
USENIX Association

Proceedings of the
4th Annual Linux Showcase & Conference,

Atlanta

Atlanta, Georgia, USA
October 10 –14, 2000

THE ADVANCED COMPUTING SYSTEMS ASSOCIATION

© 2000 by The USENIX Association All Rights Reserved For more information about the USENIX Association:
Phone: 1 510 528 8649 FAX: 1 510 548 5738 Email: office@usenix.org WWW: http://www.usenix.org

Rights to individual papers remain with the author or the author's employer.

 Permission is granted for noncommercial reproduction of the work for educational or research purposes.

This copyright notice must be included in the reproduced paper. USENIX acknowledges all trademarks herein.

The Portable Batch Scheduler and the Maui Scheduler on Linux Clusters*

Brett Bode, David M. Halstead, Ricky Kendall, and Zhou Lei
Scalable Computing Laboratory, Ames Laboratory, DOE

Wilhelm Hall, Ames, IA 50011, USA, help@scl.ameslab.gov
David Jackson, Maui High Performance Computing Center

Abstract

The motivation for a stable, efficient, backfill scheduler
that runs in a consistent manner on multiple hardware
platforms and operating systems is outlined and
justified in this work. The combination of the Maui
Scheduler and the Portable Batch System (PBS), are
evaluated on several cluster solutions of various size,
performance and communications profiles. The total
job throughput is simulated in this work, with
particular attention given to maximizing resource
utilization and to the execution of large parallel jobs.

1 Introduction

With the ever increasing size of cluster computers, and
the associated demand for a production quality shared
resource management system, the need for a policy
based, parallel aware, batch scheduler is beyond
dispute. To this end the combination of a stable,
portable resource management system, coupled to a
flexible, extensible, scheduling policy engine will be
presented and evaluated in this work. Features, such as
extensive advanced reservation, dynamic prioritization,
aggressive backfill, consumable resource tracking and
multiple fairness policies, will be defined and illustrated
on commodity component cluster systems. The
increase in machine utilization and operational
flexibility will be demonstrated for a non-trivial set of
resource requests over a range of duration, and
processor count tasks.

We will use the term large to describe jobs that require
a substantial portion (>50%) of the available CPU
resources of a parallel machine. The duration of a job,
is considered to be independent of its resource request,
and for the purposes of this paper the term long will be
used to identify jobs with an extended runtime of
multiple hours. The opposite terms of small and short
will be used for the converse categories of jobs
respectively.

2. Scheduling Terminology

To clarify the nomenclature used in the descriptive
sections of this work we will now include a glossary of
terms, together with a brief explanation of their
meaning.

Utilization and turnaround

The ultimate aim of any dynamic resource
administration hierarchy is to maximize utilization and
job throughput and minimize turnaround time. The aim
of improving utilization can be achieved by allocating
tasks to idle processors, but the task of maximizing
throughput is much more nefarious, involving complex
fair access decisions based on machine stakeholder
rights.

Prioritization and fairness

It is the goal of a schedule administrator to balance
resource consumption amongst competing parties and
implement policies that address a large number of
political concerns. One method of ensuring appropriate
machine allocation is with system partitioning. This
approach, however, leads to fragmentation of the
system, and a concomitant fall in utilization efficiency.
To be preferred is a method by which the true
bureaucratic availability requirements can be met,
without negatively impacting the utilization efficiency
of the resource.

Fair share

The tracking of historical resource utilization for each
user results in the ability to modify job priority,
ensuring a balance between appropriate access, and
maximizing machine utilization. Users can be given
usage targets, floors and ceilings which can be
configured to reflect the budgeted allocation request.

