
106	 ; LO G I N : 	VO L . 	35, 	N O. 	5

2nd USENIX Workshop on Hot Topics in
Parallelism (HotPar ’10)

June 14–15, 2010
Berkeley, CA

june 14 , 8 : 30 a .m .– 10 : 00 a .m .

Summarized by James C. Jenista (jjenista@uci.edu)

■■ Towards Parallelizing the Layout Engine of Firefox
Carmen Badea, University of California, Irvine; Mohammad R.
Haghighat, Intel Corporation; Alex Nicolau and Alexander V.
Veidenbaum, University of California, Irvine

Multicore is ubiquitous and the browser is becoming a thin
client to run a wider range of applications. Carmen Badea
argued, therefore, that it is worthwhile to explore the paral-
lelism in browsers.

Badea explained that Firefox was chosen because it is open
source and has the second highest browser market share.
They profiled Firefox and discovered that 40% of the test
execution time was spent in the layout engine and 32% of
that time is devoted to CSS rule matching. This led to a
parallelization effort of the CSS rule matching subsystem.
After giving a brief background for CSS, Badea explained
that CSS rule matching executes when a user loads a new
page or a page is interactively updated. The Mozilla Firefox
page load tests and Zimbra Collaboration Suite (ZCS) were
employed as benchmarks to profile the CSS rule-matching
system; descendant selector rules were executed most often,
and the vast majority resulted in a non-match.

They decided to parallelize the common descendant rule
case of non-match by executing rules for batches of ances-
tors of an element concurrently. When there is a rule match,
some of the work is speculative and therefore discarded,
although Badea argued that the profiling data implies this
case is infrequent. Dan Grossman asked how many rules
are being matched in the parallel implementation, and
Badea answered that only one rule is matched at a time. She
explained that the code base is factored this way, although
future work could explore a parallel implementation that
matched many rules at once.

The parallel CSS rule matcher was tested in seven configu-
rations for ZCS and in 12 configurations for the Mozilla
test pages. Badea noted that more than two threads did
not perform well and hypothesized that future Web pages
with richer CSS may benefit from more than two threads.
For Mozilla pages, the end user’s perceived speedup was as
high as 1.8 times, and for ZCS as high as 1.6 times. They at-
tribute the better speedups for the Mozilla page load tests to
more complexity in layouts, as well as to the fact that ZCS is
a more JavaScript-oriented benchmark suite.

Badea was asked if she believed there will be fewer im-
provements for such a parallel CSS rule matcher as Web
pages have more and more JavaScript. She answered that
more JavaScript doesn’t exclude more complex layouts. Can

an early match result in a longer execution time than the
single-threaded version? It’s possible, but the profiling data
suggests this is a rare occurrence. What behaviors caused
the worst speedups? Badea explained that Web pages with
few ancestor elements did not trigger the parallel rule
matcher, but suffered from added preprocessing.

■■ Opportunities and Challenges of Parallelizing Speech
Recognition
Jike Chong, University of California, Berkeley; Gerald Friedland,
Adam Janin, Nelson Morgan, and Chris Oei, International
 Computer Science Institute

Adam Janin said that the goal of their work is not for the
sake of parallelism specifically, but, rather, to improve
speech recognition accuracy, throughput, and latency. Janin
then offered a scenario to drive his presentation; he had
recorded the speech of a meeting with an iPhone on the
table. The systems they developed should process the audio
and allow browsing and retrieval of useful information
such as querying who was speaking at a given time, finding
audio segments by words spoken, and finding segments
by speaker. Janin broke down the system and made a clear
distinction between speech recognition that extracts words
and diarization that identifies the speaker.

Then Janin built an argument for developing a parallel
software implementation. Current technologies scale easily
along any resource axis; still, state-of-the-art systems are
100 times slower than real time to achieve the best results.
Specialized hardware has gotten mixed improvements, so
general parallel software may be the answer.

Perceptual models of the inner ear, Janin explained, are
used to compute features of audio. The combination of fea-
tures usually improves results for noisy conditions, so cur-
rent systems typically select two to four cochlear representa-
tion variants. Janin asked, when we have more resources,
why not add many more representations? He explained that
the representations are filters fed to a neural net, which
prompted a question: is the system similar to deep neural
nets? Janin answered yes, he would call it deep learning,
but with no unsupervised step. He then highlighted that the
many streams and dense linear algebra required all have an
obvious parallel structure.

