
USENIX Association

Proceedings of the
4th Annual Linux Showcase & Conference,

Atlanta

Atlanta, Georgia, USA
October 10 –14, 2000

THE ADVANCED COMPUTING SYSTEMS ASSOCIATION

© 2000 by The USENIX Association All Rights Reserved For more information about the USENIX Association:
Phone: 1 510 528 8649 FAX: 1 510 548 5738 Email: office@usenix.org WWW: http://www.usenix.org

Rights to individual papers remain with the author or the author's employer.

 Permission is granted for noncommercial reproduction of the work for educational or research purposes.

This copyright notice must be included in the reproduced paper. USENIX acknowledges all trademarks herein.

Introduction

Just as other authors have compared the function
available in Linux 2.4 to that available in Linux 2.2
(see, for example, [Linux 2.4]), the purpose of this
paper is to compare the performance likely to be
available in Linux 2.4 to the performance delivered by
Linux 2.2. We make this estimate by comparing the
performance of Linux 2.3.99 kernels to Linux 2.2.14
on the Intel 32-bit platform using a set of four
benchmarks. Three of these benchmarks are targeted
to specific components of the Linux kernel:

� Volanomark™: a benchmark of a chat room server
written in the Java™ language. (scheduler,
TCP/IP stack)

� Netperf: a network communications benchmark
(TCP/IP stack)

� FSCache: a file system buffer-cache benchmark
(file system cache)

The fourth benchmark, SPECweb99 [SPW99] is a
benchmark of web server performance.

In addition to comparing the performance of these
kernels, we use a standard set of performance tools to
analyze the kernels as the benchmarks execute. The
resulting data will help us analyze and fix bottlenecks
remaining in Linux 2.4.

While benchmarking is of course, imperfect (if not
controversial, c. f. [Mindcraft] [ESRFiasco]), we
believe this is the only way to obtain reproducible and
verifiable comparisons between two kernels. Such a
study should be conducted so that another group
running the same benchmark with the identical setup
will obtain similar results. One must also be careful
not to infer conclusions from the benchmark results
about unrelated workloads.

In the following sections of this paper, we discuss the
following:

� the instrumentation patch we used to analyze
kernel performance

� the kernels we compared
� benchmarks employed
� the measurement environment
� the measurement results
� implications of these results pertaining to the

performance of the Linux 2.4 kernel

Instrumentation

This paper presents results obtained from the IBM
Linux Kernel Trace and Profile Facility patch.3 This
patch implements a profiling facility that profiles the

SMP Scalability Comparisons of Linux® Kernels 2.2.14 and 2.3.99

Ray Bryant raybry@us.ibm.com Bill Hartner bhartner@us.ibm.com
Qi He1 qhe@cc.gatech.edu Ganesh Venkitachalam2 venkitac@yahoo.com

IBM® Linux Technology Center
IBM Austin

Abstract

The Linux 2.4 kernel should provide significantly better SMP scalability than is available in the 2.2 series. While
the development of the 2.4 kernel is still continuing, performance studies on the 2.3.99 kernels can be used as an
indicator of what the performance of the 2.4 kernel will be like. In this paper, we compare performance and SMP
scalability of Linux 2.2.14 and Linux 2.3.99 on the Intel® 32-bit platform using four benchmarks. Three of these
are targeted to specific system components; the fourth is SPECweb99™. SMP scaling for these benchmarks is
shown to be significantly better with 2.3.99 than it is with 2.2.14. This should translate into significantly better
SMP scaling (and hence additional raw performance on SMP systems) for applications running under Linux 2.4.

3 This code is not available outside of IBM at the present time. If there is sufficient community interest, it may be
released to the open source community at some time in the future.

2 Author's current address: VMware, Inc., 3145 Porter Drive, Palo Alto, CA 94304.

1 Author's current address: Georgia Institute of Technology, 328290, Georgia Tech Station, Atlanta, GA 30332.

kernel execution. It produces output that is similar to
the output produced by the Linux kernel profiling
facility or the SGI™ Kernprof [SGIKernprof]. The
measurements reported using the IBM Kernel Trace
and Profile Facility could, in principle, be duplicated
outside of IBM using these other tools.

In addition to timer-based profiling, both the IBM
Linux Kernel Trace Facility and the SGI Kernprof
Patch support Pentium® performance-counter based
profiling. Time-based profiling samples the current
instruction pointer at a given time interval (e.g., every
10 ms.). Postprocessing tools use the recorded
locations to construct a histogram of the amount of
time spent in various kernel routines. In performance-
counter based profiling, a profile observation is set to
occur after a certain number of Pentium performance
counter events [PerfCount]. For example, one could
take an observation every 1,000,000 instructions or
every 10,000 cache-line misses. Just as time-based
profiling shows where the kernel spends its time, an
instruction-based profile shows where the kernel
executes most of its instructions and a cache-line based
profile shows where the kernel takes most of its
cache-line misses. These latter types of profiles can
provide additional insight into kernel performance.

