
Watchdogs - Extending the
UNIX File System

Brian N. Bershad and C. Brian Pinkerton
University of Washington

ABSTRACT: The traditional UNIX file system pro-
vides operations whose semantics are fixed at file
system implementation time. Watchdogs are user-
level processes that can extend the ûle system to
achieve user-defrned file system semantics on a per-
frle basis. Watchdogs provide only those functions
that need special handling. Other operations
proceed through the normal file system, unimpeded
by the existence of watchdogs. We describe a proto-
type implementation of watchdogs that has been
used to build several useful applications. Although
only a prototype, the system has acceptable perfor-
mance.

This work took place while the authors were supported by NSF Grants No. DCR-
8420945 and CCR-86 I I 390. Bershad was also supported by a USENIX Association
fellowship. Computing equipment was provided by Digital Equipment
Corporation's External Research Program.
An earlier version of this paper was presented at the 1988 winter USENIX Technical
Conference (Dallas).

@ Computing Systems, Vol. I . No. 2 . Spring 1988 169

l. Introduction

The traditional UNIX flle system serves as a repository for passive

data objects - frles. It provides facilities for naming, protecting,
storing, and accessing these frles. The file system defines the
semantics in each of these areas, constraining users to the design
decisions of the file system's implementors.

Watchdogs are extensions to the 4.3BSD UNIX file system that
allow users to defrne and implement their own semantics for files.
A watchdog is a user-level program associated with a file or direc-
tory. This program can provide alternative implementations of
the file system's naming, protection, storage and access functions
for that file or directory. The distinguishing characteristics of
watchdogs include:

. the ability for unprivileged user-level programs to serve as

watchdogs,

. added expense only for those functions that are redefined,

. complete transparency to programs accessing associated
files, and

. interprocess communication (IPC) cost commensurate with
that of the other major IPC mechanism - pipes.

Watchdogs can provide users with the types of features gen-

erally made impossible by the requirements that a file system be at
once fast, simple and general. For example, a compaction watch-
dog can transparently compact and uncompact a frle as it is being
written and read. Users can specify their own frle protection poli-
cies by creating a watchdog that redefrnes the open system call.
Intelligent mailboxes, where actions are taken automatically upon

170 Brian N. Bershad and C. Brian Pinkerton

the receipt of new mail, are also possible using watchdogs.
Watchdogs make file versioning possible without burdening either
the operating system (as in VMS [Levy & Eckhouse t9S0]) or the
user (as in SCCS [Rochkind 1975]) with the responsibility of main-
taining past versions. Watchdogs also facilitate the creation of
special-purpose pseudo file systems, where the files that comprise
the frle system need not exist within any single UNIX file system.
To this end, watchdogs have been used as part of the Heterogene-
ous Computer Systems project at the University of Washington
[Black et al. 1988] to allow UNIX machines to import files from
heterogeneous file servers.

2. Watchdog Operation

The central object in the extended frlesystem is the guarded frle. A
guarded flle is an existing file or directory with which a watchdog
has been associated. This watchdog is notifred every time the file
is opened and interacts with the kernel to provide extended
semantics for the frle.

A frle consists of some data and some operations allowing
processes to access that data. In the absence ofwatchdogs the
implementation of any one file's operations are common to all
files in the system. Watchdogs give each frle the chance to provide
its own implementation of procedures that implement the stan-
dard frle system interface (open, close, read, write, etc.). Figure I
diagrams the relationship between processes, the file system and
watchdogs.

V/atchdogs can interact with user-level processes only through
the kernel because their involvement must be transparent to the
user program. The strength of this transparency is demonstrated
in two ways: user programs need not be recompiled to take
advantage of watchdogs, and user programs cannot circumvent the
watchdog system to access flles directly.

When a file guarded by a watchdog is opened, the opener is
suspended and the watchdog is notified of the open by a message
from the kernel. The message contains the arguments to the open
call and the identity of the opener. With an acknowledgment to
the kernel, the watchdog either denies or permits the requested

Watchdogs - Extending the UNIX File System 17l

F-'esysrem ,åäi,iïå:lntertace: etc...

