
112	 ; LO G I N : 	VO L . 	35, 	N O. 	6

4th USENIX Workshop on Offensive Technologies
(WOOT ’10)

August 9, 2010
Washington, DC

vulner abilit y analysis

No reports are available for this session, which included the
following paper and invited talks:

■■ All You Ever Wanted to Know About Dynamic Taint Analy-
sis and Forward Symbolic Execution (but Might Have Been
Afraid to Ask) (Invited Talk)
Edward J. Schwartz, Thanassis Avgerinos, and David Brumley,
Carnegie Mellon University

■■ Zero-sized Heap Allocations Vulnerability Analysis
Julien Vanegue, Microsoft Security Engineering Center

■■ Beyond Heuristics: Learning to Classify Vulnerabilities
and Predict Exploits (Invited Talk)
Mehran Bozorgi, Lawrence K. Saul, Stefan Savage, and Geoffrey
M. Voelker, University of California, San Diego

cryp togr aphy, etc .

Summarized by Adam J. Aviv (aviv@cis.upenn.edu)

■■ Recovering Windows Secrets and EFS Certificates Offline
Elie Burzstein, Stanford University; Jean Michel Picod, EADS

Elie Burzstein discussed the Windows Data Protection API
(DPAPI), a “black box” for encrypting and decrypting data
that is used in many different parts of the Windows operat-
ing system, including the Encrypted File Systems (EFS), as
well as a variety of other programs (Skype, Explorer, WiFi,
etc.). Burzstein provided key insights into mounting the
Windows EFS on Linux. This work also shows how one
may perform a key escrow attack on the DPAPI to achieve
this goal.

In the first part of the presentation, Burzstein introduced
the DPAPI in great detail. Moving quickly, the talk cov-
ered the ins and outs of key management and the various
structures that store and implement encryption. Some of
the more important points are that the keys used by the
DPAPI are seeded with a hash of the user’s password, and
keys renew every three months (and when the password
changes).

The current keys are stored in the %APPDATA%, a Win-
dows protected file, inaccessible by outside applications or
operating systems. Still, Windows must know which block
is encrypted with which key, and to do that, timestamps
are used. This is where things get interesting. Burzstein et
al. noticed that the timestamps can be altered to prevent
key renewal. However, there is still the pesky password-
changing problem, but the master key describes the current
password hash. A password chain is used, so by using the
current password it can decrypt all previous encrypted
blobs.

Burzstein could not demo his tool because he was present-
ing from a Mac. He did outline some goals: to make this
work on Windows 7 and to look at retrieving the password
from non-volatile memory. “Questions?” he asked in conclu-
sion. “The best part of the talk is I never get questions.”

■■ Crawling BitTorrent DHTs for Fun and Profit
Scott Wolchok and J. Alex Halderman, University of Michigan

In a fascinating presentation, Scott Wolchok discussed
crawling the BitTorrent DHT (for fun and profit). This work
is closely related to Wolchok’s widely publicized work on
Un-Vanish (NDSS ’10) where he crawled the Vuze distribut-
ed hash table (DHT) to defeat Vanish (Sec ’09). In this work,
Wolchok concerned himself with the primary purpose of
the Vuze DHT: to catalog BitTorrent (BT) meta-information,
and what can be done with information collected from
crawling this data.

Wolchok began his talk by noting that torrent-tracking Web
sites are under legal attack because of their centralized na-
ture. As a result, distributed and decentralized tracking ser-
vices are quickly becoming the norm. Such services make
use of DHTs, and the ability to crawl the DHT to collect
torrent information could be seen as a defense against legal
attack. Although a torrent site may be taken down, a single,
overnight crawl of the DHT provides enough information to
rebuild the BT site. Conversely, the same crawl also reveals
a large amount of information about the users who down-
load torrents, which may be used to file lawsuits—fun and
profit.

Perhaps the most interesting part of the talk was when
Wolchok presented the results of his crawls with respect to
the variety of different torrents seen: “Everything in the top
seven infringes copyright. It isn’t used to download Linux
ISOs.” The top 1,000 torrents were also “not obviously”
copyright neutral, and most torrents tended to be fairly
recent TV and movies. Wolchok bemoaned that he had to
stop the crawl prior to the Lost finale (having only done a
single crawl, resulting in an estimated 20% coverage). The
most recent Lost torrent was one of those popular torrents
and its activity seemed to spike on Friday night and Sat-
urday morning. He offered one explanation: “Pirates have
jobs too,” and probably don’t get around to downloading the
show until the end of the work week.

