph descriptions
for all theglyphsof a specifiedcharactercol-
lection. A character map (CMap) mapsthe
charactersof a characterset to the glyphsof
a charactercollection. To use a CID font,
the PostScriptprogramcomposesa CID font
with a charactermap to form a CID-Keyed
font. The CID font and the charactermap
must, obviously, usethe samecharactercol-
lection. This arrangementallows a singleen-
codingmechanism(the charactermap) to be
usedwith many different fonts,aslong asall
the fonts contain the sameglyph set in the
sameorder. For example,composingthe font
Munhwa-Regular with the charactermap
UniKS-UCS2-H createsthe font Munhwa-
Regular--UniKS-UCS2-H ,which has a
16-bit Unicodeencoding.CID fontscanhave
Type 1 glyph descriptions,Type 3 glyph de-
scriptions,bitmapglyphdescriptions,or True-
Type glyph descriptions.CID fonts areused
todaysolely for CJK (Chinese,Japanese,Ko-
rean)fonts(see[7]).

2.4 Subsetting and Incremental Definition of
Fonts in PostScript

The representationof a font in a PostScriptdocu-
mentneedsnot includeall the glyphsin the origi-
nal digital font files. Theprinterdriver caninclude
in the file only the descriptionof glyphs that are
actuallyusedin a document.Subsettinga font re-
quires that the driver that downloadsthe font be
able to manipulatethe datastructuresof the font
file. In particular, whenever a font includescom-
positeglyphs,includingacompositein asubsetre-
quiresthat all the baseglyphsof the subsetbe in-
cludedaswell.

Somefontsaresolarge thatsubsettingthemis vir-
tually a necessity. TrueType fonts suchas Times
New RomanandCourierNew, whichincludeLatin,
Greek,Cyrillic, Hebrew, andArabic glyphs,have
over1300glyphsandtheirfilesareover300KBytes
in size. Fonts suchas BitstreamCyberbit, Arial



UnicodeMS, andIBM TimesNew RomanWorld-
Type,whichincludeCJKglyphs,have tensof thou-
sandsof glyphsandtheir file are13–24MBytesin
size. The representationof thesefonts asType42
PostScriptfonts would be even larger. Suchfonts
mustbesubsetted.

PostScriptfontscanbedefinedincrementally. That
is, the first definition of a font main describeonly
a proper subsetof the glyphs that the document
uses. Whenadditionalglyphsareneededlater in
thedocument,they areaddedto thefont dictionary.
The additionof glyphsobeys the PostScriptscop-
ing rules of save/restore blocks. Therefore,
whentheblock in whichtheglyphsareaddedends,
theirdescriptionsareremovedfrom thefont.

Incrementalfont definition serves two purposes.
First, the fact that glyphs are removed when the
save/restore block endsallows the driver to
producea PostScriptdocumentthat can be pro-
cessedwith less memory. Since pagesare typi-
cally enclosedbetweena save anda restore,
thedrivercanbuild adocumentin whicheachpage
addstheglyph descriptionsrequiredfor that page.
In suchcasesthePostScriptinterpreternever needs
to storea largesetof glyphsfrom afont. This tech-
niquebenefitsmainly CJK fonts, in which the set
of glyphs usedin a long documentmay be con-
siderablylarger thanthesetusedon any particular
page.Thenegative implicationsof this techniques
area largerPostScriptfile sizeandlongerprocess-
ing, sincethesameglyphmayneedto beprocesses
on severalpages.

The secondusefor incrementaldefinition of fonts
is when the driver must begin producing the
PostScriptoutputbeforeit finishesprocessingthe
document. In suchcases,it mustdefinethe fonts
that are used before it can determinethe exact
subsetof their glyphs that are usedin the docu-
ment. Thedriver cantheneitherdownloadtheen-
tire glyphsetof thefonts,or it candefinefontswith
the glyph set that hasbeenusedup to that point,
andaddadditionalglyphsasit encountersthemin
thedocument.

Glyphscanbeaddedto Type1 and3 fonts,andto

Type42 fontswith aGlyphDirectory.