File System
Implementation

Figure 1: Processes, Watchdogs and the File System

access. Should access be granted, the watchdog informs the kernel
of any other operations on the opened rtle that should be guarded

by the watchdog. A watchdog may guard different instances of an

open file in different ways. This allows a single file to have multi-
ple views.

A request for a guarded operation on the opened file is relayed

to the watchdog for processing. Upon being notified of the
request, the watchdog must do one of the following:

1. perform the operation, providing or consuming any data
normally associated with the operation. For example, a
watchdog would satisfy a read request by returning a buffer
of data to the reading process via the kernel. Whether the

file originally opened actually sources or sinks this data

depends on the implementation of the watchdog. To avoid
loops, watchdogs are permitted direct access to the files they
guard.

2. deny the operation, replying to the kernel with the UNIX
error code that should be relayed to the process requesting

the operation.

172 Brian N. Bershad and C. Brian Pinkerton

3. defer the operation, when possible, back to the kernel. In
this case, the watchdog simply acknowledges the operation,
but relies on the kernel.to actually perform it. Deferment is
appropriate when only the occurrence, but not the aotual
function, of an operation deserves attention (such as in
accounting applications).

In all three cases, the process requesting the operation is
unaware that its request is being evaluated by another process.

Since only guarded operations are relayed to the watchdog, others
proceed at their full speed, unimpeded by the existence of the
watchdog.

3. Directory Watchdogs

Watchdogs can be associated with directories as well as with flles.

When a process opens a frle, the process's access rights are

checked for each directory in the file's pathname. If any of these

directories is guarded by a watchdog, the watchdog is asked to
validate the access attempt. This may require that several watch-
dogs be consulted during the resolution of a single pathname. If
the parent directory ofan opened file is guarded, and the file does

not have an explicit watchdog, the parent directory's watchdog is
used to negotiate access to the opened file. This arrangement
allows one watchdog to collectively manage all ûles in a single
directory.

Watchdogs permit a file's contents to be illusory. A process

sees whatever the watchdog chooses to let that process see. Direc-
tories are no exception. A process can open a physically non-
existent file in a physically non-existent directory as long as the
last resolvable component of that file's name has an associated

watchdog capable of handling the deception. Note that in this
case all operations must be guarded, and the watchdog may not
defer any activity back to the kernel.

To demonstrate the behavior of the different styles of watch-
dog attachment, consider the directory tree shown in Figure 2. A
user trying to open /X/rtlel would first be authenticated against
bowser. If access to the directory is granted, fido is notifred of the

Watchdogs - Extending the uNIX File System 173

open attempt and can then inform the kernel if final access is
approved. In the case of /X/fi\e2, bowser is responsible for both
granting access to the file and assuming any of the frle system
operations that it chooses. This is because fi1e2, thou$t
unguarded, lives in a guarded directory. A user trying to open
/X/Z/fi\e3 will only be checked for access when passing through
/X. The frle itself is unguarded. Finally, attempts to access

/Y/fi\e4 or /Y/fi\eí would be handled by the watchdog spot.

4. Related Work

Many other systems have concentrated on moving a piece of the
file system up to the user-level in order to obtain some new func-
tionality. The principal difference between watchdogs and these
efforts is that watchdogs provide a kernel framework for such
extension while the others build a veneer on top of existing kernel
facilities. For example, IBIS [Tichy & Raun 1984] and the New-
castle Connection [Brownbridge et al. 19821 implement remote
file systems at user-level by modifying the standard subroutine
libraries. The Apollo DOMAIN system [Rees et al. 1986] allows
users to defrne typed objects (frles) and operations (procedures) to
manipulate these objects. The system relies on dynamic loading
to bind an executing program to the appropriate implementation
of an object's procedures.

