
USENIX Association

Proceedings of the
4th Annual Linux Showcase & Conference,

Atlanta

Atlanta, Georgia, USA
October 10 –14, 2000

THE ADVANCED COMPUTING SYSTEMS ASSOCIATION

© 2000 by The USENIX Association All Rights Reserved For more information about the USENIX Association:
Phone: 1 510 528 8649 FAX: 1 510 548 5738 Email: office@usenix.org WWW: http://www.usenix.org

Rights to individual papers remain with the author or the author's employer.

 Permission is granted for noncommercial reproduction of the work for educational or research purposes.

This copyright notice must be included in the reproduced paper. USENIX acknowledges all trademarks herein.

BLASTH, a BLAS library for dual SMP computer.

Guignon Thomas
Laboratoire ASCI

Orsay, France
guignon@asci.fr, http://www.asci.fr/

Abstract
This paper presents a multi-threaded BLAS library for dual
SMP Intel computer running Linux. We present simple
techniques to obtain parallelism for BLAS call transpar-
ently from the client program. We discuss some syn-
chronization methods available under Linux, show perfor-
mances results for a representative set of BLAS and for a
high level linear algebra kernel. We then explain some key
points on cache management and how they can impact on
performances of the blasth library. Next we’ll draw some
conclusions on the use of SMP computer for linear algebra
and present evolution perspectives for the library.

1 Introduction

BLAS1[8, 4, 3] are a set of subroutines written in Fortran
77 which provide a standard API for simple linear alge-
bra operations. BLAS are now widely used and base of
library such as LAPACK, PETSC, SCALAPACK... A re-
cent development in parallel computing was to use on the
shelves components to build high performance computers,
these components could include low and dual Intel proces-
sor systems. This choice leads to the use of two parallel
programming models: message passing between nodes end
shared memory inside nodes. The goal of the blasth library
is to provide a transparent support of shared memory for
BLAS call: the program call BLAS as usual but the call is
processed on 2 processors. BLAS are split in 3 level:

� level 1: vector operations,

� level 2: matrix-vector operations,

� level 3: matrix-matrix operations and triangular solve.

In this paper we first present some discussion and experi-
ments for synchronizing threads with Linux on SMP com-
puter, we will then focus on daxpy and ddot level 1 BLAS,
dgemm (from level 3). The sequential BLAS library used
will be the one from the f77 implementation ASCI Red

1from Basic Linear Algebra Subroutines

project2 and ATLAS3[9] (for level 3). We also present re-
sults for a block LU factorization.

2 Base principles

Parallelism in BLAS is transparent from the client pro-
gram: only a call to setup the execution environment and
changing the subroutine calling names is needed. The exe-
cution scheme is master-slave: the master process runs the
program while the slave process is waiting for instruction
for master. When the master issue a BLAS call it tells the
slave what job to do by communication via shared memory
and each one does his “job part”. The master waits for the
slave to finish his job and continues the normal execution
of the program.

The implementation uses The Linux Thread Library
which is included with glibc package. This library provides
very simple view of shared memory because each thread
has the same memory space (data and stack). Note that
The Linux Thread Library does not use real threads but tra-
ditional Linux processes sharing their memory space so in
the following we will use the 2 words thread/process with
the same meaning.

2.1 Synchronization

The master-slave approach relies on process synchroniza-
tion at start and end of BLAS call. Under Linux process
synchronization can usually be done in two way:

� IPC semaphores.

� Thread semaphores.

One third way is to use a shared memory variable (syn-
chronization variable): the slave spins on testing the value
change of this variable. In this case the slave is always
running even if it doesn’t make useful work and a normal
(observed) behavior of the Linux scheduler is to place the

2http://www.cs.utk.edu/�ghenry/distrib/
3http://www.netlib.org/atlas/index.html

MASTER SLAVE

slave waits for master

slave waits for master

ts

te

master waits for slave recieves signal

1

2

recieves signal

from slave

from master

3

Figure 1: ping-pong test events.

each running process on different processors so when the
master process need synchronization the slave is immedi-
ately ready and running.

