
USENIX Association

Proceedings of the
4th Annual Linux Showcase & Conference,

Atlanta

Atlanta, Georgia, USA
October 10 –14, 2000

THE ADVANCED COMPUTING SYSTEMS ASSOCIATION

© 2000 by The USENIX Association All Rights Reserved For more information about the USENIX Association:
Phone: 1 510 528 8649 FAX: 1 510 548 5738 Email: office@usenix.org WWW: http://www.usenix.org

Rights to individual papers remain with the author or the author's employer.

 Permission is granted for noncommercial reproduction of the work for educational or research purposes.

This copyright notice must be included in the reproduced paper. USENIX acknowledges all trademarks herein.



A PPPoE Implementation for Linux

David F. Skoll
Roaring Penguin Software Inc.

dfs@roaringpenguin.com, http://www.roaringpenguin.com

Abstract

Many DSL service providers use PPPoE for residential
broadband Internet access. This paper briefly describes the
PPPoE protocol, presents strategies for implementing it un-
der Linux and describes in detail a user-space implementa-
tion of a PPPoE client.

1 Introduction

Many Internet service providers are using the Point-to-
Point Protocol over Ethernet (PPPoE) to provide residential
Digital Subscriber Link (DSL) broadband Internet access.
Most ISP’s do not support Linux and supply PPPoE clients
only for Windows and Mac OS. This paper describes a
PPPoE client for Linux.

The paper is organized as follows: Section 2 provides
an introduction to the PPPoE protocol and a brief discus-
sion of why it is used. Section 3 describes the various
strategies which can be used to implement PPPoE under
Linux. Section 4 describesrp-pppoe , a particular user-
space implementation of PPPoE. Section 5 describes addi-
tional PPPoE-related tools and ports to non-Linux systems.
Finally, Section 6 contains some concluding remarks.

2 The PPPoE Protocol

PPPoE is a protocol for encapsulating PPP frames in Eth-
ernet frames[1]. PPP is a data-link-level protocol typically
used to encapsulate network-level packets over an asyn-
chronous serial line. This mode of usage is calledasyn-
chronous PPP.

2.1 Asynchronous PPP

Asynchronous PPP usesbyte stuffing to mark frame
boundaries[2]. The special byte 0x7E called aflag se-
quence. The start of a frame is marked by a flag sequence
followed by bytes 0xFF and 0x03. Next, a two-bytepro-
tocol field identifies the network-layer protocol. Next, the

network layer data is sent, followed by a two- or four-byte
frame check sequence.

To make recognition of frame boundaries unambiguous,
if the flag sequence appears inside a frame, it isescapedby
transmitting the byte 0x7D (theescape sequence) followed
by the original byte XOR’d with 0x20. Naturally, the es-
cape sequence itself must be escaped, and is transmitted as
0x7D, 0x5D. Other byte values may be escaped.

The receiver discards the extra escape sequences to re-
construct the original PPP frame.

2.2 Synchronous PPP

Asynchronous serial links cannot inherently mark frame
boundaries, so byte-stuffing (or some equivalent) is re-
quired. For data-link types which naturally mark frame
boundaries, no byte-stuffing is needed. Since Ethernet has
natural frame boundaries, PPP frames can be encapsulated
in Ethernet frames without any byte stuffing.

The PPPoE Session Frame consists of a PPP frame inside
an Ethernet frame, with six bytes of PPPoE information.
The format of this PPPoE information will be described in
Section 2.4.

2.3 PPPoE Discovery Phase

A PPPoE sessionconsists of two PPP peers communicating
over Ethernet[3]. Each peer knows the MAC address of
the other peer. In addition, asession numberis used to
uniquely identify a particular PPPoE session between two
peers.

While PPP is a peer-to-peer protocol, PPPoE is initially a
client-server protocol. The client (usually a personal com-
puter) searches for a PPPoE server (called anaccess con-
centrator) and obtains the access concentrator’s MAC ad-
dress and a session number. The process of setting up a
PPPoE session is calleddiscovery. PPPoE discovery uses
special Ethernet frames with their own Ethernet frame type
(0x8863).