Kernels Compared

In this paper, we report on comparisons of Linux
kernel 2.2.14 and Linux 2.3.99-pre4, pre6, or pre8 as
specified in the benchmark data. For some of the
benchmarks the kernel.org version of 2.2.14 would not
correctly run the benchmark and we had to use the Red
Hat™ 6.2 version of the kernel instead (2.2.14-5.0).
We were later able to fix this problem by porting the
eepro100 ethernet card driver from Red Hat 6.2 to the
kernel.org version. The versions of the 2.2.14 kernel
used for the SPECweb99 experiments were the
kernel.org version of 2.2.14 with the updated version
of the eepro100 driver.

The kernels were all built in uniprocessor and
multiprocessor versions using gcc version "gcc version
egcs-2.91.66 19990314/linux." Kernels were built for
machine architecture "686". In some cases we also
include measurement data from other kernel versions
for comparison purposes. These kernels were also built
using the same version of gcc.

A full specification of the configuration options used to
build these kernels would be required to completely
define the way these kernels were built; these

configuration files are available from the authors on
request.

Benchmarks Used

Volanomark
Volanomark is a benchmark of a chat room server and
is written in the Java language. The benchmark and
the chat room server are products of Volano, LLC
[Volano]. Occasionally, Volano publishes a report
(known as the Volano Report [VReport]) comparing
Volanomark performance on a variety of Java
implementations and operating systems. The
Volanomark measurements reported in this paper use
slightly different run rules and parameters than the
measurements reported in the Volano Report and are
not comparable to the results published there.

We present throughput results using Volanomark 2.1.2
and the IBM Runtime Environment for Linux version
1.1.8 (formally known as part of the IBM® Developer
Kit for Linux®, Java™ Technology Edition, Version
1.1.8, and herein referred to as the IBM R/T 1.1.8) that
we used in a previous paper [JTThreads]. Further
description of Volanomark can be found at [VMark]
and in our previous paper. We also present SMP
scalability results using Volanomark 2.1.2 and the
IBM Runtime Environment for Linux version 1.3
[NewIBMRT] (formally known as part of the IBM®
Developer Kit for Linux®, Java™ 2 Technology
Edition, Version 1.3, and herein referred to as the IBM
R/T 1.3) and IBM R/T 1.1.8.

The principle metric reported by the Volanomark test
is "chat server message throughput" in messages per
second. All Volanomark results present here are for
loopback experiments; in a loopback experiment both
the client and server run on the same system.

While Volanomark was developed by Volano, LLC to
compare their chat server performance under different
Java implementations, we have found it to be useful in
the Linux environment to test scheduler and TCP/IP
stack performance, particularly if the IBM R/T 1.1.8 or
1.3 is used. Each chat room client causes 4 Java
threads to be created. The IBM R/Ts use a separate
Linux process to implement each java thread. Thus for
a Volanomark run with 200 simulated chat room
clients, there will be 800 processes active in the
system. Each java thread spends most of its time
waiting for data from a communications connection.
When data is received, relatively little user space

processing is performed, new messages are sent, and
the Java thread then waits for more data. The result is
that approximately 60% of the time spent executing the
benchmark is in kernel mode.

Netperf
Netperf is a communications benchmark available
from [NetPerf]. Netperf includes a number of tests that
can be used to measure protocol and network
performance.

In this paper we report on the "request response" or
"RR" test. The RR test creates a number of socket
connections between the client and server. Once the
connections are established, messages are transmitted
and returned across each connection as quickly as
possible. At the end of a fixed time period, the test
ends and the clients report the total number of
messages exchanged. The principle metric produced
by the Netperf RR test is message throughput in
messages/second.

FSCache
FSCache is an internal IBM benchmark that measures
file system performance for files read out of the buffer
cache. (It is our plan to make this benchmark
available to the open source community.) FSCache
supports both random and sequential read tests; here
we report only the results of the random read tests.
The principle metric of FSCache is kilobytes/second
read from the buffer cache.

This benchmark represents only one aspect of
measuring file system performance. However, it is
necessary that this component of the file system scale
in order for the overall file system to scale well. Thus
our results are preliminary indications of overall
file-system scalability.

SPECweb99
SPECweb99 was developed by the Standard
Performance Evaluation Corporation (SPEC), and is
described in detail at [SPWB99]. The version of
SPECweb99 we use is the 1.01 version released on
11/23/99. SPECweb99 is designed to test and measure
the ability of a particular system and hardware
configuration to act as a web server, delivering both
static and dynamic content pages to a network of client
systems driving the workload. The benchmark
measures the number of simultaneous client
connections that a server is able to support, while
maintaining predefined bit rate and error rate limits.

A connection that meets the bit rate and error limits is
said to be "compliant"; the primary statistic of the
SPECweb99 benchmark is the number of compliant
connections.

The benchmark has been designed to favor a web
server that is capable of supporting a larger number of
relatively slow connections over a web server that is
capable of supporting a smaller number of relatively
fast connections. The former situation is regarded as
being more representative of the web server
environment on the Internet and is one of the
improvements made to this benchmark from its
predecessor (SPECweb96™).

