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Abstract 
 

Linux introduces POSIX Real Time signals to report I/O activity on multiple 
connections with more scalability than traditional models. In this paper we ex-
plore ways of improving the scalability and performance of POSIX RT signals 
even more by measuring system call latency and by creating bulk system calls 
that can deliver multiple signals at once. 

 
 
 

 

1. Introduction 

Experts on network server architecture have argued that 
servers making use of I/O completion events are more 
scalable than today’s servers [2, 3, 5]. In Linux, POSIX 
Real-Time (RT) signals can deliver I/O completion 
events. Unlike traditional UNIX signals, RT signals 
carry a data payload, such as a specific file descriptor 
that just completed. Signals with a payload can enable 
network server applications to respond immediately to 
network requests, as if they were event-driven. An 
added benefit of RT signals is that they can be queued 
in the kernel and delivered to an application one at a 
time, in order, leaving an application free to pick up I/O 
completion events when convenient. 

The RT signal queue is a limited resource. When it is 
exhausted, the kernel signals an application to switch to 
polling, which delivers multiple completion events at 

once. Even when no signal queue overflow happens, 
however, RT signals may have inherent limitations due 
to the number of system calls needed to manage events 
on a single connection. This number may not be critical 
if the queue remains short, for instance while server 
workload is easily handled. When the server becomes 
loaded, the signal queue can cause system call overhead 
to dominate server processing, with the result that 
events are forced to wait a long time in the signal 
queue. 

Linux has been carefully designed so that system calls 
are not much more expensive than library calls. There 
are no more cache effects for a system call than there 
are for a library call, and few virtual memory effects 
because the kernel appears in every process’s address 
space. However, added security checks during system 
calls and hardware overhead caused by crossing protec-
tion domains make it expedient to avoid multiple sys-
tem calls when fewer will do. 

Process switching is still comparatively expensive, of-
ten resulting in TLB flushes and virtual memory over-
head. If a system call must sleep, it increases the likeli-
hood that the kernel will switch to a different process. 
By lowering the number of system calls required to 
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accomplish a given task, we reduce the likelihood of 
harm to an application’s cache resident set. 

Improving the scalability and reducing the overhead of 
often-used system calls has a direct impact on the scal-
ability of network servers [1, 4]. Reducing wait time for 
blocking system calls gives multithreaded server appli-
cations more control over when and where requested 
work is done. Combining several functions into fewer 
system calls has the same effect. 

In this paper, we continue work begun in “Scalable 
Network I/O for Linux” by Provos, et al. [9]. We meas-
ure the effects of system call latency on the perform-
ance and scalability of a simple web server based on an 
RT signal event model. Of special interest is the way 
server applications gather pending RT signals. Today 
applications use sigwaitinfo() to dequeue pending 
signals one at a time. We create a new interface, called 
sigtimedwait4(), that is capable of delivering mul-
tiple signals to an application at once. 

We use phhttpd as our web server. Phhttpd is a 
static-content caching front end for full-service web 
servers such as Apache [8]. Brown created phhttpd to 
demonstrate the POSIX RT signal mechanism, added to 
Linux during the 2.1 development series and completed 
during the 2.3 series [2]. We drive our test server with 
httperf [6]. An added client creates high-latency, low-
bandwidth connections, as in Banga and Druschel [7]. 

Section 2 introduces POSIX Real-Time signals and de-
scribes how server designers can employ them. It also 
documents the phhttpd web server. Section 3 moti-
vates the creation of our new system call. We describe 
our benchmark in Section 4, and discuss the results of 
the benchmark in Section 5. We conclude in Section 6. 

2. POSIX Real-Time Signals and the 
phhttpd Web Server 

In this section, we introduce POSIX Real-Time signals 
(RT signals), and provide an example of their use in a 
network server. 

2.1 Using SIGIO with non-blocking sockets 

To understand how RT signals provide an event notifi-
cation mechanism, we must first understand how sig-
nals drive I/O in a server application. We recapitulate 
Stevens’ illustration of signal-driven I/O here [10]. 

An application follows these steps to enable signal-
driven I/O: 

1. The application assigns a SIGIO signal handler 
with signal() or sigaction(). 

2. The application creates a new socket via 
socket() or accept(). 

3. The application assigns an owner pid, usually its 
own pid, to the new socket with fcntl(fd, 
F_SETOWN, newpid). The owner then receives 
signals for this file descriptor. 

