
The Design qnd
Implementation of the Clouds
Distributed Operating System

P. Dasgupta, R. C. Chen, S. Menon,

M. P. Pearson, R. Ananthanarayanan,

U. Ramachandran, M. Ahamad,

R. J. LeBlanc, W. F. Appelbe,

J. M. Bernabéu-Aubán, P. W. Hutto,
M. Y. A. Khalidi, and C. J. Wilkenloh

Georgia Institute of Technology

ABSTRACT: Clouds is a native operating system for
a distributed environment. The Clouds operating
system is built on top of a kernel called Ra. Ra ís a
second generation kernel derived from our experi-
ence with the first version of the Clouds operating
system. Rø is a minimal, flexible kernel that pro-
vides a framework for implementing a variety of
distributed operating systems.

This paper presents the Clouds paradigm and a
brief overview of its first implementation. We then
present the details of the Rø kernel, the rationale
for its design, and the system services that consti-
tute the Clouds operating system.
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I. Introduction

Clouds is a distributed operating system built on top of a minimal
kernel called Rø. The paradigm supported by Clouds provides an

abstraction of storage called objects and an abstraction of execu-

tion called threads.

1.1 Basic Philosophies

A primary research topic of the Clouds project is the development

of a set of techniques that can be used to construct a simple,

usable distributed operating system. A distributed operating sys-

tem should integrate a set of loosely-coupled machines into a cen-

talized,work environment. The following are the requirements of
such a distributed system:

. The operating system must integrate a number of comput-
ers, both compute servers and data servers, into one operat-
ing environment.

. The system structuring paradigm is important in deciding
the appeal of the system. This should be clean, elegant, sim-
ple to use and feasible.

. A simple, efficient, yet effective implementation.

To attain this end, we proposed the following basic
philosophies:

. We use the much advocated minimalíst philosophy towards

operating system design. The operating system is divided
into several clean, well defined modules and layers. The
kernel is one such layer ofthe operating system and sup-

ports only features that cannot be supported elsewhere.
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Modularity in these layers limits the amount of interference
(side-efects) and gives rise to easier upgrading and
debugging.

. Three basic mechanisms common to all general-purpose sys-

tems are computation, storage and I/O. We use simple
primitives to support these: namely, light-weight processes

and persistent object memory. Light-weight processes are
involved in computation. Persistent object memory serves

for all storage needs. The need for user-level disk I/O in our
model is eliminated. Terminal I/O is provided as a special
case ofobject access.

1.2 Clouds Design Objectives

Clouds is designed to run on a set of general purpose computers
(uniprocessors or multiprocessors) that are connected via a local-
area network. The major design objectives lor Clouds are:

. Integration of resources through cooperation and location
transparency, leading to simple and uniform interfaces for
distributed processing.

. Support for various forms of atomicity and data con-
sistency, including transaction processing, and the ability to
tolerate failures.

. Portability, extensibility and efficient implementation.

Clouds coalesces a distributed network of computers into an
integrated computing environment with the look and feel of a cen-
tralized timesharing system. In addition to the integration, the
paradigm used for defrning and implementing the system structure
of the Clouds system is a persistent object/thread model. This
model provides threads to support computation and objects to
support an abstraction of storage. The model has been augmented
to to provide support for reliable programs [Chen & Dasgupta
1989; Chen 19901. The consistency techniques have been
designed, but not implemented, and are outside the scope of this
paper.

The rest of this paper is organized as follows. An overview of
the Clouds project is provided in Section 2, followed by an over-
view of the Clouds paradigm in Section 3. The paradigm is the
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common link between the first implementation of Cbuds (Clouds

u.1) and the current version (Clouds v.2). We present the imple-
mentation of Clouds v.1 in Section 4,the structure and implemen-
tation of Clouds v.2 in more detail in Section 5, and the reasons

behind the Clouds redesign in Section 6. Section 7 presents some

of details of the Ra implementation and Section 8 describes the
current state of the implementation of Cbuds on Ra.

2. Project Overview

The first version of the Clouds kernel was implemented in 1986.

This version is referred to as Clouds v.l and was used as an exper-

imental testbed by the implementors. This implementation was

successful in demonstrating the feasibility of a native operating
system supporting the object model. Our experience with Clouds

v./ provided insights into developing better implementations of
the object/thread paradigm.

The lessons learned from the first implementation have been

used to redesign the kernel and build a new version of the operat-
ing system called Clouds v.2. Clouds v.2 uses an object/thread
paradigm which is derived from the object/process/action system

[Allchin 1983; Spafford 1986; Wilkes 1987] used by Clouds v.I.
However, most of the design and implementation of the system

are substantially different. Clouds v.1 was targeted to be a testbed

for distributed operating system research. Clouds v.2 is tatgeted to
be a distributed computing platform for research in a wide variety
of areas in computer science.

The present implementation of Cbuds supports the persistent

object/thread paradigm, a networking protocol, distributed virtual
memory support, user-level I/O with virtual terminals on UNIX, a
Cr+ based programming language, and some system management

software.
Work in progress includes user interfaces, consistency support,

fault tolerance, language environments, object programming con-

ventions and better programming language support for object typ-
ing, instantiation, and inheritance.
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3. The Clouds Paradigm

All data, programs, devices, and resources in Clouds are encapsu-
lated in objects. Objects represent the passive entities in the sys-
tem. Activity is provided by threads, which execute within
objects.

3.1 Objects

A Clouds object, at the conceptual level, is a virtual address space.
Unlike virtual address spaces in conventional operating systems, a
Clouds object is persistent and is not tied to any thread. A Clouds
object exists forever and survives system crashes and shutdowns
(as does a frle) unless explicitly deleted. As will be seen in the fol-
lowing description of objects, Clouds objects are somewhat
"heavyweight" and are better suited for storage and execution of
large-grained data and programs because invocation and storage of
objects bear some non-trivial overhead.