Another improvement in SPECweb99 over
SPECweb96 is the inclusion of dynamic as well as
static content. Both dynamic GET and POST
operations are performed as part of the SPECweb99
workload. The dynamic GETs simulate the common
practice of "rotating" advertisements on a web page.
The POSTs simulate entry of user data into a log file
on the server, such as might happen during a user
registration sequence. Dynamic content comprises
30% of the workload and the remainder is static GETs.
The dynamic workload is a mixture of POSTs, GETs,
GETs with cookies, and a small fraction is due to CGI
GETs. The proportions were based on analysis of
workloads of a number of internet web sites.

The file access pattern is also modeled after the access
patterns found on a number of internet web sites. Files
are divided into a number of classes and a Zipf
distribution is used to choose files to access within
each class. The total number of bytes accessed
increases proportionally to the number of connections
to the web server. Further details on the file access and
HTTP request type distributions can be found in the
SPECweb99 FAQ [SPWBFAQ].

The web server software used is independent of the
SPECweb99 benchmark. For our test configurations,
we used the Zeus 3.3.5a [Zeus] web server with the
tuning suggestions as provided by SPEC at [SPTune].
The dynamic content implementation for the Zeus web
server was also obtained from the SPECweb99 site
[SPWB99]. This implementation is entirely in the C
programming language.

Presentation of SPECweb99 Results
The SPECweb99 benchmark is a licensed benchmark
of the SPEC organization and its results can only be

used and reported in certain ways defined by the
license. In particular, the SPECweb99 statistic can
only be reported for a particular system after the result
has been submitted to and approved by the SPECweb99
committee. In this paper, it is not our primary goal to
report the SPECweb99 statistic, rather, we are
interested in using this workload as a basis for
comparing the 2.2.14 and 2.3.99 Linux kernels.

Our use of SPECweb99 thus falls into the category of
"research" use. At the time of the writing of this
paper, the SPECweb99 license did not include a
research use clause, although other SPEC benchmarks
do include such a clause. Our results are therefore
presented under a special agreement with SPEC
[SPNote]; we expect that a research usage clause will
become part of the license for the SPECweb99 1.02
release.

The terms of the agreement are as follows:

� We agree to provide full disclosure of the details of
the benchmark execution. Any details not
otherwise provided in this paper can be obtained
from the authors.

� Make compliant runs. That is, all benchmark and
workload rules will be adhered to.

� The dynamic content implementation will be one
from the SPECweb99 site and is thus an
implementation that has been audited for
conformance to the benchmark rules by the
SPECweb99 committee.

� Only relative results will be reported. In our case
all results will be scaled by the result for the 2.2.14
UP kernel at the lowest number of connections
tested.

� We will not make use of the SPECweb99 statistic
(number of compliant connections).

Although we do not report the SPECweb99 statistic,
we do report values for the following quantities, as
measured by the SPECweb99 client software:

� Average bitrate/second per connection: The

average number of bits delivered per connection in
Kb/s.

� Average Latency : the average response time per
operation in milliseconds.

� Operations/second: The average number of HTTP
operations performed across all connections in
operations per second.

Here the averages are performed across all connections
and throughout the duration of the measurement run as
defined by SPECweb99. As specified by the
SPECweb99 rules, each run is performed 3 times and
the median result of the runs is reported.

Measurement Environment and
Experiment Run Rules

Measurements in this paper for all tests except the
Volanomark scalability tests are reported for IBM
Netfinity® 7000 M10 systems. These are Intel®
Pentium® II Xeon™ 4-way SMP systems. For the
Volanomark throughput, Netperf, and FSCache tests,
the system being measured was a 400 MHZ system
with 1.5 GB of RAM. DASD on this system was
accessed using an Adaptec® 7858 SCSI driver. For
the SPECweb99 test, the system measured was a 450
MHZ system with 4GB of RAM. System data on this
system was accessed using an Adaptec 7858 SCSI
driver; the SPECweb99 data is accessed via an IBM
ServRAID™ device spanning 9 physical disk drives.

The NIC cards in the Netfinity systems are IBM
10/100 EtherJet™ PCI cards; the Intel 8-way uses an
Intel Pro 100 ethernet PCI card. In all cases the device
driver was the eepro100 driver.

Volanomark Setup
For the Volanomark throughput tests, the server
employed was a 400 MHZ Netfinity system. For the
Volanomark scalability tests, the server was an Intel
Pentium III Xeon 8-way operating at 550 MHZ. The
systems were booted with 1GB of RAM and for the
N-way speedup test the system was booted with N
processors.

Netperf Network and Client Setup
For these tests the client machine was the 8-way Intel
Pentium III 550 MHZ system. This client was
connected to the server system using a single, 100 MB
Ethernet operating in full duplex mode. vmstat was
run on the server to measure processor utilization. A
network sniffer was used to sample Ethernet utilization
to make sure it was not becoming saturated and hence
a bottleneck. The server machine was the 400 MHZ
Netfinity 7000 M10 system.

