
The Synthesis Kernel

Calton Pu, Henry Massalin and
John Ioannidis Columbia University

ABSTRACT: The Synthesis distributed operating
system combines efficient kernel calls with a high-
level, orthogonal interface. The key concept is the
use ofa code synthesizer in the kernel to generate
specialized (thus short and fast) kernel routines for
specifrc situations. We have three methods of
synthesizing code: Factoring Invariants to bypass
redundant computations; Collapsing Layers to
eliminate unnecessary procedure calls and context
switches; and Executable Data Structures to shorten
data structure traversal time. Applying these
methods, the kernel call synthesized to read
/dev/mem takes about l5 microseconds on a 6g020
machine. A simple model of computation called a
synthetic machine supports parallel and distributed
processing. The interface to synthetic machine
consists of six operations on four kinds of objects.
This combination of a high-level interface with the
code synthesizer avoids the traditional trade-off in
operating systems between powerful interfaces and
efrcient implementations.

@ Computíng Systems, Vol. I . No. I . Winter 1988 11

l. Introduction

A trade-off between powerful features and efficient
implementation exists in many operating systems. Systems with
highJevel interfaces and powerful features, like Argusro and Eden,2

require a lot of code for their implementation, and this added
overhead makes the systems slow. Systems with simple kernel
calls, like the V kernel,s Amoeba,rs and Mach,l have little
overhead and run fast. However, the application software then
becomes more complex and slower because extra code is required
to make up for the missing kernel functions. Our goal in
developing the Synthesis distributed operating system is to escape

from this trade-off. We want to provide a simple but highJevel
operating system interface to ease application development and at
the same time offer fast execution.

To achieve our goal, we combine two concepts in Synthesis.
The most important idea is the inclusion of a code synthesizer in
the kernel. The code synthesizer provides efficiency through the
generation of specialized code for frequently-executed kernel calls.
For instance, when the programmer asks the operating system to
open a frle, special routines to read and write that specifrc file are
returned. Through the generation of these frequently-executed
system calls, Synthesis reduces operating system overhead. For
example, typical Synthesis read routines average an execution path
of 20 to 30 machine instructions. In contrast, the 4.3 BSD read
call contains on the order of 500 lines of C code (Appendix B).

The second idea is an orthogonal interface called a synthetic
machine. To a programmer, a synthetic machine presents a

logical multi-processor with its own protected address space. Two
reasons motivated this model of computation: to take advantage
of general-purpose shared-memory multiprocessors, and to
support the growing number of concurrent programs. The
synthetic machine consists of three basic components: synthetic
CPUs to run the program, synthetic memory to store the program

This research is partially supported by the New York State Center for Advanced
Technology, Computer and Information Systems, NYSSTF CAT(87)-5.

12 Calton Pu, Henry Massalin and John Ioannidis

and data, and synthetic I/o units to move data in to and out of
the synthetic machine.

The synthetic machine interface and kernel code synthesizer
are independent ideas that have a synergistic effect. without the
code synthesizer, even a sophisticated implementation of synthetic
machines would be very inefficient. Each high-revel kernel call
would require a large amount of code with a rong execution time.
Instead, the kernel code synthesizer generates specialized routines
to make kernel calls short. without a highJevel interface, more
layers of software would be needed to provide adequate
functionality. The synthetic machine supplies highJevel system
calls to reduce the number of layers and the associated overhead.
In Synthesis, application programmers will enjoy a high-level
system interface with the efficiency of a "lean and mean" kernel.

To test these ideas, we have designed and implemented a
prototype system, with a simplifred kernel code synthesizer that
implements a subset of the synthetic machine interface.
Encouraged by positive results of the prototype, which confrrmed
our expectations on its performance, we are now implementing
the full version of Synthesis.

In section 2, we describe how the code synthesizer generates
and optimizes code in the kernel. In section 3, we summ arize the
synthetic machine interface and illustrate the power of the
interface with an emulation of the UNIX system using synthetic
machines. we outline the current synthesis prototype in section
4, including some measurements to illustrate the efficiency gained
with synthesized code. Section 5 compares synthesis with related
work, and Section 6 concludes with a summary of progress.

2. Kernel Code Synthesizer

Typical operating system kernel routines maintain the system state
in data structures such as linked lists. To perform its function, a
kernel routine finds out the system state by traversing the
appropriate data structures and then takes the corresponding
action. In current operating systems, there are few short cuts to
reach frequently-visited system states, which may require lengthy
data structure traversals.