■■ Practical Padding Oracle Attacks
Juliano Rizzo, Netifera; Thai Duong, VNSECURITY

Juliano Rizzo demonstrated how he and his co-author,
Thai Duong, performed online attacks by altering the CBC
padding in captured blocks of ciphertext (first presented by
Vaudenay at Eurocrypt 2002). The key observation of Rizzo
and Duong is recognizing that padding oracles are every-
where on the Internet, which allows an attacker to crack
encrypted cookies, CAPTCHAs, and much other encrypted
content. By slightly altering the padding bits of the encrypt-
ed blocks sent to the oracle, a response of either “Invalid”
or “Valid” is enough to decrypt one byte of the ciphertext.

; LO G I N : 	D ECEM B E R	201 0	 CO N FE RE N CE	RE P O RT S	 113

Repeating the process, the message is incrementally de-
crypted, back to front.

The most exciting part of the presentation was when Rizzo
played some videos of his padding oracle in action. In the
first demo, an encrypted cookie from a JavaServer Faces cli-
ent was incrementally decrypted. In the second demo, Rizzo
showed how this attack can be used to break a CAPTCHA.
The text of the CAPTCHA entry is encrypted with the
CAPTCHA image, and the padding oracle is the CAPTCHA
server. Slight alterations of the padding region and a useful
error message from the server (“PADDING ERROR”) are
more than sufficient to decrypt the CAPTCHA text. Again,
the video demo presented was very cool, and slowly but
surely the text of the CAPTCHA was revealed within the
tool’s display region. (The video included a text flash “10
minutes later,” which got chuckles from the audience.)

the web and sm artphones

Summarized by Scott Wolchok (swolchok@umich.edu)

■■ Busting Frame Busting: A Study of Clickjacking
 Vulnerabilities on Popular Sites (Invited Talk)
Gustav Rydstedt, Elie Bursztein, and Dan Boneh, Stanford
 University; Collin Jackson, Carnegie Mellon University

Collin Jackson opened by explaining that frame busting
refers to JavaScript code that Web sites use to prevent them-
selves from being framed, and that Web sites typically don’t
do frame busting very well. He explained that frame busting
code typically consists of two parts: a conditional statement
intended to detect framing, and a counteraction intended
to remove the framing or disable the page. Frame bust-
ing is intended to defend against several attacks, including
clickjacking, where attackers overlay a benign-looking page
intended to trick a user into performing some action on a
victim page (e.g., deleting a Twitter account), and attacks on
per-site images attempting to authenticate a site to the user
as a phishing defense, which can be defeated by framing the
victim site’s login page to display the image.

Jackson then presented the results of the authors’ survey of
frame busting code on the top 500 Web sites according to
Alexa. They found that frame busting was very common on
the top 10 Web sites (60%), but not so common on the top
100 (37%) and top 500 Web sites (14%). They also observed
that frame busting code was very diverse, with at least 10
different conditional statements and even more different
counteractions, and Jackson claimed that every site in the
top 500 had broken frame busting code. He elaborated on
problems with specific sites, most of which revolved around
attempts to allow framing from certain referrers.

Next, Jackson covered a variety of other attacks on frame
busting code. Location clobbering attacks browser bugs
that allow a framing site to mask top.location to prevent
the framed side from detecting framing. The attacker can
also “ask nicely” in JavaScript to get the user to cancel the

framed page’s redirection counter-action and can cancel the
navigation programmatically by overloading the browser
with 204 No Content responses. Several browsers allow
disabling JavaScript in an iframe, and reflected XSS filters
in IE8 and Chrome can be abused to remove frame busting
scripts as well.

Jackson closed by discussing mitigations to the frame
busting problems he presented. A pair of HTTP headers,
X-Frame-Options and Content Security Policy, allow sites to
control framing at the HTTP level, although they have trad-
eoffs in terms of complexity and flexibility. The authors put
forward a new JavaScript frame busting defense that “fails
safe” by rendering the document invisible if it is unable to
frame bust.

