
Issues in the Design of a Toolkit

for Supporting Multiple Group
Editors

Michael Knister and Atul Prakash

University of Michigan

ABSTRACT A great interest has developed in recent
years in building tools that allow people to collaborate
on work without the need for physical proximity. One
such class of tools, group editors, allows collaborators
to view and edit a shared document simultaneously
from their workstations. Building group editors, how-
ever, requires solving non-trivial problems such as

providing adequate response time for edit operations
and yet ensuring consistency with concurrent updates,

and providing adequate per-user undo facilities. We

have implemented a toolkit, called DistEdit, for build-
ing new interactive group editors and for converting ex-

isting single-user editors into group editors with mini-
mal changes to their code. The toolkit allows different
users to use their favorite editors (e.g., Xedit, Gnu
Emacs) to edit a shared file and observe each others'
changes as they occur. The toolkit provides f,ne-grain
concurrency control, fault-tolerance, synchronization of
views, and support for per-user undo. V/e describe the
detailed design and implementation of the DistEdit
toolkit and report our experiences in converting several

editors, including Gnu Emacs and Xedit, to group edi-
tors using the toolkit.

a Computing Systems, Vol. 6 . No. 2 ' Spring 1993 135



1. Introduction

Computers are now commonplace in work environments and have had
great influence on the way in which people interact. Examples of com-
puter-supported interaction mechanisms include electronic mail, news-
groups, and distributed file systems. These have opened up new ways

to interact, but all support mostly non-interactive styles of communica-
tion. There also exist talk programs that are more interactive but usu-

ally are restricted to two users and only allow exchange of messages in
different windows. In recent years, there has been a growing interest
in developing the technology further to provide support for more
closely-coupled interactions [1 ,7, ll, 19]. Our focus in this paper is
on one type of collaboration tool, group editors, that allows several
people to jointly edit a shared document in a distributed environment.

One difficulty in building collaboration systems is that they require
solutions to non-trivial problems in distributed concurrency control,
fault-tolerance, user-interfaces, psychology, human factors, and soft-
ware design [6]. The goal of our project is to remove most of the con-
cerns of distributed concurrency control and fault tolerance by provid-
ing a library of primitives that can be used to build collaboration tools.

This paper describes the design issues we faced during the develop-
ment of the DistEdit toolkit. DistEdit provides a set of primitives that
can be used to add collaboration support to existing text editors with
minimal changes to their code as well as ease deveþment of new
group editors. The toolkit takes care of many non-trivial issues, such
as concurrency control, consistency of views, history lists for the pur-
pose of per-user undo [17], and fault-tolerance. The primitives pro-
vided by the toolkit are generic enough to support different text editors
in the same group environment. We have tested our approach by modi-
fying two medium-size editors, MicroEmacs and Xedit (20,000 and
16,000 lines of code), and one large-size editor, Gnu Emacs (75,000

136 Michael Knister and Atul Prakash



lines of code), to make use of DistEdit. The resulting group editors al-
low users to make changes concurrently to the same document and to
observe changes of others as the editing is in progress.

GROVE [4] and ShrEdit [13] are examples of editors that are de-

signed specifically to support group editing. DistEdit, unlike these sys-

tems, is not an editor but a toolkit that can be used to build new group
editors and adapt existing single-user editors to the task of group edit-
ing. Using the DistEdit toolkit, it is possible to use different editors in
a single group session. For instance, while jointly editing a single doc-
ument, DistEdit can allow one user to use Gnu Emacs, another to use

MicroEmacs (on a terminal), and yet another to use Xedit (requiring a

workstation running X), with only minor modifications required to the
code of each editor. Furthermore, as far as we are aware, proper undo
facilities are lacking in the other group editors; they only allow users

to undo the globally last editing actions, but not just their own actions.
DistEdit specifically addresses the problem of per-user undo in group

editors, making the facility available to all editors built using the
toolkit.

MACE [15], another group editor, is structured to make it easy to
integrate different editors into a collaborative environment by replacing
only a few modules. At present, however, only one editor interface,
based on the Athena text widget, is supported. We believe that the fol-
lowing design decisions in MACE may make it difficult to integrate
other editors: (a) to integrate a new editor in MACE requires one to
implement a module that provides conversion between keystroke com-
mands and a canonical form understood by all editors [15]-a task

that we believe may prove difficult for sophisticated editors such as

Emacs with a large number of keystroke commands; and (b) MACE is
based on a different model of user/editor interaction than is found in
single-user editors. It requires that a user explicitly lock the region to
be updated and allows the undo of an operation only if the lock was

not released since the operation was done.

The design of the DistEdit toolkit provides a very high degree of
fault-tolerance. A simple way to design group editors, and one which is
used in several group editors and collaboration tools, is to use the
client-server model with a centralized server. The server is responsible

for maintaining the state of the editor buffer. Mutual consistency be-
tween users' views can then be ensured by requiring all the editing
commands to go through the shared server. This design, although

Issues in the Desígn of a Toolkit for Supporting Multiple Group Editors I37



simple, is vulnerable to a server crash. Furthermors, even if only one

person is editing a file, the updates still have to go through the server,
making the editing slow. In contrast, DistEdit-based editors maintain a

copy of the state of the editor buffer for each user. The communication
protocols and algorithms used by the toolkit ensure mutual consistency

between the buffers, even in the presence of failures.

Different approaches to groupware toolkits can be seen in LIZA
[9], GroupKit [18], Rendezvous [16], and Suite [31. LIZA provides a

high-level collection of tools to support sending messages, indicating
moods of participants, giving slide shows, and monitoring the group.

Both Rendezvous and GroupKit provide generic facilities for doing

conference management, sharing of windows, implementing various
floor control policies, and basic access control. The Suite system pro-
vides facilities for implementing both loosely-coupled and closely-cou-
pled synchronization of views in groupware applications. Some of the

facilities in DistEdit, related to session management, use ideas similar
to those provided in these other systems; however, DistEdit is much

more focused on one particular class of group applications, group text
editors, and specif,cally addresses issues related to adequate response

time, fine-grain concurrency control, fault-tolerance, per-user undo,

and multiple-editor support.
A closely related class of collaboration systems are those that sup-

port more asynchronous or non-real time styles of interaction. Exam-
ples are editors such as CES [10], Quilt [8], and Prep [14]. These

editors allow users to work on the same document but typically on
different sections and at different times. As a result, interactions are

over a much longer duration, even up to several days. Many of the
issues of fault tolerance and real time propagation of updates are not
important in such systems. The DistEdit toolkit concentrates on pro-
viding more closely coupled'oreal-time" interaction.

An earlier version of the DistEdit toolkit is described in [12]. Sev-

eral major features have since been added. Unlike the earlier version,

the present version allows several users to edit the same file simulta-
neously in a single session, provides support for locking of regions. al-
lows users to undo the globally last as well as their own last actions,
handles transaction-like operations that require several updates to com-
plete (such as globally replacing a string), and provides a window to
monitor and control the group session. This paper goes into the details
of design tradeoffs we faced in implementing these additional facilities

138 Michael Knister and Atul Prakash



as well as describes the experience we have had since then in porting
existing editors to use the toolkit.

This paper is organized as follows. Section 2 describes the require-
ments considered in the design of the toolkit. Section 3 gives an ex-

ample of a group session with two editors built using the toolkit. Sec-

tion 4 describes the software architecture of DistEdit-based editors.
Section 5 discusses the basic modifications needed to adapt an existing
editor to group editing using the toolkit. Section 6 describes the li-
brary interface provided by the toolkit to an editor and the issues in
the design of the library interface. Section 7 discusses the implementa-
tion and efficiency issues in the design of the communication layer that
implements the library calls. Section 8 describes our experiences in
adapting several existing editors to group use and using them. Finally,
Section 9 presents concluding remarks and some issues for future
work.

