
USENIX Association

Proceedings of the
4th Annual Linux Showcase & Conference,

Atlanta

Atlanta, Georgia, USA
October 10 –14, 2000

THE ADVANCED COMPUTING SYSTEMS ASSOCIATION

© 2000 by The USENIX Association All Rights Reserved For more information about the USENIX Association:
Phone: 1 510 528 8649 FAX: 1 510 548 5738 Email: office@usenix.org WWW: http://www.usenix.org

Rights to individual papers remain with the author or the author's employer.

 Permission is granted for noncommercial reproduction of the work for educational or research purposes.

This copyright notice must be included in the reproduced paper. USENIX acknowledges all trademarks herein.

Analyzing the Overload Behavior of a Simple Web Server

Niels Provos, University of Michigan
provos@citi.umich.edu

Chuck Lever, AOL-Netscape, Incorporated

chuckl@netscape.com

Stephen Tweedie, Red Hat Software
sct@redhat.com

Linux Scalability Project

Center for Information Technology Integration
University of Michigan, Ann Arbor

linux-scalability@citi.umich.edu
http://www.citi.umich.edu/projects/linux-scalability

Abstract

Linux introduces POSIX Real Time signals to report I/O activity on multiple
connections with more scalability than traditional models. In this paper we ex-
plore ways of improving the scalability and performance of POSIX RT signals
even more by measuring system call latency and by creating bulk system calls
that can deliver multiple signals at once.

1. Introduction

Experts on network server architecture have argued that
servers making use of I/O completion events are more
scalable than today’s servers [2, 3, 5]. In Linux, POSIX
Real-Time (RT) signals can deliver I/O completion
events. Unlike traditional UNIX signals, RT signals
carry a data payload, such as a specific file descriptor
that just completed. Signals with a payload can enable
network server applications to respond immediately to
network requests, as if they were event-driven. An
added benefit of RT signals is that they can be queued
in the kernel and delivered to an application one at a
time, in order, leaving an application free to pick up I/O
completion events when convenient.

The RT signal queue is a limited resource. When it is
exhausted, the kernel signals an application to switch to
polling, which delivers multiple completion events at

once. Even when no signal queue overflow happens,
however, RT signals may have inherent limitations due
to the number of system calls needed to manage events
on a single connection. This number may not be critical
if the queue remains short, for instance while server
workload is easily handled. When the server becomes
loaded, the signal queue can cause system call overhead
to dominate server processing, with the result that
events are forced to wait a long time in the signal
queue.

Linux has been carefully designed so that system calls
are not much more expensive than library calls. There
are no more cache effects for a system call than there
are for a library call, and few virtual memory effects
because the kernel appears in every process’s address
space. However, added security checks during system
calls and hardware overhead caused by crossing protec-
tion domains make it expedient to avoid multiple sys-
tem calls when fewer will do.

Process switching is still comparatively expensive, of-
ten resulting in TLB flushes and virtual memory over-
head. If a system call must sleep, it increases the likeli-
hood that the kernel will switch to a different process.
By lowering the number of system calls required to

This document was written as part of the Linux Scalability Project. The
work described in this paper was supported via generous grants from
the Sun-Netscape Alliance, Intel, Dell, and IBM.

This document is Copyright © 2000 by AOL-Netscape, Inc., and by
the Regents of the University of Michigan. Trademarked material
referenced in this document is copyright by its respective owner.

accomplish a given task, we reduce the likelihood of
harm to an application’s cache resident set.

Improving the scalability and reducing the overhead of
often-used system calls has a direct impact on the scal-
ability of network servers [1, 4]. Reducing wait time for
blocking system calls gives multithreaded server appli-
cations more control over when and where requested
work is done. Combining several functions into fewer
system calls has the same effect.

In this paper, we continue work begun in “Scalable
Network I/O for Linux” by Provos, et al. [9]. We meas-
ure the effects of system call latency on the perform-
ance and scalability of a simple web server based on an
RT signal event model. Of special interest is the way
server applications gather pending RT signals. Today
applications use sigwaitinfo() to dequeue pending
signals one at a time. We create a new interface, called
sigtimedwait4(), that is capable of delivering mul-
tiple signals to an application at once.

We use phhttpd as our web server. Phhttpd is a
static-content caching front end for full-service web
servers such as Apache [8]. Brown created phhttpd to
demonstrate the POSIX RT signal mechanism, added to
Linux during the 2.1 development series and completed
during the 2.3 series [2]. We drive our test server with
httperf [6]. An added client creates high-latency, low-
bandwidth connections, as in Banga and Druschel [7].