*This work is supported by the Applied Mathematical Sciences Program of the Ames Laboratory- U.S. Department of Energy (USDOE)
under contract number W-7405-ENG-82 which is in part under the auspices of Computational Science Program of the Mathematical,
Information and Computational Science Division of the Office in Advanced Scientific Computing Research at USDOE

Reservation

The concept of resource reservation is essential in
constructing a flexible, policy based batch scheduling
environment. This is usually a data structure that
defines not only the computational node count, but also
the execution timeframe and the associated resources
required by the job at the time of its execution.

Resource manager

The resource manager coordinates the actions of all
other components in the batch system by maintaining a
database of all resources, submitted requests and
running jobs. It is essential that the user is able to
request an appropriate computational node for a given
task. Conversely, in a heterogeneous environment, it is
important that the resource manager conserve its most
powerful resources until last, unless they are
specifically requested. It also needs to provide some
level of redundancy to deal with computational node
failure and must scale to hundreds of jobs on thousands
of nodes, and should support hooks for the aggregation
of multiple machines at different sites.

Job scheduler/ Policy manager

The job scheduler takes the node and job information
from the resource manager and produces a list sorted by
the job priority telling the resource manager when and
where to run each job. It is the task of the policy
manager to have the flexibility to arbitrate a potentially
complex set of parameters required to define a fare
share environment, yet retain the simplicity of
expression that will allow the system administrators to
implement politically driven resource allocations.

Job execution daemon

Present on each node, the execution daemon is
responsible for setting up the node, servicing the
initiation request from the resource manager, reporting
its progress, and cleaning up after the job termination,
either upon completion or when the job is aborted. It is
important that this be a lightweight and portable
daemon, allowing for rapid access to system and job
status information and exhibit a low overhead of task
initiation, to facilitate scalable startup on massively
parallel systems.

Co-allocation

A requirement for an integrated computational service
environment is that mobile resources, such as software

licenses and remote data access authorizations, may be
reserved and accessed with appropriate privileges at
execution time. These arbitrary resources need to be
made transparently available to the user, and be
managed centrally with an integrated resource request
notification system.

Meta-scheduling

A meta-scheduler is a technique of abstraction whereby
complex co-allocation requests and advanced
reservation capabilities can be defined and queried for
availability before the controlling job begins execution.
This concept ties in naturally to the requirement for
data pre-staging since this can be considered as merely
another resource.

Pre-staging

The problems of coordinating remote data pre-staging
or access to hierarchical storage can be obviated by an
intelligent advance reservation system. This requires
integration with the meta-scheduler and co-allocation
systems to ensure that the initiation of the setup phase is
appropriately timed to synchronize with the requested
job execution.

Backfill scheduling

The approach of backfill job allocation is a key
component of the Maui scheduler. It allows for the
periodic analysis of the running queue and execution of
lower priority jobs if it is determined that their running
will not delay jobs higher in the queue. This benefits
short, small jobs the most, since they are able to pack
into reserved, yet idle, nodes that are waiting for all of
the requested resources to become available.

Shortpool policy

The shortpool policy is a method for reserving a block
of machines for expedited execution and turnaround.
This is usually implemented during workday hours and
can predictively assign currently busy nodes to the
shortpool if their task will finish within the required
window (usually under two hours).

Allocation bank

The concept of an allocation bank is essential in a
multi-institution shared resource environment [1]. It
allows for a budgeted approach to resource access,
based on a centralized user account database. The user
account is debited upon the execution of each job, with

the individual being unable to run jobs once the account
has been exhausted.

Reservation security

An essential area of research centers on authentication
and security of remotely shared resources. Issues such
as secure interactive access and user authentication
have been addressed and resolved to a large extent, but
the issue of delayed authentication and inter-site trust
are still subjects for research. The important factor of
non-repudiation needs to be addressed in order to
validate the source of a submission.

Job expansion factor

This is a way of giving small time limit jobs a priority
over larger jobs by calculating their priority from the
sum of the current queue wait time and the requested
wall time relative to the requested wall time.