The advantage of these other systems is that the interface and
implementation of the operations are coresident in a single

w.(\-71\ /\
file2 Z file4 fileõ\#frlel#

Figure 2: Watchdogs In The File System Tree

17 4 Brian N. Bershad and C. Brian Pinkerton

process so there is no context switch or IPC overhead. Unfor-
tunately, users are still able to circumvent the extended interface,
accessing files directly using the basic file system calls, or they may
be prevented from accessing their flles unless explicitly relinking
their programs with special libraries. Hence, these systems are
neither secure nor transparent. In contrast, watchdogs purpose-
fully involve the kernel to obtain both security and transparency.

Operating systems that permit the entire file system to reside
outside the kernel, such as Mach [Accetta et al. 1986] or Amoeba
[Tanenbaum & Mullender l98l], are still not easily extendible.
Although not kernel resident, these file systems are non-trivial pro-
grams unlikely to be modified by unsophisticated users. Because
watchdogs are intended to handle isolated frle system functions,
they can be made simple enough so that even a novice program-
mer can master them.

The watchdog approach to directory management subsumes
the unimplemented portal mechanism described in the original
4.2BSD UNIX documentation [Joy et al. 1984] and is similar to
Apollo's extended naming facility in the DOMAIN system.

5. Implementation

The demands of watchdogs are unique among all facilities in the
UNIX operating system. V/atchdogs must be associated with frles;
the kernel must be able to transparently effect communication
between the process using a file and the watchdog controlling it;
there must be some mechanism for the creation and management
of watchdog processes; and finally, the system must be robust
enough so that error conditions arising from the users' and
kernel's reliance on potentially unreliable watchdogs do not crip-
ple the system. The software framework to provide these facilities
has several principal components:

. a new system call to link watchdogs to frles,

¡ â rr€ssÍrge-based kernel/watchdog communication
mechanism, and

. a system-wide chief watchdog process, responsible for start-
ing new watchdogs and managing ones already running.

Wøtchdogs - Extending the UNtx File System 17 5

This section describes the design and implementation of these

components.

5.1 Binding the Watchdog to the File

The watchdog associated with a file is a characteristic of that file,
much like its owner or protection mode. Consequently, the infor-
mation belongs in the flle's inode, where it can be modified only
through secure system calls. The current implementation of
4.3BSD UNIX reserves 20 bytes in the inode for o'future use.'o

Since watchdogs are an experimental system, and since we did not
want to make major changes to the inode subsystem (that is, refor-
mat the disk), those 20 bytes are used to record the name of the
executable image containing the watchdog. This imposes an
annoying restriction on the length of a watchdog's name. This
problem is circumvented by maintaining a public directory,
/wdogs, containing symbolic links to real watchdogs scattered
throughout the system. Access control to this public directory is,
of course, managed by a watchdog.

To bind a watchdog to a file, a program makes the wdlink)
system call:

int wdLink(char *fiIe, char *¡latchdog);

A user program by the same name provides this interface from the
shell. A user must be the file's owner (or root) to link in a watch-
dog. wdlink with a null second argument unlinks any watchdog.
The /s command has been augmented with yet another flag so that
the name of a guarding watchdog can be seen on a directory
listing.

%l.s -l.wd /wdogs
druxrwxrwx 1 root 1024 Decr.Sn"'l-01*oons/wd-msr

Since the name of the watchdog is kept in the frle's inode,
there is no limit to the number of files that may be guarded by a
single watchdog. The implementation does, however, impose a

limit (one) on the number of watchdogs that may guard a file.
Having multiple watchdogs shâre responsibility for a single file

17 6 Brian N. Bershad and C. Brian Pinkerton

might be useful in certain situations, but the added utility did not
seem to warrant the extra complexity.