An object consists of a named address space and the contents
of the address space. Since it does not contain a process, it is
completely passive. Hence, unlike objects in some object based
systems, a Clouds object is not associated with any server process.
(The frrst system to use passive objects was Hydra [Wulf et al.
1974; Wulf et al. 19811.) The contents of each virtual address
space are protected from outside access so that memory (data) in
an object is accessible only by the code in that object and the
operating system.

Each object is an encapsulated address space with entry points
at which threads may commence execution. The code that is
accessible through an entry point is known as an object operation.
Data cannot be transmitted in or out of the object freely, but can
be passed as parameters (see the discussion on threads in Sec-

tion 3.2).

Each Clouds object has a global system-level name called a
sysname, which is a bit-string that is unique over the entire distri-
buted system. Sysnames do not include the current location of the
object (objects may migrate). Therefore, the sysname-based nam-
ing scheme in Clouds creates a uniform, flat system name space
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for objects, and allows the object mobility needed for load balanc-

ing and reconfiguration. User-level names are translated to

sysnames using a nameserver.
Clouds objects are programmed by the user. System utilities

can be implemented using Clouds objects. A complete Clouds

object can contain user-deflned code and data, and system-defrned

code and data that handles synchronization and recovery. In
addition, it contains a volatile heap for temporary memory alloca-

tion, and a permanent heap for allocating memory that becomes a

part of the data structures in the object. Locks and sysnames of
other objects are also a part of the object data space.

3.2 Threads

The only form of user activity in the Clouds system is the user

thread. A thread can be viewed as a thread of control that runs

code in objects, traversing objects and machines as it executes. A
thread executes in an object by entering it through one of several

entry points; after the execution is complete the thread leaves the

object. The code in the object can contain a call to an operation

in another object with arguments. When the thread executes this

call, it temporarily leaves the calling object, enters the called

object and commences execution there. The thread returns to the

calling object after the execution in the called object terminates

with returned results. These argurnents/results are strictly data;

they may not be addresses. (Note that sysnames are data.) This

restriction is necessary as addresses which are meaningful in the

context of one object are meaningless in the context of another

object. In addition, object invocations can be nested.

Several threads can simultaneously enter an object and execute

concurrently (or in parallel, if the host machine is a multiproces-

sor). Multiple threads executing in the same object share the con-

tents ofthe object's address space.

Unlike processes in conventional operating systems, a thread

can execute code in multiple address spaces. Visibility within an

address space is limited to that address space. Therefore, a thread

cannot access any data outside its current address space. Control

transfer between address spaces occurs through object invocation,
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and data transfer between address spaces occurs through
parameters.

3.3 Object/Thread Paradigm

The structure created by a system composed of objects and
threads has several interesting properties. First, all inter-object
interfaces are procedural. Object invocations are equivalent to
procedure calls on long-lived modules which do not share global
data. Machine boundaries are transparent to inter-object pro-
cedure calls or invocations. Local invocations and remote invoca-
tions are differentiated only by the operating system.

The storage mechanism used in Clouds differs from those
found in conventional operating systems. Conventionally, files are

used to store persistent data. Memory is associated with processes

and is volatile. The contents of memory associated with a process

are lost when the process terminates. Objects in Clouds unify the
concepts of persistent storage and memory to create the concept
of a persistent address space. This unifrcation makes program-
ming paradigms simpler.

Although files can be implemented using objects (a frle is an
object with operations such as read, write, seek, and so on), the
need for having files disappears in most situations. Programs do
not need to store data in file-like entities, since they can keep the
data in the data spaces of objects, structured appropriately. The
need for user-level naming of files transforms to the need for
user-level naming of objects. Also, Clouds does not provide user-
level support for disk t/O, since frles are not supported by the
operating system. The system creates the illusion of a large

memory space that is persistent (non-volatile). Since memory is
persistent, the need for files to store persistent data is eliminated.

In the object/thread paradigm, the need for messages is elim-
inated. Like files, messages and ports can be easily simulated by
an object consisting of a bounded buffer that implements the send

and receive operations on the buffer. An arbitrary number of
threads may execute concurrently within an object. Thus,
memory in objects is inherently sharable memory.

The system therefore looks like a set of persístent address

spaces, comprising what we call object memory, which allow
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control to flow through them. Activity is provided by threads
moving among the population of objects through invocation (Fig-

ures 1 and 2). The flow of data between objects is supported by
parameter passing.

3.4 Objects and Types

At the operating system level there is only one type of object:
Clouds obiect. A Clouds object is an address space which may

contain one (or more) data segment(s) and one (or more) code

segment(s). At the operating system level, the Clouds object has

exactly one entry-point. User objects are built using Clouds

objects via an appropriate language and compiler. User objects

have multiple user-defined entry points and are implemented
using the single entry point, operation numbers and a jump table.

User objects and their entry points are typed. Static type

checking is performed on the object and entry point types. No

Dasgupta et al.
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Figure 2: Structure of a Clouds Object

runtime type checking is done by Clouds. Thus, type checking is
implemented completely at the language level and enforced by
compilers. A user object may contain several language defrned
object classes and object instances. These are completely con-
tained within the user object and are not visible to the operating
system. Using this objectlthread paradigm, programmers can
define a set ofobjects that encapsulate the application at hand.

Currently, we defrne user objects in an extended C++ language.
The language supports single inheritance on Clouds user objects
using the Cr+ object structuring paradigm.