We compare the three alternatives in a ping-pong test:
we make the slave wait for the master and the master “sig-
nals” the slave; next the master wait for the slave and the
slave “signals” the master . We measure the number of cy-
cles on the master to get the whole job done. Figure 1 may
help in understanding the ping-pong test. Moreover each
synchronization method must ensure that:

� the slave cross point
�

�

�

�
2 if and only if the master cross

point
�

�

�

�
1 ,

� the master will go through point
�

�

�

�
3 if and only if the

slave cross point
�

�

�

�
2 .

The synchronization variable method fulfills the previ-
ous requirements. For IPC and Threads semaphores we
must use 2 semaphores4 each one indicates when the mas-
ter and slave are ready to enter in parallel section; the ping-
pong is done with 2 barriers that act like this:

� each semaphore holds value 0,

� master posts on semaphore 0 (semaphore 0 holds 1)
and waits on semaphore 1 value becomes 1.

� slave posts on semaphore 1 (semaphore 1 holds 1) and
waits on semaphore 0 value become 1.

� each semaphore holds value 0 again.

Experiments are realized on a dual PII 400 and the time
measurement is done using the time stamp counter5 (tsc) of
Intel Pentium processors, we suppose that the tsc of each
processor holds roughly the same value. Results are pre-
sented figure 2: for each method we make 1000 runs and

4it can also be done with mutexes.
5this is a 64 bits counter which value is incremented each cycle and

start counting at power on of processor

100

1000

10000

1e+05

pr
oc

es
so

r
cy

cl
es

min
average
max

variable IPC semaphores Thread semaphores

Figure 2: min, average and max times for ping-pong test (
1 cycle = 1/400e6 s.).

presents the smallest, average and largest time for ping-
pong. These results show that synchronization variable is
by far the fastest method. As we said previously the dif-
ference between synchronization variable and the 2 other
methods is that the slave process is ready and running so
synchronization does not pay the cost of a system call and
moving process from the wait/suspend queue to the run-
ning queue. On the other hand having an active slave may
interfere with other multi-threaded library.

2.2 Passing parameters and data sharing

Passing BLAS parameters to the slave is realized by writ-
ing in a shared variable the address of the first parameter
of the BLAS call before synchronization as shown in the
following example env base holds a pointer to the data
needed by slave process and env blasth signal value
holds the function to be run by slave:

void **env_base;
void (*env_blasth_signal_value)();

void blasth_daxpy(const int *n,
double *alpha,
double *X,
const int *incx,
double *Y,
const int *incy){

// realize Y = *alpha * X + Y
// where X and Y are vectors of
// size *n with respective increments
// of *incx and *incy
// executed by the
// master from the
// application program

env_base = (void **)&n;
env_blasth_signal_value = TH_DAXPY;

// tell the slave there is
// some job to do
blasth_master_sync();

// some job

// wait for the slave
blasth_master_sync_end();

}

void blasth(){
// excuted by the slave from the
// environement setup

while(1){
// wait for the master
blasth_sync();

//call the function set by the master
env_blasth_signal_value();

}
}

TH_DAXPY(){
// at this point env_base
// contains a pointer to the
// first needed parameter
// (int *)env_base[0] is a
// pointer to the size of vectors (*n)
// (double *)env_base[1] is a
// pointer to the scaling factor (*alpha)
// (double *)env_base[2] is a
// pointer to the first element
// of vector X
//

// some job

// tell the master
// that job is finished
blasth_sync_end();

}

The blasth daxpy calling sequence is identical to the daxpy
calling sequence from a C program (the BLAS library is
originally written in f77 so the API is f77 compliant) and
the parameters are written before the synchronization vari-
able so the strong memory ordering (for write operations)
of the Pentium processor family ensure that slave process
will see exactly the same parameters in TH DAXPY as the
master in blasth daxpy.