5.2 Kernel/Watchdog Communication:
Watchdog Message Channels

Typically, communication between processes and the uNIX kernel
is asymmetric and haphazard, relying on a large number of not
very orthogonal system calls and an asynchronous signalling
mechanism. The former allows processes to manipulate kernel
facilities, while the latter provides for very simple message passing
from the kernel to a process. \ü'atchdogs require a richer form of
communication. A process makes a system call requesting that
some operation be performed on a frle. The kernel, acting as a
switch, routes that request either to the frle system, normally, or to
the watchdog, for a guarded operation. In the latter case, the
watchdog eventually responds to the kernel with results to be
relayed back to the user, or with a response instructing the kernel
to take action on the request.

The ability for the kernel and a process to treat one another as
peers in a message-based communication environment exists in
many other operating systems [Accetta et al. 19g6, Rashid &
Robertson 1981, Baskett et al. 19771, but is not present in 4.3BSD
UNIX. There were three possible ways to fill this void: imple-
ment general message passing between processes and the kernel,
exploit an existing communication mechanism, or construct a
message system speciûcally tailored for watchdogs.

The frrst approach would have been to implement a com-
pletely general message passing mechanism, similar to those
present in other systems, replacing or augmenting the existing pro-
cedure call interface with a message-based one. Because this
would involve fundamental changes to the system, because we
wished to retain compatibility with the original 4.3BSD system,
and because the implications of such a major redesign effort were
beyond the requirements of the project, this choice was rejected.

A second approach would have been to use existing socket
code so that the kernel and a watchdog would communicate via
standard UNIX sockets. Concern for performance kept us from

It'atchdogs - Extending the UNrX File System I77

adopting this approach. The characteristics of kernel/watchdog

communication did not appear to require the generality provided

by sockets.
The third choice, and the one taken, was to build a special-

purpose message passing system. With this, optimizing for the

anticipated message characteristics was possible. A watchdog

communicates with the kernel via a Watchdog Message Channel
(WMC). There is one V/MC per watchdog. A WMC is created

with the createwmc) call and referenced by a standard UNIX frle
descriptor using the operations read, write, close, etc. A new ker-

nel descriptor type, DTYPE-WDCHANNEL, exists to support these

operations on the channel. The kernel sends messages to the

watchdog on a WMC to relay user requests and data for guarded

operations, and the watchdog uses its channel to respond to those

requests.
Messages contain a type field, a session identifier and the mes-

sage contents. The session identifrer permits the kernel and the

watchdog to multiplex the activity of multiple files over a

watchdog's single wMC. When a frle is frrst opened, the kernel

assigns to it the session identifier used in the open message. All
subsequent messages between the kernel and watchdog referencing

that open frle contain the same identifler.
Messages may be sent by either the kernel or the watchdog.

For example, the kernel can send to the watchdog a message of
fype Read-Request. The message includes a flle's session

identifrer, current offset, and number of bytes to read. The watch-

dog may choose to respond with a simple message in the form of
an acknowledgment, denying or deferring the operation, or it may

respond with the actual data to be returned to the reading process.

A watchdog has dynamic control over where and how its
address space is utilized on behalf of processes accessing files. In
the case of a Write_Request, a watchdog's positive, non-deferring

acknowledgment includes a pointer to where the written data

should be placed in the watchdog's address space. For example, a

process may write 40k bytes to a frle in a single operation, but the

watchdog may only be equipped to handle 4k bytes at a time.
This restriction is enforced and the process's write system call

always returns the number of bytes transferred into the watchdog's

address space. Programs that do not properly check the return

178 Brian N. Bershad and C. Brian Pinkerton

value of the write call, instead relying on the fact that the file sys-
tem may impose no limit on the length of a written buffer, are
technically in error and may be so exposed if they access a file
guarded by a buffer-limited watchdog.