4. Clouds v.I

The first implementation of a kernel for Clouds was finished dur-
ing 1986 and is described in Spafford [ 1986] and Pitts [1986]. The
kernel was broken up into four subsystems: object management,
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storage management, communications, and action management.

A kernel-supported extension of the nested action model of Moss

[Moss 1981; Allchin 1983; Kenley 1986] made it possible for the
programmer to customize synchronization and recovery mechan-

isms with a set of locking and commit tools.
As one of the goals of Clouds was to produce an efficient and

usable system, a direct implementation on a bare machine
(VAX-I1) was preferred to an implementation on top of an exist-

ing operating system such as UNIX. Also most of the functional-
ity needed by Clouds did not exist on UNIX (such as persistent

shared memory, threads) and most of the features provided by
UNIX were not needed for Clouds. The main goal of the imple-
mentation effort was to provide a proof of feasibility of imple-
menting the object/thread model. The kernel, notwithstanding
some of its drawbacks, was a successful demonstration of the
feasibility of the Clouds approach, both in terms of implemen-
tation and use.

4.1 Objects

The basic primitives provided by the Clouds v./ kernel are

processes and passive objects. Indeed, one kernel design objective

was to support passive objects at the lowest possible level in the

kernel [Spafford 1986]. The main mechanism provided by the

kernel was object invocation. The system relied heavily on the

VAX virtual memory system to provide object support.
Passive objects ín Clouds v.l ate implemented as follows: the

VAX virtual address space is divided into three segments by the

system architecture, namely the P0, Pl and System segments. The

System segment is used to map the kernel code. The Pl segment

is used to map the process stack and the P0 segment is used to
map the object space. The object space resides on secondary

storage and page tables are used to map the object under invoca-

tion into the P0 segment directly from disk. Each process has its
own pageable process stack.

The above scheme allows processes to traverse several object

spaces, while executing, by simpty remapping the P0 segment of a
process to contain the appropriate object space upon each invoca-

tion (see the next section for further details). Also, several
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processes are allowed to concurrently execute within the same

object.

4.2 Object Invocation

The basic mechanism used in the Clouds kernel to process an

object invocation from a thread r executing in object 01 is the fol-
lowing: / constructs two argument lists, one for transferring argu-

ments to the object being invoked, 02, înd the other to receive the
output parameters (results) from the invocation of object 02 (see

Spafford [ 1986] for more details). After the construction of the

argument lists, thread ¿ enters the kernel through a protected sys-

tem call or trap. The kernel searches for the object locally and, if
found, uses the information in the object descriptor to construct
the page mappings for the P0 segment. Then, the kernel saves the
state of the thread, copies the arguments into the process space

(Pl segment) and sets up the new mappings for the P0 segment.

At this point, the contents of 02 are accessible through the map-
pings of the P0 segment, and t can proceed with the invocation of
O2t method.

On return from the invocation, the thread t also builds an
argument list with the return parameters, and then enters the ker-
nel by means of a protected system call. The kernel now saves the
parameter in a temporary atea, sets up the P0 segment mappings

fot O¡ restores the saved state of t, and copies the return parame-

ters wherever specifred by the second argument list constructed by
the thread at invocation time.

If upon invocation, the kernel cannot frnd object O2locally, it
tries to frnd it remotely. To do so, it broadcasts an RPC request.

The RPC server in the node that has 02 acknowledges the invoca-

tion request, and creates a local slave process to invoke 02 on

behalf of ¡. The slave process then proceeds to invoke o2locally,
and when the invocation completes, it sends the return arguments
back to the invoking node. Then the kernel goes on to process the
return parameters as described above.
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4.3 Experiences with Clouds v.I

Our experiences with Clouds v.1 were gained over a period of 6-8

months while attempting to build a user environment on top of
the kernel. During this time, we encountered a number of prob-

lems in the kernel that had to be addressed. Unfortunately, while

doing so, we discovered that complex module interdependencies

within the kernel made it extremely difficult to add necessary

functionality or fix non-trivial bugs without introducing new bugs

in the process. One reason for this was due to poor code struc-

ture. Also, direct concurrent access and update of data structures

by routines in different subsystems within the kernel resulted in
synchronization and re-entrancy problems.

The final problem involved a change of platform. For
economic reasons, we wanted to move to Sun workstations. How-

ever rrye found that VAX dependencies that appeared throughout
the kernel (such as programming the VAX bus) made the kernel
virtually impossible to port to a new architecture without a com-
plete re-write.

In hindsight, these problems are not entirely surprising. While
portable kernels are desirable, portability was not emphasized dur-

ing the design and implementation of Clouds v.1. We were more

interested in producing a working prototype. Also, Clouds v./ was

implemented in C. Given the lack of support in C for software

engineering techniques, it should not have come as a surprise that
our first attempt at structuring the internals of a kernel supporting
persistent objects resulted in a less than optimal design.

The basic design and philosophy behind Clouds v.2 is a direct
result of the problems we encountered in working with the first

kernel. The second kernel is a minimalketnel, designed with
flexibility, maintenance, and portability in mind. A complete dis-

cussion of the similarities and differences between Clouds v.I and

R¿ is contained in Section 6.
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5. Clouds v.2

The structure of Clouds v.2 is different from Clouds v.1. The
operating system consists of a minimal kernel called Ra, and a set

of systemJevel objects providing the operating system services.
.Rø [Bernabéu-Aubán et al. 1988; 1989] supports a set of basic sys-

tem functions: virtual memory management, light-weight
processes, low-level scheduling, and support for extensibility.