Rik Farrow asked where the defense code could be found,
and Jackson replied that it is located at http://seclab.stan-
ford.edu/websec/framebusting/. Someone asked Jackson to
clarify whether JavaScript had to be mandated to protect
against frame busting attacks. Jackson stated that this is
somewhat true and very controversial, as many people
think that JavaScript is evil and a security problem. Jackson
said that he is skeptical of solutions that try to lock down
Web features, although he recognizes that some people may
want to. He stated that the X-Frame-Options header works
with JavaScript disabled. Someone else asked how to protect
a user like his mother, who would click everywhere on the
invisible document generated by the authors’ frame busting
code in an attempt to fix the “problem.” Jackson responded
that the code sets the display:none CSS property on the
body element, which prevents click events.

■■ Smudge Attacks on Smartphone Touch Screens
Adam J. Aviv, Katherine Gibson, Evan Mossop, Matt Blaze, and
Jonathan M. Smith, University of Pennsylvania

Adam Aviv opened by summarizing the authors’ work:
“I took a lot of pictures of smartphones with smudges on
them.” He presented several examples of forensic informa-
tion leakage, including taking a rubbing from a pad of
notepaper, wear patterns and residual heat on keypads,
and residual fingerprints on a touchscreen. He explained
that the authors’ work focused on smudges left on An-
droid phone touchscreens after performing the password
wipe sequence to unlock the phone. In the wipe sequence,
the phone shows a grid of nine points, and the user must
trace a line through several of them. Points can neither be
skipped nor reused. Aviv observed that the pattern space
is fairly small; it consists of 389,112 patterns, and a similar
PIN entry space (4–9 digits, used once) contains over 1 mil-
lion passwords.

Next, Aviv explained the experiments that the authors
performed. They considered one particular swipe pattern
touching all nine dots and selected to provide several differ-
ent directions. The swiped phones were photographed while
varying the lens angle and the vertical angle to the phone.
The photographs were classified on a scale from 0 to 4,

114	 ; LO G I N : 	VO L . 	35, 	N O. 	6

where 4 was fully observable and 1–3 were partially observ-
able with the loss of one or more directions.

The first experiment dealt with determining the angles and
lightings that provided for ideal collection of smudges and
used four smudge configurations: an HTC G1 with “normal”
touches, “light” touches, touches with facial contact, and
a Nexus One with “normal” touches. After Aviv showed a
photo of the four experimental configurations, Rik Farrow
interrupted to ask about the classification of each swipe
pattern; Aviv responded that everything in the photo was a
4, but the projector was not rendering the photo faithfully.
He also mentioned that the classifier is allowed to change
the contrast of the photo in software. The experiment found
that putting the phone up to the face caused a large smudge,
and then entering the pattern cleaned the phone. Thus, fa-
cial contact yielded the highest retrieval rate, whereas light
touches had the worst, although 37% of such photos gave at
least some information about the pattern. Aviv displayed a
photo illustrating that directionality of the swipe is visible
because of swipe overlays at the corners; one can see which
direction is on top.

The second experiment dealt with two types of simulated
application usage prior to the swipe: dots due to presses of
numbers or other taps, and streaks due to swipes. The worst
case was when the phone is touched everywhere. Aviv also
pointed out that recovery is much better when the pattern
is entered after application usage instead of before, as one
might expect. The third experiment dealt with two inciden-
tal clothing contact situations, both of which degraded or
lost directionality information while not completely occlud-
ing the swipe.

Aviv closed by considering further work, including research
into the human tendency to choose passwords with low
entropy. He observed that because of the small password
space, a small amount of partial information, such as a
dictionary and a smudge, might be able to reduce the space
below the 20-guess threshold. For example, removing pass-
words that include a hard-to-enter 30-degree stroke (e.g.,
from 1 to 8 in the standard 3x3 telephone keypad layout)
reduces the pattern space by 50%.