The structures required to associate a process with a watchdog
during an open flle session are illustrated in Figure 3. The solid
lines indicate links needed to forward a process's access request
on a guarded file to the actual watchdog, while the dashed lines
reflect those needed to relay a watchdogos response back to the
process. The user's per-process open flle table points into the
system-wide open frle table. Watched entries in the system's open
flle table include a pointer into the watchdog session table. Each
session table entry references the kernel's end of the WMC, where
unread messages are kept. The WMC entry also contains a pointer
to the process representing the watchdog. The watchdog's WMC
indirectly references the entry in the WMC table through the
system's open file table. A message arriving from the watchdog
includes the session identifier, which maps into the session table.
Each session table entry has a back-pointer to the appropriate
entry in the system's open file table, allowing watchdog responses
to be returned to the correct process.

Figure 3: Watchdog Data Paths

Watchdogs - Extending the UNIX File System 179

5.3 Managing Watchdog Processes

The kernel assumes a minimal role in the management of watch-
dog processes. It must be able to map from a watchdog's name

onto that watchdog's wMC. This is done by remembering the
device and inode number of a watchdog as it requests a WMC.

Later, when a guarded frle is opened, the device and inode
number of the watchdog named in the opened file's inode are

compared against those of the currently active WMCs. If a match
is found, the watchdog is running and a new session is begun.

Otherwise, the watchdog is not yet running and must be started.

Since a large part of the watchdog framework includes a kernel

to process communication mechanism, this structure is used to
allow a normal user-level process to manage all watchdogs, much

líke ínetd manages network daemons. This manager process,

known as the chief watchdog, communicates with the kernel
through a normal wMC, having first announced itself as the chief
by sending an l-am-chie/message on the channel. On the opening
of a guarded file for which no watchdog is currently running, the
kernel sends a message to the chief indicating that a new watch-

dog should be created. The chief execs the requested watchdog
which then opens its own wMC. The watchdog's frrst read on its
new WMC returns the message describing the outstanding open

request. If the chief is unable to start the watchdog, or if the
watchdog terminates abnormally, the chief notifles the kernel of
the failure, returning to it the UNIX error code that should be

relayed back to the opening process. Once running, a watchdog

should not terminate until it has no active sessions. If a watchdog

dies in the middle of a frle session, processes referencing the file
will, on their next access attempt, receive either an EOF or an

error depending on the type of access method (i.e. read returns
EOF, while fstat re1uirns an error).

Creating a new watchdog process on every open is expensive,

at least two orders of magnitude slower than utilizing an existing
watchdog. In situations where a watchdog is frequently used, the

overhead ofinvolving the chiefand constructing a new process

each time is unacceptable. By monitoring watchdog creation
requests from the kernel, the chief may allow a heavily used

watchdog to continue to run even though it might not be currently

180 Brian N. Bershad and C. Brian Pinkerton

active. The chiels benevolence is based on the expectation that a
frequently opened file is likely to be opened again in the near
future. Thus, when the watchdog is required again there is no
need to start a new process or even involve the chief.

Although the chief is normally responsible for unleashing most
watchdogs, there is no restriction that prevents users from running
them directly. Users can debug watchdogs by running them from
within the shell or their favorite debugger. This is the normal
mode for watchdog development.

5.4 Writing Watchdogs

The internal structure of a watchdog is similar to a server in a
networked environment. The watchdog first creates a rendezvous
port (WMC), and then listens patiently on that port awaiting
requests. The following code fragment highlights the structure of
a watchdog's implementation.

struct wdmsg wdmsg;
i nt cc;
intwmc = createwmc();
for (;i) t

cc = read(wmc, &wdmsg, sizeof(struct wdmsg));
if (cc != sizeof(struct wdmsg)) {

if (cc (0)
perron(rrreadrt), exit(-1) ;

etse
abort(); /* should leVen happen */

)
switch (wdmsg.wm-type) {
CASE b¡DMSG-OPENREQ:

do-open(wmc, &wdmsg); break; /* open */
CASE I.IDI.ISG-READREQ :

do-read(wmc, &wdmsg); break; /* read */
CASE bJDI,|SG-STATREQ :

do-stat(wmc, &wdmsg); break; /* stat */
case I.|DMSG_CLoSEREA:

do-ctose(wmc, &wdmsg);break; /* ctose */
/* other guarded operations go here */
defautt: /* shoutd Heven happen */

abort();
)

)

Watchdogs - Extending the UNIX Fite System 181

Each of the functions in the switch takes care of one file operation
and then responds back via the WMC with an acknowledgment
directing the kernel to take an appropriate action on behalfofthe
process wishing to access the file.