Their experiments included both a 4-stream and a
28-stream configuration. Janin indicated that the 4-stream
setup improved accuracy by 13.3% on a Mandarin conver-
sational task, and the 28 streams improved accuracy by
47% on a read digits tasks (e.g., phone numbers, zip codes).
When asked if the system is commercially viable, Janin
answered that the noisy number input audio is an artificial
test, and current systems can do well for reading numbers
over the phone under normal noise conditions. Another
questioner asked whether there is a diminishing return for
adding streams. Janin responded that they don’t know, but
he certainly believes it. The data supports it, although he

; LO G I N : 	O C TO B E R	201 0	 CO N FE RE N CE	RE P O RT S	 107

said the brain is thought to be processing hundreds of mil-
lions of audio interpretations at once.

Janin then moved from their improvement of accuracy to
the improvement of throughput. They pipelined the speech
recognition system and improved the throughput of the in-
ference engine, which looks up the closest utterance from a
language. Janin described how the machine-learning model
generates a complex, static graph of state transitions to
implement the inference. The online system, he explained,
does a time-synchronous beam search over the graph, only
keeping the best hypotheses. When asked how big the
graph is, Janin answered that there are one million states,
four million arcs, and thirty-two bytes for each node. They
reported an 11-fold speedup overall—an 18-fold speedup
for the compute-intensive transitions, and a 4-fold speedup
for communication-intensive hypothesis merging.

The next segment of Janin’s talk covered how they improved
latency and accuracy for online diarization. This might
be useful, Janin explained, to identify who is speaking in
real time during a distributed meeting. An attendee asked
if training data is needed. Janin responded that none is
needed for the speakers or even the language. Their strategy
is to begin the offline diarization as soon as the meeting
starts and hand off models for each speaker to the online
system as they improve over the course of the meeting.
Janin reported the error rate drops about 7% by paralleliz-
ing this implementation over eight cores.

In response to several requests to characterize the chal-
lenges of developing the parallel software, Janin replied that
designing the parallel algorithm was more challenging than
the implementation. New parallel tools could certainly help,
especially any that might bring in new programmers. David
Padua asked if there is a way to measure the progress in
the field of speech recognition. Janin gave details of the US
government’s annual challenge. Janin’s analysis was that the
accuracy of systems entered has slowly improved to about
50% word error rates, which he said is quite good for many
applications, but that the major progress in the field has
been to accomplish previously hard tasks much more easily.

june 14 , 10 : 30 a .m .– 12 : 30 p.m .

Summarized by Chris Gregg (chg5w@virginia.edu)

■■ A Balanced Programming Model for Emerging
 Heterogeneous Multicore Systems
Wei Liu, Brian Lewis, Xiaocheng Zhou, Hu Chen, Ying Gao,
Shoumeng Yan, Sai Luo, and Bratin Saha, Intel Corporation

Brian Lewis talked about how computer architecture is be-
coming more heterogeneous and how to improve program-
ming models for such systems. More and more programma-
ble accelerators are being designed into computer systems,
and this talk focused on them. GPUs are either discrete
or integrated on-die with CPUs, in which case they share
computational resources. Low-level languages that exist

today (OpenCL, CUDA) focus on coarse-grained offloading
of parallel computation, but do not fully take advantage of
CPU capabilities. The authors want to improve programmer
productivity and extend the range of applications that can
be easily programmed.

David Padua asked, “Is the limitation for fine-grained pro-
cessing a factor of language, or of hardware?” Lewis an-
swered that both were relevant, to an extent. It is low-level,
which does not lead to high-level breaking up of tasks.
There was another question about why parallel languages
weren’t yet meeting our needs; Lewis answered that it is
mainly because they are still relatively low-level. They want
a balanced programming model, to enable fine-grained
computation using all cores, with better support for task
and data parallelism, load balancing, and dynamic reconfig-
uring.

Lewis talked about the importance of shared virtual mem-
ory and the need for lightweight atomics and locks, which
will allow better coordination between the CPU and GPU.
The discrete Larrabee implementation has shared memory
that supports release consistency and ownership rights,
which allows the CPU and GPU to both work on the same
data. There is an OS on both sides, leading to VM page pro-
tection, which helps with consistency. The shared memory
CPU-integrated graphics has a device driver, and there isn’t
an OS to handle page faults. It doesn’t detect updates using
page faults, but it exploits shared physical memory, mean-
ing there is no data copying.

Nicholas Matsakis asked, “Is there a model for how the data
should be shared?” Lewis said that the keyword “shared”
marks shared data. Keywords, used for offloading func-
tions, are elaborated on in the paper. Timothy Roscoe asked,
“Have you looked at what would happen if you ran multiple
applications across this system?” Lewis answered that they
did not look at that for this paper, but that is the end goal of
the work.