2. Goals of the Dist&dit Toolkit

The goals of the DistEdit toolkit are as follows:

Multíple-user collaboratíon: editors built using the DistEdit toolkit
should allow users to edit text files jointly without physical prox-

imity. All users should have a consistent view of the editor buffer
and should be able to see other users' changes as they occur.

Use of familiar editors.' users should not have to change to a different
editor in order to collaborate. Since people usually have their own
favorite editors, this implies that it should be possible to use dif-
ferent editors in a single group session. It also means that adapt-

ing an editor to use the toolkit should not require removing func-
tionality from the editor.

Reasonable perþrmanc¿.' communications protocols used within
DistEdit should give a consistent view of files to all users with
reasonably low delay so that group editing is not an inconve-

nience.
Fault-tolerance: the group session should continue to run smoothly

despite machine crashes and people joining or leaving the group.

Easy adaptation: adapting an editor to use DistEdit should require
minimal effort, and no knowledge of distributed systems issues

should be needed.

Issues in the Design of a Toolkit for Supporting Muttipte Group Editors 139



Support for multiple paradigms of interaction' group editors which use
DistEdit should be applicable to different types of tasks. For in-
stance, (a) all users could edit, in parallel, different parts of the
document or (b) only one user could edit while others observe the
changes. The facilities provided by the toolkit should allow edi-
tors to be built that support a variety of interaction paradigms.

3. Usage of Editors Based on Dist&dit

This section describes, from the users' point of view, the operation of
editors based on the DistEdit toolkit. Consider two authors working
jointly on a paper who would like to work in parallel on different as-
pects of the paper from the workstations in their offices. Sometimes,
they also might need to interact very closely with each other to come
to an agreement on how to rephrase a paragraph. Without a group edi-
tor, such a task can be difficult, requiring a great deal of verbal syn-
chronization to avoid editing the same file at the same time. Brain-
storming over changes to a paragraph in real time, as one is making
changes, is not possible-that has to be done either by getting together
or by sending the paragraph back and forth until an agreement is
reached.

Use of group editors based on the toolkit can facilitate such a task.
The two authors can edit at independent times with their favorite
DistEdit-based editor. If they happen to be editing the same file at the
same time, a joint editing session is established. DistEdit ensures that
they will have consistent views of the ûle being edited at all times.
Each user, however, may edit or view a different portion of the docu-
ment and could have a different window size.

Figure 1 shows such a situation. One author is using the Xedit edi-
tor to edit a file, and the other author is using the Gnu Emacs editor to
edit the same file, where both editors have been modified to use the
facilities of DistEdit. For the convenience of generating the figure for
this paper, displays of both editors are shown on the same screen, al-
though they could be running on different workstations. We assume

that the authors can communicate via a telephone or additional shared
windows to discuss the joint work.

The operation of each editor changes very little from its normal
use without the DistEdit system. A user invokes his editor on the file

140 Michael Knister and Atul Prakash



ar
-e

m
t: 

E
rr

e3
 @

 (
hl

hl
re

ca
Jm

¡c
h.

ed
u

rq
lir

,tu
. 

on
" 

su
ch

 c
lo

ss
 o

f 
to

ol
s,

 g
ro

up
 e

dl
to

rs
, 

ol
lo

es
ol

¡o
bo

rq
to

rs
 t

o 
sf

iu
lto

np
ou

sl
g 

vl
e¡

 o
nd

 E
di

l q
 s

ho
re

d 
do

cu
ne

nt
 f

ro
i

he
lr 

rq
rk

st
ot

lo
ns

. 
B

ul
ld

in
g 

gr
ou

p 
ed

lto
rs

, 
ho

re
w

r,
 r

eq
ul

re
s 

so
lv

ln
g

on
-t

r!
,y

lo
t 

Þ
ro

bl
m

s 
su

ch
 q

s 
pr

ov
ld

th
g 

od
eq

uq
te

 r
es

po
ns

e 
tlì

e 
fo

r 
ed

lt
oa

ro
l:l

on
¡ 

on
d 

ue
t 

¡n
su

rln
d 

co
ns

ls
t€

nc
u 

ul
th

 G
on

cü
re

nt
 

uD
do

le
s,

 f
fid

er
ot

r.
on

s 
on

d 
ue

t 
en

su
rln

g 
co

ns
ls

t€
nc

U
 u

lth
 c

on
cü

re
nt

 u
pd

ol
es

, 
ffi

d
ov

ld
Ln

q 
od

eq
uo

te
 p

er
-u

st
r 

un
do

 F
o(

lli
tie

s.
 

lle
 h

ov
e 

ln
pl

en
en

te
d 

o
ol

kt
t, 

G
ot

lB
d 

D
ls

tE
dt

t, 
fo

r 
bu

lld
¡n

g 
ne

r 
Ln

te
rq

ct
iv

Ê
 g

rq
lp

 e
rll

tw
s

d 
fc

r 
cm

ve
rt

ln
g 

ex
lJ

tL
ng

 s
ln

gl
e-

us
er

 e
dl

to
rt

 l
nt

o 
gr

ou
p 

ed
lto

rg
th

 i
in

tr
cl

 
ch

on
gÊ

s 
to

 t
he

lr 
co

de
. 

T
he

 t
oo

lk
lt 

ol
lo

cs
 d

lff
er

en
t 

u3
e

h 
iin

¡r
cl

 
ch

on
ge

s 
to

 t
he

lr 
co

de
. 

T
he

 t
oo

lk
tt 

ol
lo

cs
 d

lff
er

en
t 

us
er

j
st

iu
ltm

so
us

lg
-u

se
 t

he
lr 

F
ov

or
lte

 e
dl

tø
s 

(c
.9

., 
xe

dl
t, 

G
nu

 E
nc

cs
)

rd
lt 

o 
sh

or
ed

 f
lle

 
on

d 
ob

se
rv

e 
eo

ch
 o

th
er

s'
 c

ho
nE

es
 o

s 
th

eg
 o

cc
ur

.
I 
lo

ol
kl

t 
pr

ov
ld

ês
 f

in
e-

gr
ol

n 
co

nc
ur

re
nc

q 
co

nt
ro

l, 
fq

ul
t-

to
le

ro
m

e,
E

hr
on

lz
ql

lo
n 

of
 v

lÊ
us

, 
qn

d 
su

pF
or

l 
fo

r 
pe

r-
us

er
 u

nd
o.

 le
 d

es
cr

lb
e

te
si

gn
 

of
 

o 
T

oo
lk

it 
fo

r 
su

pp
or

lin
q 

¡{
¡ll

ip
le

 
G

ro
uÞ

1{
ic

ho
P

l 
tn

is
te

r 
on

d 
A

tu
¡ 

P
ro

lo
sh

so
ftu

or
e 

sg
st

en
s 

R
€s

eo
rE

h 
Lq

bo
ra

to
rg

D
ep

or
tñ

en
t 
of

 E
E

cs
U

. 
of

 Í
lc

hi
go

n,
 

A
nn

 A
rb

or
, 

lll
 l

8l
ll9

at
 Û

rt
er

cs
t 

ho
s 

de
ve

¡o
pe

d 
in

 r
ec

en
t 

ge
or

s 
in

 b
ui

ld
in

g 
to

ol
s 

th
ot

pe
õp

le
 t

o 
co

llq
bo

ro
te

 o
n 

uo
rk

 u
lth

ou
t 

lh
e 

næ
d 

F
or

 p
hu

si
€o

l
ilt

u.
 

on
" 

su
ch

 c
lq

ss
 o

f 
to

ol
s,

 g
ro

up
 e

dl
to

rs
, 

ol
lo

es

@
 

rr
€:

 ¡
¡t

ft
U

Ë
 

rú
qß

le
t(

td
6l

1l

G
@

çl
'le

Í.Ê
r:

 ru
]il

E
!Ë

E
 

lË
ffi

tl
E

xp
rc

rt
 r

,ß
k 

T
m

ou
t 
(n

h.
)t

 F
d-

-'l
hÍ

ld
tL

m
r¡

(s
s)

: 
F

â-
]

fr
E

-f
fil

lõ
ffi

il@
fú

ffi
|

A
 s

e 
C

on
no

l- 
S

 a
nd

 &
¡.

to
l- 

R
 n

 S
ea

tc
h.