Job Efficiency

This is the percent of the requested time actually used
by the job. For simple schedulers this factor has little
effect on the overall scheduling performance.
However, for the backfill portion of the Maui Scheduler
this factor has a much more significant influence, since
low job efficiencies cause inaccurate predictions of
holes in the reservation schedule. The best ways to
improve this factor are user education and resource
monitoring.

Quality of service

The Maui Scheduler allows administrators fine grain
control over QOS levels on a per user, group and
account basis. Associated with each QOS is a starting
priority, a target expansion factor, a billing rate and a
list of special features and policy exemptions. This can
be used impose graduated access to a limited resource,
while ensuring maximum utilization of idle
computational assets.

Downtime scheduling

One important advantage of a time based reservation
system is that scheduling down-time for repair or
upgrade of running components is easily performed.
This is convenient for the current clusters, but will
become essential as the size and production nature of
parallel clusters continues to increase.

SMP aware queuing

The debate over the utility of multiple processors per
computational node continues to rage. It is clear,
however, that the incremental cost of additional CPUs
in a node is less than a concomitant increase in the total
number of nodes. The question is how to exploit the
co-location advantage of data between SMP CPUs, and
to expose this potential performance enhancement to
the user in a consistent manner via the scheduling
interface. There are several different approaches
available to exploit SMP communications (Pthreads,
Shmem etc.), but this topic is beyond the purview of
this work.

3. Testbed Hardware

3.1 Linux 64 node

The largest test environment considered in this work is
a cluster of 64 Pentium Pro machines with 256 MBytes
of RAM, connected by a flat 44 Gbit/sec Fast Ethernet
switch. The cluster was constructed in accordance to
the Scalable Cluster Model [2] with the file server and
external gateway node utilizing a dedicated Gigabit
Ethernet connection to the switch for improved
performance. The compute nodes are running a
patched 2.2.13 Linux kernel with the server nodes
providing both Fortran and C compilers with MPI and
PVM message passing libraries. Version 2.2p11 of the
PBS server runs from the file server node, along with
the Maui scheduler version 2.3.2.12.

3.2 Compaq 25 node

The other cluster from which results will be reported
consists of 25 Compaq 667 MHz Alpha XP1000
machines, 15 of which have 1024 MB of RAM and 10
have 640 MB of RAM. One of the 25 nodes has
reduced scratch disk space and is thus limited to small
jobs. These machines are connected by Fast Ethernet
and run the Tru64 Unix operating system. This
configuration provides a fairly challenging test for the
scheduler since there are three different node resource
levels available for users to request. Since we ported
the Maui Scheduler PBS plugin to Tru64 Unix several
months ago, the cluster has been running in production
mode, executing parallel computational chemistry jobs
using the GAMESS [3] code. We will be using this
cluster to illustrate the pitfalls of real-world
environments, and to highlight some of the measures
that can be taken to ameliorate certain user
shortcomings.

PBS FIFO

PBS Maui

Epilogue

User process

Prologue

PBS_mom

Epilogue

User process

Prologue

PBS_mom

Epilogue

User process

Prologue

PBS_mom

Epilogue

User process

Prologue

PBS_mom

Maui

PBS_server

Server

user request

qsub
qdel

showq
showbf

Get/
Start/
Terminate
jobs

Commands
Status

Status

Epilogue

User process

Prologue

PBS_mom

Compute Nodes

Epilogue

User process

Prologue

PBS_mom

Epilogue

User process

Prologue

PBS_mom

Epilogue

User process

Prologue

PBS_mom

Epilogue

User process

Prologue

PBS_mom
PBS_server

Server

user request

qsub
qdel

Start/
Status/
Terminate
jobs

Commands
Status

Epilogue

User process

Prologue

PBS_mom

Compute Nodes

PBS_FIFO

4. Batch scheduler description

4.1 Background

Since clusters and cluster-like systems have been
around for several years, there have been multiple
queuing systems tried out and several are currently in
wide use. Among these are the Distributed Queuing
System (DQS), Load Sharing Facility (LSF), IBM's
LoadLeveler, and most recently the Portable Batch
System (PBS). Each of these systems has strengths and
weaknesses. While each of these works adequately on
some systems, none of them were designed to run on
cluster computers. Currently the system with the best
cluster support is PBS. Thus we will consider PBS
using its built-in scheduler compared with the addition
of the plugin Maui scheduler.