5.1 The Minimal Kernel Approach

A minimal kernel provides a small set of operations and abstrac-
tions that can be effectively used to implement portable operating
systems independenl of the underlying hardware. The kernel
creates a virtual machine that can be used to build operating sys-

tems. The minimal kernel idea is similar to the RISC approach
used by computer architects and has been effectively used to build
message-based operating systems such as V [Cheriton & Zwaen-
poel 19831, Accent IRashid & Robertson 1981], and Amoeba

[Tanenbaum & Mullender l98l]. The rule we attempted to follow
in our design was: Any service that can be provided outside the
kernel wíthout adversely effecting perþrmance should not be

included in the kernel.
As a result, Rø is primarily a sophisticated memory manager

and a low-level scheduler. R¿ creates a view of memory in terms
of segments, windows and virtual spaces. Unlike the Clouds v.l
kernel, R¿ does not support objects, invocations, storage manage-
ment, thread management, device management, network proto-
cols, or any user services. All of these services are built on top of
the Ra kernel as modules called system objects. System objects
provide other systems services (user object management, syn-
chronization, naming, networking, device handling, atomicity and
so on) and create the operating system environment. Currently
the Ra kernel and all of the essential system objects are opera-
tional; the project is now focusing on higher level services.

There are several advantages to the use of a minimal kernel.
The kernel is small, hence easier to build, debug, and maintain.
Minimal kernels assist in the separation of mechanisms from
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policy which is critical in achieving operating systems flexibility
and modularity [V/ulf et al. 19741. A minimal kernel provides the

mechanisms and the services above the kernel implement policy.

The services can often be added, removed or replaced without the
need for recompiling the kernel or rebooting the system.

5.2 The Ra Kernel

The principal objectives in Ra's design were:

. Ra should be a small kernel that creates a logical view of the
underlying machine.

. .Rø should be easily extensible.

. One of the possible extensions of Ra should be Clouds.

. It should be possible to efect an efficient implementation on
a variety of architectures.

In addition to the above, the implementation of Ra should
clearly identify and separate the parts that depend on the architec-

ture for which the implementation is being targeted. This should
reduce the effort required to port the kernel to different
architectures.

As was previously stated, object invocation in the frrst version

of Clouds was implemented by manipulating the virtual memory
mappings. The Clouds v./ kernel was targeted to support object
invocations. R¿ is targeted to support the memory management

needs of objects. From our experience with the frrst Clouds ker
nel, we identifred generalizations in the virtual memory manage-

ment mechanisms that we felt would provide alarget degree of
flexibility in the the design and implementation of new systems.

Memory is the primary abstraction in the Clouds paradigm.

Since objects are implemented as autonomous address spaces,

they need to be built out of sharable, pageable segments. These

segments should be easily migratable to support distributed
memory. These requirements led to the design of the virtual
memory architecture of R¿.

.Rø supports a set of primitive abstractions and an extension

facility. The three major abstractions are:
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IsiBas. An IsiBat is an abstraction of activity, and is basically
a very lightweight process. The IsiBa is simply a schedulable
entity consisting of a PCB. An IsiBa has to be provided with a
stack segment and a code segment before it is scheduled. There-
fore, IsiBas can be used to create user-level processes, threads, ker-
nel processes, daemons and can be used for a host of tasks need-
ing activity.

Segments. Segments conceptualize persistent memory. A seg-

ment is a contiguous block of uninterpreted memory. Segments
are explicitly created and persist until destroyed. Each segment
has a unique system-wide sysname, and a collection of storage
attributes. Segments are stored in a facility called the partition.
Rø does not support partitions, but assumes the existence of at
least one. Partitions are described later. Ãa provides a set of
functions to manipulate segments (create, extend, install, page-

in/out and so on).

Virtual Spaces. A virtual space abstracts a frxed-size contigu-
ous region of an IsiBa's virtual address space. Ranges of memory
in a virtual space can be associated with (or mapped to) an arbi-
trary range of memory in a segment. Each such mapping (called a
window) also defrnes the protections (userJevel read, read-write,
kernel-level read, etc.) on the defrned range of memory. Virtual
spaces are defrned and controlled by a Virtual Space Descriptor or
VSD îor short (see Figure 3). Virtual spaces can be associated with
an IsiBa. This is called installing a virtual space. R¿ is responsi-
ble for ensuring that the state of the IsiBa's hardware address
space corresponds to that defrned by its installed virtual spaces
(the virtual memory architecture is described in more detail in
Section 5.3). Virtual spaces can be used by higher level routines
to implement such things as objects. Rø supplies functions that
assemble, install and manipulate virtual spaces.

Ra is implemented using the C+r language and heavily uses

the object oriented programming paradigm provided by C++. The

l. The term IsiBa comes from early Egyptian. Isi = light, Ba = soul and was coined by
the early designers ofthe R¿ kernel. It is now felt that the term is confusing and we
periodically agree to change it but have not been able to agree on a replacement term
that is both informative and non-boring. The choice ofa replacement term is a
recurring topic of animated discussion.
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Vinual Space defined by descriptor

Figure 3: VSD Defrning a Virtual Space

functional units in Ra arc encapsulated in C++ objects and Cr+
classes are used to provide structure to the implementation. Cr+
classes are used, for example, to defrne base classes (and hence
minimal interfaces) for system objects, devices, partitions, virtual
memory managers, etc.

J?ø is related to the Mach kernel [Accetta et al. 1986] by its
some of its virtual memory mechanisms and its approach to port-
able design [Rashid et al. 1987]. The Choices kernel [Campbell et
al. 19871 is built using object-oriented programming techniques
and is thus related to the implementation structure of Rø. During
the design of Ra, we were also influenced by ideas from Multics
[Organick 19721, Hydra [Wulf et aI. 1974], and Accent [Rachid &
Robertson 1981l, as have other distributed operating systems
designed in the tradition of Clouds [Nett et al. 1986; Northcutt
le87l.
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5.3 Virtual Memory Architecture

Ra provides a two-level virtual memory architecture similar to
Clouds v./ (similarities and differences are discussed in Section 6).