4. The application enables non-blocking I/O on the 
socket with fcntl(fd, F_SETFL, O_ASYNC). 

5. The application responds to signals either with 
its signal handler, or by masking these signals 
and picking them up synchronously with sig-
waitinfo(). 

The kernel raises SIGIO for a variety of reasons: 

• A connection request has completed on a listen-
ing socket. 

• A disconnect request has been initiated. 

• A disconnect request has completed. 

• Half of a connection has been shut down. 

• Data has arrived on a socket. 

• A write operation has completed. 

• An out-of-band error has occurred. 

When using old-style signal handlers, this mechanism 
has no way to inform an application which of these 
conditions occurred. POSIX defines the siginfo_t 
struct (see FIG. 1), which, when used with the sig-
waitinfo() system call, supplies a signal reason code 
that distinguishes among the conditions listed above. 
Detailed signal information is also available for new-
style signal handlers, as defined by the latest POSIX 
specification [15]. 



This mechanism cannot say what file descriptor caused 
the signal, thus it is not useful for servers that manage 
more than one TCP socket at a time. Since its inception, 
it has been used successfully only with UDP-based 
servers [10]. 

2.2 POSIX Real-Time signals 

POSIX Real-Time signals provide a more complete 
event notification system by allowing an application to 
associate signals with specific file descriptors. For ex-
ample, an application can assign signal numbers larger 
than SIGRTMIN to specific open file descriptors using 
fcntl(fd, F_SETSIG, signum). The kernel raises 
the assigned signal whenever there is new data to be 
read, a write operation completes, the remote end of the 
connection closes, and so on, as with the basic SIGIO 
model described in the previous section. 

Unlike normal signals, however, RT signals can queue 
in the kernel. If a normal signal occurs more than once 
before the kernel can deliver it to an application, the 
kernel delivers only one instance of that signal. Other 
instances of the same signal are dropped. However, RT 
signals are placed in a FIFO queue, creating a stream of 
event notifications that can drive an application’s re-
sponse to incoming requests. Typically, to avoid com-
plexity and race conditions, and to take advantage of the 
information available in siginfo_t structures, 
applications mask the chosen RT signals during normal 
operation. An application uses sigwaitinfo() or 
sigtimedwait() to pick up pending signals synchro-
nously from the RT signal queue. 

The kernel must generate a separate indication if it can-
not queue an RT signal, for example, if the RT signal 
queue overflows, or kernel resources are temporarily 
exhausted. The kernel raises the normal signal SIGIO if 
this occurs. If a server uses RT signals to monitor in-
coming network activity, it must clear the RT signal 
queue and use another mechanism such as poll() to 
discover remaining pending activity when SIGIO is 
raised. 

Finally, RT signals can deliver a payload. Sigwait-
info() returns a siginfo_t struct (see FIG. 1) for 
each signal. The _fd and _band fields in this structure 
contain the same information as the fd and revents 
fields in a pollfd struct (see FIG. 2). 

struct siginfo { 
 int si_signo; 
 int si_errno; 
 int si_code; 
 union { 
  /* other members elided */ 
  struct { 
   int _band; 
   int _fd; 
  } _sigpoll; 
 } _sifields; 
} siginfo_t; 

Figure 1. Simplified siginfo_t struct. 

struct pollfd { 
int fd; 
short events; 
short revents; 

}; 

Figure 2. Standard pollfd struct 

2.2.1 Mixing threads and RT signals 

According to the GNU info documentation that ac-
companies glibc, threads and signals can be mixed 
reliably by blocking all signals in all threads, and pick-
ing them up using one of the system calls from the 
sigwait() family [16]. 

POSIX semantics for signal delivery do not guarantee 
that threads waiting in sigwait() will receive particu-
lar signals. According to the standard, an external signal 
is addressed to the whole process (the collection of all 
threads), which then delivers it to one particular thread. 
The thread that actually receives the signal is any thread 
that does not currently block the signal. Thus, only one 
thread in a process should wait for normal signals while 
all others should block them. 

In Linux, however, each thread is a kernel process with 
its own PID, so external signals are always directed to 
one particular thread. If, for instance, another thread is 
blocked in sigwait() on that signal, it will not be 
restarted. 