4.2 PBS

Portable Batch System is a POSIX compliant batch
software processing system originally developed at
NASA’s Ames research center for their large SMP
parallel computers [4]. It has the advantage of being
configurable over a wide range of high power computer
architectures, from heterogeneous clusters of loosely
coupled workstations, to massively parallel
supercomputers. It supports both interactive and batch
mode, and has a user friendly graphical user interface.

Recently the focus of development has shifted to
clusters and basic parallel support has been added. In
addition, the Maui scheduler has been ported to act as a
plugin scheduler to the PBS system. This combination
is proving successful at scheduling jobs on parallel
systems. However, since PBS was not designed for a
cluster-like computer, it lacks many important features.
For instance, while the resource manager and scheduler
are able to reserve multiple processors for a parallel job,
the job startup, including the administrative scripts, is
performed entirely on one node.

PBS includes several built-in schedulers, each of which
can be customized for the local site requirements. The
default is the FIFO scheduler that, despite its name, is
not strictly a FIFO scheduler. The behavior is to
maximize the CPU utilization. That is, it loops through
the queued job list and starts any job for which fits in
the available resources. However, this effectively
prevents large jobs from ever starting since the required
resources are unlikely to ever available. To allow large
jobs to start, this scheduler implements a “starving
jobs” mechanism. This mechanism initiates when a job
has been eligible to run (i.e. first in the queue) longer

than some predefined time (the default is 24 hours).
Once the mechanism kicks in, the scheduler halts
starting of new jobs until the “starving” job can be
started. It should be noted that the scheduler will not
even start jobs on nodes which do not meet the resource
requirements for the “starving job”.

4.3 Maui

Perhaps the most complete system currently available is
the IBM LoadLeveler software developed originally for
IBM’s SP machines, but now available on several
platforms (Linux is not supported). While LoadLeveler
provides many useful features, its implementation
leaves a lot to be desired. For instance the scheduler
was immediately recognized as inadequate, since its
poor parallel scheduling resulted in low total machine
usage due to many idle nodes waiting for future jobs.
To solve this problem the Maui Scheduler [5] was
written principally by David Jackson for the Maui High
Performance Computer Center. This scheduler has
proven to be a dramatic success on the SP platform, so
much so that it is now used in place of the default
scheduler in LoadLeveler at many SP installations.
LoadLeveler is probably the only currently available

Figure 1. Schematic of the interaction profile
between PBS running the FIFO scheduler and the
Maui Scheduler.

package, which was designed for a parallel computer
from the beginning and thus addresses many of the
requirements listed above. Figure 1 illustrates the
difference between the PBS FIFO and PBS with the
Maui scheduler in place.

The key to the Maui Scheduler is its wall-time based
reservation system. This system orders the queued jobs
based upon priority (which in turn is derived from
several configurable parameters), starts all the high
priority jobs that it can, and then makes a reservation in
the future for the next high priority job. Once this is
done, the backfill mechanism attempts to find lower
priority jobs that will fit into time gaps in the
reservation system. This gives large jobs a guaranteed
start time, while providing a quick turn around for small
jobs.

5. Evaluation description

5.1 The Simulated Job Mix

The right mix of jobs for any simulation is nebulous at
best. Nothing is better than a real job mix from the user
community in question, but that is impossible to
reproduce due to user dynamics. User resource
requests vary directly with their needs and cycle with
external forces such as conference deadlines. To this
end we have defined a job mix that fits a rough average
of what we have observed on our research clusters and
on the MPP systems available at supercomputer centers
such as NERSC [6].