Section 2 introduces POSIX Real-Time signals and de-
scribes how server designers can employ them. It also
documents the phhttpd web server. Section 3 moti-
vates the creation of our new system call. We describe
our benchmark in Section 4, and discuss the results of
the benchmark in Section 5. We conclude in Section 6.

2. POSIX Real-Time Signals and the
phhttpd Web Server

In this section, we introduce POSIX Real-Time signals
(RT signals), and provide an example of their use in a
network server.

2.1 Using SIGIO with non-blocking sockets

To understand how RT signals provide an event notifi-
cation mechanism, we must first understand how sig-
nals drive I/O in a server application. We recapitulate
Stevens’ illustration of signal-driven I/O here [10].

An application follows these steps to enable signal-
driven I/O:

1. The application assigns a SIGIO signal handler
with signal() or sigaction().

2. The application creates a new socket via
socket() or accept().

3. The application assigns an owner pid, usually its
own pid, to the new socket with fcntl(fd,
F_SETOWN, newpid). The owner then receives
signals for this file descriptor.

4. The application enables non-blocking I/O on the
socket with fcntl(fd, F_SETFL, O_ASYNC).

5. The application responds to signals either with
its signal handler, or by masking these signals
and picking them up synchronously with sig-
waitinfo().

The kernel raises SIGIO for a variety of reasons:

• A connection request has completed on a listen-
ing socket.

• A disconnect request has been initiated.

• A disconnect request has completed.

• Half of a connection has been shut down.

• Data has arrived on a socket.

• A write operation has completed.

• An out-of-band error has occurred.

When using old-style signal handlers, this mechanism
has no way to inform an application which of these
conditions occurred. POSIX defines the siginfo_t
struct (see FIG. 1), which, when used with the sig-
waitinfo() system call, supplies a signal reason code
that distinguishes among the conditions listed above.
Detailed signal information is also available for new-
style signal handlers, as defined by the latest POSIX
specification [15].

This mechanism cannot say what file descriptor caused
the signal, thus it is not useful for servers that manage
more than one TCP socket at a time. Since its inception,
it has been used successfully only with UDP-based
servers [10].

2.2 POSIX Real-Time signals

POSIX Real-Time signals provide a more complete
event notification system by allowing an application to
associate signals with specific file descriptors. For ex-
ample, an application can assign signal numbers larger
than SIGRTMIN to specific open file descriptors using
fcntl(fd, F_SETSIG, signum). The kernel raises
the assigned signal whenever there is new data to be
read, a write operation completes, the remote end of the
connection closes, and so on, as with the basic SIGIO
model described in the previous section.

Unlike normal signals, however, RT signals can queue
in the kernel. If a normal signal occurs more than once
before the kernel can deliver it to an application, the
kernel delivers only one instance of that signal. Other
instances of the same signal are dropped. However, RT
signals are placed in a FIFO queue, creating a stream of
event notifications that can drive an application’s re-
sponse to incoming requests. Typically, to avoid com-
plexity and race conditions, and to take advantage of the
information available in siginfo_t structures,
applications mask the chosen RT signals during normal
operation. An application uses sigwaitinfo() or
sigtimedwait() to pick up pending signals synchro-
nously from the RT signal queue.

The kernel must generate a separate indication if it can-
not queue an RT signal, for example, if the RT signal
queue overflows, or kernel resources are temporarily
exhausted. The kernel raises the normal signal SIGIO if
this occurs. If a server uses RT signals to monitor in-
coming network activity, it must clear the RT signal
queue and use another mechanism such as poll() to
discover remaining pending activity when SIGIO is
raised.

Finally, RT signals can deliver a payload. Sigwait-
info() returns a siginfo_t struct (see FIG. 1) for
each signal. The _fd and _band fields in this structure
contain the same information as the fd and revents
fields in a pollfd struct (see FIG. 2).

struct siginfo {
 int si_signo;
 int si_errno;
 int si_code;
 union {
 /* other members elided */
 struct {
 int _band;
 int _fd;
 } _sigpoll;
 } _sifields;
} siginfo_t;

Figure 1. Simplified siginfo_t struct.

struct pollfd {
int fd;
short events;
short revents;

};

Figure 2. Standard pollfd struct

2.2.1 Mixing threads and RT signals

According to the GNU info documentation that ac-
companies glibc, threads and signals can be mixed
reliably by blocking all signals in all threads, and pick-
ing them up using one of the system calls from the
sigwait() family [16].

POSIX semantics for signal delivery do not guarantee
that threads waiting in sigwait() will receive particu-
lar signals. According to the standard, an external signal
is addressed to the whole process (the collection of all
threads), which then delivers it to one particular thread.
The thread that actually receives the signal is any thread
that does not currently block the signal. Thus, only one
thread in a process should wait for normal signals while
all others should block them.