To initiate discovery, the PPPoE client sends a
PPPoE Active Discovery Initiation (PADI) frame.



This frame is sent to the broadcast Ethernet address
(FF:FF:FF:FF:FF:FF) and may specify a particular
“service name” which the client is interested in.

When an access concentrator receives a PADI frame, it
responds with a PPPoE Active Discovery Offer (PADO)
frame, if it is willing to set up a session with the client.
The destination Ethernet address of the PADO frame is the
unicast Ethernet address of the client who sent the PADI.

In general, there can be more than one access concentra-
tor within broadcast range of the client. The client there-
fore collects PADO responses and picks one with which
it would like to start a session. It sends a PPPoE Active
Discovery Request (PADR) frame to the unicast Ethernet
address of the access concentrator.

If the access concentrator agrees to set up a session with
the client, it allocates resources to set up a PPP session and
assigns a session number. It sends this number back to the
client in a PPPoE Active Discovery Session-confirmation
(PADS) frame. When the client receives the PADS frame,
it knows the access concentrator’s Ethernet address and the
session number. It allocates resources to set up a PPP ses-
sion.

2.4 PPPoE Session Phase

Once each side knows the other’s Ethernet address and the
session number, the PPP session can begin. PPP frames are
encapsulated in PPPoE session frames, which have Ether-
net frame type 0x8864. A PPPoE session frame is shown
in Figure 1.

0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1

AC Ethernet Address
(last two bytes)

PPPoE Client Ethernet Address
(first two bytes)

Version
(=1) (=1)

Type Code
(=0)

1 2 3

PPP Protocol

Access Concentrator Ethernet Address (first four bytes)

PPPoE Client Ethernet Address (last four bytes)

Ethernet Frame Type (0x8864)

Session ID Length

PPP Payload

Figure 1: PPPoE Session Frame

In the session frame, the four-bit fieldsVersionandType
are set to 1. TheCodefield is used in the discovery phase to
identify the packet type, but is always set to zero in the ses-
sion phase. TheSession IDfield is the session ID assigned
during discovery. TheLength field is the length of the PPP

payload, not including the Ethernet or PPPoE headers.
The PPP data begins with the PPP protocol field. Note

that no flag sequences are included. The PPP data is not
byte-stuffed with the escape sequence, and does not include
the final PPP frame-check sequence. (The FCS is omitted
because Ethernet frames have their own frame check se-
quence, and there is no point in duplicating it.)

2.5 Why PPPoE?

PPPoE has many advantages for DSL service providers,
and practically none for DSL consumers.

• Because PPPoE sessions are really just PPP sessions,
IP addresses can be very dynamic. There is no possi-
bility to hold on to a fixed IP addresses by renewing a
DHCP lease frequently. Service providers can ensure
that your assigned IP address is changed each time you
connect.

• Because PPPoE creates the concept of a “session”
over Ethernet, service providers can charge based on
connect time. This allows them to discourage perma-
nent connections and over-subscribe their IP address
pool.

• Because PPP sessions almost always require authen-
tication, DSL service providers can bill the correct
client regardless of where he connects from (as dial-up
ISP’s can now.)

In theory, PPPoE offers the following advantages to end
users. In practice, these advantages are either negligible or
not implemented by the service provider.

• PPPoE can encapsulate non-IP protocols. Any proto-
col which can be encapsulated by PPP can be sent via
PPPoE.

• Service providers can enter into agreements with large
organizations to authenticate users and provide dedi-
cated sessions behind the organizations’ firewall (for
employees who need remote access, for example.)

No ISP that I’m aware of supports non-IP protocols over
PPPoE, and access through a firewall is better achieved
with SSH or IPSec.

3 Implementing PPPoE under Linux

There are many possibilities for implementing a PPPoE
client under Linux. The following are the three reasonable
strategies:

1. Implement both the PPPoE discovery and session
phases in a user-space program.



2. Implement PPPoE discovery in a user-space program
and PPPoE session in the kernel.

3. Implement both the PPPoE discovery and session
phases in the kernel.

We can dispose of the third strategy right away. PPPoE
discovery is not speed-critical and consists of code which
is seldom used. There’s no point in bloating the kernel with
discovery code.