3 The Qt/X11 Printer Dri ver

TheQt/X11printerdriver is thesoftwaremodulein
Qt thatenablesapplicationsto generatePostScript
output for printing, storage,or further processing
(e.g.,conversionto PDF).

To generatePostScriptoutput,the applicationcre-
atesa QPrinterobject,which is a QPaintDevice by
inheritance.TheQPrinterobjectspecifiesthename
of the printer (or the file to write the output into),
thepaperdimensions,andsoon. Typically, theap-
plication createsthe QPrinterobjectby creatinga
QPrintDialog,whichletstheuserchoosetheprinter
andtheprintersetupand.Theapplicationthenasks
theQPrintDialogto createa QPrinterobject.Once
theQPrinterobjectis ready, theapplicationusesit
to createaQPainter. QPainteris anobjectthatpro-
vides a drawing API to the application. The ap-
plicationsendsdrawing commandsto theQPainter,
which sendsthem to the QPrinter. This part of
the mechanismworks in the sameway on all the
platformsthatQt supports,includingbothX11 and
Windows.

Under X11, the QPrinterobject containsa refer-
enceto a QPSPrinterobject. The QPSPrinterob-
ject, in turn, containsa referenceto a QPSPrinter-
Privateobject,whichperformstheactualPostScript
generation.Thereasonsfor theexistenceof thein-
termediateQPSPrinterobjectare irrelevant to this
paper.

WhentheapplicationdrawsontheQPainterassoci-
atedwith theQPrinter, theQPaintersendsthedraw-
ing requeststo its associatedQPrinter(which the
applicationconstructed,usuallyusingaQPrintDia-
log). TheQPrintersendsthedrawing commandsto
its QPSPrinter, which sendsthemto its QPSPrint-
erPrivate object, which generatesthe appropriate
PostScript. The QPSPrinterPrivate object repre-
sentsthe stateof the PostScriptprint driver for a
singleprint job. Themethodsof theQPSPrinterPri-



vateclasscomprisetheprinterdriver itself.

Two commandsthat the applicationpassesto the
printerdriver arerelatedto text rendering:setfont,
which setsthe font and size in which text is ren-
deredfrom that point on, anddrawtext, which ac-
tually renderstext. The setfontcommandspeci-
fies the font by passingto the driver a QFont ob-
ject, which is essentiallya Qt object representing
an X11 screenfont. On systemsrunningXFree86
4 andlater, theX11 screenfont canbeeitheracore
X font or anXft font [10].

The printer driver (QPSPrinterPrivate)attemptsto
buffer thePostScriptdocumentthat it generates.A
PostScriptdocumentusually consistsof a header,
which includesfonts and other resourcesthat the
documentneeds,andof pagedescriptions.Buffer-
ing the documentallows the driver to constructa
headerthat includesall the neededresources.To
keep the buffer size reasonable,the driver emits
the contentsof the buffer into the output stream
when the PostScriptoutput grows beyond certain
limits. Before it emits the contentsof the buffer,
the driver generatesand emits a headerthat in-
cludestheresourcesthat thedocumentneedsup to
that point. Since the driver hasnot yet accepted
drawing commandsfor therestof thedocument,it
doesnotknow whichadditionalfontsandresources
the following pagesneed. From that point on, the
driver emitsonepageat a time. It needsto include
with a pagedescriptionany resourcesthat thepage
needsandthatwerenot includedin thedocument’s
header.

4 The NewMechanism

The new font subsettinganddownloadingmecha-
nism is built arounda new class,QPSPrinterFont-
Private. This class is usedsolely by the printer
driver and its interface is not in Qt’s public API.
QPSPrinterFontPrivate is a baseclassthat repre-
sentsaPostScriptfont correspondingto aQt screen
font. The subclassesof the base class corre-
spondto specificfont formats:QPSPrinterFontTTF

for TrueType fonts, QPSPrinterFontPFA and QP-
SPrinterFontPFB for Type 1 fonts, QPSPrinter-
FontAsianfor built-in CJK fonts,andQPSPrinter-
FontNotFoundfor screenfontsfor whichnomatch-
ing font file wasfound.Therearefour subclassesof
QPSPrinterFontAsian,correspondingfor Japanese,
Korean,traditional-Chineseandsimplified-Chinese
fonts. Someof the new subsettinganddownload-
ing functionalityis implementedin theQPSPrinter-
FontPrivatebaseclassandthe restis implemented
in its subclasses.