Data sharing is done by splitting the result between the
master and the slave: if the result is a vector the master has
to construct the first half and slave has to construct the sec-
ond half; if the result is a matrix of size m � n the master
will construct either the first n=2 columns orm=2 rows and
the slave will construct the remaining columns or rows. We
show splitting examples in figure 3 for dgemv and dgemm
(respectively matrix vector product and matrix matrix prod-
uct).

We does not use cycling split of data to avoid cache line

x

A

y

slave

master

A

B

C

dgemm: C = A * B

slavemaster

dgemv: y = A * x

Figure 3: data splitting for dgemv and dgemm

sharing between processors (especially when writing data).
The splitting are also chosen to avoid temporary data which
would require dynamic allocation.

3 Some results

The results presented here where done on a dual PII 400
system running Linux The time measurements are done us-
ing the time stamp counter of the processors. The base
BLAS libraries used are from the Fortran 77 implementa-
tion6, ASCI Red project and ATLAS project (for level 3).
The memory bandwidth measurements are done with the
hardware performances counter available on the Pentium
Pro family processors7. For each BLAS we test we com-
pare single and dual performances in two case, with cache
memory flushed out (datas are read from main memory)
and with cache memory loaded: the test is done several
times before measuring execution time (remark: this does
not seem that data will fit into cache).

3.1 daxpy and ddot

daxpy and ddot are the two main level 1 BLAS, daxpy is a
linear combination of vectors y = �:x+y and ddot is a dot
product of the form � = xT :y (the “d” before each name
indicates that the BLAS use double precision floating point
arithmetics).

6with recent version f77 level 1 blas compete with those of ASCI Red
project

7an introduction on how to use these counters is available at
http://www.cs.utk.edu/ ghenry/distrib/mon counters

Performances results for daxpy are presented figure 4
and acceleration is showed 5. Observed results are typi-
cal for level 1 operations: we observe a peak when data fits
into L1 cache and a smooth decrease when data does not
fits in L1 but remains in L2. Performance from main mem-
ory is driven by memory bandwidth. Acceleration is quite
good for large vectors especially when datas are in cache.

0 1000 2000 3000 4000 5000
n

0

100

200

300

M
F

LO
P

S

daxpy
n = 10,5000, PII 400

1 processor (memory)
1 processor (cache)
2 processors (memory)
2 processors (cache)

Figure 4: daxpy performances with 1 and 2 processors

0 1000 2000 3000 4000 5000
n

0

0.5

1

1.5

2

2.5

3

3.5

4

A
C

C

daxpy (BLASTH 2 processors)
n = 10,5000, PII 400

acceleration (memory)
acceleration (cache)

Figure 5: daxpy acceleration for 2 processors

Performance results for ddot are showed figure 6 and fig-
ure 7 for acceleration. Comments on performances results
are the same as for daxpy but we observed that scaling is
not as good as for daxpy: cache operation scaling is roughly
1.8 but remains good. On the other side memory operation
scaling in poor (� 1:5). To understand that we make some
memory bandwidth measurements with very large vectors
to not consider time spent in synchronization and the re-
sults are presented in table 1: we see that single proces-
sor ddot use more than half of the theoretical peak mem-
ory bandwidth (the system uses pc100 SDRAM allowing

800e6 B/s memory bandwidth) and dual processor uses up
to 75% of available bandwidth which seems very good for
the test system.

0 1000 2000 3000 4000 5000
n

0

50

100

150

200

250

300

350

400

450

500

M
F

LO
P

S

ddot
n = 10,5000, PII 400

1 processor (memory)
1 processor (cache)
2 processors (memory)
2 processors (cache)

Figure 6: ddot performances with 1 and 2 processors.

0 1000 2000 3000 4000 5000
n

0

0.5

1

1.5

2

2.5

3

A
C

C
ddot (BLASTH 2 processors)

n = 10,5000, PII 400

acceleration (memory)
acceleration (cache)

Figure 7: ddot acceleration for 2 processors.