E
E

@
 

rr
: 

t 
itr

€
lrs

s:
 a

pl
"lq

sh
@

ùê
t

O
.'l

rq
Ítæ

: 
m

æ
st

fil
e 

op
re

d.
 n

aà
 -

 w
ite

.

pe
op

le
 t

o 
ca

lla
bo

rc
te

 m
 w

ul
<

 w
Íth

æ
t 

ih
e 

ne
ed

. 
fo

r 
ph

ys
ic

al
O

ne
 s

uc
å 

cl
æ

s 
S

 to
ol

s,
 g

rw
p 

ei
lit

or
s,

 
aU

N
s

åo
ra

¡o
rs

 r
o 

si
m

¡lt
an

ea
ns

þv
iw

 
ø

nd
 ø

d¡
t 

a 
sh

ø
ril

do
om

tfr
om

-
w

or
&

sú
at

io
¿

s,
 B

ui
lÅ

in
g 

gr
or

lq
. 

ed
itû

s,
 h

tú
'€

ve
r,

 r
eq

ui
¡?

s 
so

M
ng

iv
ill

 p
ro

bl
er

c 
su

ch
 a

s 
pr

w
id

in
g 

ad
eq

ua
le

 r
es

po
ns

e 
tir

e 
fo

r 
ei

lit
im

s 
ø

d 
ya

 e
ns

w
i4

g 
co

ro
is

ta
nr

T
 w

iih
 c

ow
ne

nt
 u

pd
at

æ
, 

an
il

ín
g 

ai
le

qu
at

e 
pe

ru
se

r 
w

ìÌn
 f

æ
ili

tie
s.

 W
e 

hæ
e 

im
pl

em
en

tc
d 

a
id

in
g 

ai
le

qu
at

e 
pe

ru
sà

r 
w

iln
 f

æ
ili

tie
s.

 W
e 

hæ
e 

im
pÌ

em
en

V
ìt,

 c
ø

ll.
ed

, 
D

ís
t&

il,
it,

 f
æ

 b
aì

ld
)t

,S
nN

 ín
te

rø
ct

ív
e 

gr
ou

p 
ed

,it
or

s

fo
r 

cæ
vu

tin
gu

ís
tin

gs
ín

¿
le

-u
su

 
ed

,it
æ

s 
itt

o 
gm

p 
ed

ito
rs

w
äI

i m
in

im
al

 c
há

ng
es

 t
o-

th
ci

i 
co

d.
ø

, 
T

he
 t

æ
Ik

ít 
al

lil
,s

 d
iff

xe
nt

 u
sx

b 
si

rn
ul

ta
nt

ou
s¿

y 
us

e 
th

eí
lf{

vo
r¿

te
 e

ili
to

rs
 (

e9
,, 

X
ed

i¡ 
G

nu
 E

m
ac

s)
ø

 e
dh

 a
 s

ha
re

d 
fil

e 
ø

d 
ob

se
w

e 
qc

h 
ot

hæ
' c

hu
ge

s 
æ

 t
he

y 
æ

w
.

T
he

 t
oo

lk
it 

pr
ø

vi
de

s 
fn

e-
gr

ai
n 

co
nc

un
en

cy
 c

on
to

L 
fa

nl
t-

ao
la

ar
cq

@
 

lË
ffi

cr
õ6

1
E

xd
¡c

lt 
Læ

k 
rh

cr
ut

 (
ril

F
¡:

 F
-]

r'ì
¡F

itr
et

r(
w

3)
: 

ff

F
ffi

;il
ffi

;t@
 

|G
ne

t

Þ
F

ig
ur

e 
1:

 S
am

pl
e 

sc
re

en
 d

is
pl

ay
 s

ho
w

in
g 

D
is

tE
di

t 
ve

rs
io

ns
 o

f 
G

N
U

 E
m

ac
s 

an
d 

X
ed

it



to be edited in exactly the same manner as he would with a single-user
editor. The only visible difference is the addition of a DE-session win-
dow. In the present DistEdit design, this window consists of two sub-
windows: (l) a status window, which shows the file being edited, the
local user's name, and the names of the users currently participating
in the editing session; and (2) a control window, which allows a user
to control the group-specific behavior of his editor.

One noticeable change from single-user editing is the presence of
automatic locks. When a user does any editing, a temporary lock is

acquired automatically on the portion of the document to be modified.
Automatic locks are used for concurrency control to prevent two users

from simultaneously trying to edit at exactly the same place in the doc-
ument.

DistEdit also provides explicit locks. These locks allow a user to
deliberately lock the region on which work is to be done, assuring that
no other users can alter that region until the lock is released. Explicit
locks are invoked either through the control window or through com-
mands which can optionally be added to the editor.

A user can hold any number of locks at one time and can set time-
out periods for both automatic and explicit locks through the control
window. The time-out for automatic locks is usually a few seconds

while the time-out for explicit locks is much longer, minutes or hours.

DistEdit supplies a simple facility for synchronizing the cursors of
different users via the lock-step option (see the control window in Fig-
ure 1). This option, when invoked, makes the cursor of the user's edi-
tor effectively join the cursor of all other users who have also selected

the lock-step option. In the present design, no one owns the cursor.
When any user with the lock-step mode enabled moves his cursor, all
users with the lock-step mode enabled will see their cursors move. If,
however, one user in the lock-step mode acquires a lock on the posi-

tion of the shared cursor (for instance, by starting to edit), then the
ability to move the shared cursor is disabled for all other users. If only
one user has selected the lock-step mode, the option has no effect.

Several interaction paradigms can be supported using the above

basic facilities. For instance, if the group wants to interact in a manner
where only one user is allowed to edit while others observe changes,

then all users can select the lock-step mode, and the user who will
make changes can explicitly lock the entire document (so that others

I42 Michael Knister and Atul Prakash



are prevented from editing). On the other hand, if the members of the
group want to do concurrent, independent editing, then they could un-
select the lock-step mode and avoid explicitly locking large regions.

Any number of users may participate in an edit session. Users may
join and leave a session at any time without affecting other users. A
failure on one user's machine simply results in that user leaving the
session. Should a user leave the session or experience a failure, the
other users will observe the change in the status window. The text
being edited can be lost only if all users leave the session and none

of them have saved it.
A key point is that when multiple editors are being supported,

usual editing commands will continue to work for each editor. The
only changes in a user's view are the appearance of the status and

control windows that specifically have to do with controlling a group

session.

4. Software Architecture of
DistEdit-based Editor s

The high-level structure of a typical single-user text editor is shown in
Figure 2. A user interface and control section waits for input; when
input is received, it is translated into a set of calls which move the
cursor or update the text. These text update routines modify the data

Text Update

Routines

Figure 2: Typical structure of a single-user editor.

Issues in the Design of a Tootkit for Supporting Multiple Group Editors 143



structures which contain the text. The results are displayed by a screen
manager, which reads from the text structures and displays the appro-
priate output.

The structure of editors modified to use the DistEdit toolkit is
shown in Figure 3. As shown, DistEdit-based group editors use a fully
replicated architecture, with each editor maintaining a copy of the
buffer state. The buffer representations do not have to be identical in
each editor; however modifications to the buffer have to be done using
a few standardized update primitives provide by DistEdit. Each edi-
tor's text update routines are mapped to calls on the DistEdít primitives
for text update. Those DistEdit primitives first check for possible re-
gion overlap with updates of other users. If no region overlap exists,

the primitives do the operation locally first and then distribute them
over the network, using the ISIS communication package[2], to all the
editors. DistEdit-provided internal routines then map the received
DistEdit primitives back to calls on the standard access primitíves,
which are provided by each editor to update and access the editor's
buffer state. The DistEdit primitives and the access primitives are dis-
cussed in Section 6.