FSCache Setup
The FSCache test was executed on a 400 MHZ
Pentium II Netfinity system. In order to make sure that
our measurements report scalability of the buffer cache
and are not limited by the bandwidth of the underlying
memory system, we first performed a series of
experiments with file-system reads replaced by
memory-to-memory copies. The reason for choosing
this baseline experiment is that the time required to
complete a read operation out of the buffer cache is
typically dominated by the amount of time required to
copy data from the kernel buffer cache to the
user-space buffer. If this memory-to-memory copy
operation does not scale then the corresponding
FSCache benchmark may not scale. These
experiments indicated that for file sizes larger than
1MB on the 400 MHZ Pentium II Netfinity system, the
FSCache tests would not scale. Additionally when we
ran the full FSCache tests, we found that scalability
increased if we used file sizes of 128 KB. For this
reason, we chose to use the (relatively small) file size
of 128KB in our FSCache tests.

SPECweb99 Network and Client Setup
We are currently using a set of 20 clients and four 100
MB Ethernets to run our SPECweb99 experiments.
The clients are connected to the server using a 24-port
switch (20 ports for the clients and 4 ports for the
server).

The network clients are 166-200 MHZ Pentium Pro
machines running Microsoft® NT Workstation 4.0
with Service Pack 4. The NT Performance Monitor is
used to ensure that client machines do not become the
bottleneck. A network sniffer was used to sample
network utilization and to ensure that the network does
not become a bottleneck for these tests. To balance the
workload across the client machines, the benchmark is
configured so that the faster clients submit 1.5 times as
many requests as the slower clients.

The server machine is a Netfinity 7000 M10 450 MHZ
Pentium II 4 CPUs with 4 IBM EtherJet 10/100
ethernet cards and 4 GB of RAM. Since 2.2.14 does
not support more than 2GB of RAM, all the
experiments for 2.2.14 and most of the experiments for
2.3.99-pre8 were performed with 2GB of real memory;
one data point for the 2.3.99-pre8 SMP case was run
with 4GB of RAM.

Khttpd was not enabled for any of the runs reported
here.

Statistical Properties of the Test Results
In this paper, numbers reported are based on the
average of a number of repeated, identical,
independent trials. The trials are done without
rebooting the system; however the effect of the
previous trial on the system is removed as much as
possible before the next trial is started. Where there is
a warm up effect that results in the first trial being
different than the other trials, the results of the first
trial are discarded.

Trials are repeated until the tests have "converged".
This is stated as follows: "The test converged to an x%
confidence interval width at y% confidence." What
this means is that the results of a confidence interval
estimated based on a Students-T distribution has a
width of less than x% of the mean with a y% level of
confidence.

After each trial (except for Volanomark), the length of
the confidence interval is calculated, and if the length
is small enough, the test completes and the average
over the trials is reported as the result. In some cases,
the trial does not converge after the maximum allowed
number of iterations. In these cases, the test is re-run
to obtain convergence. For Volanomark, a fixed
number of trials is done, and convergence is tested
after all trials are completed.

SPECweb99 comes with its own set of run rules and
run acceptance criteria [SPWBFAQ]. The results of
SPECweb99 reported here are run under the
preprogrammed run rules of the test.

Measurements reported here as UP are for a
uniprocessor kernel. Measurements reported as 1P are
for multiprocessor kernels booted on a single
processor. Comparisons between the 1P and UP
measurements are particularly useful for evaluating the
overhead of SMP synchronization and locking.

For all of the benchmarks discussed here, we define
scalability as the ratio of the benchmark statistic for an
SMP system to the corresponding benchmark statistic
for a UP system. While this results in lower scalability
numbers than one might get by dividing the SMP
result by the 1P result (since the UP ratio penalizes the
SMP system for locking overhead) we regard this as
the fairest way to define scalability.

Measurement Results

Volanomark
In Figure 1 we show measurements of the throughput
in messages per second for Volanomark with the IBM
R/T 1.1.8 and 4 different Linux Kernels. In all cases
the kernels are UP. We note that among the kernels
shown, Linux 2.3.99-pre4 has the best performance.
This is a good indication that Linux 2.4 should
outperform Linux 2.2.14 on workloads similar to
Volanomark.

In Figure 2 we show the results of a kernel profile
measurement of the Linux 2.3.99-pre4 kernel while it
is running Volanomark. As previously reported
[JTThreads], this profile shows that the largest amount
of system time is spent in the scheduler. While
Volanomark is admittedly a stress test for the
scheduler, it appears that additional enhancements
will need to be added to Linux scheduler for workloads
with large numbers of threads.

In Figure 3 we show scalability results for Volanomark
when run under IBM R/T 1.1.8 and IBM R/T 1.3 for
Linux kernels 2.2.14 and 2.3.99-pre4. This figure
shows that while running Volanomark, the IBM R/T
1.3 scales better than IBM R/T 1.1.8, and that Linux
2.3.99-pre4 scales better than Linux 2.2.14. Of course,
the speedup numbers obtained here are application and
environment dependent and should not be taken as
general statements of the speedup results an arbitrary
workload might achieve while running under the IBM
R/T 1.3.