The daxpy and ddot BLAS show good acceleration with
the blasth library when datas are present into cache mem-
ory, this behavior is in fact common to all level 1 operations
since each component of vectors is used only one time in
computation (no temporal locality). Operations on small
vectors (n � 1000) will not scale due synchronization cost
compared to the small number of floating point operations
issued (n or 2:n for level 1 BLAS). The memory bandwidth
is the key point for scalability when datas are out of cache
which is always true for very large data sets.

3.2 dgemm and block LU factorization

dgemm is a level 3 operation which performs a matrix ma-
trix product C = �:A:B + �:C where A, B, C are respec-

nproc n memory bandwidth (1e6 B/s)
1 10000 440
1 100000 470
2 10000 590
2 100000 600

Table 1: memory bandwidth used by ddot with 1 and 2
processors.

tively m � k, k � n and m � n matrices. The ASCI Red
implementation and ATLAS use a block method to perform
matrix matrix multiply and achieve good performances As
we see in figure 8 end figure 9 performances and acceler-
ation are very good and remain as the size of matrices in-
crease. Performances for dgemm are important because it’s
a building block for block LU factorization. We know out-
line a block LU factorization method, the reader may refer
to [5] for an in-deep analysis and algorithms, and discuss
how multi-threaded version can be realized.

0 200 400 600 800
n

0

100

200

300

400

500

600

M
F

LO
P

S

dgemm
n = 10,800 , PII 400

1 processor (memory)
1 processor (cache)
2 processors (memory)
2 processors (cache)

Figure 8: dgemm performances with 1 and 2 processors

LU factorization is used to solve linear system like
A:X = B by factorize A into L:U where L is a lower
triangular unit matrix and U is an upper triangular matrix.
Efficient LU methods rely on matrix matrix product and we
outline such method in the following. For simplicity we
suppose that the block size nb divide n which is the size of
the square matrix A and set N = n=nb. Each block of A
is numbered Ai;j i; j = 1::N . The block LU performs as
follow:

1. set k = 1,

2. compute Ak;k = L:U and overwrite Ak;k with L and
U using a non blocked LU factorization,

3. apply row interchange in Ak;k+1:N and in Ak;1:k�1

4. solve L:X = Ak;k+1:N and overwrite Ak;k+1:N with
the solution,

0 200 400 600 800
n

0

0.5

1

1.5

2

A
C

C

dgemm (BLASTH 2 processors)
n = 10,800 , PII 400

acceleration (memory)
acceleration (cache)

Figure 9: dgemm acceleration for 2 processors

5. solve X:U = Ak+1:N;k and overwrite Ak+1:N;k with
the solution,

6. update Ak+1:N;k+1:N with Ak+1:N;k+1:N =
Ak+1:N;k+1:N �Ak+1:N;k:Ak;k+1:N ,

7. if k < N set k = k + 1 and go to step 2.

Step 2 uses subroutine dgetf2 from LAPACK, row inter-
change is done using dlaswp, step 3 and 4 use dtrsm (trian-
gular solve with multiple right hand side) and step 5 uses
dgemm. It is important to note that most computation is
done in steps 4 and 5 which use level 3 BLAS and represent
1 � 1=N2 of the floating point operations issued (see[5]).
Figure 10 presents task dependencies in block LU for step
k, it outlines a graph dependency for a parallel implementa-
tion. At this point we have two choices for multi-threaded
version:

� We can use a dependency graph of task with each
processors searching for ready tasks (tasks for which
each ancestor is done) and executing them. By split-
ting the solve and matrix multiply tasks into smaller
ones we can see that LU for step k can be done
while matrix multiply for step k � 1 is finishing since
Ak;k = Ak;k �Ak;k�1:Ak�1;k is done at step k � 1.

� We can also perform the LU task on one processor and
then use multi-threaded version of dlaswp, dtrsm and
dgemm.