In Linux, however, each thread is a kernel process with
its own PID, so external signals are always directed to
one particular thread. If, for instance, another thread is
blocked in sigwait() on that signal, it will not be
restarted.

This is an important element of the design of servers
using an RT signals-based event core. All normal sig-
nals should be blocked and handled by one thread. On
Linux, other threads may handle RT signals on file de-
scriptors, because file descriptors are “owned” by a
specific thread. The kernel will always direct signals for
that file descriptor to its owner.

2.2.2 Handling a socket close operation

Signals queued before an application closes a connec-
tion will remain on the RT signal queue, and must be
processed and/or ignored by applications. For instance,

when a socket closes, a server application may receive
previously queued read or write events before it picks
up the close event, causing it to attempt inappropriate
operations on the closed socket.

When a socket is closed on the remote end, the local
kernel queues a POLL_HUP event to indicate the remote
hang-up. POLL_IN signals occurring earlier in the event
stream usually cause an application to read a socket,
and when it does in this case, it receives an EOF. Appli-
cations that close sockets when they receive POLL_HUP
must ignore any later signals for that socket. Likewise,
applications must be prepared for reads to fail at any
time, and not depend only on RT signals to manage
socket state.

Because RT signals queue unlike normal signals, server
applications cannot treat these signals as interrupts. The
kernel can immediately re-use a freshly closed file de-
scriptor, confusing an application that then processes
(rather than ignores) POLL_IN signals queued by previ-
ous operations on an old socket with the same file de-
scriptor number. This introduces to the unwary applica-
tion designer significant vulnerabilities to race condi-
tions.

2.3 Using RT Signals in a Web Server

Phhttpd is a static-content caching front end for full-
service web servers such as Apache [2, 8]. Brown cre-
ated phhttpd to demonstrate the POSIX RT signal
mechanism, added to the Linux kernel during the 2.1.x
kernel development series and completed during the
2.3.x series. We describe it here to document its features
and design, and to help motivate the design of sig-
timedwait4(). Our discussion focuses on how
phhttpd makes use of RT signals.

2.3.1 Assigning RT signal numbers

Even though a unique signal number could be assigned
to each file descriptor, phhttpd uses one RT signal
number for all file descriptors in all threads for two
reasons.

1. Lowest numbered RT signals are delivered first.
If all signals use the same number, the kernel al-
ways delivers RT signals in the order in which
they arrive.

2. There is no standard library interface for multi-
threaded applications to allocate signal numbers
atomically. Allocating a single number once dur-
ing startup and giving the same number to all
threads alleviates this problem.

2.3.2 Threading model

Phhttpd operates with one or more worker threads that
handle RT signals. Additionally, an extra thread is cre-
ated for managing logs. A separate thread pre-populates
the file data cache, if requested.

Instead of handling incoming requests with signals,
phhttpd may use polling threads instead. Usually,
though, phhttpd creates a set of RT signal worker
threads, and a matching set of polling threads known as
sibling threads. The purpose of sibling threads is de-
scribed later.

Each RT signal worker thread masks off the file
descriptor signal, then iterates, picking up each RT
signal via sigwaitinfo() and processing it, one at a
time. To reduce system call rate, phhttpd read()s on
a new connection as soon as it has accept()ed it.
Often, on high-bandwidth connections, data is ready to
be read as soon as a connection is accept()ed.
Phhttpd reads this data and sends a response
immediately to prevent another trip through the “event”
loop, reducing the negative cache effects of handling
other work in between the accept and the read
operations.
Because the read operation is non-blocking, it fails with
EAGAIN if data is not immediately present. The thread
proceeds normally back to the “event” loop in this case
to wait for data to become available on the socket.

2.3.3 Load balancing

When more than one thread is available, a simple load
balancing scheme passes listening sockets among the
threads by reassigning the listener’s owner via
fcntl(fd, F_SETOWN, newpid). After a thread
accepts an incoming connection, it passes its listener to
the next worker thread in the chain of worker threads.
This mechanism requires that each thread have a unique
pid, a property of the Linux threading model.

2.3.4 Caching responses

Because phhttpd is not a full-service web server, it
must identify requests as those it can handle itself, or
those it must pass off to its backing server. Local files
that phhttpd can access are cached by mapping them
and storing the map information in a hash, along with a
pre-formed http response. When a cached file is re-
quested, phhttpd sends the cached response via
write() along with the mapped file data.