Rø breaks down the machine's virtual address space, hereafter
referred to as the hardware address space, into a number of frxed-
sized, contiguous, non-overlapping regions. These regions are

used to map different types of virtual spaces.

5.3.1 Virtual Spaces

Ra supports three types of virtual spaces: O, P, and K (see Figure
a). The contents of each virtual space (of any type, O, P, or K) is
described by a set of windows in the virtual space descriptor.
Each window lr associates protection with a range (x,x +n) of vir-
tual memory controlled by the virtual space and associates a range
(y,y +n) of bytes in a segment s into the virtual memory range
(x,x+n). An access of byte x+a in window w will reference byte
y+a in segment s. A virtual space V may contain an arbitrary

O-Space Partition (storage)

I

Segments 
I

P-Space

K-Space

Figure 4: Hardware Address Space
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number of windows mapping non-overlapping ranges within the
bounds of the region controlled by the virtual space.

Instances of virtual spaces of type O (O space) are intended to
map shared entities (e.g. objects), and spaces of type P (P space)

are intended to map process private entities (e.g. stacks). In a
single-processor system there can be only one instance of a virtual
space of type K (K space). This is used to map the Ra kernel and
the system objects. There are additional operations that K space

descriptors must support in addition to the standard operations
defined by the virtual space class. This is handled by making the
Kernel Virtual Space Descriptors (KVSD) a derived class (subclass)

from the base class VSD.
Each IsiBa can have one O space, one P space, and one

K space currently installed. In the current uniprocessor imple-
mentation, every IsiBa has the same K space installed, effectively
mapping the kernel into the address space of every IsiBa.

5.3.2 Shared Memory

Sharing memory occurs when two virtual addresses refer to the
same piece of physical memory. In the Rø kernel, sharing can
take place at two levels. Two IsiBas may share memory at the vir-
tual space level by installing the same P or O (or both) virtual
space. When they reference memory within the bounds of the
shared virtual space, they will automatically reference the same
piece of physical memory or backing store.

Memory may also be shared at window level. If virtual space

Vl has a window wI (a,a+n) that maps to (x,x+n) within the seg-

ment s and a virtual space V2 has a mapped window w2 (b,b +m)
that maps to $t,y +m) within the same segment s and the two
ranges overlap, then the overlapping area of memory will be

shared by the two windows w1 and w2. To take a simple case, if
wI and w2 both map to the same range of addresses in the seg-

ment s (that is, m = n), then a reference to address a+2,(z<n) and
a reference to address b+z will both reference the same memory.
Furthermore, it does not matter to the R¿ kernel if W and V2 are
the same virtual space (in which case memory aliasing will occur)
or different virtual spaces, nor if VI and V2 are different types of
virtual spaces (which will also cause memory aliasing if both Vl
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aîd V2 are installed in the same IsiBa). Thus, two IsiBas may
share memory by installing the same virtual space. Also they may
share memory if they have diferent virtual spaces installed but
the virtual spaces map common segments.

5.4 Ra Synchronization Primitives

The kernel defines a set of primitives to be used for synchroniza-
tion and concurrency control inside the kernel and system objects.
At the lowest level, Ra defines (machine-dependent) intemrpt level
control facilities. Since R¿ is intended to be portable to multi-
processors, spin locks are provided. These low-level facilities are

used to construct kernel-level semaphores, memoryless events, and
read/write locks.

5.5 Extensibility

The design of Ra abstracts a logical machine that provides virtual
memory mechanisms and low level scheduling. Hence, it is unus-
able by itself, and must be extended using system objects into an
operating system such as Clouds. System objects reside in kernel
space (K space), not vseÍ space (O and P space), have direct access

to data and code in the kernel, and share the same protection and
privileges. Hence, system objects are not the same as Clouds
objects. Some system objects are called essential system objects
because they are essential to run Ra. For example, the Partition is
an essential system object. .Rø assumes the existence of at least
one partition.

The system objects in Clouds are organized in a hierarchy of
classes, ultimately deriving from the SysObi class. Rø defrnes a

system object interface and each system object must adhere to this
interface. The system object must have initialize and shutdown
methods, can have private memory and can access kernel data
structures though kernel classes.

Kernel classes are collections of kernel data and procedures to
access and manipulate that data. These include the VSD class,

sysname class, and cpu class. As viewed from a system object, the
kernel is a collection ofkernel classes and instances ofthese
classes. Each cpu, for example, is a specific instance of the cpu
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class and can be manipulated using methods defined by the cpu
class.

The system object interface enforces the strict adherence to
modularity in the operating system. Clouds has been built by
attaching all the relevant system objects to Ra. The system
objects can be thought of as plug-in software modules that can be
linked in with the kernel or loaded dynamically into a running
system.

5.6 Partitions

Partitions are repositories for segments. Rø requests segments
from a partition when needed and releases them to the partition
when their usage is over. The partition is responsible for manag-
ing segments on secondary storage. A partition must support at
least the following operations: ActivateSegment, DeactivateSeg-
men¡ ReadPage, and WritePage. A segment must be activated
before being used, by calling the ActivateSegment operation. This
allows the partition to set up any necessary in-memory data struc-
tures. DeactivateSegment is then called after the kernel has
frnished using the segment. ReadPage and WrítePage are self-
explanatory.