Using a replicated architecture with different buffer representations
is crucial for several reasons. First, DistEdit is designed to support
multiple, different editors. Different editors typically use different data
structures to represent the editor buffer; forcing a common buffer rep-
resentation on all the buffers (as in a centralized scheme) would have

required us to rewrite in all the editors the substantial code that di-
rectly accesses the buffer for display and navigation. Second, we

wanted to ensure a fast local response time to all operations done by a
user. Using a centralized server to maintain the buffer state would
have required going over the network for all updates or display opera-

tions. Finally, a centralized architecture would not have been fault-tol-
erant, a key goal in our design.

The DistEdit system is designed as a modular toolkit which can

easily be applied to various visual editors. The only desirable feature in
an editor being adapted is that the editor have a small number of sub-

routines which directly modify the text buffer. If this is not the case,

the editor will require extensive modifications; this is probably an indi-
cation of poor editor design. The editor need not localize the routines
which read from the text buffer.

1,44 Michael Knister and Atul Prakash



Originating Editor

Unchanged Editor Module

General DistEdit Module

Receiving Editor

E
lry

l.,,ii,',i. i,,,,il Editor-Specific DistEdit Module

Figure 3: Structure of an Editor built using the DistEdit toolkit

Issues in the Design of a Toolkit for Supporting Multiple Group Editors 145



5. Modifications Required in an Editor

The following are the basic modifications needed to convert a single-
user text editor into a group editor using DistEdit:

. The editor code which directþ modifies the text buffer must be
mapped to calls on the DistEdit text update primitives to achieve
the same change. The editor routines which indirectly modify
the text buffer by calling other routines normally do not require
changes (see Section 7 .3 for one case which does require
changes). Ideally, to reduce the work in writing code for these
mappings, all of the editor's text update operations (all routines
which directly update the text buffer) should be contained
within a small set of routines, perhaps one to ten functions.

. Each editor must provide a common set of access routines. The
access routines map the DistEdit text update primitives back to
the editor's original buffer-modifying routines. As we will see

in Section 6, DistEdit uses very few text update primitives.
Little work is therefore required here.

. Each editor also must provide a common set of access routines
for DistEdit to retrieve text from the editor buffer, to move and
query the cursor, and to control when the screen is updated.
Any calls which perform screen updates must be removed from
the editor's text-update routines.

. The editor's input handling routines must be modified to call
DistEdit code when communication packets arrive from other
editors.

. The editor optionally may provide user-interface code to support
DistEdit capabilities such as different kinds of undo in a group
environment, explicit locking of regions, and notifications of
users leaving or joining a group session. This code may be

shared by different editors, as exemplified by the use of similar
DE-session windows by both Xedit and Gnu Emacs in Figure 1.

. Undo code must be disabled in the editor. Instead, the editor's
undo routine should call the DistEdit group undo primitives.

. The editor must call DistEdit primitives for the toolkit
initialization and for opening files.

All aspects of the system that deal with concurrency control, group
undo, locking, and fault tolerance are hidden within the DistEdit

146 Michael Knister and Atul Prakash



toolkit. All the above changes are such that they can be carried out
without knowing anything about distributed programming.

In our implementation, the editor's actual text update routines are

renamed, typically by prefixing a string such as "reaL"; they become
the bottom layer in Figure 3 and remain the only routines which actu-

ally modify the text. No modifications are required to these routines
except renaming.

Replacing the renamed update routines are a set of stub update rou-
tines. These stubs map the update routines which the editor uses to
calls to the DistEdit text update primitives.

The layering, as shown in Figure 3, was chosen to isolate the gen-
eral-purpose DistEdit layers from the editor-dependent layers. This al-
lows an editor to be adapted to use DistEdit by supplying only editor-
dependent code; the DistEdit code need not change. Updates to the
DistEdit code also are simplified, as the general DistEdit code is not
intermixed with editor code and can be replaced separately.

6. EditorlDistEdit Interface

This section describes the interface between an editor and DistEdit.
This interface consists of DistEdit primitives provided by the DistEdit
library and of access primitives supplied by each editor to allow
DistEdit to retrieve and update the editor's state. The two types

of primitives are listed in Tables I and 2.

A DistEdit primitive is an operation provided by DistEdit that can

be invoked from the code in an editor. A single call to a DistEdit
primitive can result in messages being sent across the network and

code being invoked in numerous other editors. In this sense, a DistEdit
primitive is somewhat like a remote procedure call, except that it
could result in numerous remote executions, all hidden from the caller
of the primitive.

An access primitive is an operation that is callable from DistEdit
to retrieve or update the state of an editor. The routines implementing
the access primitives are created separately for each editor which is to
use DistEdit. Most of the effort required to adapt an editor to use

DistEdit is spent creating these access routines. Very little original
editor code must be modified.

Issues in the Design of a Tootkit for Supporting Multiple Group Editors 147



Table l: DistEdit Library Primitives

de initQ Initialize the toolkit

de_

de

open(filename)

close0

Join a group editing session, or create a
new one
Leave a group editing session

de insert(position,text,length)

de_delete(position, length)

Basic operations to modify buffers
through DistEdit, including automatic
locking and concurrency control

de_lock_region(region, timeout)
de_unlock region(lock id)

de_lock_info(position,
lock info)

Explicitly lock a region; optional to use.

Explicitly unlock a region; optional to
use.

Supplies information on lock id, its
range, and ownership

de_local undoQ

de_global undo0

de reset undo0

Executes the per-user history undo
function
Executes the global history undo
function
Switches out of history undo mode

de_setting_set(setting- name,
value)
de_setting get(setting-name)

Set/retrieve settings such as lock
timeouts, user name, debugging flag.

de run0 Allow DistEdit 1o carry out its
processing

de_fds0

de_select0

Event-loop blocking utilities to know
when de_run should be called

de_notify_set(oin/ leave/ lock
change/cursor change)

Requests that DistEdit inform the editor
of changes in group status, locks, and
cursor positions by calling loc_notify

The selection of DistEdit primitives was a critical design decision
in DistEdit. The types of primitives include: editing primitives, lockíng
primitives, notification primitives, and control primitives. Most impor-
tant among these are the editing primitives, those that make changes

to the document. The issues in the selection of these primitives are

elaborated next.

148 Michael Knister and Atul Prakash



loc insert(position,text,length)

loc_delete(position, length)

Basic operations which allow DistEdit to
modify a buffer; must provide a mapping
into editor's internal buffer-modifying
operations.

loc_cursor_set(position) Allows DistEdit to move the cursor

loc_cursor_get(position) Supplies DistEdit with current cursor
position

loc_display_update0 Allows DistEdit to control when the

display is updated

loc_text get_start(position,
length)
loc_text_get_next0

Prepares to return portion of editor's
buffer data in chunks

Returns next chunk

loc_notify(status report) Notifies the editor of changes in group

status, if desired

Table 2: Editor-provided Access Primitives

6.1 Editing Primitíves

Editing primitives are those that modify the document state. In single-
user editors, whether to treat an operation as a primitive or as a se-

quence of other more primitive operations is dictated primarily by
efficiency concerns. For instance, in a single-user editor, an Indent-
Paragraph operation may be treated as a primitive operation rather

than composed as a sequence of InsertChar and DeleteChar operations
if it is simpler and more efficient to indent a paragraph by directly ac-

cessing the document buffer than by calling InsertChar and
DeleteChar operations on the buffer. In a group editor, on the other
hand, there are many other factors that need to be considered:

Heterogeneity Issues: Every editor built using the toolkit has to be

prepared to support all the primitive operations. Thus, if it is ex-

pected that the toolkit will be used in an environment with differ-
ent users using different editors in the same group session, all the

editors need to have routines mapping the same set of primitives
to updates on the buffer. Thus, if IndentParagraph were made a

primitive and one wanted to support both Xedit and Emacs using

Issues in the Design of a Toolkit for Supporting Multipte Group Editors 149



DistEdit, both editors would need to be able to understand the
IndentParagrapl¿ command. Clearly, the amount of work required
in modifying the editors can be large if the number of primitives
is large and heterogeneity is to be supported.