Netperf
In Figure 4, we show the results of a Netperf
comparison test between 2.2.14-5.0 (the Red Hat 6.2
Kernel) and 2.3.99-pre8. The horizontal axis
represents the number of client threads used to drive
the server; each client thread creates one connection to
the server. The vertical axis represents the number of
Netperf messages sent per second during the test. The
four lines on the chart represent data for 2.2.14-5.0 UP
and SMP and 2.3.99-pre8 UP and SMP. Note that the
benchmark running on the Linux 2.2.14.-5.0 SMP
kernel with 4 processors runs more slowly than the
benchmark running on the Linux 2.2.14-5.0 UP kernel.
Performance of the 2.3.99-pre8 UP kernel is better
than the performance of both the UP and SMP trials
for Linux 2.2.14-5.0. The Linux 2.3.99-pre8 SMP
kernel performs dramatically better than all the other

kernels and gives SMP scalability of 2.1 on this
4-processor system. Comparing the 2.3.99-pre8 SMP
result at 40 connections to the 2.2.14 SMP result at 16
connections (these are the maximum throughputs for
each case) shows that the 2.3.99 SMP kernel is able to
deliver 3.1x times as many messages as the 2.2.14
SMP kernel on this benchmark.

In Figure 5, we show the results of time-based and
instruction-based profiles of the Linux 2.3.99-pre8
kernel while running the Netperf benchmark. The
time-based profile shows that the scheduler is again the
kernel routine where the most time is spent during the
benchmark. Given the very small message sizes used
(4 bytes), this is not surprising. The differences
between the two profiles indicate that in some routines
(scheduler and stext) more instructions are executed
per unit time whereas for other routines
(speedo_start_xmit) relatively fewer instructions are
executed per unit time. These are examples of the kind
of differences one can see using a performance-counter
event-based profile versus a timer-based profile.

FSCache
In Figure 6, we show FSCache scalability results for
Linux 2.2.14 and 2.3.99-pre6. (The initial drop in
scalability when going from the UP case to the 1P case
reflects the overhead of SMP locking.) For the 2.2.14
case, the size of the buffer used had relatively little
effect on the results so we only show the 4096 byte
buffer case. For 2.3.99, the size of the buffer did make
a significant difference; we show the results for 512
and 4096 byte buffers. As can be seen from Figure 6,
Linux 2.2.14 provides no significant performance by
adding additional processors for this benchmark, while
we see that Linux 2.3.99-pre6 provides as much as a
2.5x increase on this 4-processor system.

SPECweb99
In Figures 7 through 12, we show the results of our
SPECweb99 experiments. Figure 7 shows that the
bitrate per connection falls off rapidly as the number of
connections is increased for all cases except 2.3.99
SMP where only a slight decrease is detected.
Similarly, Figure 8 shows that the response latency
increases for all cases except 2.3.99 SMP where only a
slight increase is detected. In Figure 9, we see that the
operations/second handled by the server increases
linearly (with the offered load) for the 2.3.99 SMP case

and for all other cases it does not. Finally, in Figure
10 we see an underlying reason for these results. In all
cases except 2.3.99 SMP, the system is CPU bound and
cannot support additional work.

A plausible question, when comparing the CPU
utilization curves for 2.2.14 SMP and 2.3.99 SMP is
"Where did all of the extra CPU time come from for
2.3.99?". In Figures 11 and 12, we answer this
question using a time-based profile of the kernel while
it is running the benchmark. In Figure 11 we see that
about 50% of the CPU-time consumed by the kernel
was spent in stext_lock. (stext_lock appears in the
profile when the kernel is spinning on a spinlock, so
about 50% of the time was unavailable to service web
requests). Figure 12 shows that less than 4% of the
time was spent spinning for locks while running the
benchmark under 2.3.99 SMP.

For Figures 7 through 10, the curves drawn represent
data for 2GB of RAM. We also include a single data
point for 2.3.99-pre8 and 4GB of RAM at 820
connections. This point indicates that the 2.3.99 SMP
experiment at 820 connections and 2GB RAM may be
memory bound. In Figure 9, the 4 GB data point
appears to follow the linear trend established by the
420 through 660 connection data points. Similarly, if
we examine the CPU utilization graph in Figure 10, it
is apparent that with 4 GB of memory, the system is
more fully utilized. If we compare operations per
second achieved under 2.2.14 SMP at 500 connections
and 2.3.99 SMP at 820 connections and 4 GB RAM
(see Figure 9), we see that the latter kernel is able to
deliver 1.85 as many operations per second as the
former.

At 820 connections, our client network is fully utilized.
Thus we are unable to state with certainty that we have
reached the peak of the throughput curve for 2.3.99
SMP at 820 connections. We are in the process of
obtaining a Gigabit ethernet switch in order to
continue these experiments and find a final scaling
number for 2.3.99 under this benchmark.