This is an important element of the design of servers 
using an RT signals-based event core. All normal sig-
nals should be blocked and handled by one thread. On 
Linux, other threads may handle RT signals on file de-
scriptors, because file descriptors are “owned” by a 
specific thread. The kernel will always direct signals for 
that file descriptor to its owner. 

2.2.2 Handling a socket close operation 

Signals queued before an application closes a connec-
tion will remain on the RT signal queue, and must be 
processed and/or ignored by applications. For instance, 



when a socket closes, a server application may receive 
previously queued read or write events before it picks 
up the close event, causing it to attempt inappropriate 
operations on the closed socket. 

When a socket is closed on the remote end, the local 
kernel queues a POLL_HUP event to indicate the remote 
hang-up. POLL_IN signals occurring earlier in the event 
stream usually cause an application to read a socket, 
and when it does in this case, it receives an EOF. Appli-
cations that close sockets when they receive POLL_HUP 
must ignore any later signals for that socket. Likewise, 
applications must be prepared for reads to fail at any 
time, and not depend only on RT signals to manage 
socket state. 

Because RT signals queue unlike normal signals, server 
applications cannot treat these signals as interrupts. The 
kernel can immediately re-use a freshly closed file de-
scriptor, confusing an application that then processes 
(rather than ignores) POLL_IN signals queued by previ-
ous operations on an old socket with the same file de-
scriptor number. This introduces to the unwary applica-
tion designer significant vulnerabilities to race condi-
tions. 

2.3 Using RT Signals in a Web Server 

Phhttpd is a static-content caching front end for full-
service web servers such as Apache [2, 8]. Brown cre-
ated phhttpd to demonstrate the POSIX RT signal 
mechanism, added to the Linux kernel during the 2.1.x 
kernel development series and completed during the 
2.3.x series. We describe it here to document its features 
and design, and to help motivate the design of sig-
timedwait4(). Our discussion focuses on how 
phhttpd makes use of RT signals. 

2.3.1 Assigning RT signal numbers 

Even though a unique signal number could be assigned 
to each file descriptor, phhttpd uses one RT signal 
number for all file descriptors in all threads for two 
reasons. 

1. Lowest numbered RT signals are delivered first. 
If all signals use the same number, the kernel al-
ways delivers RT signals in the order in which 
they arrive. 

2. There is no standard library interface for multi-
threaded applications to allocate signal numbers 
atomically. Allocating a single number once dur-
ing startup and giving the same number to all 
threads alleviates this problem. 

2.3.2 Threading model 

Phhttpd operates with one or more worker threads that 
handle RT signals. Additionally, an extra thread is cre-
ated for managing logs. A separate thread pre-populates 
the file data cache, if requested. 

Instead of handling incoming requests with signals, 
phhttpd may use polling threads instead. Usually, 
though, phhttpd creates a set of RT signal worker 
threads, and a matching set of polling threads known as 
sibling threads. The purpose of sibling threads is de-
scribed later. 

Each RT signal worker thread masks off the file 
descriptor signal, then iterates, picking up each RT 
signal via sigwaitinfo() and processing it, one at a 
time. To reduce system call rate, phhttpd read()s on 
a new connection as soon as it has accept()ed it. 
Often, on high-bandwidth connections, data is ready to 
be read as soon as a connection is accept()ed. 
Phhttpd reads this data and sends a response 
immediately to prevent another trip through the “event” 
loop, reducing the negative cache effects of handling 
other work in between the accept and the read 
operations. 
Because the read operation is non-blocking, it fails with 
EAGAIN if data is not immediately present. The thread 
proceeds normally back to the “event” loop in this case 
to wait for data to become available on the socket. 

2.3.3 Load balancing 

When more than one thread is available, a simple load 
balancing scheme passes listening sockets among the 
threads by reassigning the listener’s owner via 
fcntl(fd, F_SETOWN, newpid). After a thread 
accepts an incoming connection, it passes its listener to 
the next worker thread in the chain of worker threads. 
This mechanism requires that each thread have a unique 
pid, a property of the Linux threading model. 

2.3.4 Caching responses 

Because phhttpd is not a full-service web server, it 
must identify requests as those it can handle itself, or 
those it must pass off to its backing server. Local files 
that phhttpd can access are cached by mapping them 
and storing the map information in a hash, along with a 
pre-formed http response. When a cached file is re-
quested, phhttpd sends the cached response via 
write() along with the mapped file data. 