Aviv’s presentation inspired many questions. Someone
asked why both the Nexus One and the G1 were included,
to which Aviv responded that one screen is glass and the
other is plastic. A second audience member said that it
seems obvious that smudges might leave password swipe
information, and asked whether there are any other phone
applications where users might leave information. Aviv
responded that the iPhone PIN is somewhat similar. He
admitted that the iPhone on-screen keyboard is too small
for smudge attacks, but speculated that iPads might be
vulnerable. He closed by saying that it is difficult to deter-
mine the order of keystrokes from a screen full of on-screen
keyboard smudges, unlike residual hot spots on a keypad.
A third questioner asked whether people post pictures of

their Android phones on Flickr. Aviv responded that one
person posted a picture of a phone on a blog and asked if
his pattern was discernible, and added a disclaimer that the
authors were not the first to think of this attack, but they
were the first to perform a systematic study. The questioner
clarified that he was interested in accidental phone posts,
to which Aviv replied that not many people take pictures
of their phones. A fourth questioner asked how thoroughly
phones had to be wiped to remove smudges. Aviv’s reply
was that it is fairly hard and that he found that two wipes
were often necessary, and clarified that the focus of the
study was whether a random picture would be able to view
smudges.

Another audience member asked whether application de-
velopers could require the user to enter a random sequence
to generate a random smudge as a mitigation. Aviv replied
that such a solution might work, but it’s putting the burden
of fixing a bad security design on the user. He also said
that the paper’s reviewers asked for solutions to the prob-
lem, but he did not have any good solutions. He suggested
numbering the dots and changing their order so as to
change the pattern, but that would add 30-degree swipes.
Another audience member suggested using a smaller keypad
and shifting its location on the screen, but Aviv said that
refocusing the camera would counter that defense. Scott
Wolchok asked about the extent to which guessing the
password is the easiest way to gain access to a phone, as op-
posed to exploiting some software vulnerability or developer
access. Aviv replied that such an exploit was outside the
scope of the authors’ work, and noted that smudge attacks
were applicable in scenarios other than finding a lost phone:
an attacker might be surveilling a target, notice that the
target’s phone was smudged, and quickly steal the phone to
recover information before replacing it. Aviv was then asked
whether different screen covers (matte or glossy) mattered;
he responded that dark screens would be better for security.

■■ Framing Attacks on Smart Phones and Dumb Routers:
 Tap-jacking and Geo-localization Attacks
Gustav Rydstedt, Baptiste Gourdin, Elie Bursztein, and Dan
Boneh, Stanford University

Baptiste Gourdin spoke about attacks on mobile phone Web
browsers. He highlighted key differences between mobile
browsers and traditional browsers: the attacker can zoom to
the element of his choice and easily remove browser chrome
by scrolling the page down. Gourdin included a demonstra-
tion that used JavaScript to scroll down and remove the true
chrome while displaying a spoofed chrome, including an
SSL security indicator.

Next, Gourdin discussed tapjacking attacks. He began with
a demonstration clickjacking attack on Twitter that overlaid
the permanent account deletion page on top of the play
button for the “BEST GAME EVER.” He briefly discussed
mitigations such as frame busting, but said that frame bust-
ing can crash or fail on mobile browsers. Moreover, click-

; LO G I N : 	D ECEM B E R	201 0	 CO N FE RE N CE	RE P O RT S	 115

jacking protection is even rarer on mobile sites, so tapjack-
ing amounts to “clickjacking on steroids.” Gourdin provided
a mobile version of his demonstration attack on Twitter and
said that the vulnerability had been fixed, but was previ-
ously a live mobile Twitter vulnerability.

In the second part of his talk, Gourdin presented applica-
tions of frame leak attacks for stealing private data. He
began with Paul Stone’s scrolling attack from Black Hat,
which allows the attacker to violate the same-origin policy
and determine whether an anchor is present in a page, by
placing a hashtag of the form #foo at the end of a framed
URL and testing the frame’s scroll position. He demon-
strated how the attack could be used on Yahoo Mail Mobile
to determine whether a victim received mail from a particu-
lar sender. He also pointed out that Facebook’s clickjack-
ing defense, a large dark div overlaid over the page, does
not prevent frame leak attacks. Thus, an attacker can test
whether a user is logged in by searching for the registra-
tion form, and can also determine which user is logged in.
Facebook fixed this vulnerability by simply displaying a
Facebook logo when framed, rather than showing informa-
tion behind a div.

Bill Cheswick asked if the iPhone’s button (used to quit the
browser) mitigates these attacks. Gourdin replied that it
would certainly quit the browser, but the user would still be
attacked whenever he visited attacker.com.

after you get eip

Summarized by Scott Wolchok (swolchok@umich.edu)

■■ Interpreter Exploitation
Dionysus Blazakis, Independent Security Evaluators

Dionysus Blazakis said he would show why exploit mitiga-
tions are only a safety net and vendors still need to remove
bugs. From an academic point of view, he provided an
example of a non-trivial information leak and showed why
the leak is an emerging class of bugs. He urged academics to
attempt to formalize how to find such bugs.