The choice then boils down to including PPPoE session
code in the kernel or in a user-space program. Again, the
choice is clear: The kernel itself should handle the PPPoE
session. Executing user code for each PPPoE frame is very
inefficient.

As of this writing, PPPoE support exists in the exper-
imental 2.3 kernels and is expected to be included in the
final 2.4 kernels. In addition, there are kernel patches to
add PPPoE support to 2.0 and 2.2 kernels.

Although the kernel is clearly the right place for PPPoE
session support, I have implemented PPPoE in a user-space
program. While this may be repugnant to kernel hackers,
there are some advantages to a user-space program:

• A user-space program is easy to write and debug.

• A user-space program is relatively portable. In fact,
rp-pppoe has already been ported to NetBSD (by
Geoff Mottram and Yannis Sismanis.)

• Many Linux users are novices, and the existing kernel
patches are not easy for them to apply and configure.
A simple RPM or DEB package with a helpful con-
figuration shell script is much more palatable for new
users.

• Many Linux users do not want to modify their kernels.
If they ever need to upgrade the kernel for security rea-
sons, they do not want to remember to have to compile
in PPPoE support. (This reason will disappear once
standard kernels include PPPoE.)

• Most residential DSL connections are slow (2.2Mb/s
or less) and even a user-space client can keep up with
this on all but the oldest hardware.

I therefore view the user-space client as a convenient but
temporary measure until stable kernels include PPPoE sup-
port. Even after the standard kernel supports PPPoE, most
of the user-space code involves the discovery phase, and
can be re-used in newer kernels. The session code is very
simple and there’s no great loss in discarding it.

4 The rp-pppoe User-Space PPPoE Client

rp-pppoe is a free (under the GNU General Public Li-
cense) user-space PPPoE implementation for Linux. Fig-
ure 2 illustrates the operation ofrp-pppoe .

pppd

kernel pseudo−tty

pppoe

ethx interface

Raw Ethernet socket
(SOCK_RAW)

pppoe program’s
stdin and stdout

ppp0 interface

Figure 2:rp-pppoe Configuration

4.1 The Pseudo-TTY

The pppd program and the Linux kernel expect to trans-
mit PPP frames over a TTY device. Luckily, UNIX (and
Linux) support the concept of apseudo-tty. This is a device
which “looks” like a TTY, but instead of being connected
to a physical terminal, it is connected to a UNIX process.
Whenever something writes to the pseudo-tty, the data ap-
pears on the standard input of the back-end process. When-
ever the back-end process writes to its standard output, the
data may be read from the pseudo-tty.

Even more luckily, recent versions ofpppd (2.3.7 and
newer) support apty option. This option automatically
starts the back-end process and performs all the mundane
operations required to connect it to a pseudo-tty.

So to start the PPPoE link, you startpppd with the ap-
propriatepty option, which runs thepppoe executable
connected to the pseudo-tty.

4.2 The Discovery Phase

Oncepppoe begins executing, it starts PPPoE discovery.
It creates a raw Ethernet socket. This special socket allows
user-space programs to transmit and receive raw Ethernet
frames.

pppoe constructs and transmits a PADI frame, and
waits for PADO frames. When a PADO frame arrives (if
it meets criteria specified on thepppoe command line),
pppoe transmits a PADR frame. Once it receives a PADS



frame, it records the session ID and moves to the session
phase.

Note that Linux raw sockets perform only limited filter-
ing on Ethernet frames. They are not nearly as flexible as
the Berkeley Packet Filter found on BSD systems. Luckily,
for PPPoE, filtering only on the Ethernet frame type is ac-
ceptable, and Linux raw sockets can perform this level of
filtering. (We want to filter out non-PPPoE frames in the
kernel; otherwise, non-PPPoE traffic could consume huge
amounts of CPU time aspppoe is scheduled in to read the
frame.)

4.3 The Session Phase

Once the session phase begins,pppoe reads
asynchronously-framed PPP data on standard input,
and writes it to standard output. Let’s trace these
operations.