Logic exists to handle the request via sendfile()
instead. In the long run, this may be more efficient for
several reasons. First, there is a limited amount of ad-
dress space per process. This limits the total number of
cached bytes, especially because these bytes share the

address space with the pre-formed responses, hash in-
formation, heap and stack space, and program text. Us-
ing sendfile() allows data to be cached in extended
memory (memory addressed higher than one or two
gigabytes). Next, as the number of mapped objects
grows, mapping a new object takes longer. On Linux,
finding an unused area of an address space requires at
least one search that is linear in the number of mapped
objects in that address space. Finally, creating these
maps requires expensive page table and TLB flush op-
erations that can hurt system-wide performance, espe-
cially on SMP hardware.

2.3.5 Queue overflow recovery

The original phhttpd web server recovered from sig-
nal queue overflow by passing all file descriptors owned
by a signal handling worker thread to a pre-existing
poll-based worker thread, known as its sibling. The
sibling then cleans up the signal queue, polls over all
the file descriptors, processes remaining work, and
passes all the file descriptors back to the original signal
worker thread.

On a server handling perhaps thousands of connections,
this creates considerable overhead during a period when
the server is already overloaded. We modified the queue
overflow handler to reduce this overhead. The server
now handles signal queue overflow in the same thread
as the RT signal handler; sibling threads are no longer
needed. This modification appears in phhttpd version
0.1.2. It is still necessary, however, to build a fresh
poll_fd array completely during overflow processing.
This overhead slows the server during overflow
processing, but can be reduced by maintaining the
poll_fd array concurrently with signal processing.

RT signal queue overflow is probably not as rare as
some would like. Some kernel designs have a single
maximum queue size for the entire system. If any aber-
rant application stops picking up its RT signals (the
thread that picks up RT signals may cause a segmenta-
tion fault, for example, while the rest of the application
continues to run), the system-wide signal queue will
fill. All other applications on the system that use RT
signals will eventually be unable to proceed without
recovering from a queue overflow, even though they are
not the cause of it.

It is well known that Linux is not a real-time operating
system, and that unbounded latencies sometimes occur.
Application design may also prohibit a latency upper
bound guarantee. These latencies can delay RT signals,
causing the queue to grow long enough that recovery is
required even when servers are fast enough to handle
heavy loads under normal circumstances.

3. New interface: sigtimedwait4()

To reduce system call overhead and remove a potential
source of unnecessary system calls, we’d like the kernel
to deliver more than one signal per system call. One
mechanism to do this is implemented in the poll()
system call. The application provides a buffer for a vec-
tor of results. The system call returns the number of
results it stored in the buffer, or an error.

Our new system call interface combines the multiple
result delivery of poll() with the efficiency of POSIX
RT signals. The interface prototype appears in FIG. 3.

int sigtimedwait4(const sigset_t *set,
 siginfo_t *infos, int nsiginfos,
 const struct timespec *timeout);

Figure 3. sigtimedwait4() prototype

Like its cousin sigtimedwait(), sigtimedwait4()
provides the kernel with a set of signals in which it is
interested, and a timeout value that is used when no
signals are immediately ready for delivery. The kernel
selects queued pending signals from the signal set
specified by set, and returns them in the array of
siginfo_t structures specified by infos and
nsiginfos.

Providing a buffer with enough room for only one
siginfo_t struct forces sigtimedwait4() to behave
almost like sigtimedwait(). The only difference is
that specifying a negative timeout value causes sig-
timedwait4() to behave like sigwaitinfo(). The
same negative timeout instead causes an error return
from sigtimedwait().

Retrieving more than one single signal at a time has
important benefits. First and most obviously, it reduces
the average number of transitions between user space
and kernel space required to process a single server
request. Second, it reduces the number of times per
signal the per-task signal spinlock is acquired and re-
leased. This improves concurrency and reduces cache
ping-ponging on SMP hardware. Third, it amortizes the
cost of verifying the user’s result buffer, although some
believe this is insignificant. Finally, it allows a single
pass through the signal queue for all pending signals
that can be returned, instead of a pass for each pending
signal.

The sigtimedwait4() system call enables efficient
server implementations by allowing the server to “com-
press” signals- if it sees multiple read signals on a
socket, for instance, it can empty that socket’s read
buffer just once.