Communication and Processing Requirements: Communication and
processing requirements will usually go down if a complex opera-
tion is made a primitive operation, rather than mapped to a se-

quence of more basic primitives. For instance, it probably would
be cheaper to transmit an IndentParagraph command, rather than
the sequence of InsertChar and DeleteChar commands to which it
might map.

Support for Undo: Undo implementation is much more complex in a
group editor [17] than in a single-user editor. In particular, the
ability to reverse and resequence operations is needed for all the
primitive operations. It is much easier to provide this capability
if the set of primitive operations is small. Thus, to simplify
the implementation of undo, it is better to implement the
IndentParagraph operation as a sequence of more basic
primitives.

Reordering of Operations: Even if undo is not supported in a group
editor, there may be reasons to keep the primitives restricted to
a small set. For instance, if a scheme such as that in [5] is used
to ensure consistency, functions to resequence operations are re-
quired (Toomatrix in [5]). Defining such functions is much easier
if the set of primitives is small.

In DistEdit, we chose to support a very simple and general model
of text editing. A text buffer (document) is considered to be a single
string of characters with a cursor pointing somewhere in that string.
Characters in the text are referenced by their offset from the beginning
of the text, and line breaks are treated as 'newline' characters. This
simple model is compatible with almost any visual text editor, allow-
ing DistEdit to work with many different editors.

There are two basic DistEdit editing primitives which modify the
buffer: de-insert(position, string, length) and de-delete(position, no. of
characters). A group editor using DistEdit must use these two primi-
tives to carry out all editing operations. All other editing operations
which an editor provides must be mapped into one or more de-insert
and de-delete calls.

150 Michael Knister and Atul Prakash



For each editor, corresponding access primitives loc-insert and

loc-delete must be provided to allow DistEdit to change the editor's
buffer. These routines are called when editing operations are received

from other editors (see Figure 3).
These two text update primitives were chosen for their generality,

simplicity, and conciseness. They are general enough to perform any

desired editing operation, given that line breaks are handled properly.
They are quite simple to understand and implement in any editor. Fi-
nally, they are quite concise; only two are required. This reduces the

effort required to implement the primitives when modifying an editor
to use DistEdit; supporting more primitives is simply more work.

In DistEdit, only the text buffer and cursor position are shared.

Cut buffers, bookmarks, and many other features found in some edi-
tors are outside the scope of DistEdit; they remain strictly local to each

user. These features appeared to be of questionable value for sharing

and are not even provided by all editors. Thus, we chose to keep them

local to each editor, rather than to add them to DistEdit at this time.

6.2. Locking Primitives

DistEdit-based group editors use an automatic locking scheme to man-

age concurrent access to the document. Before any de-insert or
de-delete is carried out, DistEdit acquires the smallest possible lock for
the affected region, ensuring that multiple users do not modify the

same area simultaneously. This form of locking is hidden from the ed-

itor; the toolkit takes care of everything. Locks automatically time out

after a chosen delay. Implementation of the locking strategy is de-

scribed in further detail in Section 7.2.
One implication of locking is that a de-insert or de-delete may fail

due to an inability to lock the appropriate part of the document. This
can cause problems for an editor which internally assumes that all text-

modifying routines will succeed. If this is the case, the transaction fea-

ture described in SectionT.3 can be used to avoid failures from be-

coming visible to the editor.
DistEdit also supports explicit locking, where a user deliberately

selects and locks a region of the document. The primitives
de-lock-region and de-unlock-region can be called for this purpose.

Use of these primitives is optional; an editor can choose to use only
automatic locking.

Issues in the Design of a Toolkit for Supporting Multiple Group Edítors 151



Each lock is associated with a contiguous region of text covering at

least one character; a user can change a region only if he owns a lock
covering the entire region. Inserting a string requires obtaining a lock
on the character which precedes the point of insert. Deleting a string
requires a lock covering the characters of the string. To permit inserts
at the beginning of a buffer, the buffer is considered by DistEdit to
have an imaginary, undeletable character marking the beginning of the
buffer.

As insertions or deletions are performed within the region, the
associated lock expands or shrinks accordingly. A lock is deleted
automatically if it shrinks to size zero.

Regions covered by locks do not overlap. When a user requests a

lock for a region that already contains locks belonging to him, all
those locks are merged into a new lock. The new lock covers the
smallest contiguous region that contains the previous locks and the
requested lock.

At the toolkit level, time-outs can be independently set for each

lock. At the user level, our DE-session window currently allows two
time-out values to be set by each user, one for all automatic locks and
one for all explicit locks.

6.3. Notffication Primitives

DistEdit allows an editor to take action based on events occurring in
other editors. An editor can use the de-notify-s¿l primitive to request
that DistEdit inform it of any changes in the cursor positions, group
status, and locks held by group members. Based on this information,
the editor could highlight locked regions or supply other features.
Using these primitives is optional.

To provide cursor notification to other users, DistEdit calls the edi-
tor access primitive loc-cursor-get to determine the current cursor lo-
cation. The other types of notifications are supported by monitoring
calls to primitives such as de-insert, de-delete, de-open, and de-close.

6.4 Control Primitives

DistEdit supplies control primitives to manage group membership,
DistEdit settings, and to control when DistEdit runs. It also requires
that access routines be supplied by each editor to control the editor's

I52 Michael Knister and Atul Prakash



cursor and display updates, and to retrieve the contents of the text
buffer.

The de-open primitive searches for an existing group session for a
particular file. If it finds one, it transfers the text buffer from that
group to the new user, automatically bypassing the file on disk. If no
session exists, it loads the file and creates a group session with a single
member. The de-close primitive is used to leave a group editing ses-

sion. See Section 7.5 for details of file access.

DistEdit maintains a number of settings which can be accessed

with the de-setting-set and de-setting-get primitives. Settings include
the name of the user and lock timeout periods for both automatic and
explicit locks.

To allow DistEdit to process activity from other users, the editor's
event loop must be modified to let DistEdit run when the editor is not
busy. The de-run primitive is then called from the editor's main event
loop; this primitive causes DistEdit to process all network packets and
update the editor's buffer with any recent changes. The input blocking
of the editor's normal keyboard/window system can be supplemented
with the de-select and de-fds primitives to determine when DistEdit
needs to run.

7. Implementation of DistEdit Primitives

This section describes the implementation of key DistEdit primitives
listed in Table 1. \ù/hen a DistEdit primitive is invoked, locks must be

acquired if necessary, and messages have to be sent out to other edi-
tors to update their state. Because users can edit concurrently, and
updates are performed locally first, editors potentially could process

updates in different orders. Care must be taken to ensure that result-
ing state is identical in all editors and matches the expectations of
the users. The following subsections address this issue and other
implementation issues.

7.1 Underlying Communícation Software

ISIS [2], a toolkit for programming distributed applications, was cho-
sen as our communications package because of its elegant broadcast
facilities, its error handling, and its lightweight process system.

Issues in the Design of a Tootkit for Supporting Muhiple Group Editors 153



The broadcast facilities of ISIS remove any need for DistEdit to
deal with low level communications; no messages are lost and all
broadcasts are guaranteed to arrive. A globally ordered broadcast is

available which guarantees that messages arrive in the same order to
all the participants in the group.

Users may enter a group session any time. Whenever a user enters
a session, the editor state is transferred from one of the current users

to the new user's editor. ISIS provides mechanisms for notification of
new users and fault-tolerant communication protocols to facilitate state

transfer.
Machine crashes may occur at any time, and users can leave the

group at any time, as long as there is at least one remaining user. We

have designed the toolkit under the assumption that each editor in the
session will be maintaining its own state. The ISIS system ensures that
either all the active participants receive a broadcast, or none of them
do, when the sending site fails in the middle of the broadcast. There-
fore, machine crashes or users leaving the session still leave other
users in a mutually consistent state.