The Synthesis Kernel r3

The fundamental idea of kernel code synthesis is to capture
frequently visited system states in small chunks of code. Instead
of traversing the data structures, we branch to the synthesized
code directly. In this section, we describe three methods to
synthesize code: Factoring Invariants, Collapsing Layers, and
Executable Data Structures.

2.1 Factoring Invøriants

The factoring ínvariazls method is based on the observation that a
functional restriction is usually easier to calculate than the original
function. Let us consider a general function:

Fw(p|,p2,...,pn)

By factoring out the parameter p/ through a process called
currying,la we can obtain an equivalent composite function:

fFcreaterDftpz, . . .,pn) = Fua(pL,p2, . . .,pn)

Fcreate is a second-order function. Given the parameter pL, ¡tcteate

returns another function, Fsma¡, which is the restriction of F6¡r that
has absorbed the constant argument p.l:

Fr^ou(p2, . . .,pn) c Fn¡s(e|,p2, . . .,pn)

lf Fcreate is independent of global data, then for a given pl ,

Iicreate will always compute the same Fr*o¡ tagãÍdless of global
state. This allows Fcreate(p l) to be evaluated once and the resulting
Fr^o¡ rrscd thereafter. If Fr*o¡¡ is executed m times, generating and
using it pays offwhen

Cost (F"'at"Qt l))+m*Cost (Fsaa¡¡(p2, . . ., pn)) <

m*Cost(F6¡rþ)1, . . .,pn))

As the "factoring invariants" name suggests, this method
resembles the constant folding optimization in compiler code
generation. The analogy is strong, but the difference is also
significant. Constant folding in code generation eliminates static
code. In contrast, Factoring Invariants skips dynamic data
structure traversals in addition to eliminating code.

1,4 Calton Pu, Henry Massalin and John loannidis

As an example, we can use UNIX open as F,create and read as
Fsmau, and the frle name as the constant parameter pI. Constant
global dataare the process id, address ofkernel buffers, and the
device that the file resides on. F *eate consists of many small
procedure templates, each of which knows how to generate code
for a basic operation such as "read disk block" or "process TTy
input." The parameters passed to pcreate determine which of these
procedures are called and in what order. The rrnal Fr^o¡ is created
by filling these templates with addresses of the process table and
device registers.

2.2 Collapsing Layers

The collapsing layers method is based on the observation that in a
layered design, separation between layers is a part of speciûcation,
not implementation. In other words, procedure calls and context
switches between functional layers can be bypassed at execution
time. Let us consider an example from the layered osl model:

Ft4(pl,þ2,...,pn):

Foppt¡ro(P l,Fpr"sent(P2,Frrxior(''' Fdaøhk(pt,) . . .))
Fapptica is a function at the Application layer that calls successive
lower layers to send a message. Through inJine code substitution
of Fpresent in Foro¡¡ro, \¡/e can obtain an equivalent flat function by
eliminating the procedure call from the Application to the
Presentation layer:

F{í}t,r"(P L,P2,Fr"rr¡oo('''))) =
Foppt¡ro(P l,Fprrr"nt(P 2,Frrrsior(''')))

The process to eliminate the procedure call can be embedded
into two second-order functions. F;iïf¿í, returns code equivalent to
Fpresent and suitable for inJine insertion. Fåällf" incorporates that
code to generate F{iit,*.

rio"ff¡1,tp t,F;i1t¿i/az, . . .), r{fj,,,,(p r,p2, . . .))

This technique is analogous to in-line code substitution for
procedure calls in compiler code generation. In addition to the
elimination of procedure calls and maybe context switches, the

The Synthesis Kernel 15

resulting code typically exhibits opportunities for further
optimization, such as Factoring Invariants and elimination of data
copying.

By induction, F$i\f#t can eliminate the procedure call to the
Session layer, and down through all layers. When we execute

Fâi"å!f" to establish a virtual circuit, the F{i;ti,. code used thereafter
to send and receive messages may consist of only sequential code.

The performance gain analysis is similar to the one in section 2.1.

2.3 Executable Data Structures

Tlne executable data structures method is based on the observation
that some data structures are traversed in some preferred order.
Therefore, adding the executable code to the data structures to
make them self-traversing may decrease the traversal overhead.

Let us consider the simplifred example of the active job queue

managed by a round-robin scheduler. Each element in the queue

contains two short sequences of code: stopiob and startioå. The
stopjob saves the registers and branches into the next job's størtjob
routine (in the next element in queue). The startjob restores the
registers, installs the address of its own stopjo,b in the timer
interrupt vector table, and resumes processing.