The first solution requires to construct the dependency
graph and more complex synchronization scheme but al-
ways based on synchronization variable. Construct the
graph and searching for ready task may be a serious over-
head thus limiting acceleration. The second solution let the
LU task be a sequential bottleneck and use parallelism only
on level 3 operations.

updatesolve

exchange LU exchange + solve

Ak;k

Figure 10: LU factorization scheme for the step k

For implementation we choose the second solution be-
cause it’s simple and LU bottleneck is in fact very small
since it represents only 1=N 2 of the overall job. Results for
our block LU factorization are presented figure 11 and fig-
ure 12: we use dgetrf from ATLAS as a reference code for
our sequential block LU. Acceleration figure presents two
curves; one presents acceleration obtained by the multi-
threaded block LU, the other (ideal acceleration) is com-
puted using the sequential code by looking for time spent
in dgetf2 and in level 3 operation:

accideal =
1

tdgetf2 + tlevel3=2

For n � 1000 acceleration is relatively closed to ideal ac-
celeration but smaller case acceleration is far from ideal
due to synchronization cost.

0 500 1000 1500 2000 2500 3000
n

100

200

300

400

500

600

M
F

LO
P

S

BLOCK LU

dgetrf_atlas 1 processor
blu_atlas 1 processor
blu_atlas 2 processors

Figure 11: block LU performances with 1 and 2 processors

0 500 1000 1500 2000 2500 3000
n

1.2

1.3

1.4

1.5

1.6

1.7

1.8

1.9

2

A
C

C

Block LU (BLASTH 2 processors)
n = 100,3000, PII 400

acceleration
ideal acceleration

Figure 12: block LU acceleration with 1 and 2 processors

4 Memory bandwidth and cache use

In this section we present some well known key points
of cache use and how they impact on performances in
BLAS subroutines for single and dual cpu execution, we
will discuss on effect of non continuous data, false shar-
ing, mutual exclude, data blocking, stack alignment and
thread/processor affinity. All examples suppose we are
using an Intel P6 class processor which suppose that L1
caches lines are 32 bytes long and L1 is 2 way set associa-
tive, reader may refer to[1] for full information on optimiz-
ing codes for Pentium processors.

continuous datas.

Level 1 BLAS use loops that access arrays in a sequen-
tial manner; if we suppose that an array t[n] of double
is cache line aligned (for simplicity) accessing t[0] loads
t[0],t[1],t[2],t[3] into one level 1 cache line, then following
array cell accesses may not use memory until we access
t[4]. This situation makes the ration of useful loads8 on ef-
fective loads9 be 1. By using vector increments of 2, only
even cells are used which make t real size becomes 2n, and
the previous ration becomes 0.5. This is a first argument
to avoid cycling split of vectors for multi-threaded level 1
BLAS because master and slave processes will use more
memory access to do the same job.

false sharing.

The Intel P6 family use a cache coherency protocol with
four states usually called MESI10. This protocol is write
invalidate which means that when two or more processors
holds a copy of the same memory line if one of them writes

8loads necessary to perform computation
9loads effectively issued

10Modified, Exclusive, Shared and Invalid

in, the cache line holding the memory line is invalidated
on other processors. False sharing occur when processors
write to a shared cache line but not at the same location:
there is no real coherency problem since processors write to
different location and since the cache allocate a line when
a write misses11 the protocol makes each processor invali-
date the other forcing reload of a cache line at each write.
This situation occurs with blasth library at the boundary
of results blocks but in the case of level 1 BLAS only one
cache line will be shared between 2 processors. In the case
of dgemm for am�nmatrix up tomax(m;n) caches lines
can be shared but usual optimization of dgemm use block
copy of the resulting matrix avoiding such situation. False
sharing is another argument to avoid cycling split and we
can see effect on daxpy in figure 13: there is no cache effect
on operand y while operand x is accessed by each thread
with an increment of 2.

0 1000 2000 3000 4000 5000
n

0

100

200

300

M
F

LO
P

S

daxpy block/cycle
n = 10,5000, PII 400

2 processors (memory) cycling split
2 processors (cache) cycling split
2 processors (memory) block split
2 processors (cache) block split

Figure 13: Effects of false sharing with daxpy on 2 proces-
sors

mutual exclusion.