4.1 Finding Font Files

The setfontcommandpassesa Qt screen-fontob-
ject to the driver. The driver keepsa referenceto
thescreenfont andreturns.

Thedrawtext commandasksthedriver to rendera
stringin thecurrentfont. Thedrivercheckswhether
the last PostScriptfont that wasusedmatchesthe
currentscreenfont (the argumentof the last set-
font command).If not, it calls its own setFont
methodto changethe currentPostScriptfont. Ei-
therway, thedriver now hasa referenceto theQP-
SPrinterPrivateobject that correspondsto the cur-
rent screenfont. It thencalls this object’s draw-
Text methodto renderthestring.

Thedriver’ssetFont methodcreatesatemporary
object of type QPSPrinterFont. It passesto QP-
SPrinterFont’s constructorreferencesto thescreen
font, to thedriverobjectitself,andto thescript(lan-
guage)that thescreenfont implements.Thescript
is only usedto selecta built-in CJK font if no font
file is found. TheQPSPrinterFont constructorper-
formsthreetasks.First,it extractsacanonicalname
for thescreenfont. For coreX fonts,thenamecon-
sistsof thefirst 5 fields in the font’s XLFD name,
which include the foundry (vendor), the family
name,theweight(e.g.,bold), theslant(e.g.,italic),
andthewidth; it ignoresthesizefieldsandtheen-
coding fields in the font’s name,sincePostScript
fonts canbe resizedandreencoded.If the screen
font is anXft font [10], thecanonicalnameis sim-
ply the font’s file name,which Xft provides. The



next task is to determinewhethera font with the
samecanonicalnamehasalreadybeenusedin the
document.Thisisdeterminedbysearchingadictio-
nary datastructurethat mapsthe canonicalnames
of the document’s fonts to QPSPrinterFontPrivate
references.If the font hasbeenused,processing
endshere. If the font hasnot beenused,the third
taskof the QPSPrinterFont’s constructoris to find
and readthe font file. For Xft fonts, this task is
trivial. For core X fonts, the task is more com-
plex. The driver searchesthe fonts.dir and
fonts.scale fileson theX font pathandon the
font server’s font pathfor matchingXLFD names.
TheX font pathcanbedeterminedexactly by call-
ing XGetFontPath. The X font server’s font
pathcannotbedeterminedusingtheAPI of eitherX
or thefont server itself. Thecodethereforeguesses
locationsfor thefont server’s configurationfile and
triesto parsethis file in orderto determinethefont
server’s font path. This heuristicsucceedson stan-
dard configurationsbut is likely to fail with non-
standardfont servers,suchasBitstream’sFontastic,
which is part of Corel’s Linux applications. The
useror systemadministratorcanalsoadddirecto-
riesto besearchedby settingthe/qt/fontPath
applicationsetting.

OnceQPSPrinterFont finds the font file, it readsit
into a buffer (if it wasnot readbefore)anddeter-
minesthe font format. The first few bytesof the
font file candetermineunambiguouslythefont for-
mat: binary Type 1 fonts have 0x80 in their first
byte andthe string%!PS startingin byte 6, ASCII

Type1 fontsstartwith %!PS , andTrueTypefonts
startwith the 4-bytestring0x00010000, andso
on. Now thatQPSPrinterFont knows which format
the font is in, it constructsan appropriateinstance
of a subclassof QPSPrinterFontPrivate. The con-
structoris givenareferenceto thebuffer containing
the font file. The last actionof QPSPrinterFont is
to insert the newly createdQPSPrinterFontPrivate
into thedocument’s font dictionary. TheQPSPrint-
erFont is notusedany moreandis destroyed.

The only other important action of the driver’s
setFont methodis the generationof PostScript
codeto set the currentfont. This is doneby call-
ing theQPSPrinterFontPrivate,which emitsthere-

quiredPostScriptcodeinto thePostScriptbuffer.