An interrupt causing a context switch will trigger the current
program's stopjob, which saves the current state and branches
directly into the next job's startjob. Note that the scheduler has

been taken out of the loop. It is the queue itself that does the
context switch, with a critical path on the order of ten machine
instructions. The scheduler intervenes only to insert and delete

elements from the queue.

2.4 Kernel Programmability

In the previous sections, we have described several innovative
programming techniques to gain performance through code

synthesis. Historically, the lambda functions in LISP have created
S-expressions, which are executable in the LISP environment.
However, new problems arose in our use of code synthesis on bare
machine. Here, we summarize briefly the problems we have

encountered and the approaches we have taken to solve them:

16 Calton Pu, Henry Massalin and John Ioannidis

. Inflated kernel size due to code redundancy.

. Structuring of kernel and correctness of its algorithms.

. Protection of synthesized code.

One important concern in Synthesis is kernel size inflation due
to the potential redundancy in the many Fsao¡¡ ãfid plat progtams
generated by the same F"'ot". To solve this problem, Fcreøte

generates either in-line code or subroutine calls using a
mechanism similar to threaded code.a Frequently invoked
functions are expanded inJine into the user's synthetic machine
and executed there. Rarely executed functions are stored in a
common area, shared by all synthetic machines running threaded
code. The decision of when to expand inJine is made by the
programmer writing Fcreate.

Although the size of the code synthesizer depends heavily on
the kinds of facilities supported by the kernel, we hope to
minimize the cost paid for code specialization. For example, the
Synthesis F'fÉf,",,,, calls correspond to the UNIX open system calls,
with similar data structures and algorithms. The main difference
between them resides in the actions taken by the system calls;
open fúls in the UNIX data structures, and Ff,úfrf,",, places machine
op-codes into an array. Therefore, we expect the cost of FfÉâfrr*
to be comparable to that of the UNIX open.

The structure of Synthesis kernel is superficially similar to a
traditional operating system. Kernel calls of the Fcrcate type are
invoked just like a normal system call. However, synthesized
kernel calls createdby pn"o" are invoked in the kernel mode
(usually through trap) through a branch into the synthesized code.
By construction, the synthesized kernel calls perform a subset of
the actions of normal kernel calls. These subsets calculate the
same results and cause the same side effects for each specifrc case.

Synthesized code is protected through memory management.
Each address space has its own page table, and synthesized code is
placed in protected pages, inaccessible to the user program. To
prevent the user program from tricking the kernel into executing
code outside the protected pages, the synthesized routines are
accessed via a jump table in the protected area of the address
space. Since the user program can only specify an index into this
table, the synthesized routines are entered at the proper entry

The Synthesis Kernel t7

points. This protection mechanism is similar to C-lists to prevent
the forgery of capabilities.16

Synthesized routines run in supervisor state. The transition
from user to supervisor state is made via a trap instruction. Thus,
synthesized code can perform privileged operations such as
accessing protected buffer pages. Just before returning control to
the caller, the synthesized code reverts to the previous mode.

3. Synthetic Machines

3.1 Model of Computation

The synthetic machine is the unit of protection. Data in a
synthetic machine are freely shared within it, but are carefully
protected from access by other synthetic machines. Each
synthetic machine runs one program, and has three kinds of
components:

. synthetic CPUs (SCPU) to run the program,

. synthetic memory (SMEM) to store the program and data,

. synthetic IiO units (SIO) to move data into and out from the
synthetic machine.

Each synthetic machine may have any number of SCpUs, SMEMs,
and SIOs. Each SCPU is a thread of control scheduled on a
physical CPU. Each SMEM is a segment of memory, accessible
from all SCPUs of the same synthetic machine.

Examples of SMEM include program segments and shared
memory between synthetic machines. Each SIO provides input or
output to the synthetic machine. Examples of SIO are ordinary
frles, devices, and network communications.

An interesting example of a program running in a synthetic
machine is a multiplexor supporting other synthetic machines to
form a hierarchical structure similar to VM/370.e Child synthetic
machines are scheduled as any other SCPU, but they may "sub-
schedule" their own SCPUs with different scheduling algorithms.
Similarly, their SMEMs are allocated by the parent synthetic
machine. The SIO system calls for the child synthetic machine are
synthesized from the parent's SIO system calls. Careful

Calton Pu, Henry Massalin and John Ioannidisl8

application of the Collapsing Layers method decreases the cost of
indirection and hierarchy in Synthesis.