A partition is responsible for maintaining and manipulating
segments. Each segment is maintained by exactly one partition,
and the segment is said to reside in that partition. The partition
in which the segment resides is called the controllíng paftition.
Creation and deletion of segments is performed through their con-
trolling partitions. The partition is responsible for maintaining
the information which describes the segment in secondary storage,
similar to file-system code in a conventional operating system. To
read or write segment pages on secondary storage, the controlling
partition of the segment is invoked. The partition is notifred that
one of its segments will be subject to further activity by activating
the segment. Similarly, the partition is told that a segment will
not be used in the near future by deactivating the segment.

In our implementation, a network disk partition stores seg-

ments on a UNIX file-server. Each segment is stored as a UNIX
frle. The partition provides pages of segments to Rø over a net-
work. The local lR¿ kernel is unaware of this mechanism. The
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network disk partition provides an easy way to create segments on
UNIX which are then available to Clouds machines. This parti-
tion is also used for paging and swapping activity.

5.7 Distributed Shared Memory

Segments residing in a network disk partition cannot be shared by
multiple machines. Thus each network disk partition creates a
private storage space for each Clouds machine.

However, to allow distribution, all objects should be accessible
by all Clouds machines. This means the segments should be
stored by a set of data-servers and should be accessible by all
compute-servers. This is allowed by Distributed Shared Memory
Partitions (DSM Partitions).

Sharing segments among machines may lead to multiple
cached copies of the segments. To ensure one-copy semantics
used by the Clouds paradigm, a coherence controller is necessary.
The DSM partition implements a set of protocols which enforces
the coherence of shared segments (Figure 5). Each DSM partition
knows about a set of segment managers called DSM controllers.
Currently, DSM controllers run on UNIX machines and store seg-

ments as files. When Clouds accesses a segment (due to the invo-
cation of an object that uses that segment), the DSM partition on
the local machine gets the segment from the DSM controller. The
DSM controller runs coherence algorithms which ensure that there
is only one copy of the segment in the Clouds system [Ramachan-
dran et al. 1989; Khalidi 1989]. This makes memory appear to be
one-copy shared and creates the view that all objects reside on all
machines.

6. Ra and Clouds v.l

The design of Ra draws heavily on our experiences with Clouds
v.1. The Clouds y.1 was essentially a monolithic kernel. Expanda-
bility and flexibility were not primary design goals.

As every academic/commercial operating systems evolves, new
sets of researchers and implementors add to the design and func-
tionality in ways not anticipated by the original designers. While
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attempting to build a user environment for Clouds v.l, we realized
that it was difficult to extend the system. A number of features in
Ra attempt to address this problem.

Rø supports a more primitive set of abstractions than Clouds
v..1, however, the system object class allows the addition of operat-
ing system services not supported by the kernel. System objects
allow flexibility and enforce modularity. This structuring tech'
nique is is worthy of note in that while many systems allow exten-
sions in the form of device drivers, far more fundamental operat-
ing system services have been implemented as.Rø system objects.

To support testing of higherJevel algorithms, the Ra design
also strives to separate mechanisms that implement actions from
policies that decide when actions should be taken. Furthermore,
the object-oriented structure of the R¿ kernel lends itself to easier
maintenance than the Clouds v.1 kernel.
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6.1 Multi-threading

In the Clouds v.I design, processes were somewhat heavyweight
and the kernel was basically passive. This meant that virtually all
operating system services were provided through intemrpt and
fault handlers. Therefore, the entire kernel had to be multi-
threaded. This necessitated very delicate handling of interrupt
priority levels and synchronization primitives throughout the
entire kernel. The problem was compounded by the fact that
concurrency-related mistakes usually result in non-reproducible
timing-related errors which are very difficult to debug. Unfor-
tunately, in a 22,000line multi-threaded kernel written from
scratch by a handful of people, it is virtually guaranteed that
concurrency-related errors will creep in.

In Ra,IsiBas can be used to implement kernel daemons. Ker-
nel daemons run in kernel space with kernel privileges. These
daemons can be used to implement single-threaded servers that
are dispatched using interrupts. This reduces the amount of code
that has to be multi-threaded and run with intemrpts masked.
Kernel daemons have been used in a number of places, most not-
ably in the implementation of remote procedure calls, timer ser-
vices, network protocols and DSM.

6.2 Virtual Memory Architecture

The design and implementation of Rø's virtual memory architec-
ture incorporates a generalization of the virtual memory architec-
ture of Clouds v.1 and portability-oriented structuring ideas found
in Mach [Rashid et al. 1987]. Rather than embed support deeply
in the kernel for one notion of how objects could be structured,
the decision was made to support a flexible, sophisticated virtual
memory architecture that could be adapted to more than one
object implementation. This would allow future developers the
freedom to modify the object implementation without having to
re-write kernel internals.

R¿ thus supports the notion of an O space, P space, and
K space. By virtue of using the VAX P0, Pl, and System segments
to contain objects, the process stack, and the kernel, respectively,
Clouds v./ also supported the equivalent of an O, P, and K space.
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However, since support for objects, processes, and actions was
designed into the kernel at the lowest possible level, the structur-
ing of each type of space was hard-coded into the kernel. The P0

segment was broken up into windows but the Pl and System seg-

ments were not. In Ra, the structure of the Clouds v.1 P0 segment
is generalized into the notion of a virtual space and applied in an
orthogonal fashion to all three types of virtual spaces. This gen-

eralization leads to a number of advantages.
By structuring the hardware address space as virtual spaces, it

is possible in R¿ to break the address space up into more than
three virtual spaces. V/hile the original designers foresaw only the
need for an O, P, and K space, our recent work in memory seman-
tics has convinced us of the need to add a fourth virtual space

[Dasgupta & Chen 1990; Chen 1990]. Due to the uniform han-
dling of virtual spaces in the kernel, adding another virtual space

will be straightforward.
The fact that P space can be broken up into windows allows

more flexibility in designing and implementing user processes and
object invocation. The original Clouds v./ desþ placed all non-
stack per-process data in P0 space. The current user object imple-
mentation could have been implemented similarly. However, it
was decided to have all per-process data (stack, heap, parameter
passing area) reside in P space instead, which means the entire
object space can be shared. This allows all threads executing in
the same object to share the same O space virtual memory tables.
The Rø kernel is capable of supporting either implementation.