4.2 Drawing Text

When the driver is requestedto draw a string, it
calls the drawText methodof the current QP-
SPrinterFontPrivate.Thismethodperformstwo ac-
tions. First, it measuresthe width of the string
emits into the PostScriptbuffer an ashow com-
mandthat rendersthe string. The width measure-
mentis doneusingthescreen-font’s metrics,to en-
surethatprintedoutputmatchestheappearanceof
text on thescreen.

Second,themethodaddstheUnicodecharactersin
thestring(all Qt’s stringsareencodedin Unicode)
to thesubsetof charactersthatthedownloadedfont
mustsupport.

The string to be renderedmustbe encodedin the
PostScriptdocumentusingthePostScriptfont’sen-
coding.Thatis, thedriver mustmapUnicodechar-
actersto the font encoding.Font encodingsin the
driver have evolved considerably;the mechanism
that we now describeappliesto Qt 3.0, but not to
Qt 2.x.

Qt 3.0 always uses a 16-bit encoding (except
for built-in Japanesefonts, where it uses the
jisx0208.1983-0encoding).Theencodingof a font
is constructedincrementally. Thefirst characterin
theencodingis alwaysthedefault.notdef char-
acter. Thefirst characterthat is renderedusingthe
font in thedocumentis assignedslot1 in theencod-
ing, the secondslot 3, andso on. Therefore,each
font typically hasa different encodingdepending
onthecharactersthatarerenderedin it andontheir
orderof appearance.

An earlier versionof the driver usedthe Unicode
encoding for all the fonts, but this usually led
to larger PostScriptoutputwithout any significant
benefit.



4.3 Subsettingand Downloading Fonts

ThecurrentdriverdownloadsType1 andTrueType
fonts,but it only subsetsTrueTypefonts.

Type 1 fonts aredownloadedentirely; the current
implementationdoesnot subsetthem. This is not
usually a significant problem, since of the Latin
Type 1 fonts are relatively small, 50-100KBytes
in the ASCII encodingthat the driver downloads
into thePostScriptoutput. Binary Type1 fontsare
convertedto ASCII anddownloaded,ASCII Type1
fontsaredownloadedwithoutany changes.Subset-
ting Type1 fontswouldmake thePostScriptoutput
smallerbut it requiresparsingthe glyph descrip-
tions,which thecurrentdriver doesnotdo.

TrueType fonts areconvertedinto PostScriptfonts
and sometimessubsetted. Most of the code that
performsthe conversionwasoriginally written by
David Chappellfor a projectcalledPPR.Thecode
convertstheTrueTypefont eitherto aType42 font,
which is simply a TrueType font in a PostScript
wrapper, or to a Type 3 font that usesPostScript-
languageprocedureto describetheoutlineof each
glyph.

By default, TrueType fonts are converted into
Type 3 fonts. The default distribution of Qt/X11
doesnotevencompiletheType42conversion.The
requiredcode can be included in the library by
definingacertainpreprocessorvariable.Evenif the
codeis included,thedrivergeneratesType42fonts
only if theQT_TTFTOPS environmentvariableis
setto 42.

The driver prefersconversion to Type 3 for two
mainreasons.First, thedriver only subsetsType3
fonts, not Type 42 fonts. SubsettingType 3 fonts
is relatively easy:thedriver simply skipstheglyph
descriptionsof glyphsthatarenotused.Thedriven
ensures,however, thatif acharacterin thesubsetis
representedby a compositeglyph, thenall the re-
quiredbaseglyphsareincludedin thesubsetfont.
Subsettinga Type42 font is morecomplex andwe
have not implementedtherequiredcode.Sincethe
driver doesnot subsetType 42 fonts, conversion

to Type 42 produceslarger outputfiles. The con-
versionactuallyfails on very largeTrueTypefonts,
sincein a Type42 font, all theTrueTypetablesex-
ceptfor thetablecontainingtheglyph descriptions
(the glyf table) must fit into PostScriptstrings
whosemaximum size is 64KBytes. Large fonts
canhave tablesthat aretoo large. Second,not all
PostScriptdevicessupportType42fonts.Sincethe
driver doesnot know whetherthe PostScriptout-
put file will berenderedonadevice thatcanraster-
ize Type42 fonts,it prefersto rely on Type3 fonts
whicharesupportedby all PostScriptdevices.