The sys_rt_sigtimedwait() function is a moderate
CPU consumer in our benchmarks, according to the
results of kernel EIP histograms. About three fifths of
the time spent in the function occurs in the second criti-
cal section in FIG. 4.

spin_lock_irq(¤t->sigmask_lock);
sig = dequeue_signal(&these, &info);
if (!sig) {
 sigset_t oldblocked = current->blocked;
 sigandsets(¤t->blocked,
 ¤t->blocked, &these);
 recalc_sigpending(current);
 spin_unlock_irq(¤t->
 sigmask_lock);

 timeout = MAX_SCHEDULE_TIMEOUT;
 if (uts)
 timeout = (timespec_to_jiffies(&ts)
 + (ts.tv_sec || ts.tv_nsec));

 current->state = TASK_INTERRUPTIBLE;
 timeout = schedule_timeout(timeout);

 spin_lock_irq(¤t->sigmask_lock);
 sig = dequeue_signal(&these, &info);
 current->blocked = oldblocked;
 recalc_sigpending(current);
}
spin_unlock_irq(¤t->sigmask_lock);

Figure 4. This excerpt of the
sys_rt_sigtimedwait() kernel function shows
two critical sections. The most CPU time is con-
sumed in the second critical section.

The dequeue_signal() function contains some com-
plexity that we can amortize across the total number of
dequeued signals. This function walks through the list
of queued signals looking for the signal described in
info. If we have a list of signals to dequeue, we can
walk the signal queue once picking up all the signals we
want.

4. Benchmark description

In this section, we measure and report several aspects of
server performance.

Our test harness consists of two machines running
Linux connected via a 100 Mb/s Ethernet switch. The
workload is driven by an Intel SC450NX with four
500MHZ Xeon Pentium III processors (512Kb of L2
cache each), 512Mb of RAM, and a pair of SYMBIOS
53C896 SCSI controllers managing several LVD
10KRPM drives. Our web server runs on custom-built
hardware equipped with a single 400MHZ AMD K6-2
processor, 64Mb of RAM, and a single 8G 7.2KRPM
IDE drive. The server hardware is small so that we can
easily drive the server into overload. We also want to
eliminate any SMP effects on our server, so it has only
a single CPU.

Our benchmark configuration contains only a single
client host and a single server host, which makes the
simulated workload less realistic. However, our bench-
mark results are strictly for comparing relative perform-
ance among our implementations. We believe the results
also give an indication of real-world server perform-
ance.

A web server’s static performance naturally depends on
the size distribution of requested documents. Larger
documents cause sockets and their corresponding file
descriptors to remain active over a longer time period.
As a result the web server and kernel have to examine a
larger set of descriptors, making the amortized cost of
polling on a single file descriptor larger. In our tests, we
request a 1 Kbyte document, a typical index.html file
from the monkey.org web site.

4.1 Offered load

Scalability is especially critical to modern network ser-
vice when serving many high-latency connections.
Most clients are connected to the Internet via high-
latency connections, such as modems, whereas servers
are usually connected to the Internet via a few high
bandwidth, low-latency connections. This creates re-
source contention on servers because connections to
high-latency clients are relatively long-lived, tying up
server resources. They also induce a bursty and
unpredictable interrupt load on the server [7].

Most web server benchmarks don’t simulate high-
latency connections, which appear to cause difficult-to-
handle load on real-world servers [5]. We’ve added an
extra client that runs in conjunction with the httperf
benchmark to simulate these slower connections to ex-
amine the effects of our improvements on more realistic

server workloads [6]. This client program opens a con-
nection, but does not complete an http request. To keep
the number of high-latency clients constant, these cli-
ents reopen their connection if the server times them
out.

In previous work, we noticed server performance
change as the number of inactive connections varied
[9]. As a result of this work, one of the authors modified
phhttpd to correct this problem. The latest version of
phhttpd (0.1.2 as of this writing) does not show sig-
nificant performance degradation as the number of inac-
tive connections increases. Therefore, the benchmark
results we present here show performance with no extra
inactive connections.

There are several system limitations that influence our
benchmark procedures. There are only a limited number
of file descriptors available for single processes;
httperf assumes that the maximum is 1024. We modi-
fied httperf to cope dynamically with a large number
of file descriptors. Additionally, because we use only a
single client and server in our test harness, we can have
only about 60,000 open sockets at a single point in
time. When a socket closes it enters the TIMEWAIT
state for sixty seconds, so we must avoid reaching the
port number limitation. We therefore run each bench-
mark for 35,000 connections, and then wait for all
sockets to leave the TIMEWAIT state before we con-
tinue with the next benchmark run. In the following
tests, we run httperf with 4096 file descriptors, and
phhttpd with five thousand file descriptors.

4.2 Execution Profiling

To assess our modifications to the kernel, we use the
EIP sampler built in to the Linux kernel. This sampler
checks the value of the instruction pointer (EIP register)
at fixed intervals, and populates a hash table with the
number of samples it finds at particular addresses. Each
bucket in the hash table reports the results of a four-byte
range of instruction addresses.

A user-level program later extracts the hash data and
creates a histogram of CPU time matched against the
kernel’s symbol table. The resulting histogram demon-
strates which routines are most heavily used, and how
efficiently they are implemented. The granularity of the
histogram allows us to see not only which functions are
heavily used, but also where the most time is spent in
each function.