Logic exists to handle the request via sendfile() 
instead. In the long run, this may be more efficient for 
several reasons. First, there is a limited amount of ad-
dress space per process. This limits the total number of 
cached bytes, especially because these bytes share the 



address space with the pre-formed responses, hash in-
formation, heap and stack space, and program text. Us-
ing sendfile() allows data to be cached in extended 
memory (memory addressed higher than one or two 
gigabytes). Next, as the number of mapped objects 
grows, mapping a new object takes longer. On Linux, 
finding an unused area of an address space requires at 
least one search that is linear in the number of mapped 
objects in that address space. Finally, creating these 
maps requires expensive page table and TLB flush op-
erations that can hurt system-wide performance, espe-
cially on SMP hardware. 

2.3.5 Queue overflow recovery 

The original phhttpd web server recovered from sig-
nal queue overflow by passing all file descriptors owned 
by a signal handling worker thread to a pre-existing 
poll-based worker thread, known as its sibling. The 
sibling then cleans up the signal queue, polls over all 
the file descriptors, processes remaining work, and 
passes all the file descriptors back to the original signal 
worker thread. 

On a server handling perhaps thousands of connections, 
this creates considerable overhead during a period when 
the server is already overloaded. We modified the queue 
overflow handler to reduce this overhead. The server 
now handles signal queue overflow in the same thread 
as the RT signal handler; sibling threads are no longer 
needed. This modification appears in phhttpd version 
0.1.2. It is still necessary, however, to build a fresh 
poll_fd array completely during overflow processing. 
This overhead slows the server during overflow 
processing, but can be reduced by maintaining the 
poll_fd array concurrently with signal processing. 

RT signal queue overflow is probably not as rare as 
some would like. Some kernel designs have a single 
maximum queue size for the entire system. If any aber-
rant application stops picking up its RT signals (the 
thread that picks up RT signals may cause a segmenta-
tion fault, for example, while the rest of the application 
continues to run), the system-wide signal queue will 
fill. All other applications on the system that use RT 
signals will eventually be unable to proceed without 
recovering from a queue overflow, even though they are 
not the cause of it. 

It is well known that Linux is not a real-time operating 
system, and that unbounded latencies sometimes occur. 
Application design may also prohibit a latency upper 
bound guarantee. These latencies can delay RT signals, 
causing the queue to grow long enough that recovery is 
required even when servers are fast enough to handle 
heavy loads under normal circumstances. 

3. New interface: sigtimedwait4() 

To reduce system call overhead and remove a potential 
source of unnecessary system calls, we’d like the kernel 
to deliver more than one signal per system call. One 
mechanism to do this is implemented in the poll() 
system call. The application provides a buffer for a vec-
tor of results. The system call returns the number of 
results it stored in the buffer, or an error. 

Our new system call interface combines the multiple 
result delivery of poll() with the efficiency of POSIX 
RT signals. The interface prototype appears in FIG. 3. 

int sigtimedwait4(const sigset_t *set, 
 siginfo_t *infos, int nsiginfos, 
 const struct timespec *timeout); 

Figure 3. sigtimedwait4() prototype 

Like its cousin sigtimedwait(), sigtimedwait4() 
provides the kernel with a set of signals in which it is 
interested, and a timeout value that is used when no 
signals are immediately ready for delivery. The kernel 
selects queued pending signals from the signal set 
specified by set, and returns them in the array of 
siginfo_t structures specified by infos and 
nsiginfos. 

Providing a buffer with enough room for only one 
siginfo_t struct forces sigtimedwait4() to behave 
almost like sigtimedwait(). The only difference is 
that specifying a negative timeout value causes sig-
timedwait4() to behave like sigwaitinfo(). The 
same negative timeout instead causes an error return 
from sigtimedwait(). 

Retrieving more than one single signal at a time has 
important benefits. First and most obviously, it reduces 
the average number of transitions between user space 
and kernel space required to process a single server 
request. Second, it reduces the number of times per 
signal the per-task signal spinlock is acquired and re-
leased. This improves concurrency and reduces cache 
ping-ponging on SMP hardware. Third, it amortizes the 
cost of verifying the user’s result buffer, although some 
believe this is insignificant. Finally, it allows a single 
pass through the signal queue for all pending signals 
that can be returned, instead of a pass for each pending 
signal. 