A watchdog emulating the special file /dev/null trivially imple-
ments the read and write functions as:

do-read(wmc, wdmsgp)
i nt wmc;
struct wdmsg* wdmsgp;

t
/* cast message components into something short * /
struct r.¡dru¡msg *wi = /* read/write msg */

(struct wdrwmsg*) (&wdmsgp->w-un.wi-rw) ;
struct wdackmsg *t'la = /* ack msg */

(struct wdackmsg*) (&wdmsgp->w-un.wa-ack) ;
struct wdrr wdrr; /* req/repty ack inctuding data */
interror = 0;
char maxbuf IBUFsIz] ;

/* set return session id */
wdrr.wdrr-sid = wdmsgp-)wm-sid;
if (wdmsgp->brm-type == TDMSG-READREQ){

¡* ¡lsy/nutI read returns 0 bytes */
wdrr.wdrr-ten = 0;
wdrr.wdrr-data = (char*)NULL;
l** acknowtedge with data to return to process
r./

/* Put Data * /
error = ioct [(wmc, lilDIocPDATA, &wdrr) ;

1 else {
/* beware programs that don't

check return vaIues! */
wdrr.wdrr-[en = MAx(r,li->hri-size, BuFsIz) ;
wdrr,wdrr-data = maxbuf ;
/t* ack with reference to where data shoutd be put
*l

/* Get Data */
error = ioct[(wmc, tlDIocGDATR, &wdrr);

)
if (error) {

/* Data transf er f ai Led. Must ack expI icitl.y *7
wdnsgp-)um-type = I.,DMSG-}JDACKi

wa->Ha-status = error i l* returned to user */

182 Brian N. Bershad and C. Brian Pinkerton

t.lrite(wmc, hrdmsgp, sizeof(struct wdnsg));

)
do-write(wmc, wdmsgp)

i nt wmc;
struct !{dmsg:t wdmsgP;

t
do-read(wmc, wdmsgp) ;

)

6. Applications

This section describes several of the watchdogs that have been
implemented since the system became operational. In general,
these watchdogs extend the frle system by either providing new
functions not previously possible or replacing existing functions.

wdacl
A flle access controller that arbitrates over all opens of a frle
by verifying that the opener is mentioned in an access con-
trol list associated with the file being opened. Since each
open request is accompanied by the name of the flle to be
opened, a single watchdog can be used to control access to
many files.

wdcompact
An on-the-fly compaction watchdog that allows files to be
stored on the disk in compacted form, but viewed normally.
Without watchdogs, this could only be done by manually
inserting a pipe element to do the (un)compaction between
every read and write.

wdbiff
A biffwatchdog that watches.a user's mailbox for new mail
and notifres the owner of its arrival. Without watchdogs,
btfftng can only be done through the combination of several
ad-hoc mechanisms.

wdview
A directory watchdog that presents different views of the
same directory depending on the user doing the query.

Watchdogs - Extending the UNrx File System 183

wdhfs
A remote file system watchdog that guards a directory'and
provides heterogeneous remote access to frles. Pathnames
mentioning the guarded directory are resolved to the direc-
tory and then passed to the watchdog which remotely
accesses the file. Information on the location of the remote
frle is obtained from a frle similar to /etc/mtaå. The remote
frle system is part of the HCS project at the University of
Washington.

wddate
A simple date watchdog that allows users to read the current
time and date from a file. The file itself contains no data;
all bytes emanate from a process reading the system clock.

The last example demonstrates that watchdogs can be used to
provide a single, very simple, interface to serve many system func-
tions. In this example, the UNIX date command has been elim-
inated.