5. Results and Discussion

In this section we present the results of our benchmarks,
and describe some new features that our new system
call API enables.

5.1 Basic performance and scalability results

As described previously, our web server is a single
processor host running a Linux 2.2.16 kernel modified
to include our implementation of sigtimedwait4().
The web server application is phhttpd version 0.1.2. We
compare an unmodified version with a version modified
to use sigtimedwait4(). Our benchmark driver is a
modified version of httperf 0.6 running on a four-
processor host.

1000

1200

1400

1600

1800

2000

1000 1200 1400 1600 1800 2000

re
pl

y
ra

te

targeted request rate

sigwaitinfo

Graph 1. Scalability of the phhttpd web server.
This graph shows how a single threaded phhttpd
web server scales as request rate increases. The axes
are in units of requests per second.

1000

1200

1400

1600

1800

2000

1000 1200 1400 1600 1800 2000

re
pl

y
ra

te

targeted request rate

sigtimedwait4

Graph 2. Scalability of phhttpd using sig-
timedwait4(). The signal buffer size was five
hundred signals, meaning that the web server could
pick up as many as five hundred events at a time.
Compared to Graph 1, there is little improvement.

Our first test compares the scalability of unmodified
phhttpd using sigwaitinfo() to collect one signal
at a time with the scalability of phhttpd using sig-
timedwait4() to collect many signals at once. The
modified version of phhttpd picks up as many as 500
signals at once during this test.

Graphs 1 and 2 show that picking up more than one RT
signal at a time gains little. Only minor changes in be-
havior occur when varying the maximum number of
signals that can be picked up at once. The maximum
throughput attained during the test increases slightly.

This result suggests that the largest system call bottle-
neck is not where we first assumed. Picking up signals
appears to be an insignificant part of server overhead.
We hypothesize that responding to requests, rather than
picking them up, is where the server spends most of its
effort.

5.2 Improving overload performance

While the graphs for sigtimedwait4() and sig-
waitinfo() look disappointingly similar, sigtimed-
wait4() provides new information that we can lever-
age to improve server scalability.

Mogul, et al., refer to “receive livelock,” a condition
where a server is not deadlocked, but makes no forward
progress on any of its scheduled tasks [12]. This is a
condition that is typical of overloaded interrupt-driven
servers: the server appears to be running flat out, but is
not responding to client requests. In general, receive
livelock occurs because processing a request to comple-
tion takes longer than the time between requests.

Mogul’s study finds that dropping requests as early as
possible results in more request completions on over-
loaded servers. While the study recommends dropping
requests in the hardware interrupt level or network pro-
tocol stack, we instead implement this scheme at the
application level. When the web server becomes over-
loaded, it resets incoming connections instead of proc-
essing the requests.

To determine that a server is overloaded, we use a
weighted load average, essentially the same as the TCP
round trip time estimator [11, 13, 14]. Our new sig-
timedwait4() system call returns as many signals as
can fit in the provided buffer. The number of signals
returned each time phhttpd invokes sigtimed-

wait4() is averaged over time. When the load average
exceeds a predetermined value, the server begins reject-
ing requests.

Instead of dropping requests at the application level,
using the listen backlog might allow the kernel to drop

connections even before the application becomes in-
volved in handling a request. Once the backlog over-
flows, the server’s kernel can refuse connections, not
even passing connection requests to the server applica-
tion, further reducing the workload the web server ex-
periences. However, this solution does not handle bursty
request traffic gracefully. A moving average such as the
RTT estimator smoothes out temporary traffic excesses,
providing a better indicator of server workload over
time.

The smoothing function is computed after each invoca-
tion of sigtimedwait4(). The number of signals
picked up by sigtimedwait4() is one of the func-
tion’s parameters:

1)1(−−+= tt AvgSAvg αα

where S is the number of signals picked up by the most
recent invocation of sigtimedwait4(); Avg is the
moving load average; α is the gain value, controlling
how much the current signal count influences the load
average; and t is time.

In our implementation, phhttpd picks up a maximum
of 23 signals. If Avg exceeds 18, phhttpd begins reset-
ting incoming connections. Experimentation and the
following reasoning influenced the selection of these
values. As the server picks up fewer signals at once, the
sample rate is higher but the sample quantum is smaller.
Only picking up one signal, for example, means we’re
either overloaded, or we’re not. This doesn’t give a
good indication of the server’s load. As we increase the
signal buffer size, the sample rate goes down (it takes
longer before the server calls sigtimedwait4()
again), but the sample quantum improves. At some
point, the sample rate becomes too slow to adequately
detect and handle overload. That is, if we pick up five
hundred signals at once, the server either handles or
rejects connections for all five hundred signals.