The Synthesis kernel implements the root synthetic machine
running on the real machine. The scheduler, memory
management, and file system are paft of the multiplexor program
running in the root synthetic machine. Actual user programs run
within child synthetic machines. The conceptual nesting of
synthetic machines does not introduce run-time overhead because
of code synthesis, in particular Collapsing Layers.

Many existing operating systems have entities corresponding
to a synthetic machine. Some examples are the virtual machine in
vM/370 and the UNIX process, which are similar to a synthetic
machine with only one SCPU, or Mach tasksr and Distributed V
teams,T which are similar to multiple synthetic CPUs. Although
these systems share the same von Neumann model of
computation, their kernel interfaces are less orthogonal than the
synthetic machine interface that now we describe.

3.2 Synthetic Machine Interface

For each synthetic machine, the create kernel call is generative,
synthesizing code for the executive kernel calls: termínate,
reconfigure, and query. To destroy a synthetic machine, we call
terminate. During a synthetic machine's lifetime, reconfigure
changes its state, and query reads its state. The synthetic machine
kernel calls are summarized in the second column of Table I (with
the Synthetic Machine heading).

Analogous to synthetic machines, each component must be
created before it can be used. The generative create kernel call
returns the code synthesized for the executive kernel calls, which
include reqd and write in addition to terminate, reconfigure, and
query. The read kernel call moves data into a synthetic machine,
while write moves data out from it. Table 1 contains a partial
summary of the interface to synthetic components. During
execution, if new situations require new code, the synthetic
components may be resynthesized using the create kernel call with
the REUSE option and a modified set of parameters.

The Synthesis Kernel 19

Synthetic
Machine

Synthetic
CPU

Synthetic
Memory

Synthetic
rlo

create
(generative)

creates an
SMACH

creates a thread
of control

allocates
memory

creates ports,
opens frles,

allocates
devices

terminate
(executive)

kills an SMACH
and all its

components
kills a thread

of control

frees
memory kills ports,

closes files

reconfigure
(executive)

resumes/suspen.
an SMACH,

changes
its priority

resumes/suspen.
SCPU, changes

its priority,
wait on event

changes
protection,

initiates
sharing

lseek,
changes

protection

query

(executive)

gets priority,
gers sMAcH id,

gets uid

gets priority,
gets state,

gets SCPU id

gets size,
starting
address

gets device
type, state,

device pointer

read
(executive) unused unused unused

reads ûle,
rec. messages,
and any other

input operation

write
(executive) unused unused unused

writes file,
sends messages,
and any other

output operation

Table 1: Examples of Synthetic Machine Kernel Calls

To illustrate the use of these calls,
\rye give aî Slo_create example,
which opens a file. Given the file
name and arcad/write option, it
returns the code for the executive
calls. You call read to read from
the frle and write to write to it.

To frnd the frle length, current
seek position and other frle attri-
butes, you use query. The
reconrtgure call changes those
attributes. Finally, terminate
closes the frle.

20 Calton Pu, Henry Massalin and John Ioannidis

The synthetic machine interface is object-oriented. Synthetic
machines and synthetic components are encapsulated resources,
and users must ask them to perform the kernel calls defined in
Table 1. Pioneer object-oriented systems such as Hydra,l6 Eden,2
and Argusl0 have achieved performance adequate for a prototype,
while Mach is comparable to BSD UNIX.T We believe that
synthesized code will take the performance of Synthesis one step
ahead of current systems. In Section 4.2, wejustify our
expectations with preliminary measurements.

3.3 Resource Sharing and Protection

To support the shared-memory model of parallel processing, all
SCPUs within a synthetic machine share the same address space
and thus, SMEMs can be used for communication and sharing
between them. Semaphores control the synchronization between
SCPUs. Currently, we are developing a high-level language to
support concurrent programming with synthetic machines.

Efficient sharing between synthetic machines requires more
care, since we enforce protection across their boundaries. SMEM
may be shared between two cooperating synthetic machines. The
original creator of the SMEM sends the appropriate routines
(synthesized for sharing) to its peer synthetic machine through a
protected SIO channel. The peer then uses the routines to map
the SMEM into its own synthetic machine. The access routines
given to the peèr determine the access privileges.

To support the message-passing model of parallel and
distributed processing, SIOs include network traffic. Sharing SIOs
is similar to sharing SMEM, in that the creator of the SIO, e.g. a
port for inter-process communication, also passes the access
routines to the peer. Since the access routines are passed through
the protected SIO channel, no forging is possible. This protection
mechanism is more flexible than that achieved by capabilities with
a constant number of bits, since these routines can implement any
kind of control, for example, access control lists. Furthermore,
the creator may reconfigure or resynthesize the SMEM or SIO in
such a way as to invalidate the earlier access routines, thus
revoking access rights already conceded.