The job mix has Large, Medium, Small, Debug, and
Failed jobs. Each job has a randomized set of the
number of processors (nproc), the time actually spend
doing work (work time), the time requested from the
resource management system (submit time) and a
submission delay time (delay time). Large, Medium,
and Small jobs have a work time that is 70% or more of
the submit time. Submit time is always greater than or
equal to the work time. Large jobs are those that have
nproc > 50% of those available. Medium jobs have
nproc between 15% and 50% of the available nodes.
Small jobs are those with nproc between 30% and 15%
of available nodes. Debug jobs have a work time that is
greater than 40% of the submit time but use less than
10% of the available processors. Failed jobs are
defined by a work time that is less than 20% of the
submit time.

Close inspection of these parameters will show that not
all jobs generated by a randomized nproc, work time,

and submit time, fall into these categories. One further
target constraint is that Large jobs are 30% of the total
set of jobs, Medium jobs are 40%, Small jobs are 20%,
Debug Jobs and Failed jobs are both 5%. Jobs are
randomly generated and then classified as Large,
Medium, Small, Debug, Failed or “undefined” jobs.
Undefined jobs are automatically rejected and others
are added only if their addition will not increase their
constrained classification above the limits outlined
above.

In the 76 jobs of the job mix used in these simulations,
480 random jobs were generated. The resultant mix
from this defined job mix algorithm yielded 28.95%
Large, 40.79% Medium, 19.74% Small, and 5.26%
Debug and Failed jobs. In actual numbers this
corresponds to 22 Large, 31 Medium, 15 Small, 4
Debug, and 4 Failed jobs.

The randomized delay time has the effect of jobs being
submitted in a random order to the batch system. The
first job generated will not necessarily be the first job
submitted. All of the job mix data is available online
[7]. The exact same job mix was used with each
scheduler setup, PBS/FIFO, PBS/MAUI and
PBS/MAUI with backfill turned off.

5.2 Users and the Job Mix.

The defined job mix does not consider user interaction
currently. There are no automatic or post submitted
jobs that fit any gaps in the system as the scheduler runs
jobs, e.g., jobs to fit the backfill mechanism available in
some schedulers. Furthermore, it is quite typical for
users to simply submit jobs with the maximum allowed
time for the queue in question. Our simulation assumes
users can predict the resources needed with reasonable
accuracy. All jobs are submitted after 180 minutes
from the start of the simulation. This does not match
the constant influx of jobs on our research cluster or at
any supercomputer center.

6. Test results

6.1 Simulation results

Perhaps the most significant result and the simplest are
the total run time for each of the scheduler
configurations as shown in Table 1.

1

10

20

30

40

50

60

70

FIFO Execution
Profile

Processors Per JobTime (hours)
0 10 20 30 40 50 60 70

1

10

20

30

40

50

60

70

4832160 64

Maui Execution
Profile

Submit Delay

Run State
Queued State

Table 1.
Scheduler Total run time (Hours)
PBS FIFO 71.1
Maui Scheduler 66.75
Maui without backfill 66.71
Theoretical Minimum 53.6
Sequential Maximum 90.2

Table 1 includes a Theoretical Minimum time which is
simply the total number of node-wall hours divided by
64 (the number of available CPUs). This is clearly not
an achievable value since it ignores the packing
efficiency of the jobs. Conversely the Sequential
Maximum represents the maximum total time the tests
would take if they were simply run in a FIFO fashion
with no attempt to overlap jobs.