Blazakis discussed data execution prevention (DEP) and
address space layout randomization (ASLR) and how they
complicate attacks. The combination of the two makes at-
tacks difficult, because DEP allows return-oriented pro-
gramming and return-to-libc attacks, but ASLR makes such
already difficult attacks probabilistic at best. An attacker
looking to circumvent this combination might use informa-
tion leaks and heap spraying in order to obtain executable
pages with known or easily guessable locations. Blazakis
then introduced two techniques, pointer inference and
JIT spraying, that can be used to bypass existing exploit
mitigations. The pointer inference technique interacts with
the object structure of the Tamarin VM used by Flash to
generate native code, in which the least significant bits of
values (called “atoms”) are used to encode type informa-
tion. Objects are stored as tagged pointers, but integers and

other primitive types are stored by value. Tamarin’s general-
purpose hashtable maps atoms to atoms and can be iterated
over in hash order. Blazakis’s insight is that the table uses
the values themselves as the hash, so mixing integers and
objects in the table results in integers being compared to
pointers, which leaks address bits. In particular, he stated
that one can determine whether an address is even or
odd by putting it into two tables filled with even and odd
integers and determining in which table the pointer doesn’t
collide. Someone asked how many bits were leaked, and
Blazakis responded that about 25 bits of a 32-bit pointer
could be recovered. However, the information leak is just
some arbitrary heap address; there are controllable fields,
but the leak is not directly exploitable.

Blazakis then moved on to JIT spraying, his second attack.
Rik Farrow pointed out that JITs write code to the heap,
and the pages with code have to be marked executable.
Blazakis continued by explaining that a long XOR expres-
sion in ActionScript will cause the JIT to generate a com-
pact x86 instruction stream consisting of MOV and XOR
instructions, and stage-0 shellcode consisting of 2-byte
instructions can be encoded into the constants manipulated
in the expression. The emitted function can also contain a
pointer to a string constant used to host stage-1 shellcode.
Generating many such functions will effectively spray the
ActionScript heap with shellcode. Blazakis demonstrated his
exploit, which took about a minute.

Someone asked if these attacks meant that he had to eschew
JIT programs to remain secure. Blazakis responded that in
short, the answer was yes.

■■ A Framework for Automated Architecture-Independent
Gadget Search
Thomas Dullien and Tim Kornau, zynamics GmbH; Ralf-Philipp
Weinmann, University of Luxembourg

Tim Kornau spoke about the goal of using return-oriented
programming tools across multiple platforms. He enumerat-
ed the common architectures today and stated that exploits
should run even on a refrigerator. Specifically, the authors’
goals are to execute code in the presence of the NX bit and
when binaries are signed, but circumventing ASLR is out-
side the scope of the talk. The strategy the authors adopted
was to reuse application code (i.e., through return-oriented
programming) without relying on returns or return-like
instructions; rather, they intend to extract semantic infor-
mation from the binary. Kornau then introduced REIL, a
17-instruction RISC instruction set where all instructions
are three operands and have no side effects. REIL is cur-
rently unable to support exceptions, floating-point instruc-
tions, or 64-bit computing, but those capabilities are under
development. Someone asked why exception support was
important; Kornau responded that, for example, MIPS’s
integer instructions use exceptions to represent various
things, and it’s difficult to model exceptions architecture-
independently.

116	 ; LO G I N : 	VO L . 	35, 	N O. 	6

Kornau then explained the algorithms developed by the
authors. In the first stage, data is collected from the binary
by first extracting REIL expression trees from the native in-
structions and then extracting path information by bottom-
up depth-limited search from the end of the gadget. All
paths are stored in the same expression tree by multiplying
the condition bit together with the operations. In the second
stage, the expression trees for single native instructions are
combined along paths and simplified (e.g., by constant fold-
ing). In the third stage, the authors locate useful gadgets by
using a tree match handler determining whether a condi-
tion is met for each needed operation. The algorithm selects
only the simplest gadget for each operation. Kornau stated
that the algorithms are currently functional, but searching
for gadgets is highly platform- and compiler-dependent. He
cited difficulties like branch delay slots (MIPS), predicated
execution (ARM), and register windows (SPARC). Further
work includes an abstract gadget description language, an
automatic gadget compiler, more platforms for REIL, and
better understanding of the implications of different compilers.