The Synthesis Kernel 2l

4. Work in Progress

4.1 Target Hardware

For single-CPU systems, Synthesis is intended to run on a von
Neumann-style CPU with memory management unit and large
physical memory. The Synthesis prototype runs on an
experimental machine based on a 68020 processor at 20 MHz with
a 16-bit-wide bus.3 For debugging and measurements, the
prototype hardware provides single-step and real-time trace
facilities. In addition, a ROM-based monitor contains an
assembler, a disassembler, and a process manager, with a C-style
interface.rr Other commercially available machines are SUN-3,
Macintosh II, and similar products. With multiple SCpUs in the .

same address space and SIOs to send/receive messages, Synthesis
supports parallel machines of both shared-memory model and
message-passing model.

For efficiency and lack of code synthesis support in high-level
languages, we are using 68020 assembly language to write the first
full version of Synthesis kernel. Our own assembler supports
recursive calls to itself for translating static templates of code to
be synthesized. Portability of application software is very
important due to its volume and decentrulized development.
However, we believe that for the small kernel code efficiency is of
paramount importance and no concessions should be made. We
recognize that writing a Synthesis kernel for a different processor,
say DEC's VAX family, mây be a non-trivial experience. But an
operating system should be defined by its interface and model of
computation, not implementation. Until there is an optimizing
compiler for a high-level language supporting code synthesis (LISP
has too high run-time overhead), we plan to write a different set of
programs to implement Synthesis for each type of hardware. Each
implementation will emphasize performance, use the particular
features of its own hardware, and maintain rigorous compatibility
with the synthetic machine interface.

22 Calton Pu, Henry Massalin, and John Ioannidis

4.2 First Version of Software

The frrst version of Synthesis kernel is being written incrementally
on top of a small kernel.rr At the moment, the Factoring
Invariants method has been used in all input and output devices
(SIO), including terminal I/O and a RAM-based file system. In the
round-robin scheduler, the Executable Data Structures method
provides fast context switch between synthetic machines and
synthetic CPUs.

We are designing the message passing kernel primitives to
support distributed processing. At the core of the highJevel
message passing support is the optimization based on the
Collapsing Layers method.

The frrst program we measured reads one character from the
memory special-device file (equivalent to UNIX /dev/mem). Since
the only significant part of the program is the system call to read a
byte, this program shows the promise of efficiency gained with
synthesized code. A single example does not "prove" our
approach, but it shows how far code synthesis can go.

In C, the program is:

#include <sio/SIO.h>
struct SIO_if *myfrle, *SlO_create0;

char buf[4];
int i;

myûle = SIO_create(FILEACCESS, "/dev/mem", FA_RDONLy);
for(i=100000; i--;)

read(myfile, but l);
SlO_terminate(myfi le) ;

A trace of the generated code running on the prototype is included
in Appendix A.

The second program is similar to the frrst one.

char y[000];
int i;
for(i:10000; i--;)

read(myfile, y, 1000);

The Synthesis Kernel 23

In this example, we have a more common situation where the
overhead of a system call is amortized over a larger amount of
useful work.

The numbers actually measured on the prototype system
appear in the "Measured" column of Table 2. For comparison
purposes, we translated the numbers measured from the prototype
system into corresponding ones for a 68020-based machine
running at 16 MHz, with a 32-bit data bus.' This configuration is
similar to SUN-3 and Hp 9000/320 workstations. The translation
was obtained by hand-counting the CPU cycles for such machines,
and the results appear in the column titled "Corrected." The
same programs were run on the HP 9000/320 workstation with the
HP-UX 5.17, SUN-3/50 \ryith the SUN-OS 3.2, and Masscomp
MC5600 model 56s-02, with the RTU UNIX 3.1 operating system.
The results appear in the same table, columns HP, SUN-3, and
Masscomp.

program Measured Corrected HP SUN-3 Masscomp

Prog. I 1.6 sec [.2 sec 77 sec 48 sec 29 sec

Prog.2 2.0 sec 2.0 sec 15 sec 4.9 sec 4.5 sec

Table 2: Measured Figures and Comparison

4.3 Prototype Experience

Of the three synthetic components, we have found SIO to benefit
the most from synthesized code. Most of the improvement comes
from the elimination of code that check parameters and states,
since these remain the same from call to call. A concrete
example, the read system call in 4.3 BSD, is included in Appendix
B.