Obviously both schedulers do substantially better than
the Sequential Maximum, and the Maui scheduler does
substantially better than the PBS FIFO scheduler. It
may, however, be surprising that the backfill scheduler

is actually slower than Maui without backfill even if
only by a small amount. This can be explained by the
job efficiencies, which for the test set of jobs had all but
5 jobs with an efficiency of 50% greater and 23 of the
76 jobs with an efficiency greater than 90%. If all jobs
had an efficiency of 100% then the backfill algorithm
would always be faster. However, since most jobs
finish significantly before their scheduled end time it is
possible that a backfilled job will keep a reservation
from being started early. It is important to note that
backfilled jobs will never prevent a job reservation
from starting on time, but it might prevent a job
reservation from moving forward in time.

Figure 2 illustrate the quite different ways in which the
Maui Scheduler and the FIFO scheduler operate. The
upper frame shows time, in hours, on the x-axis and job
sequence number on the y-axis for the FIFO scheduler.
The job sequence number represents the order in which
the jobs were submitted to the system. The lower half
shows the same information for the Maui Scheduler.

Figure 2. The execution profiles for the FIFO and Maui batch queues are presented in the left bar
chart showing the submission delay, the wait time, and the run time respectively for each job. The
right panel shows the number of processors requested by each of these jobs when they execute.

Maui
66.75hrs

0

8

16

24

32

40

48

56

64

0 10 20 30 40 50 60 70 80

FIFO
71.1hrs

Time (hours)

Maximum Number of Processors

64 Node Cluster
Utilization Profile

Since the Maui Scheduler result without the backfill
algorithm was so similar to the regular Maui Scheduler
result, it was not plotted separately.

For the FIFO scheduler the job profile shows that
initially mainly small jobs were run up until the
starving job state kicked in for the for the first large job
in the queue. Once in the starving job state FIFO
became truly a first in first out scheduler.

The profile for the Maui scheduler is certainly anything
but FIFO. It shows a more uniform queue wait time
that is driven more by the number of nodes requested
than by the initial queue order. This results in the
smaller node requests being run along with the larger
node requests rather than all at once as with the FIFO
scheduler. Because of this the Maui Scheduler is able
to maintain higher average node utilization during the
first portion of the test run, until it runs out of small
node requests to backfill. This effect is illustrated in
Figure 2 that shows the node utilization over the test
run for all three scheduler tests. Figure 3 shows that
Maui is able to maintain a more consistently high node
utilization until about halfway through the test when it
ran out of small jobs. The FIFO scheduler started out
high, but then suffered a large dip as it cleared out the
small jobs to let a large job start.

A further analysis of the data reveals that the FIFO
scheduler starts all of the jobs with fewer than 10 nodes
requested within 1 hour of submission. On the other
hand Maui starts the last job with fewer than 10 nodes
after over 16 hours in the queue. This difference is
significant because it allows Maui to overlap the
execution of more jobs during the test run, than does
the FIFO scheduler. Indeed while the FIFO scheduler
produces queue wait times nearly independent of the
number of processors, ignoring the small jobs, the

queue wait times under Maui are more similar to a bell
curve with the maximum wait times experienced by
jobs with node requests of approximately half the
number of available nodes.

6.2 Theoretical Simulated Job Mix Results

In order to better evaluate the different schedulers
performance for the evaluation job mix, a simulation
routine was implemented that determined the first in
first out (FIFO) execution of an ordered series of jobs.
All jobs are executed in the specified order filling the
system to the maximum number of nodes (e.g., 64). By
running this routine with the submit order of the 76
simulation jobs, the FIFO execution time would be
69.63 hrs. Executing them in reverse order gives a
FIFO execution time of 70.46 hrs. The jobs ordered as
they were run in both the PBS/FIFO and PBS/MAUI
simulations yields 69.16 hrs and 65.99 hrs, respectively.
This demonstrates that the delayed submission does
have an effect on how the jobs are eventually executed.
In theory, with this routine we could find the optimal
order for this specific set of jobs. Since there are 76
factorial (76!) possible orders, we did not pursue this.
6.3 Real Job Mix

The alpha cluster, running under moderately loaded
conditions, has averaged 78% node hour utilization
over the past three months. This was achieved while
exceeding a total of over 1,200 jobs with node usage
between 1 and 16 CPUs (Ave. of 4.3) and up to 2 wall
days of time, the queue maximum. Out of the 1,200
jobs only 65 experienced a queue wait time of more
than one day and most, 880, waited less than one hour
to start execution.