Rik Farrow clarified that by “gadget” Kornau meant “a block
of code that does something.” Kornau replied that yes, tra-
ditionally, it does something useful and must be chainable
to other gadgets. He stated that the authors’ analysis differs
from the traditional return-oriented programming analysis
because it does not reason about unintended instructions
and requires a valid disassembly up front. In reply to a
second question, Kornau stated that fuzzy tree matching
only searches for certain operands, because REIL has a very
normal structure. A third audience member asked how large
binaries had to be in order to find Turing-complete gadget
sets. Kornau replied that it was very binary-dependent; he
cited libsystemb as an example that generated over 240,000
gadgets and said that an attack can usually be adapted to
such large binaries, whether or not the gadget set is Turing-
complete. The questioner then asked how large the files
were in bytes. Kornau said that he believed that libsystemb
is about 200KB, but he was not certain.

■■ English Shellcode (Invited Talk)
Joshua Mason and Sam Small, Johns Hopkins University; Fabian
Monrose, University of North Carolina at Chapel Hill; Greg
MacManus, iSIGHT Partners

Sam Small discussed how English shellcode can be used to
avoid network intrusion detection systems (NIDS). He began
with a review of shellcode and evading filtering and detec-
tion; shellcode transformations have been used previously
to bypass application-level input filters, but, arguably, not to
evade detection. He stated that NIDS works by using either
regular expressions and signatures or emulation. The prob-
lem with emulation is that the attacker can use domain-
specific knowledge of the application, such as registers or
memory, and eflags in particular are almost always reliable.
Thus, NIDS can’t be aware of which paths are actually taken
in a particular string, and the attacker can set eflags using

arithmetic operations if necessary. Moreover, the attacker
can use self-modifying code, even if he is constrained to
English.

Small then moved on to the details of English shellcode gen-
eration. English shellcode has three parts: the pre-decoder,
the decoder, and the transformed shellcode. The decoder
unpacks the transformed shellcode, but cannot be written
in English (because of instructions like lods and jnz), so
the English pre-decoder is included to unpack the decoder.
Small stated that the decoder would not be explained in the
talk and moved on to the details of the generation engine.
The language generator is based on beam search and uses
a large corpus of text to build a language model. It looks at
every word in the corpus that could follow the current word
in the shellcode, concatenates it with the current shellcode
string, and, using a scoring engine, determines how well
the modified string accomplishes the desired code. The
engine is in two parts: the sentinel breaks the shellcode
into chunks of instructions and passes them to the execu-
tor, which it monitors through ptrace. The sentinel eventu-
ally returns a score. Small stated that the proof-of-concept
system took about 12 hours, but combining the sentinel and
executor into one process through a “feat of engineering”
reduced the time to 20–30 minutes.

Small closed by showing some samples of English shellcode,
including two quite long encodings of exit(0). The sample
text, while not entirely “readable,” contained many coherent
phrases and popular topics. Small pointed out that the let-
ter “r” is a jump and can be used to skip more English-like
blocks of the shellcode paragraph.

Someone asked what the average size increase of English
shellcode was. Small responded that there are several fac-
tors, but it is easily over 100x, which isn’t prohibitive if
shellcode can be placed on the heap. He said that the size
increase depends on several tunable parameters that have
not yet been tuned for space. Someone else asked whether
the generated shellcode was contextual, as Small men-
tioned at the start of the presentation. Small replied that
it sometimes was, and could avoid choosing instructions
that access memory and registers with unknown values.
A third audience member suggested that an online game
could be used to get people to write sensible text to fill
in the shellcode, and Small mentioned that his co-author
would often ask for words that fit certain constraints dur-
ing development. Someone else asked about searching for
code in standard texts, such as help files. Small replied that
such searching is theoretically possible, but it seems very
difficult. A fifth questioner asked how much of the pre-
decoder was predictable, and Joshua Mason replied that it
is specifically designed to make prediction impossible. If a
NIDS matched on the necessary bytes, it would also block
valid text.