Concluding Remarks

We have presented measurements that show that the
SMP scalability of the Linux 2.4 kernel should be
significantly better than that of the Linux 2.2.14
kernel. In particular it appears that:

� Linux 2.4 performs better than Linux 2.2.14 for
the Volanomark benchmark when run with IBM
R/T 1.1.8.

� It remains to be seen whether or not the Linux 2.4
scheduler will still require additional scalability
tuning for workloads that require many running
threads.

� The scalability of the TCP/IP stack for a
multiprocessor Linux 2.4 system is dramatically
improved over the scalability of the TCP/IP stack
for 2.2.14. This improvement alone should make
the Linux 2.4 kernel perform substantially better
under benchmarks such as the ones performed by
Mindcraft [Mindcraft]. Our Netperf experiments
showed that an SMP scalability of 2.1 out of 4 is
possible with Linux 2.3.99-pre6. This benchmark
performs 3.1 times better under 2.3.99-pre6 SMP
than it does on 2.2.14 SMP.

� The SMP scalability of file system buffer cache
access has been significantly improved. Our
FSCache experiments demonstrated that a
scalability of 2.5 out of 4 is possible with Linux
2.3.99-pre6.

� Our SPECweb99 experiments indicate that
2.3.99-pre8 SMP (running the Zeus web server) is
able to deliver at least 1.85 times as many
operations per second than 2.2.14 SMP. However,
we do not yet have a final scalability number for
2.3.99 due to limitations of our current client
network.

While these results indicate that Linux 2.4 should
provide improved SMP scalability over that available
in the current production kernels, much additional
work remains before Linux can effectively exploit SMP
systems larger than 4-way.

Acknowledgments
Jerry Burke, Scottie M. Brown and George Tracy of
IBM were instrumental in setting up the SPECweb99
benchmark and we greatly appreciate their assistance.
We also acknowledge the SPEC organization
(Particularly Kaivalya Dixit and Paula Smith) for its
permission to use the SPECweb99 benchmark in this
paper.

References

[Linux2.4]: Wonderful World of Linux 2.4 (Final
Draft), Joe Pranevich, http://linuxtoday.com

/news_story.php3?Ltsn=2000-07-17-014-04-
NW-LF-KN

[Mindcraft]: Open Benchmark: Windows NT Server
4.0 and Linux, Bruce Weiner,
http://www.mindcraft.com/
whitepapers/openbench1.html

[ESR Fiasco]:ESR and the Mindcraft Fiasco http:
//www.slashdot.org/features/99/04/23/1316228.shtml

[SGI Lockmeter]:Kernel Spinlock Metering for Linux,
http://oss.sgi.com/projects/lockmeter

[SGI Kernprof]: Kernel Profiling,
http://oss.sgi.com/projects/kernprof

[PerfCount]: Intel Architecture Software Developer’s
Manual Volume 3: System Programming, http:
//developer.intel.com/design/pentiumii/manuals
/243192.htm

[JTThreads]: Java technology, threads, and scheduling
in Linux--Patching the kernel scheduler for better Java
performance, Ray Bryant, Bill Hartner, IBM, http:
//www-4.ibm.com/software/developer/library/java2
/index.html

[Volano]: Volano Java Chat Room, Volano LLC
http://www.volano.com

[VReport]: VolanoMark Report page, Volano LLC,
http://www.volano.com/report.html

[VMark]: Volano Java benchmark, Volano LLC,
http://www.volano.com/benchmarks.html

[NetPerf]: Network Benchmarking NetPerf,
http://www.netperf.org

[SPWB99]: Web Server benchmarking SPECweb99,
Standard Performance Evaluation Corporation,
http://www.spec.org/osg/web99

[SPWBFAQ]: SPECweb99 FAQ, Standard
Performance Evaluation Corporation,
http://www.spec.org/osg/web99/docs/faq.html

[Zeus]: Zeus WebServer, Zeus Technology,
http://www.zeustech.net

[SPTune]: SPECweb99 Tuning Description, Standard
Performance Evaluation Corporation,
http://www.spec.org /osg/web99/tunings

[SPNote]: E-mail communication, Kaivalya Dixit,
President of SPEC, the Standard Performance
Evaluation Corporation, and Paula Smith, Chair of the
SPECweb99 committee, 7/10/2000.

Trademark and Copyright Information

© 2000 International Business Machines Corporation.
IBM ® and Netfinity® are registered trademarks of
International Business Machines Corporation.
ServRAID™ and EtherJet ™ are trademarks of
International Business Machines Corporation.
Linux® is a registered trademark of Linus Torvalds.
VolanoChat™ and VolanoMark™ are trademarks of
Volano LLC. The VolanoMark™ benchmark is
Copyright © 1996-2000 by Volano LLC, All Rights
Reserved.
Java™ is a trademark of Sun Microsystems, Inc., and
refers to Sun's Java programming language.
SPECweb96™ and SPECweb99™ are trademarks of
the Standard Performance Evaluation Corporation.
Red Hat™ is a trademark or registered trademark of
Red Hat, Inc. in the United States and other countries.
SGI™ is a trademark of SGI, Inc.
Intel® and Pentium® are registered trademarks of
Intel Corporation. Xeon™ is a trademark of Intel
Corporation.
Adaptec® is a trademark of Adaptec, Inc. which may
be registered in some jurisdictions.
Microsoft® is a registered trademark of Microsoft
Corporation.
All other brands and trademarks are property of their
respective owners.