The current prototype includes a UNIXJike hierarchical frle
system. In addition, several frle systems will co-exist in Synthesis.
Some file systems will consist of file servers running in synthetic
machines, with well-known SIO ports for local and remote frle
service. Others, like the current hierarchical file system, may be
incorporated into the kernel, accessible through a special type of

24 Calton Pu, Henry Massalin, and John Ioannidis

SIO. Even the file servers return synthesized code to speed up frle
access.

A music synthesizer program has been written to run as an
application on the prototype system. The application consists of
six SCPUs in three stages. First, a note sequencer running in one
SCPU feeds a four-voice sampling synthesizer, one voice per
SCPU. The voices from the second stage go to a summing
program in a sixth SCPU, which sends its output to the digital-to-
analog converter port. The music synthesizer runs in real-time
with a 25 k}Jz sampling rate and has demonstrated the speed of
our I/O operations and context switches.

We are developing a variant of the C language, called
Lambda-C, to support code synthesis in a high-level language.
Lambda-C will serve several purposes. First, we plan to build a
portable version of Synthesis, written in this language. Second,
we believe that code-generating programs make for efficient
applications, not just operating systems. A high-level language
such as Lambda-C will make these methods available to
application programmers. Third, type-checking of synthesized
code is non-trivial, and we need languages to support it.

5. Comparison with Other Systems

The main difference between Synthesis and other operating
systems is in the combination of the synthetic machine interface
and the kernel code synthesizer. No other operating system offers
a high-level interface and the potential to generate efficient code.

UNIX13 has evolved into a large system with Fourth Berkeley
Distributionl2 and AT&T System V. Although the interface
remains approximately the same in the many different variants of
UNIX, the synthetic machine interface is more orthogonal. To the
best of our knowledge, no UNIX system uses a kernel code
synthesizer.

The V kernelT and Amoebals are two examples of small
distributed operating system kernels. They both encourage layers
of software to be written on top of the kernel. Synthesis differs
from both by the highJevel synthetic machine interface, and the
code synthesizer.

The Synthesis Kernel 25

Machr offers an object-oriented interface that is isomorphic to
a specialized synthetic machine. A Mach task corresponds to a
synthetic machine; Mach thread, an SCPU; Mach port, the
network SIO; Mach messages, network SIO read and write; and
Mach virtual memory, an SMem. The synthetic machine uses the
same interface for all I/O activities, and child synthetic machines
may be nested within a parent. As with other systems, Mach does
not use a kernel code synthesizer.

Emerald5'6 is an object-oriented, integrated language and
system. Synthesis lacks the language support in Emerald, in
particular the sophisticated typing system. In compensation,
although Emerald objects may be constructed at run-time (in a
way similar to synthesized code), its kernel calls are not
synthesized.

6. Conclusion

We have combined two ideas in Synthesis. First, a kernel code
synthesizer produces specialized and extremely efficient code for
system calls. Second, an orthogonal, object-oriented, and high-
level interface has been derived from a simple model of
computation. This combination gives Synthesis unique
advantages. The kernel code synthesizer reduces the high-level
interface inefficiency problem. The high-level interface removes
the slowdown due to multiple layers of software built on small
kernels.

Efficiency derived from the code synthesizer has been
demonstrated on a prototype system. An example is a specialized
read system call, which takes about flfteen microseconds. In
comparison, the HP-UX and Masscomp RTU systems running on
similar hardware need a few hundred microseconds for an
equivalent, non-specialized read call. We expect to do even better
in our full system, with very efficient SIO kernel calls including frle
systems, network communications, and other devices.

We are implementing the full version of Synthesis for SUN-3
workstations and a 68020-based machine. After the kernel, we will
design and implement language support, transaction processing,
and real-time support, all taking advantage of synthesized code.

26 Calton Pu, Henry Massalin and John Ioannidis

We believe that the unique combination of simplicity and
efficiency makes Synthesis an excellent system to write and
execute programs.

Acknowledgments

we would like to thank Perry Metzger, Mike schwartz, and Eric
Jul for their comments that improved the presentation of the
paper. Gail Kaiser, Chip Maguire, Rajendra Rai, and Jonathan
Smith helped with a previous version of the paper. Equally
important, we would like to thank Ed Hee and paul Kanevsky for
their varied contributions to the project, and Al Lash for
assistance in procuring laboratory facilities. AMD, Hitachi, Intel,
Motorola, and Mupac contributed with hardware parts for the
project.