The gain value determines how quickly the server reacts
to full signal buffers (our “overload” condition). When
the gain value approaches 1, the server begins resetting
connections almost immediately during bursts of re-
quests. Reducing the gain value allows the server to ride
out smaller request bursts. If it is too small, the server
may fail to detect overload, resulting in early perform-
ance degradation. We found that a gain value of 0.3 was
the best compromise between smooth response to traffic
bursts and overload reaction time.

Graphs 3 and 4 reveal an improvement in overload be-
havior when an overloaded server resets connections
immediately instead of trying to fulfill the requests.
Server performance levels off then declines slowly,
rather than dropping sharply. In addition, connection
error rate is considerably lower.

1000

1200

1400

1600

1800

2000

1000 1200 1400 1600 1800 2000

re
pl

y
ra

te

targeted request rate

sigtimedwait4 smoothed 0.3

Graph 3. Scalability of phhttpd with averaged
load limiting. Overload behavior improves consid-
erably over the earlier runs, which suggests that
formulating and sending responses present much
greater overhead for the server than handling
incoming signals.

0

20

40

60

80

100

1000 1200 1400 1600 1800 2000

er
ro

rs
 in

 p
er

ce
nt

targeted request rate

sigtimedwait4 smoothed 0.3
sigtimedwait4

sigwaitinfo

Graph 4. Error rate of phhttpd with averaged
load limiting. When the server drops connections
on purpose, it actually reduces its error rate.

6. Conclusions and Future Work

Using sigtimedwait4() enables a new way to throt-
tle web server behavior during overload. By choosing to
reset connections rather than respond to incoming re-
quests, our modified web server survives considerable
overload scenarios without encountering receive live-
lock. The sigtimedwait4() system call also enables
additional efficiency: by gathering signals in bulk, a
server application can “compress” signals. For instance,
if the server sees multiple read signals on a socket, it
can empty that socket’s read buffer just once.

Further, we demonstrate that more work is done during
request processing than in handling and dispatching
incoming signals. Lowering signal processing overhead
in the Linux kernel has little effect on server perform-
ance, but reducing request processing overhead in the
web server produces a significant change in server be-
havior.

It remains to be seen whether this request processing
latency is due to:

• accepting incoming connections (accept()
and read() system calls)

• writing the response (nonblocking write()
system call and accompanying data copy op-
erations)

• managing the cache (server-level hash table
lookup and mmap() system call)

• some unforeseen problem.

Even though sending the response back to clients re-
quires a copy operation, it is otherwise nonblocking.
Finding the response in the server’s cache should also
be fast, especially considering the cache in our test con-
tains only a single document. Thus we believe future
work in this area should focus on the performance of
the system calls and server logic that accept and per-
form the initial read on incoming connections.

This paper considers server performance with a single
thread on a single processor to simplify our test envi-
ronment. We should also study how RT signals behave
on SMP architectures. Key factors influencing SMP
performance and scalability include thread scheduling
policies, the cache-friendliness of the kernel implemen-
tation of RT signals, and how well the web server bal-
ances load among its worker threads.

6.1. Acknowledgements

The authors thank Peter Honeyman and Andy Adamson
for their guidance. We also thank the reviewers for their
comments. Special thanks go to Zach Brown for his
insights, and to Intel Corporation for equipment loans.

7. References

[1] G. Banga and J. C. Mogul, “Scalable Kernel Perform-
ance for Internet Servers Under Realistic Load,” Proceedings
of the USENIX Annual Technical Conference, June 1998.

[2] Z. Brown, phhttpd, www.zabbo.net/phhttpd, Novem-
ber 1999.

[3] Signal driven IO (thread), linux-kernel mailing list, No-
vember 1999.

[4] G. Banga. P. Druschel. J. C. Mogul. “Better Operating
System Features for Faster Network Servers,” SIGMETRICS
Workshop on Internet Server Performance, June 1998.

[5] J. C. Hu, I. Pyarali, D. C. Schmidt, “Measuring the Im-
pact of Event Dispatching and Concurrency Models on Web
Server Performance Over High-Speed Networks,” Proceed-
ings of the 2nd IEEE Global Internet Conference, November
1997.

[6] D. Mosberger and T. Jin, “httperf – A Tool for Measuring
Web Server Performance,” SIGMETRICS Workshop on Internet
Server Performance, June 1998.

[7] G. Banga and P. Druschel, “Measuring the Capacity of a
Web Server,” Proceedings of the USENIX Symposium on Inter-
net Technologies and Systems, December 1997.

[8] Apache Server, The Apache Software Foundation.
www.apache.org.