Mutual exclusion appends when 2 or more memory lines
are needed but cannot be in cache all-together because they
fit in the same cache line and successive access cause ex-
clusion of the memory lines previously loaded. This is a
real problem for direct mapped caches where a memory
line can be in only one cache line. N way set associative
caches solve this problem by allowing a memory line to be
in N different cache lines, the N locations are called a set;
this is the case of the P6 processors where L1 cache is 2
way set associative and it avoids mutual exclusion for all
Level 1 BLAS with less than 3 vector operands (like ddot
and daxpy). Mutual exclusion can also appends for matrix
operations like dgemm: when using a block method, lead-
ing dimension12 can be such that some memory lines share

11PII and up use a write-back/write-allocate strategy while the PPRO
use write-trough.

12distance between first elements of columns.

the same set into cache avoiding more than N of them at
the same time: on figure 14 the memory lines l1 l2 and
l3 are 1024 doubles spaced (remember that PII L1 cache
has 256 sets each containing 2 line of 32 bytes) so they fit
into the same L1 cache set which can hold only 2 differ-
ent memory lines. Thus l1, l2 and l3 and subsequent lines
exclude mutually. The solution to have the block in cache
is to make a copy into contiguous memory and this is the
solution adopted in ATLAS.

l1

l2

l3

loaded in set i

loaded in set i+1

l3

l2

l1

1024 doubles

Figure 14: Mutual exclusion in block access.

data blocking.

Blocking is an optimization technique that allows a full
cache use and thus reduces memory bandwidth usage.
Blocking is no always possible: for BLAS 1 and 2 the ma-
jority of data is accessed only one time making temporal lo-
cality very low; on the other hand Level 3 operations use a
three nested loop structure with 2 dimension matrices mak-
ing each matrix elements accessed more than on time. We
give an example for matrix matrix productC = A:B where
C, A and B are respectively m� n, m� p and p� n ma-
trices; in this case each element of A and B are accessed
respectively n and m times. The block method for matrix
matrix product generally consist of:

� split result matrix C into blocks Ci;j of size nb � nb,
each blocks is constructed into a continuous array C b

which is then copied back into the right C i;j .

� matrices A and B are split into panels Ai and Bj of
size nb�m and k�nb each panel is copied into contin-
uous arrays Ab and Bb. The choice of nb must ensure
that Cb Ab and Bb fit into one level of cache, usually
L2 cache.

then:

1: for i = 1 to m=nb do
2: Ab Ai

3: for j = 1 to n=nb do
4: Bb Bj

5: Cb 0,
6: for k = 1 to p=nb do
7: Cb Cb +Abk:Bbk,
8: end for
9: Ci;j Cb

10: end for
11: end for

We suppose for simplicity that nb divides m, n and p. Fig-
ure 15 may help in understanding operations performed on
blocks. In the case of the previous algorithm matrix A is
loaded only one time into cache compared to the n times
access of a classical ijk loop while matrix B is still ac-
cessed m times. This simple block method greatly reduce
memory access and real codes may choose by looking at
matrix size which loop structure (ijk vs. jik) is best ap-
propriate and if some matrix operand fits totally into cache.

In the previous we where working on L2 cache and we
does no talk about L1 cache use. In fact L1 will be gen-
erally too small to handle a Ci;j block and one panel of A
and B but remember that operation performed at step 7 of
the previous algorithm is a matrix matrix product so each
operand Abk and Bbk is accessed nb times: this part could
also use a block method. Since nb is relatively small the
implementation may load only one of Cb, Abk, Bbk into
L1 cache and works with others from L2 cache. The reader
may refer to ATLAS source code and description for a com-
plete analysis and test of block methods in various environ-
ments. Another projects for fast matrix matrix multiply are
Phipac13[6] and the BLAIS[7] library from MTL14.

stack alignment and thread/processor affinity.

Stack alignment has been an issue because older gcc ver-
sions cause doubles not being aligned on an 8 bytes bound-
ary which make access cost extra cycles. We have face
this problem with level 3 BLAS that use fixed size arrays
on stack for blocking resulting in poor performances. Re-
cent gcc versions (i.e. 2.95.x) solve this problem and pro-
pose various option to control the stack alignment such as
-malign-double and -mpreferred-stack-boundary=x.