Conversionof TrueType fonts to Type 42 hasone
potentialadvantageover conversionto Type 3. In
conversionto Type42 the TrueType font is essen-
tially embeddedasis, including its hints. Our con-
versionto Type3 representstheglyph outlinesex-
actly, but strips the hints. At small sizes,strip-
ing the hints can have an adverse effect on the
printed output. However, a few subjective visual
teststhat we have performedshowed little differ-
encein printed output even for well-hinted fonts
like Arial. It seemsthat at printer resolutions,as
opposedto screenresolutions,hinting haslittle ef-
fect.

To supportfontswith morethan256characters,the
driver usesType 0 fonts. The PostScriptfont that
the driver downloads,whetherType 1, 3, or 42,
usesa built-in 8-bit encodingvector, Standard-
Encoding, but thedriver doesnotusethisencod-
ing; it is includedin thefont only to make it avalid
font. Supposethat the documentuses300 charac-
tersfrom a font, sayGeorgia. ThebasePostScript
font, whichhasan8-bit encoding,is calledGeor-
gia. Thedrivercreatestwo 8-bit encodingvectors,
onecontainingthefirst 255charactersthatit needs
from thefont (and.notdef), theothercontaining
theother45 characters.Thefirst encodingis called
Georgia-ENC-00 and the secondGeorgia-
ENC-01. The driver then createstwo derived 8-
bit fonts in which the Georgia is reencodedusing
the two encodingvectors.Thesederived fonts are
calledGeorgia-Uni-00 andGeorgia-Uni-
01. Finally, thedriver definesa compositeType0
font with an 8/8 mappingthat mapscharacters0–
255 to Georgia-Uni-00 and characters256–



511to Georgia-Uni-01.

Using Unicode to encodethe compositefonts is
alsopossible,and indeedan earlierversionof the
driver usedsuchanencoding.

5 Suggestionsfor Future Development of
the Printer Dri ver

Thedriver canbenefitfrom several additionalfea-
turesthatwehave not yet implemented.

Conversion of TrueType Fonts to Type 1. The
driver currentlyconvertsTrueType fonts to Type3
or Type 42 fonts. Conversion to Type 1 instead
of Type 3 would reduceoutput sizesand would
speedup rasterization.Type1 usea specialencod-
ing for outlineglyphdescriptionsthatis morecom-
pactthantheType3 fonts that thedriver produces
now. Furthermore,thecompactencodingallowsfor
fasterprocessingby thePostScriptinterpreterthan
the ASCII-encodedType 3 fonts (Adobeeven pro-
ducedatonetimeahardwareacceleratorfor raster-
izing Type1 fonts [7, page287]). What is needed
to implementthis featureis a Type1 encoder;sev-
eralopen-sourceprogramsincludesuchanencoder
(e.g.,t1asm from thet1utils package),so the
codecanprobablybeborrowedfrom oneof them.

Subsettingof Type1 Fonts. Thedrivercurrently
downloadsType 1 fonts without subsettingthem.
SubsettingType1 fontswouldreducesomewhatthe
outputfile sizesthat the driver produces.Subset-
ting Type 1 fonts requiresthat the driver decodes
theglyph descriptions,which it doesnot currently
do. It would then needto encodethe description
of theglyphsthatthedocumentneeds.Again,sim-
ilar codeis available in t1asm andt1disasm.
Subsettingrequirescare,sincethesubsetfont must
obey all the constraintson Type 1 fonts, suchas
constraintson compositeglyphs and on subrou-
tines. Some programs,such as dvips, TEX’s
PostScriptbackend, subsetsType 1 fonts, but not

alwayscorrectly. SinceType 1 fonts aretypically
small,it is obviously betternot to subsetthemthan
to introducebugs into the driver by attemptingto
subset.