This performance is despite the fact that the users are
very poor at predicting the run time of their jobs. In
fact the vast majority, 1146, of the jobs simply
requested the maximum queue run time (2 days). The
resulting job efficiencies were quite poor with only 140
jobs having an efficiency greater than 50% (i.e. using
more than half of their requested time). It is unlikely
that the job efficiencies will improve unless the load on
the cluster increases producing longer queue wait times.
Without long queue wait times users do not have much
incentive to accurately predict the job run time or to
attempt to fit a job into an existing hole in the job
backfill window.

Figure 3. Cluster utilization comparison for PBS
with FIFO, and with the Maui Scheduler active.

7. Future Directions

While we feel that the Maui Scheduler does an
excellent job of scheduling jobs on flat interconnected
clusters, a major area of on-going research is locality
based scheduling. That is, scheduling based upon the
topology of the interconnect, which might include
interconnects with a tree structure and will certainly
include SMP building blocks. This type of scheduling
will become even more important in the near future
since it becomes increasingly difficult and expensive to
build a flat interconnect as the cluster size grows. In
addition, new interconnect technologies are appearing
which use loop, mesh and torus topologies.

There are of course many other areas of job resource
management that need improvement on clusters. For
example, job startup, monitoring and cleanup should be
done in a parallel fashion. In addition the database of
node and job status needs significant work to handle
large clusters with large numbers of jobs effectively.

We plan to augment the simulations here with several
techniques. First instead of a single pre-defined list of
jobs randomly generated from a single source we will
use "user-agents" that will submit jobs to the system.
Each user-agent will submit jobs randomly generated
but from a sub-class of the overall job mix. For
example, a user-agent might represent a code developer
submitting many debug jobs during normal working
hours, a heavy user that submits long jobs, a greedy
user that submits many jobs which fill gaps that a
backfill mechanism might recognize, etc. The second
modification is to change the metric. That will become
the total number of active node hours in a given fixed
time length. The user-agents will stop submitting jobs
only after the metric has been met.

8. Conclusions

We have shown that the Maui Scheduler plugin to the
PBS package provides a significant improvement in
overall cluster utilization compared with the built-in
FIFO scheduler. The Maui Scheduler does this by
combining an intelligent wall time based node
reservation system with an efficient backfill algorithm.
The result is a flexible policy based scheduling system
that provides guaranteed maximum start times while
maintaining high total node utilization.
There are many issues that have yet to be addresses,
such as cluster queue aggregation, inter-site trust and
delayed authentication in addition to scalable system
monitoring over a large distributed system.

9. References

[1] S. M. Jackson "QBank, A Resource Allocaiton
Management Package for Parallel Computers, Version
2.6" (1998), Pacific Northwest National Laboratory,
Richland, Washington 99352-0999.
[2] www.extremelinux.org/activities/usenix99/ docs/
[3] M. W. Schmidt, K. K. Baldridge, J. A. Boatz,
S. T. Elbert, M. S. Gordon, J. H. Jensen, S. Koseki,
N. Matsunaga, K. A. Nguyen, S. J. Su, T. L. Windus,
M. Dupuis, J. A. Montgomery J.Comput.Chem. 14,
1347-1363(1993)
[4] PBS_1, http://www.pbspro.com/
[5] http://www.mhpcc.edu/maui
[6] NERSC, The National Energy Research Scientific
Computing Center,
http:/www.nersc.gov
[7] This complete data set is provided to allow the
reader to reproduce our simulations if desired:
http://www.scl.ameslab.gov/Personnel/rickyk/
jobmix.html