[9] N. Provos and C. Lever, “Scalable Network I/O in
Linux,” Proceedings of the USENIX Technical Conference,
FREENIX track, June 2000.

[10] W. Richard Stevens, UNIX Network Programming, Vol-
ume I: Networking APIs: Sockets and XTI, 2nd edition, Pren-
tice Hall, 1998.

[11] W. Richard Stevens, TCP/IP Illustrated, Volume 1: The
Protocols, pp. 299-309, Addison Wesley professional comput-
ing series, 1994.

[12] J. C. Mogul, K. K. Ramakrishnan, "Eliminating Receive
Livelock in an Interrupt-driven Kernel," Proceedings of
USENIX Technical Conference, January 1996.

[13] P. Karn and C. Partridge, “Improving Round-Trip Time
Estimates in Reliable Transport Protocols,” Computer Com-
munication Review, pp. 2-7, vol. 17, no. 5, August 1987.

[14] V. Jacobson, “Congestion Avoidance and Control,” Com-
puter Communication Review, pp. 314-329, vol. 18, no. 4,
August 1988.

[15] 1003.1b-1993 POSIX – Part 1: API C Language – Real-
Time Extensions (ANSI/IEEE), 1993. ISBN 1-55937-375-X.

[16] GNU info documentation for glibc.

Appendix A: Man page for sigtimedwait4()

SIGTIMEDWAIT4(2) Linux Programmer's Manual SIGTIMEDWAIT4(2)

NAME
 sigtimedwait4 - wait for queued signals

SYNOPSIS
 #include <signal.h>

 int sigtimedwait4(const sigset_t *set, siginfo_t *infos,
 int nsiginfos, const struct timespec *timeout);

 typedef struct siginfo {
 int si_signo; /* signal from signal.h */
 int si_code; /* code from above */
 ...
 int si_value;
 ...
 } siginfo_t;

 struct timespec {
 time_t tv_sec; /* seconds */
 long tv_nsec; /* and nanoseconds */
 };
DESCRIPTION
 sigtimedwait4() selects queued pending signals from the set
 specified by set, and returns them in the array of
 siginfo_t structs specified by infos and nsiginfos.
 When multiple signals are pending, the lowest numbered ones
 are selected. The selection order between realtime and non-
 realtime signals, or between multiple pending non-realtime
 signals, is unspecified.

 sigtimedwait4() suspends itself for the time interval
 specified in the timespec structure referenced by timeout.
 If timeout is zero-valued, or no timespec struct is
 specified, and if none of the signals specified by set is
 pending, then sigtimedwait4() returns immediately with the
 error EAGAIN. If timeout contains a negative value, an
 infinite timeout is specified.

 If no signal in set is pending at the time of the call,
 sigtimedwait4() suspends the calling process until one or
 more signals in set become pending, until it is inter-
 rupted by an unblocked, caught signal, or until the timeout
 specified by the timespec structure pointed to by
 timeout expires.

 If, while sigtimedwait4() is waiting, a signal occurs which
 is eligible for delivery (i.e., not blocked by the process
 signal mask), that signal is handled asynchronously and
 the wait is interrupted.

 If infos is non-NULL, sigtimedwait4() returns as many
 queued signals as are ready and will fit in the array
 specified by infos. In each siginfo_t struct, the selected
 signal number is stored in si_signo, and the cause of the
 signal is stored in the si_code. If a payload is queued with
 the signal, the payload value is stored in si_value.

 If the value of si_code is SI_NOINFO, only the si_signo
 member of a siginfo_t struct is meaningful, and the value of
 all other members of that siginfo_t struct is unspecified.

 If no further signals are queued for the selected signal,
 the pending indication for that signal is reset.

RETURN VALUES
 sigtimedwait4() returns the count of siginfo_t structs it
 was able to store in the buffer specified by infos and
 nsiginfos. Otherwise, the function returns -1 and sets
 errno to indicate any error condition.

ERRORS
 EINTR The wait was interrupted by an unblocked, caught
 signal.

 ENOSYS sigtimedwait4() is not supported by this
 implementation.

 EAGAIN No signal specified by set was delivered within
 the specified timeout period.

 EINVAL timeout specified a tv_nsec value less than 0 or
 greater than 1,000,000,000.

 EFAULT The array of siginfo_t structs specified by
 infos and nsiginfos was not contained in the
 calling program's address space.

CONFORMING TO
 Linux

AVAILABILITY
 The sigtimedwait4() system call was introduced in Linux
 2.4.

SEE ALSO
 time(2), sigqueue(2), sigtimedwait(2), sigwaitinfo(2)

Linux 2.4.0 Last change: 23 August 2000 1