Thread/processor affinity is a general issue in smp sys-
tems; the cache efficiency can be reduce if the task sched-
uler moves thread from one processor to another. At
this time there is no way to force thread/processor affin-
ity on a standard Linux kernel but as we said in sec-
tion 2.1 the normal behavior of the Linux scheduler is
to place each running process (master and slave) on 2
different processors and a kernel patch is available at
http://isunix.it.ilstu.edu/�thockin/pset/ that add some con-
trol on the thread/processor binding.

13http://www.icsi.berkeley.edu/�bilmes/phipac/
14http://www.lsc.nd.edu/research/mtl/

��������

�
�
�
�

�
�
�
�

��

�
�
�
�

�
�
�
�

��

Ab Cb

C

B

Bb

A
k

j

i

k

Figure 15: Block matrix matrix product.

5 Conclusions and perspectives

The use of low end Intel SMP computers inside Beowulf
or c.o.w. can help in getting better performances when ap-
plications does not consume a lot of memory bandwidth:
we have always to remember that a cluster of single pro-
cessors nodes has twice aggregate memory bandwidth of
an equivalent cluster of dual SMP with the same number
of processors. In linear Algebra a lots of high level com-
putation kernel use block methods and the blasth library
could help in these cases as we see for LU factorization.
The perspectives for this work are important because we
need to work on more LAPACK routines to provide a use-
ful library. There is also work to do on matrix matrix prod-
uct and LU factorization to improve acceleration in small
cases and our choice of simple parallelization for LU can-
not be ideal for more processors. Porting to other platforms
such as alpha systems is an ongoing work and theses sys-
tems can change scalability results for high bandwidth con-
suming BLAS such as ddot and dgemv making the blasth
library more interesting.

References

[1] Intel Architecture Optimization Manual. Order Num-
ber 242816-003, 1997.

[2] Jack J. Dongarra, Jeremy Du Croz, Sven Hammar-
ling, and Richard J. Hanson. Corrigenda: “An ex-
tended set of FORTRAN Basic Linear Algebra Subpro-

grams” . ACM Transactions on Mathematical Software,
14(4):399–399, December 1988. See [4].

[3] Jack J. Dongarra, Jeremy Du Croz, Sven Hammarling,
and Iain Duff. A set of level 3 Basic Linear Alge-
bra Subprograms. ACM Transactions on Mathematical
Software, 16(1):1–17, March 1990.

[4] Jack J. Dongarra, Jeremy Du Croz, Sven Hammarling,
and Richard J. Hanson. An extended set of FORTRAN
Basic Linear Algebra Subprograms. ACM Transac-
tions on Mathematical Software, 14(1):1–17, March
1988. See also [2].

[5] Ch. F. Van Loan G. H. Golub. Matrix computations.
The Johns Hopkins University Press, third edition,
1996.

[6] C.W. Chin J. Bilmes, K. Asanovic and J. Demmel. The
PHiPAC matrix-multiply distribution. Technical Re-
port TR-98-35, International Computer Science Insti-
tute, Brekeley CA, 94704, October 1998.

[7] Andrew Lumsdaine Jeremy G. Siek. A rational ap-
proach to portable high performance: The Basic Linear
Algebra Instruction Set (BLAIS) and the Fixed Algo-
rithm Size Template (FAST) Library. In 2th European
Conference on Object-Oriented Programming, work-
shop on Parallel Object-Oriented Scientific Computing
(POOSC’98), Brussels, Belgium, july 1998.

[8] C. L. Lawson, R. J. Hanson, D. R. Kincaid, and F. T.
Krogh. Basic linear algebra subprograms for Fortran
usage. ACM Trans. Math. Software, 5(3):308–323,
1979.

[9] Jack J. Dongarra R. Clint Whaley. Automatically
Tuned Linear Algebra Software. In SuperComputing
’98 Proceedings, 1998.