The lightweight process system in ISIS allows broadcasts to be re-
ceived while waiting for keyboard input; also, events, such as a group

member failing, can be handled by triggering a lightweight process.

7.2 Dealing with Concurrent Updates

Unlike the earlier version of DistEdit described in ll2l, the current
version of the DistEdit toolkit provides support for concurrent updates.

To keep response time low, any update is performed locally first and

then broadcast to other sites. It is well known that concurrent updates

can lead to inconsistencies in the buffer state at various sites [5]. We

use an efficient locking-based solution which requires locks to be ac-

quired only at the start of an insert/delete but not during an insert/
delete. For instance, if a user starts to insert a sequence of characters,

there is a slight network delay in acquiring a lock prior to the insert of
the first character, but after that inserts proceed at the speed of the lo-
cal editor. Another reasonable alternative would have been to use the
somewhat more complex scheme suggested in [5], which does not re-
quire locks but does require messages to contain version vectors and

requires messages to be processed against a command log.

154 Michael Knister and Atul Prakash



LOCK(previous lock id, offset,
length, last_lock id)

attempts to acquire a lock; globally
ordered

UNLOCK(lock id) owner of a lock releases the lock;
globally ordered

INSERI(lock id, offset, string,
undo_info)

owner of given lock inserts text within
locked region

DELETE(lock id, offset,
length, undo info)

owner of given lock deletes text within
locked region

CURSOR(lock id, offset) notifies of a user's cursor position

JOlN(member id) ISIS informs of a new group member

LEAVE(member id) ISIS informs of a group member leaving

STAIE_TRANSFER(buffer
contents, lock table)

transfers state of the current buffer
and state of the locks to the new
UNLOCKed (JOINing) group member

INFO(member info) member informs group of user name and

host name

Table 3: DistEdit kotocol Messages

Tâble 3 shows the messages in the protocol which DistEdit uses to
maintain consistency among editors.

7.2.1 InsertlDelete Primitive Processing

All changes to a text buffer begin with a call to the DistEdit de-insert
or de-delete primitive. DistEdit consults a lock table to determine
whether the user has a lock covering the affected region. If DistEdit
finds a lock, it immediately updates the local editor's buffer (for a
quick response time), and broadcasts an INSERT or DELETE message

to the group.
If the lock table indicates that the user does not have a lock cover-

ing the affected region, DistEdit first attempts to acquire a lock, as

described in Section 7.2.3. This process requires several network
messages and can cause some delay. If the lock attempt succeeds, the
INSERT or DELETE message proceeds. If the lock fails, the primitive
fails, and the transaction mechanism of Section 7.3 may be used to
recover.

Issues in the Design of a Toolkit for Supporrtng Multþle Group Editors 155



7.2.2 Lock-relative Messages

INSERT and DELETE messages do not contain the absolute positions

where the operations are to occur, since these positions may be differ-
ent for other users depending on messages in transit. For example,

suppose users A and B are working on a document. User A is working

at the top, and has the first 50 characters locked; user B has the fol-

lowing 50 characters locked. Suppose, at the same time, both users in-
sert a character at the beginning of their locked regions, user A at po-

sition 1, user B at position 51. Both immediately update their local

buffers and send out an INSERT message. A, upon receiving B's mes-

sage, must perform B's operation at position 52, not 51, because A in-
serted a character earlier in the document that B did not know about

when the message was sent.

To avoid this address shifting problem, INSERT and DELETE

messages contain character positions relative to the beginning of the

locked region to be changed. In the above example, B's INSERI mes-

sage would indicate that the operation is to occur at offset 0 from the

starting position of the lock held by B. All locks are given globally

unique identifiers so that they can be referenced in such messages.

Because only the owner of a lock can make changes within a
locked region, the owner immediately can perform any change within
the region, and INSERT/DELETE messages sent to other editors need

only be ordered relative to the sender. This type of message can be

sent directly to the recipients, with no need for a central point for
routing. INSERT and DELETE messages are therefore very fast.

7.2.3 Lock Acquisition

For locking to ensure consistency between the buffers of different

editors, the editors must have strictly consistent views of the locks.

DistEdit maintains a table for each group member which contains

every existing lock. Thus, the lock table, like the buffer text, is
replicated for every group member.

The LOCK and UNLOCK messages use the ISIS globally ordered

broadcast mechanism to achieve consistency in the lock tables. When a

lock is requested for a given region, DistEdit broadcasts a LOCK mes-

sage containing the request to the entire group. ISIS guarantees that

all LOCK/UNLOCK messages are received in the identical order by

every member. If the region in an incoming LOCK message is not

156 Michael Knister and Atul Prakash



already locked, the lock request is granted and a new entry is created
in the lock table. If the region overlaps an existing entry in the lock
table, the lock is refused unless the lock is owned by the same user.
After sending a LOCK message, the sender waits to receive the mes-
sage back (globally ordered) to determine whether the request suc-
ceeded or failed. Because every group member receives the same mes-
sages in the same order, from the same starting state, the lock tables
are always identical. Each editor independently uses the order of
arrival to assign the lock a globally consistent, unique identifier.

Only the owner of a lock can release a lock using the UNLOCK
message. This ensures that the owner is not planning to send any fur-
ther INSERI or DELETE messages based on that lock. DistEdit auto-
matically sends an UNLOCK message when a lock has not been used
within a user-defined period. If the owner crashes or exits without re-
leasing his locks, other editors receive notifications through ISIS about
a member failure, and they release all the locks belonging to that
owner (such notifications are hidden from the editor code-the toolkit
code handles the notifications and releasing of locks). ISIS guarantees
that all members of the group have a consistent view of member fail-
ures.

Locks, like INSERI and DELETE messages, use a lock-relative
addressing scheme. DistEdit converts the starting absolute address of a
lock request to an offset from the end of the nearest prior lock in the
table. Using absolute offsets in a lock acquisition request would have
presented problems in the following scenario: suppose user A re-
quested a lock at position 50 and, at the same time, user B inserted
one character at position 1. Furthermore, assume that the insert opera-
tion is received at other editors before the LOCK message. In such a

case, the lock really should be granted at position 51, not 50. By mak-
ing the lock request contain the offset from the end of the previous
lock, we avoid the need for such adjustments in positions.

Using a reference to the prior lock in a new LOCK message, how-
ever, can present two problems. First, the referenced lock could have
been deleted by the time the new LOCK message is received. Second,
another LOCK message with the same reference from a different user,
and perhaps even the subsequent UNLOCK message, could be re-
ceived, invalidating the relative address. Both problems are fairly
rare-we had to try editing operations several times to create the right
timing. The solution therefore adopted in DistEdit is to have the lock

Issues in the Design of a Toolkit for Supporting Multiple Group Editors l5l



request fail when such situations are detected. Detecting them is ac-

complished easily by including the identity of the last received lock in
the LOCK message. Another possible solution would have been to log

LOCK and UNLOCK messages and use that log to adjust the LOCK
messages based on the state when they were sent.

A single LOCK message can contain any number of lock requests.

The entire set of locks in the message is granted or rejected as a

group. Thus, if an operation requires a large number of changes

throughout a document, all necessary locks can be acquired at once

to assure that the operation will succeed as a single transaction. This
facility is used by the transaction mechanism that is described next.

7.3 Tiansactions

Since DistEdit only provides two basic editing operations, de-insert
and deielete, ar.y other editing operations to be provided by an editor
must be mapped to a sequence of these operations. An important issue

then is whether to treat that sequence of lowerJevel operations as a

single atomic (indivisible) action or as a sequence of independent

operations.