7. Performance

For many users, the question of whether or not to use watchdogs
will be decided by their performance. Although individual watch-
dogs have costs related to their complexity, all guarded operations
impose a minimum overhead. This overhead is due to the cost of
message passing and context switching incurred on each guarded

operation. This section summarizes these basic costs for the most
common file system operations: read, write and open.

Table I summarizes the read and write costs in terms of the
average elapsed time to perform a single operation in the context
of accessing alarge file. First, we measured the cost of deferred
operations where the only overhead is communication to and
from the watchdog. From the standpoint of the process accessing

the file, a deferred read or write adds about ten percent to the
operation's elapsed time. Second, we looked at the time required
for a process to read and write a guarded file when the watchdog

does the actual reads and writes on behalf of that process. Two
sets of flgures are given for the reads: one with file read-ahead

184 Brian N. Bershad and C. Brian Pinkerton

unguarded guarded guarded guarded
file deferred not deferred watchdog cache

read lK
(read-ahead)

read lK

5.21

6.85

5.38

8.96

5.58 2.88

2.88

2.92

9.13
(no read-ahead)

write lK 8.09 8.17 8.30

Table l: Average Elapsed Time for read and write (milliseconds)

enabled and the other without. The reason that the elapsed time
for guarded operations increases so much without read-ahead is
that the watchdog processing for any one buffer can not be over-
lapped with the read-ahead of the next. Lastly, to mask the over-
head of the disk access, we measured the cost of issuing a guarded
read (or write) and having the watchdog return the data from an
in-core buffer (essentially a cached file). The cost here is
significantly less than any call involving the disk, which shows
that watchdogs are a viable means for caching frequentry accessed
frles and that the overhead ofthe watchdog need not be excessive.

Table 2 compares three different types of open: a normal,
unguarded open, a guarded open where the watchdog is already
running, and a guarded open where the watchdog must be created.

unguarded
frle

guarded file guarded tle
(alive watchdog) (dead watchdog)

open (absolute name) 3.07 9.59
open (relative name) 1.40 21.36

Table 2: Average Elapsed Time to Open a File (milliseconds)

creating a new watchdog process is costly because it involves a
forkQ and exec) by the chief watchdog. Such expense is accept-
able for watchdogs that are not frequently used, but cannot be
tolerated for those that may be invoked several times every
second. The latter may be kept alive even during short periods of
inactivity so that they can be referenced quickly. In the best case,
opens involving these watchdogs are only three times slower than
their unguarded counterparts. The worst case occurs when a frle

"

named by a relative path is opened and the kernel must determine
the absolute pathname of the frle for the watchdog. Since the

108.0
tl7.o

Wøtchdogs - Extending the UNrx File System 185

name of the current working directory is not kept in the kernel'

determining the full pathname of the file is expensive.

In situations where a file's contents must always be filtered
before their examination (such as in compressed or encrypted

files), watchdogs serve as a natural replacement for pipes. To

compare the overhead of watchdogs to that of pipes, lve con-

ducted two experiments with pipes. The results are summarized
in Table 3 (again, averaged over a large number of reads). In the

first test, we sent alarge amount of data through a pipe to meas-

ure the cost of reading one kilobyte from a sending process. This

cost is very close to the cost of reading data from a cached file and

suggests that watchdogs have data transfer times similar to pipes.

To test this hypothesis in a more realistic setting, we had a pro-

cess read data from a file and write it to a pipe. We measured the

time required for each read on the pipe and compared it to the

time required to do a non-deferred read from a guarded file.

Again we found that watchdogs have speed similar to that of
pipes.

data cached data from file

6.05
5.35

rabre 3 :
fJ,"li'ftiå:äffi 'ffi ;: ft ä*:tåå:l'

Watchdogs'performance can be improved in many ways.