The sigtimedwait4() system call enables efficient 
server implementations by allowing the server to “com-
press” signals- if it sees multiple read signals on a 
socket, for instance, it can empty that socket’s read 
buffer just once. 



The sys_rt_sigtimedwait() function is a moderate 
CPU consumer in our benchmarks, according to the 
results of kernel EIP histograms. About three fifths of 
the time spent in the function occurs in the second criti-
cal section in FIG. 4. 

spin_lock_irq(&current->sigmask_lock); 
sig = dequeue_signal(&these, &info); 
if (!sig) { 
  sigset_t oldblocked = current->blocked; 
  sigandsets(&current->blocked, 
              &current->blocked, &these); 
  recalc_sigpending(current); 
  spin_unlock_irq(&current-> 
                         sigmask_lock); 
 
  timeout = MAX_SCHEDULE_TIMEOUT; 
  if (uts) 
    timeout = (timespec_to_jiffies(&ts) 
           + (ts.tv_sec || ts.tv_nsec)); 
 
  current->state = TASK_INTERRUPTIBLE; 
  timeout = schedule_timeout(timeout); 
 
  spin_lock_irq(&current->sigmask_lock); 
  sig = dequeue_signal(&these, &info); 
  current->blocked = oldblocked; 
  recalc_sigpending(current); 
} 
spin_unlock_irq(&current->sigmask_lock); 
 

Figure 4. This excerpt of the 
sys_rt_sigtimedwait() kernel function shows 
two critical sections. The most CPU time is con-
sumed in the second critical section. 

The dequeue_signal() function contains some com-
plexity that we can amortize across the total number of 
dequeued signals. This function walks through the list 
of queued signals looking for the signal described in 
info. If we have a list of signals to dequeue, we can 
walk the signal queue once picking up all the signals we 
want. 

4. Benchmark description 

In this section, we measure and report several aspects of 
server performance. 

Our test harness consists of two machines running 
Linux connected via a 100 Mb/s Ethernet switch. The 
workload is driven by an Intel SC450NX with four 
500MHZ Xeon Pentium III processors (512Kb of L2 
cache each), 512Mb of RAM, and a pair of SYMBIOS 
53C896 SCSI controllers managing several LVD 
10KRPM drives. Our web server runs on custom-built 
hardware equipped with a single 400MHZ AMD K6-2 
processor, 64Mb of RAM, and a single 8G 7.2KRPM 
IDE drive. The server hardware is small so that we can 
easily drive the server into overload. We also want to 
eliminate any SMP effects on our server, so it has only 
a single CPU. 

Our benchmark configuration contains only a single 
client host and a single server host, which makes the 
simulated workload less realistic. However, our bench-
mark results are strictly for comparing relative perform-
ance among our implementations. We believe the results 
also give an indication of real-world server perform-
ance. 

A web server’s static performance naturally depends on 
the size distribution of requested documents. Larger 
documents cause sockets and their corresponding file 
descriptors to remain active over a longer time period. 
As a result the web server and kernel have to examine a 
larger set of descriptors, making the amortized cost of 
polling on a single file descriptor larger. In our tests, we 
request a 1 Kbyte document, a typical index.html file 
from the monkey.org web site. 

4.1 Offered load 

Scalability is especially critical to modern network ser-
vice when serving many high-latency connections. 
Most clients are connected to the Internet via high-
latency connections, such as modems, whereas servers 
are usually connected to the Internet via a few high 
bandwidth, low-latency connections. This creates re-
source contention on servers because connections to 
high-latency clients are relatively long-lived, tying up 
server resources. They also induce a bursty and 
unpredictable interrupt load on the server [7]. 

Most web server benchmarks don’t simulate high-
latency connections, which appear to cause difficult-to-
handle load on real-world servers [5]. We’ve added an 
extra client that runs in conjunction with the httperf 
benchmark to simulate these slower connections to ex-
amine the effects of our improvements on more realistic 



server workloads [6]. This client program opens a con-
nection, but does not complete an http request. To keep 
the number of high-latency clients constant, these cli-
ents reopen their connection if the server times them 
out. 

In previous work, we noticed server performance 
change as the number of inactive connections varied 
[9]. As a result of this work, one of the authors modified 
phhttpd to correct this problem. The latest version of 
phhttpd (0.1.2 as of this writing) does not show sig-
nificant performance degradation as the number of inac-
tive connections increases. Therefore, the benchmark 
results we present here show performance with no extra 
inactive connections. 