The Synthesis Kernel 27

Appendix A:
Trace of Generated Code

003F8000 7061 moveq #000000ó1, d0
005F8002 223C 000F 4240 move.l #000F4240, dz

27---- 003F8008 4841 trap #1

20
6
4

't0

28

000004CE 48Ê,7 4080 [1] movem.l 1a2, a1 , a0, d1>, -(sp)
00000402 2078 0000 [2] move.l SYSVARS, a0

000004Dó E989 t3l tst.t #4, d'l
6 | 000004D8 DOFC FF3C [4] Lea (PR0CTABLE,a0,d1), a0

7 | 000004DC 2468 0004 [5] move.t (FN-READ,a0), a2

5 | 000004E0 43E8 000C Iól tea (SEEKPOINTER,a0), a1

Tsys 000004E4 20ó8 0008 [7I move.t (],IEüBASE,a0), a0
13caL l. 000004E8 4892 t8I jsr <a2)
7 | 00001040 D1D1 I9I add.[(a1), a0

ó I 00001042 1010 t10I move.b (a0), d0
9 | 00001044 5291 t111 addq.L #1, (a1)
7 I 000010A8 44FC 0000 [12] move.w #0, cc

000004E4 4E75 t13l rts
000004EC 4CDF 0702 [14] movem.[(sp)+, <d1, a0, a1, a2>.

5 t 00000AF0 40D7 [15] move.w sr, (a7)
21---- 000004F2 4873 t1ól rte
4 005F800A 5381
9 003F800c 66FA

003F8008.4E41

subq. l. #1 , dz
bne 003F8008
trap #1

Figure 1: Trace of Code Actually Measured

In Figure 1, we show the trace produced by the execution of
the code synthesized for program I (Section 4.2). Instruction t 1l

saves the registers that will be used. Instruction t2: gets the
address of the kernel data space; instructions t3l and t4l adds an
offset to point into the SCPU's frle table. The file table contains
the address of the specialized read routine and its static data. The
specialized read routine address is placed in register aZ t57, aîd
the two pieces of static data is extracted: the frle seek position
tó1, and the base memory address t7:. The specialized routine is
called t8l, and the seek position is added to the base memory
address t9l. The byte is read t1ol, and the seek position is
updated t11:. The "read OK" status code is signalled t12l and
the function returns t13¡. Finally the registers are restored t141,
the status saved t15J, and the system call exits t1ó¡.

28 Calton Pu, Henry Massalin, and John Ioannidis

ctocks addr op-codes instruction

27---- 005F8008 4841 trap 1

28 I 000008D0 4EB0 1DAó 0000 jsr (IsysvARsI,pRocrBL,dl*4)
¡ FFJC

16 I 005F2EDC 1030 05F1 005F move.b (ISEEKPOINTERI), dO

| 2ED8
10 I 003FZEE4 5289 003F 2ED8 addq.t #1, SEEKPOTNTER
7 | 005F2EEA 44FC 0000 move.¡{ #0, cc

10 I 003FF2E8 4875 rrs
5 + 00000808 40D7 move.H sr, (sp)

21---- 00000804 4873 rte

Figure 2: Trace of Expected Code

W'e describe in Figure 2 the optimized code synthesis we
expect to produce in the full version. we will now explain what is
happening in these two versions of the read call, and this will help
illustrate the effect that the full code optimizer will have once it is
implemented. There are several places where the long code is less
than optimal. The seek position and the base address should be
kept with the specialized read function rather than in the file
table. Doing so will eliminate the need for instructions tól and
[7], as well as the save and restore of registers a0 and al When
the full optimizer is implemented, instructions tzl, I3l, t4: and
t8l can be collapsed into one of the 68020 memory indirect
addressing modes. Finally, there is no need to keep both a base
address and a seek pointer. A trivial modification of the seek
routine (not shown here) allows us to use just one pointer. Figure
2 is the result of applying all these optimizations. The execution
trace of a "vanilla" UNIX read is too long to be included here, but
we summarize its actions in Appendix B.

The Synthesis Kernel 29

Appendix B: UNIX Comparison

For comparison purposes, \rye have analyzed 4.3 BSD since its
source was available. First we introduce some terms. A rtle
descriptor is an indirect index into an entry in the system open frle
table. Each such "open frle structure" includes the address of the
frrst inode (which contain the actual data stored in the frle) of that
file and pointers to the set of functions used to manipulate this file
type, which are either the inode or the socket operations.