When a frame is transmitted over the PPP interface,pp-
poe ’s standard input becomes readable.pppoe reads
from standard input and collects data until it has assembled
an entire PPP frame.

Note thatpppoe must keep a small state machine to
record where it is in the PPP frame assembly. There’s no
guarantee that it will read an entire PPP frame in one chunk,
or that it won’t read more than one frame. This is because
UNIX write operations do not preserve write boundaries; if
you write one byte to a pseudo-tty followed by three bytes,
the back-end process may read all four bytes at once, de-
pending on scheduling.

During PPP frame assembly,pppoe removes escape se-
quences and “de-stuffs” the frame. This converts the asyn-
chronous PPP framing into a synchronous PPP frame.

Once the PPP frame is assembled, PPPoE headers are
added and the frame is transmitted over the raw socket.
(Actually, most of the PPPoE headers are constant for a
given session, so the PPP frame is simply assembled into a
buffer right after the constant PPPoE header portions.)

When an incoming PPPoE frame is received by the Eth-
ernet card,pppoe ’s raw socket becomes readable. In this
case, we are guaranteed that aread operation will return
one (and only one) frame, and will return the entire frame
if the buffer is big enough.pppoe reads the frame into a
buffer. It then adds asynchronous byte-stuffing to the data
and computes the PPP frame-check sequence. (Recall that
the PPP FCS is not transmitted over PPPoE.) Finally, it
writes the result to standard-output, where it is picked up
by the kernel orpppd .

4.4 Synchronous PPP

You can immediately see two gross inefficiencies: User-
space code is executed for every PPPoE frame, and byte-
stuffing and de-stuffing is done twice. For outgoing frames,
the kernel carefully performs byte stuffing, which is undone

by pppoe . For incoming frames,pppoe stuffs them and
the kernel de-stuffs them.

There is an option topppd andpppoe which enables
synchronous PPP. In this case, no byte-stuffing is per-
formed. However, correct operation in this mode relies on
pppoe reading exactly one frame at a time from standard
input. (There are no frame boundary markers, sopppoe
assumes that it gets a complete frame for eachread sys-
tem call.) While this seems to work on fast machines, it is
not recommended, because delays in scheduling inpppoe
can cause serious problems.

The kernel-mode implementation of PPPoE has no prob-
lem guaranteeing frame boundaries (because kernel code is
invoked for eachread and write call), so the kernel-
mode implementation uses synchronous PPP without wor-
ries.

4.5 The MTU

PPPoE introduces a real and annoying problem. The max-
imum Ethernet frame is 1518 bytes long. 14 bytes are con-
sumed by the header, and 4 by the frame-check sequence,
leaving 1500 bytes for the payload. For this reason, the
Maximum Transmission Unit (MTU) of an Ethernet inter-
face is usually 1500 bytes. This is the largest IP datagram
which can be transmitted over the interface without frag-
mentation.

PPPoE adds another six bytes of overhead, and the PPP
protocol field consumes two bytes, leaving 1492 bytes for
the IP datagram. The MTU of PPPoE interfaces is therefore
1492 bytes.

When a TCP connection is initiated, each side can op-
tionally specify the Maximum Segment Size (MSS). TCP
chops a stream of data into segments, and MSS specifies
the largest segment each side will accept. By default, the
MSS is chosen as the MTU of the outgoing interface minus
the usual size of the TCP and IP headers (40 bytes), which
results in an MSS of 1460 bytes for an Ethernet interface.

TCP stacks try to avoid fragmentation, so they use an
MSS which will not cause fragmentation on their outgoing
interface. Unfortunately, there may be intermediate links
with lower MTU’s which will cause fragmentation. Good
TCP stacks performpath MTU discovery.

In path MTU discovery, a TCP stack sets a special Don’t
Fragment (DF) bit in the IP datagrams. Routers which
cannot forward the datagram without fragmenting it are
supposed to drop it and send an ICMP “Fragmentation-
Required” datagram to the originating host. The originat-
ing host then tries a lower MTU value.

Unfortunately, many routers are anti-social and do not
generate the fragmentation-required datagrams. Many fire-
walls are equally anti-social and drop all ICMP datagrams.