Tailoring the Output to SpecificPostScript De-
vices. PostScriptdevices differ in their capabili-
ties. Devicesdiffer in theamountof memorythey
have, in the selectionof built-in-fonts that they
have, in the PostScriptlanguagefeaturesthat they
support,and in the areaof the pagethat they can
print on, andso on. Therefore,a PostScriptdoc-
ument that is optimal for one device may render
poorly on another, or it maynot renderat all. The
current driver ignoresthe specificsof the output
device and always attemptsto generate“generic”
PostScriptthat renderson any device. This strat-
egy has several significant drawbacks: it results
in large file sizes,especiallywhen the document
containshi-resolutionimages,it preventsthedriver
from converting TrueType fonts to Type 42 fonts,
and it prevents the driver from notifying applica-
tionsabouttheimageableareaof thepage.

There are two approachesto tailoring PostScript
output to specificdevices. In oneapproach,a di-
alogwidgetallows theuserto tailor theoutput.For
example,thePostScriptoutputdialogof AdobeIl-
lustrator 9.0 for Windows allows the user to se-
lect betweenPostScriptlevel-1, level-2, or level-3,
to decidewhetherto downloadfonts into the doc-
ument,and to decideon the color model. Other
high-endapplicationsoffer similarcapabilities,and
so doesAdobe Acrobat for Linux. In the other
approach,the driver usesa PostScriptPrinter De-
scription (PPD) file to determinethe capabilities
of the output device. The driver usesthe PPD
files in two ways. First, it can determineauto-
matically whethersomedevice featuresareavail-
ableandadapttheoutputaccordingly, without any
input from the user. For example, the driver can
determine,usingthe PPDfile, that the device is a
PostScriptlevel-2 device with supportfor Type42
fonts.Second,thedrivercandeterminewhichcapa-
bilities of theprinterareundersoftwarecontroland
asktheuserto decidehow to processthedocument.



Forexample,thedrivercandeterminethatprinterX
canprint onbothsidesof thepaper(duplex capabil-
ity), soit incorporatesin thedialogwidgetacheck-
boxfor duplex printing,whereasprinterY canonly
print on oneside,so this checkboxis not included
in the dialog widget. Adobe’s genericPostScript
printerdriversfor WindowsandMacOSusethisap-
proach.

The first approachis useful when the PostScript
outputis intendedto beusedon severaldevicesor
to be further processed.For instance,whenusers
producePostScriptto beputonawebsite,or when
usersproduceanencapsulatedPostScript(EPS)fig-
ureto beincludedin otherdocuments.Thefirst ap-
proachis alsousefulwhen the printer driver can-
not determinethe PPD file that correspondsto a
particularoutput device. Most Unix/Linux print-
ing systemsdo not associatePPDfiles with print-
ers, so the PPD-lessapproachis more suitableto
them.Themaindisadvantagesof thefirst approach,
comparedto thesecond,is thatit presentstheusers
with optionsthatthey maynotunderstand,andthat
it makesit nearlyimpossibleto supportall thefea-
turesthataPostScriptdevicemayhave. A usermay
not know the differencebetweenPostScriptlevels
or what it meansto download fonts, so including
such options in dialogs can be confusing. Also,
somePostScriptdeviceshave fairly exotic capabil-
ities,suchasstaplingandbinding,andit is unlikely
thata genericandeasy-to-useinterfacewould sup-
portall of them.

It seemsthat the mostreasonablesolutionfor this
driverwouldbeto allow theuserto controltheout-
put without using PPD files. To avoid confusion,
we think that the extra options should not be in
themainprinting dialog,but accessiblethroughan
“advancedoptions”buttonor asimilarmechanism.
This makesit clearthat settingtheextra optionsis
notnecessaryandthatit requiressomeexpertise.