Opens can be enhanced by providing a more efficient determina-

tion of a file's full pathname. Several parts of the system rely on

linear scans of kernel data structures to associate watchdogs with
currently open files. These scans could be eliminated by using

hash tables. Although the system is designed to allow page remap-

ping between user and kernel space for transferring large blocks of
data, this facility is currently unimplemented. Data is simply
copied byte for byte between user and kernel. For reads and

writes going through watchdogs to actual files, this means that any

single byte of data will have to be copied across kernel boundaries

three times, twice more than for normal file accesses, and once

more than for pipes.

read lK, pipe

read lK, guarded

2.77
2.88

186 Brian N. Bershad and C. Brian Pinkerton

8. Conclusions

watchdogs allow arbitrary redefrnition of file system operations.
Because watchdogs are implemented as user-level processes and
interact with the kernel, they provide a means to transparentry
and securely change frle system semantics. These qualities anow
watchdogs to simplify the user's perspective of the file system by
binding a frle's contents to its operations. For example, the
current date may be read directly from a file, the line printer dae-
mon (/usr/libnpô may guard /dev/printer to arbitrate access to the
hardware, and a mailbox may automatically biffits owner upon
receipt of new mail. we have demonstrated that watchdogs can
incur low system overhead and exhibit good performance.
Nevertheless, we expect that performance can be further improved
as the system matures. we believe that the main concept demon-
strated by watchdogs, namely the ability to easily redefine single
operating system functions (as opposed to entire subsystems) at
the user level, is an important one and should be included in
modern operating systems.

Acknowledgements

We'd like to thank Ed Lazowska, Hank Levy, David Notkin and
Ellen Ratajak for their helpful comments on earlier drafts of this
paper.

References

M. Accetta, R. Baron, W. Bolosky, D. Golub, R. Rashid, A. Tevanian,
and M. Young, Mach: A New Kernel Foundation For TINIX
Development, Proceedings of the 19g6 Summer USENIX Technical
Conference, pages 93-l1t (June 1986).

F. Baskett, J. Howard, and J. Montague, Task Communication in
DEMOS, Proceedings of the 6th ACM Symposium on Operating Sys_
tem Principles 14,5, pages 23-31 (November 1977).

A. P. Black, E. D. Lazowska, H. M. Levy, D. Notkin, J. Sanislo, and J.
Zahorjan, Interconnecting Heterogeneous Computer Systems, To
appear in Communications of the ACM, University of Washington,
Dept. of Computer Science (March 1988).

Watchdogs - Extending the UNrX File System I87

A. Brownbridge, A. Marshall, and A. Randell, The Newcastle connection

- or UNIXes of the World Unite, Software - Practice and Experience

12(2) pages ll47-1162 (December 1982).

W. Joy, E. Cooper, R. Fabry, S. Leffler, K. McKusick, and D. Mosher,
4.2BSD UNIX System Manual, 4'2BSD UNIX Progammer's Manual
(July lesa).

H. M. Levy and R. H. Eckhotse, Computer Programming and Architec'

ture: The VAX-L1, Digital Press, Bedford, Mass (1980).

R. F. Rashid and G. G. Robertson, Accent: A Communication oriented
Network Operating System, Proceedings of the \th ACM Symposium

on Operating System Principles, pages 64-75 (December l98l).

J. Rees, E. Shienbrood, and P. Levine, An Extensible I/O System,

Proceedings of the 1956 Summer USENIX Technical Conference, pages

tt4-125 (June 1986).

M. Rochkind, The Source code control System, IEEE Transactions on

Software Engineering SE-1,4, (December I 975).

A. S. Tanenbaum and S. J. Mullender, An Overview Of The Amoeba
Distributed Operating System, Operating Systems Review 15, pages

5l-6a (July 1981).

W. F. Tichy andZ. Ruan, Towards a Distributed File System, Proceed-

ings of the 1984 Summer USENIX Technical Conference, pages 87-97

(June 198a).

lsubmitted Feb. 22, 1988; accepted March 14' 19881

t 88 Brian N. Bershad and C. Brian Pinkerton