There are several system limitations that influence our 
benchmark procedures. There are only a limited number 
of file descriptors available for single processes; 
httperf assumes that the maximum is 1024. We modi-
fied httperf to cope dynamically with a large number 
of file descriptors. Additionally, because we use only a 
single client and server in our test harness, we can have 
only about 60,000 open sockets at a single point in 
time. When a socket closes it enters the TIMEWAIT 
state for sixty seconds, so we must avoid reaching the 
port number limitation. We therefore run each bench-
mark for 35,000 connections, and then wait for all 
sockets to leave the TIMEWAIT state before we con-
tinue with the next benchmark run. In the following 
tests, we run httperf with 4096 file descriptors, and 
phhttpd with five thousand file descriptors. 

4.2 Execution Profiling 

To assess our modifications to the kernel, we use the 
EIP sampler built in to the Linux kernel. This sampler 
checks the value of the instruction pointer (EIP register) 
at fixed intervals, and populates a hash table with the 
number of samples it finds at particular addresses. Each 
bucket in the hash table reports the results of a four-byte 
range of instruction addresses. 

A user-level program later extracts the hash data and 
creates a histogram of CPU time matched against the 
kernel’s symbol table. The resulting histogram demon-
strates which routines are most heavily used, and how 
efficiently they are implemented. The granularity of the 
histogram allows us to see not only which functions are 
heavily used, but also where the most time is spent in 
each function. 

5. Results and Discussion 

In this section we present the results of our benchmarks, 
and describe some new features that our new system 
call API enables. 

5.1 Basic performance and scalability results 

As described previously, our web server is a single 
processor host running a Linux 2.2.16 kernel modified 
to include our implementation of sigtimedwait4(). 
The web server application is phhttpd version 0.1.2. We 
compare an unmodified version with a version modified 
to use sigtimedwait4(). Our benchmark driver is a 
modified version of httperf 0.6 running on a four-
processor host. 
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Graph 1. Scalability of the phhttpd web server. 
This graph shows how a single threaded phhttpd 
web server scales as request rate increases. The axes 
are in units of requests per second. 
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Graph 2. Scalability of phhttpd using sig-
timedwait4(). The signal buffer size was five 
hundred signals, meaning that the web server could 
pick up as many as five hundred events at a time. 
Compared to Graph 1, there is little improvement. 



Our first test compares the scalability of unmodified 
phhttpd using sigwaitinfo() to collect one signal 
at a time with the scalability of phhttpd using sig-
timedwait4() to collect many signals at once. The 
modified version of phhttpd picks up as many as 500 
signals at once during this test. 

Graphs 1 and 2 show that picking up more than one RT 
signal at a time gains little. Only minor changes in be-
havior occur when varying the maximum number of 
signals that can be picked up at once. The maximum 
throughput attained during the test increases slightly. 

This result suggests that the largest system call bottle-
neck is not where we first assumed. Picking up signals 
appears to be an insignificant part of server overhead. 
We hypothesize that responding to requests, rather than 
picking them up, is where the server spends most of its 
effort. 

5.2 Improving overload performance 

While the graphs for sigtimedwait4() and sig-
waitinfo() look disappointingly similar, sigtimed-
wait4() provides new information that we can lever-
age to improve server scalability. 

Mogul, et al., refer to “receive livelock,” a condition 
where a server is not deadlocked, but makes no forward 
progress on any of its scheduled tasks [12]. This is a 
condition that is typical of overloaded interrupt-driven 
servers: the server appears to be running flat out, but is 
not responding to client requests. In general, receive 
livelock occurs because processing a request to comple-
tion takes longer than the time between requests. 

Mogul’s study finds that dropping requests as early as 
possible results in more request completions on over-
loaded servers. While the study recommends dropping 
requests in the hardware interrupt level or network pro-
tocol stack, we instead implement this scheme at the 
application level. When the web server becomes over-
loaded, it resets incoming connections instead of proc-
essing the requests. 

To determine that a server is overloaded, we use a 
weighted load average, essentially the same as the TCP 
round trip time estimator [11, 13, 14]. Our new sig-
timedwait4() system call returns as many signals as 
can fit in the provided buffer. The number of signals 
returned each time phhttpd invokes sigtimed-

wait4() is averaged over time. When the load average 
exceeds a predetermined value, the server begins reject-
ing requests. 