Support for Additional Font Formats. Thevast
majorityof scalablefontsthatareusedonX11 sys-
temstodayareType 1 andTrueType fonts, so by
virtue of supportingthemthedriver supportsmost

of thefontsthatusershave. But FreeType,thefont
rasterizationlibrary that is usedby the XFree86
X server, by Xft, and by somestand-alonefont
servers,canrasterizefonts in otherformatsaswell
(www.freetype.org). Themostimportantfont
formatsthatFreeTypesupportsbesidesType1 and
TrueType areOpenType fonts andCID fonts with
Type1 outlines.SinceFreeTypesupportsthesefor-
mats,XFree86andXft cansupportthem. If such
fonts becomewidely usedon X11 systems,then
the driver shouldsupportthem. OpenType fonts
arecurrentlyonly availablefrom Adobe,andthey
arenot widely used.On theotherhand,Adobean-
nouncedthat it plansto convert its entire font li-
brary, which is currentlyofferedin Type1 format,
to OpenType format, andWindows 2000supports
OpenType,sosuchfontsmaybecomemorewidely
usedin thefuture.

RegardingCID fonts,theseareusedsolelyfor CJK
fonts; we do not know whethersupportfor CID
fontsis importantto usersof X11 systems.

Adding supportfor bitmap fonts, and in particu-
lar, to the X core fonts, would createa more ro-
bustfall-backrenderingmechanismwhenthedriver
cannotfind the font file or cannotdownloadit. In
suchcases,thedrivercansimplyretrievethebitmap
glyphs using the X protocol (or using Xft if the
font is anXft font) anddownloada PostScriptfont
with bitmapglyph descriptions.Theresultingout-
putmaylook coarse,sinceit wouldcontainscaled-
up versionsof low-resolutionbitmaps,but it would
at leastrenderall theglyphsthattheusercanseeon
thescreen.

6 Why Users Need a Unified Font-
Handling Mechanism for Printer
Dri vers

Quite a few other X11 libraries andprogramsin-
clude a PostScriptprinter driver that can down-
load fonts. Theseinclude StarOffice (through a
commercialprinter-driver calledXprinter, http:
//www.bristol.com/xprinter), AbiWord,



Sun’s JDK and JRE, Wine (and in particular, the
versionof Wine distributedwith Corel’s Linux ap-
plications).Theoverall functionality in all of these
drivers is basicallysimilar: they provide a draw-
ing API to the applicationandproducePostScript
output. The drawing API’s of the variousdrivers
differ, but not by much. The capabilitiesof the
drivers,in termsof font processing,aresimilar but
not uniform. For example,Xprinter only supports
Type 1 fonts, but it supportsPPDfiles, which the
otherdriversdo not.

The existenceof several different drivers harms
users,for two reasons.First, not all the fonts that
theuserhaswork in all applicationsandin all sit-
uations. For example,a TrueType font that works
fine in Corel’s PhotoPaint doesnotwork in StarOf-
fice. Or a commercialfont thatworksfine in some
applicationsdoesnot work in StarOffice because
StarOffice dependson the font metric file (.afm),
andtheAFM parsersometimesfails on valid files.
Somesituationsareeven moreconfusingto users,
aswhena font works in an applicationin one lo-
calebut not in another, eventhoughthefont’sglyph
repertoiresupportsbothlocales.Thesecondreason
that multiple font-handlingdrivers harm usersis
thatfontsarehardto install. To usea new font, the
usertypically needsto configureeachapplication
(that is, eachdriver). StarOffice hasa font instal-
lation dialog,andsodo Corel’s applications.Abi-
Word only usesfonts that arestoredin (or linked
to) its own font directory, so to use a new font
with AbiWord, the usermustcopy the font to (or
createa link in) AbiWord’s font directoryandup-
dateconfigurationfiles in thatdirectory. Thissitua-
tion alsomeansthatwhennew applicationsarein-
stalled,they typically only usethe fonts that came
with them,notfontsthatarealreadyinstalledonthe
system.

The best way to fix the problem is to unify the
printerdrivers,or at leastthefont-handlingcompo-
nentof thedrivers. A unified font-handlingmech-
anismwould meanthat a a font only needsto be
installedonce,and that oncea font works in one
application,it works in all applications. And as
the font subsettingand downloading mechanism
of Qt/X11 shows, printerdriverscansupportfonts

without any configurationbesidesthat requiredfor
X11 itself.