Now, let us examine what happens when a frle is opened.
First, copen) checks permissions and allocates an open file
structure. Then namei interprets the path name taking care of
special cases like symbolic links and mounted file systems. If the
flle exists, its frrst inode is returned. Otherwise, maknode is called
to create the actual frle. Then, the open file structure is filled out
and the file descriptor leading to it is returned. The length of the
source code for all this is of the order of 1000 lines of C.

Now, let us see how we can read from that open frle. read
massages its arguments and calls rwuio. The "open file structure"
is examined to check for permissions, and validity checks are
performed for the buffers. Then ino_rw (the generic function to
read or write a file), is called indirectly. It does consistency
checking, then calls another function (rwip). In the case of a
regular or a block-device file, special processing is done to take
advantage ofthe block I/O interface, then the block read (bread)
function eventually invokes the device driver to do the actual
operation. For character-device frles, the device driver is invoked
directly. Finally, the system call returns the number of characters
read.

Just going through the code and not counting all the secondary
procedures called, we counted more than 500 lines of C code. A
great deal of that code consists of multiple validity tests, case

statements etc. This is because a large variety of cases has to be
handled by the same piece of code.

30 Calton Pu, Henry Massalin, and John Ioannidis

References

M. Accetta, R. Baron, W. Bolosky, D. Golub, R. Rashid,
A. Tevanian, and M. Young, Mach: a nev/ kernel foundation for
UNIX development, Proceedings of the 1986 USENIX Conference,
pages 93-112, USENIX Association, 1986.

G. T. Almes, A. P. Black, E. D. Lazowska, and J. D. Noe, The Eden
system: a technical review, IEEE Transacîions on Software
Engineering, SE-1 1(1):43-58, January I 985.

James Arleth, A 68010 Multiuser Development System, Master's
thesis, The Cooper Union for the Advancement of Science and Art,
New York City, 1984.

J. R. Bell, Threaded code, Communications of .ecu,16(6):370-372,
June 1973.

5. A. Black, N. Hutchinson, E. Jul, and H. Levy, Object structure in the
Emerald system, Proceedings of the First Annual Conference on
Obj ect-Oriented Programming, Systems, Languages, and Applications,
pages 78-86, ACM, September 1986.

6. A. Black, N. Hutchinson, E. Jul, H. Levy, and L. Carter, Distribution
and abstract types in Emerald, IEEE Transactions on Software
Engineering, SE-12(12): 65-7 6, January I 987.

7. D. Cheriton, The V kernel: a software base for distributed systems,
IEEE Software, l(2):19-43, April 1984.

8. D. Cheriton and W. Zwaenepoel, The Distributed V kernel and its
performance for diskless workstations, Proceedings of the Ninth
Symposium on Operating Systems Principles, pages 129-140,
ACM/SIGOPS, October 1983.

9. H. M. Deitel, An Introduction to Operating Systems, Addison-Wesley
Publishing Company, revised frrst edition, 1984.

10. B. H. Liskov and R. W. Scheifler, Guardians and Actions: linguistic
support for robust, distributed programs, Proceedings of the Ninth
Annual Symposium on Principles of Programming Languages, pages
7-19, January 1982.

11. H. Massalin, A 68010 Multitasking Development System, Master's
thesis, The Cooper Union for the Advancement of Science and Art,
New York City, 1984.

12. J. S. Quarterman, A. Silberschatz, and J. L. Peterson, 4.2BSD and
4.3BSD as examples of the UNIX system, ACM Computing Surveys,
17 (4):379-41 8, December I 985.

l.

2.

J.

4.

The Synthesis Kernel 31

13. D. M. Ritchie and K. Thompson, The UNIX Time-sharing System,
C ommunications of eCu, 7 (7):365-37 5, Jttly 197 4.

14. J. E. Stoy, Denotøtional Semantics: The Scott-Straehey Approach ta
Programrning Language Theory, The MIT Press, 1977

15. A. S. Tanonbaum and S. J. Mullender, The Design of a Capabílîty-
Based Distributud Aperating Systern, Technical Report IR-88,
Department of Mathematics and Computer Science, Vrije
U¡iversiteit Amsterdam, Novornber I 984.

16. W. A. Wutf, E. Cohen, rW. Corwin, A. Joneso R. Iævin, C. Pierson,
and F. Pollack; Hydra: the kernel of a multiprocessing operating
system, Cammunications o:f aCM, I7 (6):337 -345, June 1 974.

Isu,btnitted Sept. 22, 1987; øccepted Nov. 5, 1984

32 Calton Pu, Henry Massalinn and John loannidis