Instead of dropping requests at the application level, 
using the listen backlog might allow the kernel to drop 

connections even before the application becomes in-
volved in handling a request. Once the backlog over-
flows, the server’s kernel can refuse connections, not 
even passing connection requests to the server applica-
tion, further reducing the workload the web server ex-
periences. However, this solution does not handle bursty 
request traffic gracefully. A moving average such as the 
RTT estimator smoothes out temporary traffic excesses, 
providing a better indicator of server workload over 
time. 

The smoothing function is computed after each invoca-
tion of sigtimedwait4(). The number of signals 
picked up by sigtimedwait4() is one of the func-
tion’s parameters: 

1)1( −−+= tt AvgSAvg αα  

where S is the number of signals picked up by the most 
recent invocation of sigtimedwait4(); Avg is the 
moving load average; α is the gain value, controlling 
how much the current signal count influences the load 
average; and t is time. 

In our implementation, phhttpd picks up a maximum 
of 23 signals. If Avg exceeds 18, phhttpd begins reset-
ting incoming connections. Experimentation and the 
following reasoning influenced the selection of these 
values. As the server picks up fewer signals at once, the 
sample rate is higher but the sample quantum is smaller. 
Only picking up one signal, for example, means we’re 
either overloaded, or we’re not. This doesn’t give a 
good indication of the server’s load. As we increase the 
signal buffer size, the sample rate goes down (it takes 
longer before the server calls sigtimedwait4() 
again), but the sample quantum improves. At some 
point, the sample rate becomes too slow to adequately 
detect and handle overload. That is, if we pick up five 
hundred signals at once, the server either handles or 
rejects connections for all five hundred signals. 

The gain value determines how quickly the server reacts 
to full signal buffers (our “overload” condition). When 
the gain value approaches 1, the server begins resetting 
connections almost immediately during bursts of re-
quests. Reducing the gain value allows the server to ride 
out smaller request bursts. If it is too small, the server 
may fail to detect overload, resulting in early perform-
ance degradation. We found that a gain value of 0.3 was 
the best compromise between smooth response to traffic 
bursts and overload reaction time. 



Graphs 3 and 4 reveal an improvement in overload be-
havior when an overloaded server resets connections 
immediately instead of trying to fulfill the requests. 
Server performance levels off then declines slowly, 
rather than dropping sharply. In addition, connection 
error rate is considerably lower. 
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Graph 3. Scalability of phhttpd with averaged 
load limiting. Overload behavior improves consid-
erably over the earlier runs, which suggests that 
formulating and sending responses present much 
greater overhead for the server than handling 
incoming signals. 
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Graph 4. Error rate of phhttpd with averaged 
load limiting. When the server drops connections 
on purpose, it actually reduces its error rate. 

6. Conclusions and Future Work 

Using sigtimedwait4() enables a new way to throt-
tle web server behavior during overload. By choosing to 
reset connections rather than respond to incoming re-
quests, our modified web server survives considerable 
overload scenarios without encountering receive live-
lock. The sigtimedwait4() system call also enables 
additional efficiency: by gathering signals in bulk, a 
server application can “compress” signals. For instance, 
if the server sees multiple read signals on a socket, it 
can empty that socket’s read buffer just once. 

Further, we demonstrate that more work is done during 
request processing than in handling and dispatching 
incoming signals. Lowering signal processing overhead 
in the Linux kernel has little effect on server perform-
ance, but reducing request processing overhead in the 
web server produces a significant change in server be-
havior. 

It remains to be seen whether this request processing 
latency is due to: 

• accepting incoming connections (accept() 
and read() system calls) 

• writing the response (nonblocking write() 
system call and accompanying data copy op-
erations) 

• managing the cache (server-level hash table 
lookup and mmap() system call) 

• some unforeseen problem. 

Even though sending the response back to clients re-
quires a copy operation, it is otherwise nonblocking. 
Finding the response in the server’s cache should also 
be fast, especially considering the cache in our test con-
tains only a single document. Thus we believe future 
work in this area should focus on the performance of 
the system calls and server logic that accept and per-
form the initial read on incoming connections. 