Tools like kfontinst take a differentapproach:
they providetheuserwith aunifiedfont-installation
interface, but they attempt to configuremultiple
driver to usenewly-installed fonts. This solution
is aneffective stop-gapmeasure,but we think that
in the long run unifying themechanismsis prefer-
able.Toolslikekfontinst needto beconfigured
themselves,in orderto find all therequiredconfigu-
rationfiles; they typically do notsupportall drivers
and applications(e.g., kfontinst only config-
uresX11 andStarOffice);specificapplicationsmay
still fail to handlefontsthatotherapplicationshan-
dle well. A unified font-handlingmechanismsuf-
fersfrom noneof theseproblems.

Thesimplestway to unify thefont-handlingmech-
anismsof printer drivers is usinga stand-aloneli-
brary. TheAPI of QPSPrinterFontPrivatecanserve
asa first draft to the API of this library. Another
option is to addthe requiredfeaturesto FreeType,
sincesignificantamountsof codein FreeType can
be reusedfor font subsettingand downloading.
Another good reasonto add this functionality to
FreeType is that environmentsthat needto raster-
ize fontsoftenalsoneedto downloadfontsto print
jobs. However, the font-file discovery mechanism
thatweusedoesnotseemappropriatefor FreeType
sinceit is X11 specific.Anotheroptionis to include
the font-handlingmechanismin a genericprinter-
driver library, whichcouldperhapssupportnotonly
PostScript,but otherpage-descriptionlanguagesas
well, suchasHP’sPCL.This is obviously a larger-
scaleproject.

7 Summary

This paper describesthe font discovery, subset-
ting, anddownloadingmechanismin Qt/X11. The
mechanismaddressesa majorusability issue:prior
to the implementationof this mechanism,usersof
Qt applications(and henceusersof KDE) could
not print non-Latintext, andcouldonly print Latin



text in fonts that arebuilt into mostprinters. The
new mechanismallows usersto print text in any
scriptthatQt/X11supports,whichincludeswestern
scripts(primarily Latin, Cyrillic, andGreek),Ara-
bic, Hebrew, andeast-Asianscripts.ThaiandIndic
scriptsprobablyneedadditionalsupportto render
properly. Thenew mechanismalsoallows usersto
print Latin text usingawidevarietyof fonts.

The mechanismachieves our main designgoals,
whichweresupportfor commonfont formats,sup-
port for Unicode,andlack of configurationfiles.

The paperpresentspossibleenhancementsto the
printer driver and suggeststhat a unified font-
subsetting-and-downloading mechanismwould be
beneficialto bothdevelopersandusers.

References

[1] Adobe Systems. Adobe Type 1 Font
Format. Available online on http:
//partners.adobe.com/asn/
developer/technotes/main.html.
1990.

[2] Adobe Systems. CID-Keyed Font
Technology Overview. Adobe Tech-
nical Note #5092, available online on
http://partners.adobe.com/asn/
developer/technotes/main.html.
1994.

[3] Adobe Systems. Adobe CMap and CID
Font Files Specification,Version 1.0. Adobe
Technical Note #5014, available online on
http://partners.adobe.com/asn/
developer/technotes/main.html.
1996.

[4] Adobe Systems. PostScript Printer
Description File Format Specifica-
tion, Version 4.3. Adobe Techni-
cal Note #5003, available online on
http://partners.adobe.com/asn/
developer/technotes/main.html.
February1996.

[5] Adobe Systems. The Type 42 Font
Format Specification. Adobe Techni-
cal Note #5012, available online on
http://partners.adobe.com/asn/
developer/technotes/main.html.
1998.

[6] AdobeSystems.PostScript̋o Language Refer-
enceManual. Third edition.Availableonline
on http://partners.adobe.com/
asn/developer/technotes/main.
html. 1999.

[7] Ken Lunde. CJKV Information Processing.
O’Reilley, 1999.

[8] Microsoft. TrueType 1.0 Font Files, Techni-
cal SpecificationRevision1.66. Availableon-
line on http://www.microsoft.com/
typography, August1995.

[9] Microsoft. OpenType Specifications Ver-
sion 1.3. Available online on http:
//www.microsoft.com/typography,
April 2001.

[10] Keith Packard. Design and implementation
of the X rendering extension. Proceedings
of Usenix2001, FREENIX track. 12 Pages.
Boston,June2001.