Figure 1

400 800 1200 1600 2000

Number of Java Threads

2000

2500

3000

3500

4000

4500

V
ol

an
om

ar
k

M
es

sa
ge

s
pe

r
S

ec
on

d

2.3.99-pre4 UP

2.2.14 UP

2.2.12-20 UP

2.3.28 UP

Volanomark Throughput Versus Number of Threads
Volanomark 212 Loopback Test; IBM R/T 118 Internal Build

Netfinity 7000 M10 400 MHZ Booted as UP; 1GB RAM

Convergence criteria:
confidence interval
width 10% of mean at
95% confidence

Java heap size set to
256MB. These numbers
are not comparable to
numbers reported
in the Volano Report.
 6/8/2000

Figure 2

400 800 1200 1600 2000

Number of Java Threads

0

10

20

30

40

50

60

70

P
er

ce
n

t
o

f
K

er
n

el
 T

im
e

S
p

en
t

in
 G

iv
en

 R
o

u
ti

n
e __switch_to

tcp_transmit_
tcp_recvmsg
do_wp_page
__io_phys_deb
tcp_sendmsg
do_select
do_signal
default_idle
schedule

Top 10 Kernel Routines for 2.3.99-pre4 during Volanomark Benchmark
Volanomark 212 Loopback Test; IBM R/T 118 Internal Build

Netfinity 7000 M10 400 MHZ Booted as UP; 1GB RAM

Java heap size set to
256MB for both client
and server.

Loopback test -- both
client and server run on
the same system.
 6/8/2000

Figure 3

UP 1P 2P

Processor Configuration

0.6

0.7

0.8

0.9

1

1.1

1.2

1.3

S
ca

la
bi

lit
y

ve
rs

us
 U

P
IBM R/T 1.3

Linux 2.3.99-pre4

IBM R/T 1.3
Linux 2.2.14

IBM R/T 1.1.8
Linux 2.3.99-pre4

IBM R/T 1.1.8
Linux 2.2.14

Scalability of Volanomark versus Processor Configuration
Volanomark 212 Loopback Test; IBM R/T 1.1.8 and 1.3

Intel 550 MHZ PIII 2MB L2 1GB RAM

Results based on average of 10
trials. All runs are for "10
rooms" (800 threads), 100
msgs, loopback.
Convergence creiteria:
95% confidence interval width
less than 10% of mean.

 6/8/2000

Figure 4

8 16 24 32 40

Connections

0

10

20

30

40

50

T
ho

us
an

ds
M

es
sa

ge
s

P
er

 S
ec

on
d

2.3.99-pre8 SMP

2.3.99-pre8 UP

2.2.14-5.0 UP

2.2.14-5.0 SMP

Netperf TCP/IP RR Case Message Throughput
Server:Netfinity 7000 M10 PII 400 MHZx4 1GB RAM EtherJet 100

Client: Intel PIII 550 MHZx8 1GB RAM Linux 2.3.99-pre5 Intel Pro 100

Send/Receive Buffer Size is 128 KB.
Message size for request and
response: 4 Bytes, Test length: 60 s.
Tests converged to 95% confidence
interval width 1% of mean within 3-5
trials
IBM Modified version of Netperf 2.1pl3
Dedicated 100 Mb Ethernet,
32 and 40 thread data was measured
with a kernel with 64 Rx/Tx
descriptors

 6/7/000

Figure 5

Time Instructions
0

10

20

30

40

50

P
er

ce
nt

 o
f T

ot
al

 K
er

ne
l U

sa
ge

tcp_v4_rcv
stext_lock
tcp_recvmsg
tcp_sendmsg
speedo_interrupt
speedo_rx
kfree
speedo_start_xmit
__wake_up
schedule

Netperf TCP/IP RR Case Workload Profile (2399-pre8 MP@40Threads)
Server:Netfinity 7000 M10 PII 400 MHZx4 1GB RAM EtherJet 100

Client: Intel PIII 550 MHZx8 1GB RAM Linux 2.3.99-pre5 Intel Pro 100

Send/Receive Buffer Size is 128 KB.
Message size for request and response: 4 Bytes, Test
length: 60 s.
IBM modified version of Netperf 2.1pl3; RR case.
Dedicated 100 Mb Ethernet.
40 thread data was measured with a kernel with 64 Rx/Tx
descriptors instead of 32.
 6/7/2000