In single-user editors, treating a group of simple operations as one

larger, user-level operation is important primarily for implementing
undo; a user, upon doing an undo operation, usually expects all the
changes associated with the last single user-level action to be undone,
rather than just some of them.

In a group editor, the issue becomes important because of two
assumptions that are embedded in the code of most existing editors.

First, editors assume that operations like insert and delete always suc-

ceed; with DistEdit, operations can fail if they cannot acquire the

needed locks. Second, they assume that nothing will change the buffer
in the middle of a user-level operation.

We faced the above issue in handling the replace-string command

in Gnu Emacs. The replace-sting command is implemented as a Lisp
function that searches for the specified string, stores its position, re-
places the string at that position with a new string, and then continues

the search from the stored position added to the length of the replace-
ment string. The function assumes that after the replace, the cursor

has moved to the end of the replaced string. If the replace fails, as

158 Michael Knister and Atul Prakash



it could due to locks, or if intervening updates are received, the al-

gorithm could replace the wrong string or start the next search from

the wrong location.
Our goal was to deal with the above two problems but not to re-

quire changes to the substantial code that implements multi-operation
actions in existing editors. We accomplish this goal by using a delayed

lock acquisition strategy for providing atomicity. The beginning and

end of a transaction are determined using the de-run primitive. The

editor calls this primitive each time it waits for input. This is consid-

ered to mark the beginning or end of a transaction. All activity in be-

tween calls to de-run is considered a transaction. For example, say a

user initiates an IndentParagraph function from the event loop. This

function will generate a lengthy sequence of de-insert and de-delete

operations before returning to the user for the next command. The en-

tire sequence between calls for user input is considered to be one

transaction.
During a transaction, DistEdit records each de-insert and

de-delete, and executes each one on the local buffer. Because every

command is executed, the primitives never fail, and any non-failure

assumptions built into the editor are satisfied. During the transaction,

no changes are displayed on the editor screen. When the transaction

ends, DistEdit uses a single LOCK message to attempt to acquire all
locks required for the transaction that are not already held. If the lock

request is granted, the transaction succeeds; the local display is up-

dated and the changes are broadcast to other users. If the lock request

fails, the transaction fails, and the DistEdit undo mechanism is used to

roll back all the changes. In this case, the user or the editors never see

that the changes actually occurred.
The above strategy of relying on calls to de-run to determine trans-

action boundaries does not quite work for interactive commands such

as a query-repl.ace in Emacs, which asks the user whether to make

each individual replacement. In that case, de-ruz will get called

whenever user is asked for input and each set of changes between

prompts will be considered to be a separate transaction, which we find

acceptable. The problem is that if a replace operation fails due to the

inability to acquire a lock, any non-failure assumptions built into the

query-replace routine will not be satisfied. Such high-level routines

that interact with the user simply have to be rewritten to make failure

assumptions. Fortunately, most editors have only few such routines.

Issues in the Design of a Toolkit for Supporting Multípte Group Editors 159



Tiansactions using delayed lock acquisition incur a negligible
penalty for basic editing operations and actually enhance the perfor-
mance of complex operations. No additional messages are ever re-
quired; however the operations may have to be undone locally if the
transaction fails-a rare occurrence in practice. For complex opera-
tions, transactions effectively batch the lock request messages into a
single message, reducing overhead.

The transaction mechanism can be enabled or disabled through the
de-setting-set primitive. For editors which make non-failure assump-
tions, such as Gnu Emacs, we recommend always using the transaction
facility, since the overhead is low.

7.4 Undo

Implementation of undo is more complex in group editors because
a per-user undo facility is needed that undoes a user's last action rather
than the last action seen by the editor. In [17], we proposed a general
framework for undoing actions in collaborative systems. The frame-
work takes into account the possibility of conflicts between different
users' actions that may prevent a normal undo. The framework also al-
lows selection of actions to undo based on who performed them, where
they occurred, or any other appropriate criterion. DistEdit provides a
per-user undo facility using those ideas that allows users to undo just
their own changes. It also provides a global undo facility that allows
users to undo globally last actions irrespective of who executed them.

To implement per-user undo, each editor maintains a history list
which contains all prior insert/delete operations. Each operation is
tagged with the identity of the user who performed it. When the
de-local-undo primitive is invoked, DistEdit looks through the history
list and finds the last operation that was done by the user. DistEdit
then attempts to undo the operationby shifting the operation to the end
of the history list using a sequence of transpose operations [17]. If the
operation is shifted successfully (i.e., no conflicts with later changes of
other users), the operation is undone by executing its inverse opera-
tion. To update the state of other editors, the inverse operation is
broadcast to other editors. For more details of this strategy, see [17].

160 Michael Knister and Atul Prakash



7.5 File Management

Several problems arise from sharing document ûles. First, when a user
requests a file be opened for editing, DistEdit must determine whether
anyone else is editing that file and, if so, load from the active group
session rather than from the file. Second, a user should not be allowed
greater editing access rights using DistEdit than the file system would
allow. Third, care must be taken should several users attempt to save a
shared file at the same time.

In determining whether several users wish to edit the same particu-
lar file, it is not possible simply to examine the path names of the files;
because of network file systems, a file can be potentially referenced by
different paths.

When the de-open primitive is called to open a ûle, DistEdit
searches in the directory containing the file for an auxiliary file of the
same name without the path prefix, but prefixed by '.de.'. For exam-
ple, when opening the file lulaprakashldocsltesffile, DistEdit will
search for the auxiliary file lulaprakashldocsl.de.tesffile. This auxiliary
file contains a unique identifier to be used as the ISIS group name for
the particular file. If no such file exists, DistEdit creates it so other
users will be able to join the session. If a f,le is a soft link, the link is
resolved before applying the above procedure.

If a file has multiple hard links to it, the above procedure may fail;
one could deal with that by using an alternative, more complex, ap-
proach of looking up machine name, device name, and i-node number
of the file being edited, and using their combination as the unique id.

After obtaining the unique identifier, DistEdit instructs ISIS to join
or create a group session. If no session exists (as indicated by ISIS),
DistEdit loads the editor's buffer from the file. Otherwise, DistEdit
employs the ISIS state transfer mechanism to obtain the current state

of the buffer and the lock table from a member of the group.
DistEdit provides read-only/update editing rights based on a user's

access rights to a file. A user who has only read-only permission to a
file is not allowed to make changes using a DistEdit group editor. In
such a case, the de-open primitive sets an internal read-only flag.
When this read-only flag is set, the de-insert and de-delete primitives
always fail, just as if a lock could not be acquired, thus preventing the

Issues in the Design of a Toolkit for Supporting Multiple Group Editors 16l



user from making changes through the group editing session. Such a
user, however, may still observe the changes of others and use all
other DistEdit facilities.

We have found that the normal f,le save routines of editors work
quite well with DistEdit. There is, however, a potential problem. If
several group members were to save different versions (due to network
message latency) at approximately the same time, the resulting file
could be different than any user's version of the file. One approach
that could be used to solve this problem would be for DistEdit to
provide a locking mechanism for file saves. The editor requesting the
save would have to acquire this lock before the save and release it
afterward.

8. Experience in Using DistEdit

8.1 Adaptation Effort

The amount of effort required to adapt editors we have used is fairly
low. Table 4 shows the total size of three editors, the lines of code
added to support DistEdit, and the number of lines in the body of the
editor code which had to be changed.

Table 4: Changes Required to Adapt Editors for DistBdit

To give an idea of time required, the editor most recently adapted,
Xedit, required about four hours for the conversion. GNU Emacs,
which was adapted gradually as DistEdit developed, required much
more effort because of its complex, multi-platform input code, and be-
cause we were solving problems related to concurrent updates, transac-
tions, and group undo while working on the GNU Emacs conversion.