Now consider a client workstation on an Ethernet LAN
connected to a PPPoE gateway. It opens a TCP connection
to a web server. Because the Ethernet MTU is 1500, it



suggests an MSS of 1460. The web server is also on an
Ethernet and also suggests an MSS of 1460. The client
then requests a web page. This request is typically small
and reaches the web server. The server responds with many
TCP segments, most of which are 1460 bytes long.

The maximum-sized segments result in 1500-byte IP
datagrams and make their way to the DSL provider. The
DSL provider cannot transmit a 1500-byte IP datagram
over a PPPoE link, so it drops it (assume for now that the
DF bit is set.) Furthermore, being anti-social, the DSL
provider does not send an ICMP message to the web server.

The net result is that packets are silently dropped. The
web client hangs waiting for data, and the web server keeps
retransmitting until it finally gives up, or the connection is
closed by the user aborting the web client.

One way around this is to artificially set an MSS for the
default route on all LAN hosts behind the PPPoE gateway.
This is annoying, as it requires changes on each host.

Instead,rp-pppoe “listens in” on the MSS negotiation
and modifies the MSS if it is too big. (This was inspired by
mssclampfw by Marc Boucher.)

rp-pppoe can be configured to intercept all TCP pack-
ets with the SYN bit set and silently adjust any advertised
MSS options so they will be appropriate for the PPPoE link.
Although the MSS option can appear in any TCP packet, in
practice, most implementations send it only with SYN and
SYN-ACK packets.

Adjusting the MSS is a gross hack. It breaks the con-
cept of the transport-layer being end-to-end. It will not
work with IPSec, because IPSec will not let you damage
IP packets (they will fail to authenticate.) Nevertheless, it
is a fairly effective solution to an ugly real-world problem,
and is used by default inrp-pppoe .

5 Additional PPPoE Tools and Ports

In addition to the PPPoE client, therp-pppoe package
includes a couple of other useful tools:pppoe-server
implements a PPPoE server, andpppoe-sniff examines
frames from non-Linux systems to determine if any special
run-time options are required to establish a connection.

5.1 The PPPoE Server

The PPPoE server is a very simple program. It listens for
PPPoE discovery frames. When a PADI frame is received,
it constructs a cookie by hashing the peer Ethernet address,
the server’s Ethernet address and a random number. This
cookie is sent back in a PADO frame.

The cookie is designed to stop a simple-minded denial-
of-service attack. In this attack, a malicious client sends
many PADR frames with fake source Ethernet addresses.
If the server responded to the PADR with a PADS, it would
have to allocate resources for a PPP connection. Flooding
the server with many PADR frames could quickly exhaust

its resources. For this reason, requiring the client to return
the cookie in its PADR frame ensures that the PADI was
received from a valid Ethernet address.

The server can take further measures to limit denial-of-
service attacks (such as limiting the number of PPP ses-
sions per Ethernet address), but the current implementation
of pppoe-server does not do that.

Once pppoe-server has received a valid PADR
frame, it responds with a PADS and simply forks and ex-
ecspppd to handle the PPP connection. The newpppd
process uses thepty option along with a special flag to
pppoe informing it of the session number assigned by the
server and the peer’s Ethernet address.

Since each PPP session creates apppd andpppoe pro-
cess,pppoe-server is not suitable for production use
as a heavy-traffic PPPoE server. It is meant to test PPPoE
client ports and validate RFC-compliance of PPPoE clients.

5.2 PPPoE Sniffing

Some Internet service providers require special data in the
PADI and PADR frames. For example, some providers re-
quire aService-Name tag with a specific value. Unfor-
tunately, since most providers support only Windows and
Mac OS, and most ISP help-desk personnel haven’t a clue
about the inner workings of PPPoE, obtaining the informa-
tion required to establish a PPPoE session under Linux is
sometimes difficult.

The rp-pppoe package includes a program called
pppoe-sniff . Figure 3 illustrates how to operate
pppoe-sniff .