The K space windows allow the kernel and system objects to
use the window class to map portions of segments into well-
defined address ranges, operate on the data there, flush the
changes out and unmap the window (freeing it up for further use).

This facility is used by the user process controller to set up a new
processes and freeze/restore them (see Section 8.2).

Also, the -R¿ virtual memory system allows for the existence of
more than one virtual memory manager. Virtual memory
managers handle page faults. Each Rø segment can have a seg-

ment type and each segment type can have its own virtual
memory manager. V/hen a page fault occurs, the kernel deter-
mines the segment being accessed by the fault. If the segment has

its own virtual memory manager, the kernel calls that manager.

Dasgupta et al.34



Otherwise, the kernel calls a default virtual memory manager to
service the fault. This'design allows the complexity of services
such as shadow-based recovery to be isolated in its own virtual
memory manager.

Finally, unlike tllre Clouds v.1 virtual memory system, the Ra
virtual memory system is designed with machine independent and
machine dependent classes (inspired by Mach). Each machine
independent class that may have to rely extensively on machine-
dependent details has a corresponding machine-dependent class

that presents an abstraction of the underlying hardware to the rest
of the kernel. This isolates the machine dependencies from the
rest ofthe kernel.

7. Implementation of Ra

R¿ is implemented in Cr+ [Stroustrup 1986] on the Sun-3/60
architecture. C++ was chosen over C due to the extra support for
data abstraction, and object-oriented design.

C++ facilities such as private data and methods, derived
classes, and virtual functions make it easier to write modular, lay-
ered code and hide the implementation details of one part of the
kernel from the rest. This, in turn, reduces hidden interdependen-
cies which makes it easer to change parts of the system without
introducing unforeseen side-effects. While all good software
designers strive to do this, the language support (and enforcement)
provided by C+r has made this a much easier task. Furthermore,
the C++ inline function facility makes it possible to write highly-
layered/modular code without incurring extra function-call over-
head.

Thus, while the kernel internals are quite intricate, well-
defined interfaces exist for requesting kernel services. C++ type-
checking enforces adherence to the defined interfaces and hence
prevents system implementors from by-passing those interfaces,
but the ability to deflne optional parameters in class methods
enables interfaces to be easily extended while retaining compati-
bility with existing code.

The design and implementation of Ra is designed to identify
and isolate machine dependencies. Like the virtual memory
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system, Ra is divided into two sets of frles containing machine
dependent and machine independent classes and definitions.

The implementation of the R¿ kernel consists of about 1,000

lines of assembly code and 12,000 lines of Cr+ code. Approxi-
mately 6,000 lines are machine dependent code while the rest are

machine independent. In addition, 17,000 lines of C++ code have
been added to the system in the form of system objects.

8. Clouds v.2 and Rq

Clouds v.2 consists of the Rø kernel plus a collection of system

objects implementing Clouds semantics (see Figures 6 and 7).

The system objects contain more code than the R¿ kernel
itself. A complete description of these are beyond the scope of the
paper. The system objects currently in operation include: buffer
manager, user I/O manager, tty manager, Ethernet driver, Ra
Transport Protocol, network disk partition, DSM partition, object
manager, thread manager, process controller, RPC controller, and
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system monitor. Many of the system objects are implemented
using kernel daemons. Some of the key functions of the system
objects are described below.

8.1 Object Management

An object is implemented in Raby using a virtual space (O space).
The storage of the object is ultimately accessed via the segments
mapped by the windows of the virtual space. The sysname of the
object is the sysname of a segment containing the windowing
information (VSD). Objects are always mapped into the O space

when being executed. A Clouds object is a special case of a Ra
virtual space.

The object invocation mechanism is implemented by means of
two system objects: the Process Controller and Object Manager.
Processes are implemented using segments (to back the per-
process stack for example) and are managed by the process

User Objects

Figure 7: The Clouds/Ra Environment

Scheduling
Segments
lnterrupts
Virtual Space
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controller. Objects are invoked by threads (implemented using
processes). When a thread invokes an object, the process con-
troller is responsible for saving/protecting the state of the current
invocation and installing any state required by the new invoca-
tion. During this process, the process controller notifies the object
manager that an object is about to be invoked (referenced) and
that object manager is responsible for ensuring that the control
information (virtual space descriptor) for the object exists. The
object is installed in the O space of the thread and the thread is
placed in the entry point. The physical location of the object is of
no consequence as the DSM partition will page in the segments

from the appropriate DSM controller (or server). Remote object
invocation is performed through an RPC handler which communi-
cates to an RPC server on a remote machine and asks it to invoke
the requested object in a manner similar to the Clouds v.1 object
invocation mechanism.

Invoking the object locally and relying on DSM to page in the
object across the network is not always more efficient than per-

forming a remote procedure call. If processes on different nodes

have the same locality of reference in an object and they invoke
the same object using DSM to page the object, DSM will thrash,
paging the common pages back and forth between the different
nodes. In that case, it might be better to move all the computa-
tion to the same node by performing an RPC where the processes

can physically share the memory.
In addition, if the load on the nodes of the system is not bal-

anced, it may be a better idea to send the computation to a
remote node. Notice that the object being invoked need not
reside on the chosen node as DSM can be used to access the
object's segments. This provides another mechanism besides pro-

cess migration that can be used to balance the load on the system.