Figure 6

UP 1P 2P 4P

Processor Configuration

0.5

1

1.5

2

2.5

S
ca

la
bi

lit
y

ve
rs

us
 U

P

2399 SMP
4096 byte buffer

2399 SMP
512 byte buffer

2214 SMP
4096 byte buffer

FSCache: File System Random Read Cache Test
Scalability vs. Number of CPUs

128 KB File - Various Buffer Sizes - 1 MB L2 Cache

4 CPU Netfinity 7000 M10
400Mhz PII
1GB RAM
acceptance criteria : 95%
confidence. interval width <
5% of mean.

 6/3/2000

Figure 7

420 500 580 660 740 820

Connections

0.5

0.6

0.7

0.8

0.9

1

1.1

1.2

1.3

K
ilo

b
it

s/
se

c
(R

el
at

iv
e

to
 2

21
4

U
P

 @
 4

20
)

2399 MP 4G

2399 MP

2214 MP

2399 UP

2214 UP

SPECweb99 Benchmark
Server: Netfinity 7000 M10 PII 4x450 MHZ, 2GB RAM, 4 IBM EtherJet NIC, 4 100 MB Full Duplex Ethernet

Average Bitrate per Connection

20 Clients running Microsoft
NT Workstation with Service
Pack 3.
24 port switched Ethernet
20 ports for clients
 4 ports for server
SPECweb99 release 1.01

 8/18/2000

Figure 8

420 500 580 660 740 820

Connections

0.8

0.9

1

1.1

1.2

1.3

1.4

1.5

1.6

1.7

M
ill

is
ec

o
n

d
s

(R
el

at
iv

e
to

 2
21

4
U

P
 @

 4
20

)

2214 UP

2399 UP

2214 MP

2399 MP

2399 MP 4G

SPECweb99 Benchmark
Server: Netfinity 7000 M10 PII 4x450 MHZ, 2GB RAM, 4 IBM EtherJet NIC, 4 100 MB Full Duplex Ethernet

Average Latency per Request

20 Clients running Microsoft
NT Workstation with Service
Pack 3.
24 port switched Ethernet
20 ports for clients
 4 ports for server
SPECweb99 release 1.01

 8/18/2000

Figure 9

420 500 580 660 740 820

Connections

0.9
1

1.1
1.2
1.3
1.4
1.5
1.6
1.7
1.8
1.9

2
2.1
2.2
2.3

O
p

s/
se

c
(R

el
at

iv
e

to
 2

21
4

U
P

 @
 4

20
) 2399 MP 4G

2399 MP

2214 MP

2399 UP

2214 UP

SPECweb99 Benchmark
Server: Netfinity 7000 M10 PII 4x450 MHZ, 2GB RAM, 4 IBM EtherJet NIC, 4 100 MB Full Duplex Ethernet

Total Operations per Second

20 Clients running Microsoft
NT Workstation with Service
Pack 3.
24 port switched Ethernet
20 ports for clients
 4 ports for server
SPECweb99 release 1.01

 8/18/2000

Figure 10

420 500 580 660 740 820

Connections

50

60

70

80

90

100

C
P

U
 U

ti
liz

at
io

n
 %

2214 UP

2214 MP

2399 UP

2399 MP

2399 MP 4G

SPECweb99 Benchmark
Server: Netfinity 7000 M10 PII 4x450 MHZ, 2GB RAM, 4 IBM EtherJet NIC, 4 100 MB Full Duplex Ethernet

CPU Utilization as Measured by vmstat

20 Clients running Microsoft
NT Workstation with Service
Pack 3.
24 port switched Ethernet
20 ports for clients
 4 ports for server
SPECweb99 release 1.01

 8/18/2000

Figure 11

stext_lock 52.1%

handle_IRQ_event 8.4%

csum_partial_copy_generic 6.4%
synchronize_bh 3.8%

__best_copy_to_user_final 1.6%
speedo_interrupt 1.6%
speedo_start_xmit 1.5%

kmem_cache_alloc 1.3%
do_bottom_half 1.3%

Other/UserSpace 22.0%

SPECweb99 Benchmark
Server: Netfinity 7000 M10 PII 4x450 MHZ, 2GB RAM, 4 IBM EtherJet NIC, 4 100 MB Full Duplex Ethernet

Profile for 2214, 4P @ 580 Simultaneous Connections
20 Clients running Microsoft
NT Workstation with Service
Pack 3.
24 port switched Ethernet
20 ports for clients
 4 ports for server
SPECweb99 release 1.01
 8/18/2000

Figure 12

default_idle 22.8%

csum_partial_copy_generic 9.6%

do_pollfd 7.4%

tcp_poll 4.6%
stext_lock 3.6%

file_read_actor 3.3%free_wait 2.8%
__pollwait 2.2%

sock_poll 2.0%

Other/UserSpace 41.7%

SPECweb99 Benchmark
Server: Netfinity 7000 M10 PII 4x450 MHZ, 2GB RAM, 4 IBM EtherJet NIC, 4 100 MB Full Duplex Ethernet

Profile for 2399, 4P @ 580 Simultaneous Connections

20 Clients running
Microsoft
NT Workstation with
Service
Pack 3.
24 port switched Ethernet
20 ports for clients
 4 ports for server
SPECweb99 release 1.01
 8/18/2000