Editor Toral Editor LOC LOC Added LOC Changed

GNU Emacs 75,000 450 5

MicroEmacs 20,000 60 6

Xedit 16,000 250 30

162 Michael Knister and Atul Prakash



We considered adapting the vi editor to use DistEdit but concluded

it would be too difficult. The vi buffer modification routines were

spread across the entire system, and much of the code was designed

originally for ex command-line interaction, a style which is not
amenable to group editing. We have examined Elvis, a functional clone

of vi and believe it can be adapted to use DistEdit.

8.2 Usage Experience wíth the Editors

We have used the editors developed using the toolkit internally within
our group as they have been evolving. Our experience indicates that
people are more likely to use a group editor consistently if they do not
lose functionality in switching from the corresponding single-user edi-
tor. The earlier versions of DistEdirbased Gnu Emacs, our favorite ed-

itor, did not behave as expected as they did not provide per-user undo.

Furthermore, they did not deal properly with multi-operation actions.

The current version of DistEdirbased Gnu Emacs addresses these

problems using the techniques outlined in this paper and has been

found to be much more satisfactory. For results of usage studies with
group editors in general, see [6].

Work still needs to be done for support of shared editing of multi-
ple buffers-at present,.editing multiple files in a shared manner re-
quires opening one editor per file, as the DistEdit library primitives al-

low only one file to be edited in the shared mode.

Performance of the editors built using the toolkit has been very
satisfactory. We have used them primarily in local area environments.

Local updates are done with no noticeable delay. The updates on other
editors usually appear immediately. However, if the network is con-

gested, updates messages are sometimes batched (by ISIS) and after a

small delay, several updates are seen in rapid succession.

9. Conclusions

The DistEdit toolkit has allowed the creation of editors which provide

a seamless transition between individual and group editing. These edi-
tors, which include Gnu Emacs and Xedit, provide a familiar and pow-

erful work environment in a group setting, simplifying parallel work as

Issues in the Design of a Toolkit for Supportíng Multiple Group Editors 163



well as facilitating close coordination. Adapting editors to group use

with the toolkit has required surprisingly little effort. The toolkit pro-
vides support for all necessary distributed systems protocols, concur-
rency control, fault-tolerance, and synchronization. It also supplies
powerful additional features, such as undo, to all editors which use it.

The original motivation behind the use of simple, standard primi-
tives for communications in DistEdit was to facilitate migration of ex-

isting editors to group use. It has, however, turned out that the design
is also appropriate for group editors where only a single editor inter-
face is supported. Choosing more complex primitives simply would
mean more work in implementing transactions and the group undo fa-
cilities.

The current version of the toolkit only provides global and per-
user history undo. In [17], we suggested that other undo methods, such

as region-undo and time-based undo, also might be useful in group en-
vironments. We plan to enhance the toolkit to provide support for
these other types of undo facilities.

W'e also plan to work on building toolkits similar to DistEdit for
other types of documents such as rich text and graphics. Supporting
such document types will require defining the semantics of their primi-
tive operations so that services such as group undo and concurrency
control can be supported.

Acknowledgements

The authors would like to thank the referees for their valuable com-
ments. This work reported here has been supported by the National
Science Foundation under the grant number IRI-9216848 and by a
fellowship from AI&T Bell Laboratories.

L64 Michael Knister and Atul Prakash



References

[l] H. M. Abdel-V/ahab, S. Guan, and J. Nievergelt. Shared workspaces for
group collaboration: An experiment using Internet and Unix inter-pro-
cess communication. IEEE Communications Magazine, pages 10-16,
Nov. 1988.

12] K. Birman et al. The ISIS System Manual, Version 2.0, April 1990.

[3] P. Dewan and R. Choudhary. A flexible and highJevel framework for im-
plementing multi-user user interfaces. ACM Transactions on Informa-
tion Systems, 10(4):345-380, October 1992.

[4] C. Ellis, S.J. Gibbs, and G. Rein. Design and use of a group editor. In
G. Cockton, editor, Engineering for Human-Computer Interaction,
pages 13-25. North-Holland, Amsterdam, September 1988.

[5] C. Ellis, S.J. Gibbs, and G. Rein. Concurrency control in groupware qys-

tems. In Proceedings of the ACM SIGMOD '89 Conference on Man-
agement of Data, pages 399-407. ACM Press, 1989.

16] C.A. Ellis, S.J. Gibbs, and G.L. Rein. Groupware: Some issues and ex-
periences. Communications of the ACM, pages 38-51, January 1991.

[7] M. Elwart-Keys, D. Halonen, M. Horton, R. Kass, and P. Scott. User
interface requirements for face to face groupware. Technical Report
CMI-89-020, Center for Machine Intelligence, Ann Arbor, MI, De-
cember 1989.

[8] R. Fish, R. Kraut, M. Leland, and M. Cohen. Quilt: A collaborative tool
for cooperative writing. In Proceedings of ACM SIGOIS Conference,
pages 30-37, 1988.

[9] S.J. Gibbs. LIZA: An extensible groupware toolkit. ln Proc. of the ACM
CHI'89 Conference on Human Factors in Computing Systems, pages

29-35, April 1989.

[10] L Grief, R. Seliger, and W. Weihl. Atomic data abstractions in a dis-
tributed collaborative editing system. ln Proc. of the 13th Annual Sym-
posium on Principles of Programming Languag¿s, pages 160-172,
1976.

[11] D. Halonen, M. Horton, R. Kass, and P. Scott. Shared hardware: A
novel technology for computer support of face to face meetings. Tech-
nical Report CMI-89-015, Center for Machine Intelligence, Ann Ar-
bor, MI, November 1989.

[12] M. Knister and A. Prakash. DistEdit: A distributed toolkit for support-
ing multiple group editors.In Proceedings of the Third Conference on
Computer-Supported Cooperative Work, pages 343-355, Los Angeles,
California, October 1990.

Issues in the Design of a Tootkit for Supporting Multiple Group Editors 165



U3] L. McGuffin and G. M. Olson. ShrEdit: A shared electronic workspace.
Technical Report CSMIL Technical Report No. 45, The University of
Michigan, Ann Arbor, 1992.

[14] C.M. Neuwirth, D.S. Kaufer, R. Chandhok, and J.H. Morris. Issues in
the design of computer support for co-authoring and commenting. In
Proceedings of the Third Conference on Computer-Supported Coopera-
tive Work, pages 183-195, Los Angeles, California, October 1990.

[15] R.E. Newman-Wolfe and H. K. Pelimuhandiram. MACE: A fine-grained
concurrent editor. ln Proceedings of the ACMIIEEE Conference on Or-
ganizational Computing Systems (COCS 91), pages 240-254, Atlanta,
Georgia, November 1991.

U6] J.F. Patterson, R.D. Hill, S.L. Rohall, and W.S. Meeks. Rendezvous:
An architecture for synchronous multi-user applications. In Proceed-
ings of the Third Conference on Computer-Supported Cooperative
Work, pages3lT-328, Los Angeles, California, October 1990.

[17] A. Prakash and M. Knister. Undoing actions in collaborative work. In
Proceedings of the Fourth Conference on Computer-Supported Cooper-
ative Work, pages 273-280, Toronto, Canada, October 1992.

[18] M. Roseman and S. Greenberg. GroupKit: A groupware toolkit for
building real-time conferencing applications. In Proceedings of the
Fourth Conference on Computer-Supported Cooperative Work, pages
43-50, Toronto, Canada, October 1992.

[19] M. Stefik, G. Foster, D.G. Bobrow, K. Kahn, S. Lanning, and L.
Suchman. Beyond the Chalkboard: Computer support for collaboration
and problem solving in meetings. Communications of the ACM,
30(l):32-47, Jan. 1987 .

Permission to copy without fee all or part of this material is granted provided that the copies
are not made or distributed for direct commercial advantage, the Computing Systems copyright
notice and its date appear, and notice is given that copying is by permission of the Regents of
the University of California. To copy otherwise, or to republish, requires a fee and/or specific
permission. See inside front cover for details.

166 Michael Knister and Atul Prakash