Non−Linux Computer

Linux Computer
running pppoe−sniff

running ISP−supplied
PPPoE client

DSL Modem

Ethernet Hub

Figure 3: Usingpppoe-sniff

Connect a Linux computer to an Ethernet hub. Connect
another computer running the ISP-supported PPPoE client
to the hub. Finally, connect the DSL modem either to the
uplink port of the hub with a straight-through cable, or to



a normal port of the hub with a crossover cable. It is im-
portant to use a hub and not a switch, because the Linux
computer must be able to see all traffic between the DSL
modem and the other computer. Also, the two computers
and the modem should be the only devices connected to the
hub, because some DSL modems react badly if they see
Ethernet frames from more than two other MAC addresses.

Once the setup is complete, startpppoe-sniff on the
Linux machine and make a connection to the ISP using the
ISP-supplied client.

Because one person usingrp-pppoe reported that his
ISP used non-standard frame types for PPPoE discov-
ery and session frames (0x3c12 and 0x3c13 instead of
0x8863 and 0x8864),pppoe-sniff listens for all Eth-
ernet frames and picks out likely-looking PPPoE frames
based on the type, version and code fields. It is conceivable
that non-PPPoE traffic could confuse (or crash!)pppoe-
sniff , so do not run such traffic whilepppoe-sniff is
operating.

pppoe-sniff looks for a likely-looking PADR frame
and a likely-looking session frame. From these frames,
it gleans the frame types used by the ISP, as well as any
Service-Name tag which may be required during discov-
ery. It prints its findings out in the form of command-line
options to supply topppoe . In this way, you can usually
determine any special options required by your ISP without
having to go through technical support personnel.

5.3 NetBSD Port

In addition to Linux, rp-pppoe has been ported to
NetBSD. The port was done by Geoff Mottram and Yan-
nis Sismanis. It involved substituting calls to NetBSD’s
BPF API instead of Linux’s SOCKPACKET. The port was
quite easy and affected only about 10% of the total code
in rp-pppoe . It should be easy to portrp-pppoe to
SVR4-derived UNIXes which use DLPI, or even to write
a libpcap - and libnet -based version, which will be
portable to all systems to which these libraries have been
ported.

(Actually, whilerp-pppoe is quite portable, it requires
the pty option of pppd , which apparently is no longer
maintained on FreeBSD or OpenBSD. Anyone wanting to
port rp-pppoe to a new UNIX will have to ensure that
pppd is ported, too.)

6 Summary

PPPoE is not a wonderful protocol for end-users. Unfor-
tunately, it is here to stay, and the Linux community will
have to live with it.

The user-spacerp-pppoe is a convenient method of
connecting to a PPPoE provider, but it should be viewed
as a temporary measure until stable kernels support PPPoE
natively. Once this happens, therp-pppoe software will

be used only for the discovery phase, and will offload the
session phase to the kernel.

Bugs in many routers prevent the correct operation of
path MTU discovery.rp-pppoe has a gross hack to work
around this for TCP connections. I would love to eliminate
this hack, but it requires that all router vendors fix their
software. This is not very likely to happen.

Some ISP’s use non-standard frame types and/or require
special Service-Name tags during the discovery phase. The
pppoe-sniff program attempts to extract this informa-
tion by listening to an ISP-supplied PPPoE client’s connec-
tion.

rp-pppoe is available at the following URL:
http://www.roaringpenguin.com/pppoe/ . A
kernel-mode PPPoE implementation is available at
http://www.davin.ottawa.on.ca/pppoe/ .

7 Acknowledgements

I’d like to thank all the people who have downloaded, tested
and usedrp-pppoe . In particular, Geoff Mottram, Yannis
Sismanis, Heiko Shlittermann, Gary Cameron, Julian Gor-
fajn, Geoff Kuenning, Patrick Smith and Jason Lassaline
submitted patches, ports and bug reports.

References

[1] RFC 1661, “The Point-to-Point Protocol (PPP)”, W.
Simpson, Editor, July 1994.

[2] RFC 1662, “PPP in HDLC-like Framing”, W. Simp-
son, Editor, July 1994.

[3] RFC 2516, “A Method for Transmitting PPP Over
Ethernet (PPPoE)”, L. Mamakos et al., February
1999.