This paper considers server performance with a single 
thread on a single processor to simplify our test envi-
ronment. We should also study how RT signals behave 
on SMP architectures. Key factors influencing SMP 
performance and scalability include thread scheduling 
policies, the cache-friendliness of the kernel implemen-
tation of RT signals, and how well the web server bal-
ances load among its worker threads. 
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Appendix A: Man page for sigtimedwait4() 

SIGTIMEDWAIT4(2)        Linux Programmer's Manual       SIGTIMEDWAIT4(2) 
 
NAME 
     sigtimedwait4 - wait for queued signals 
 
SYNOPSIS 
     #include <signal.h> 
 
     int sigtimedwait4(const sigset_t *set, siginfo_t *infos, 
           int nsiginfos, const struct timespec *timeout); 
 
     typedef struct siginfo { 
        int            si_signo; /* signal from signal.h */ 
        int            si_code;  /* code from above      */ 
      ... 
        int            si_value; 
      ... 
     } siginfo_t; 
 
     struct timespec { 
        time_t         tv_sec;   /* seconds */ 
        long           tv_nsec;  /* and nanoseconds */ 
     }; 
DESCRIPTION 
     sigtimedwait4() selects queued pending signals from the  set 
     specified by  set,  and   returns   them  in  the  array  of 
     siginfo_t structs   specified   by   infos   and  nsiginfos. 
     When multiple signals are pending,  the lowest numbered ones 
     are selected.  The selection order between realtime and non- 
     realtime signals, or between multiple  pending  non-realtime 
     signals, is unspecified. 
 
     sigtimedwait4() suspends  itself  for  the   time   interval 
     specified in the timespec  structure  referenced by timeout. 
     If  timeout  is  zero-valued,   or  no  timespec  struct  is 
     specified, and if none of  the  signals  specified by set is 
     pending, then sigtimedwait4()  returns  immediately with the 
     error EAGAIN.   If  timeout   contains  a negative value, an 
     infinite timeout is specified. 
 
     If no signal in set is pending  at  the time  of  the  call, 
     sigtimedwait4() suspends  the  calling  process until one or 
     more signals  in  set  become  pending,  until  it is inter- 
     rupted by an unblocked, caught signal,  or until the timeout 
     specified   by   the   timespec   structure  pointed  to  by 
     timeout expires. 
 
     If, while sigtimedwait4() is waiting, a signal  occurs which 
     is eligible for delivery (i.e., not blocked by  the  process 
     signal mask), that  signal  is  handled  asynchronously  and 
     the wait is interrupted. 
 
     If  infos  is  non-NULL,  sigtimedwait4()  returns  as  many 
     queued signals  as  are  ready  and  will  fit  in the array 
     specified by infos. In  each  siginfo_t struct, the selected 
     signal number is stored in si_signo,  and the cause  of  the 
     signal is stored in the si_code. If a payload is queued with 
     the signal, the payload value is stored in si_value. 
 
     If the value  of  si_code  is  SI_NOINFO,  only the si_signo 
     member of a siginfo_t struct is meaningful, and the value of 
     all other members of that siginfo_t struct is unspecified. 
 



     If no further signals are queued for  the  selected  signal, 
     the pending indication for that signal is reset. 
 
RETURN VALUES 
     sigtimedwait4() returns  the  count  of siginfo_t structs it 
     was able to store  in  the  buffer  specified  by  infos and 
     nsiginfos.   Otherwise,  the  function  returns  -1 and sets 
     errno to indicate any error condition. 
 
ERRORS 
     EINTR     The wait was interrupted by an  unblocked,  caught 
               signal. 
 
     ENOSYS    sigtimedwait4()   is   not   supported   by   this 
               implementation. 
 
     EAGAIN    No signal specified  by  set was delivered  within 
               the specified timeout period. 
 
     EINVAL    timeout specified a  tv_nsec  value less than 0 or 
               greater than 1,000,000,000. 
 
     EFAULT    The  array  of  siginfo_t   structs  specified  by 
               infos and  nsiginfos  was  not  contained  in  the 
               calling program's address space. 
 
CONFORMING TO 
     Linux 
 
AVAILABILITY 
     The  sigtimedwait4() system call  was  introduced  in  Linux 
     2.4. 
 
SEE ALSO 
     time(2), sigqueue(2), sigtimedwait(2), sigwaitinfo(2) 
 
Linux 2.4.0        Last change: 23 August 2000                  1 
 