However, using local invocations and DSM is superior to RPC in
cases where there is a high degree of locality.

The policy that decides whether to execute a local invocation
or a remote invocation has not been implemented. Currently the
user can decide on the invocation mechanism by using appropri-
ate system calls.
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8.2 Thread Management

Processes are implemented by associating an IsiBa with a virtual
space (installed in the P space) which controls per-process memory
such as the process stack and the parameter passing areas. A
thread is a process if the thread only uses local invocations, and is
a collection of processes if the thread has performed a remote
invocation. The thread manager keeps track of a thread's RPC
calls (if any) and controls creation and termination of threads.
However, thread managers do not directly manipulate processes or
per-process memory. The process controller defrnes an abstraction
of a process. The thread manager makes requests on the process
controller to manipulate processes and to perform object invoca-
tions and returns.

Although the P space of a process may contain more than one
segment, the state of a process may be saved into one controlling
segment and then later restored. The ability to freeze a process
into one segment and remotely activate that segment (and all
necessary segments after that) using DSM provides Clouds v.2 with
a simple, easy way of performing process migration.

8.3 Ra Transport Protocol

The R¿ Transport Protocol (RaTP) provides reliable message tran-
sactions over the Ethernet [Wilkenloh 1989]. The protocol is
designed to be connectionless and is efficient for providing the
request-reply form of communication that is common in client-
server interactions. Since Clouds supports object invocations
using RPC or DSM, this is the type of communication that is
encountered in the system.

RaTP has been implemented both on Ra as well as on UNIX.
In addition to message transaction, RaTP provides interfaces to
the RPC and DSM mechanisms. We are currently using RaTP to
run the DSM clients on Ra and DSM servers on UNIX file servers.
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8.4 Clouds I/O System

The Clouds I/O system allows user objects to perform user-level
terminal I/O. Note that Clouds does not support nor does it need
user-level disk or network I/O. The I/O system is handled by a
system object. Each user object is provided with two special
sysnames of I¡o objects (called stdin and stdout, inspired by
UNIX). These objects do not actually exist. They are operating
system level pseudo-objects that support read and write calls. If a

user object calls the write routine, the output reaches the (logical)
terminal associated with the thread. Each logical terminal is a
"text window" on a UNIX workstation.

When a thread is created, a logical terminal is associated with
the thread. The thread carries with it the sysname associated with
this text window. Thus, all I/O calls made from object programs
reach the user, regardless ofwhere the thread is executing. I/O
redirection can be done by simply changing the stdin/stdout
sysnames to those of a user object that supports read and write
calls. Further I/O will cause that user object to be invoked instead
of the Clouds I/O system object.

8.5 Other Services

The other system objects used in the current implementation of
Clouds include a Virtual Memory Manager, System Monitor,
Buffer Manager, Ethernet driver, network disk partition, and DSM
partition.

Devices in Ra conform to a standard interface: a class

definition called RaDevice which is used to define device drivers.
All device drivers must provide at least the methods defined in
the base class RaDevíce. They are open), close), read), write),
getmsg), putmsg), poll), and ioctl).

The system monitor provides a low-level monitor/shell capa-
bility. The monitor can be used to read and alter values of vari-
ables in the kernel or system objects, as well as execute arbitrary
methods in the kernel or any system object. The system monitor
can also be used for invoking user objects, thus providing a rudi-
mentary shell for Clouds.
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The network disk partition is implemented as a system object.
Segments managed by this partition seem to reside on the Clouds
node but actually reside on a UNIX frle server. Reads, writes, and
control messages are shipped to the UNIX system where a server
operates on the UNIX files that correspond to the indicated seg-

ments (see Figure 8).

Many services are provided by UNIX programs. These include
terminal emulators, which run under SunWindows and on top of
RaTP interfacing through the user I/O system on rR¿. The com-
piler is a modifred Gnu C++ compiler that generates Clouds seg-
ments. The Clouds shell is a UNIX program that is used to invoke
Clouds objects using the RPC facility.

Figure 8: Network Disk and DSM Services
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8.6 Status and Work in Progress

The facilities described above are operational. Project work is
currently focusing on better system-level and user-level support
tools for effective use of the Clouds operating system. This
includes a user programming environment, a user-level naming
system, and development of application programming techniques
in the persistent object framework.

In addition, work is being done in the area of reliability and
persistent-object programming, the thrust of the original Clouds
system. We have explored memory semantics for programming
persistent objects and have developed a set of flexible mechanisms
that support customized data consistency [Chen & Dasgupta 1989;

Dasgupta & Chen 1990; Chen 1990]. In other fault tolerance
research, we have developed a scheme that replicates data as well
as computation to guarantee forward progress of computations

[Ahamad et al. 1990]. Work is underway to design schemes that
exploit multicast communication to make a variety of services
(e.g. object location, group communication, commit protocols,
replication management, and so on) more efficient [Ahamad &
Belkeir 1989; Belkeir & Ahamad 19891.

9. Concluding Remarks

Clouds is intended to serve as a base for research in distributed
computing at Georgia Tech. The new Clouds kernel, Rø, coupled
with system objects, provides an elegant environment for operat-
ing systems development. The design and implementation of Ra
benefited from the experience gained from the design and imple-
mentation of the frrst Clouds kernel.

The design and implementation of Cbuds v.2 are geared more
towards flexibility, portability, and maintenance than the Clouds
v.1 kernel. This is reflected in the design of the Rø kernel and its
virtual memory architecture, support for lightweight kernel dae-

mons, and system object facility. Furthermore, the additional
freedom allowed by Ra facilitates more easy testing of alternative
system designs (both mechanisms and algorithms) using R¿ as the
implementation base.
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