■■ Collaborative Threads: Exposing and Leveraging Dynamic
Thread State for Efficient Computation
Kaushik Ravichandran, Romain Cledat, and Santosh Pande,
Georgia Institute of Technology

Romain Cledat started by discussing parallelism in general
and how it can be improved. Parallelism today relies on
threads, which is splitting up data or tasks. Current models
include TBB and CnC, which leads to a natural parallelism.
However, threads still use locks and barriers and transac-
tional memories. They share data through shared memory,
but do not have knowledge about their “role” in the com-
putation nor the overall state of the computation. Current
models break up a computation, and the distribution of
work is done just in time. The state of the computation is
not taken into consideration. The threads work indepen-
dently and do not have higher-level semantic knowledge.
Performance of HPC problems has dependencies that are
greater than simply how the work is split up.

108	 ; LO G I N : 	VO L . 	35, 	N O. 	5

Cledat then discussed useful semantic state, determined by
the programmer, to influence scheduling. Byn Choi asked,
“Isn’t scheduling the threads the role of the task scheduler,
and are you trying to make the threads do this in a distrib-
uted manner?” Cledat said they are trying to do more than
scheduling and were trying to use the meta-information for
more than just this problem.

Cledat turned the talk over to Kaushik Ravichandran, who
discussed the system the authors created, specifically the
semantic state taxonomy. Similar sub-problems are clustered
together in a tree structure. The sub-problems are hierar-
chical, incremental, and approximate. This results in good
lookup time, without having to build from scratch. With
this information, they can re-use results, orient a computa-
tion, prioritize sub-problems, and select cores appropriately.
Sean Halle asked, “Is the compiler doing this, or the app
programmer?” Ravichandran answered that the programmer
designates certain information and the run-time uses it.

Ravichandran provided an example of a sum of subsets,
showing that a large of amount of redundancy can be ex-
ploited. The programmer can more aggressively parallelize
this problem by specifying a similarity metric, which the
system will use to make the best use of previously com-
puted values. For the second example, K-Means, objects can
share data between localized points. The speedup comes
from making fewer comparisons than the original algo-
rithm, sharing results from the closest neighbors.

■■ Structured Parallel Programming with Deterministic
 Patterns
Michael D. McCool, Intel

McCool discussed how people parallelize applications and
the structures they use. In particular, he described a total of
16 different fundamental parallel programming patterns. A
parallel pattern is a commonly occurring combination of task
distribution and data access. Many programming models
support a small number of patterns or low-level hardware
mechanisms. However, a small number of patterns can
support a wide range of applications, deterministically. A
system that directly supports the deterministic patterns on
a lot of different hardware architectures can lead to higher
maintainability, and application-orientated patterns can lead
to higher productivity.

Sean Halle asked, “Should patterns not have hardware
details?” McCool answered, no, he would rather find more
abstract patterns, and specifically functional programming
patterns. There are structured programming patterns for
serial computation, and we can add a number of parallel
patterns to this list for a number of different, fundamental
patterns.

Sean Halle asked, “Do you want your application talking to
the runtime?” and McCool replied that yes, although you
don’t want to over-constrain the runtime. You do, however,
want communication between the two. He continued his
talk by discussing partitioning, which is very important;

you’re breaking an input collection into a collection of col-
lections. This is useful for divide-and-conquer algorithms.
There is also the issue of boundary conditions. Another
pattern is stenciling, which applies a function to all neigh-
borhoods of an array. There are also fused patterns that can
be useful in specific conditions. Examples include: gather =
map + random read; scatter = map + random write. Scatter
is tricky, because you need to watch out for race conditions.
It would be nice to find a deterministic scatter, and the best
solution is “priority scatter,” which prioritizes the elements
as they would have happened in a scalar scatter.

McCool finished with “the bottom line,” trying to create a
taxonomy of good practices for parallel programming. Are
these the right patterns? Is there a smaller list of primitive
patterns? How important are nondeterministic patterns?
Sarita Adve asked about determinism and isolation, and Mc-
Cool answered that the merge-scatter pattern came closest
to matching.

june 14 , 12 : 30 p.m .–2 : 00 p.m .

Lunches on both days included tables labeled with ques-
tions for discussion. You can find the results of these
discussions and some comments at http://www.usenix.org/
events/hotpar10/tech/techLunches.html. (I found the results
fascinating and interesting in themselves.—The Editor)

june 14 , 2 : 00 p.m .–4 : 00 p.m .

Summarized by James C. Jenista (jjenista@uci.edu)

■■ Separating Functional and Parallel Correctness using
 Nondeterministic Sequential Specifications
Jacob Burnim, George Necula, and Koushik Sen, University of
California, Berkeley

Jacob Burnim identified nondeterministic interleavings
as a major difficulty when reasoning about the functional
correctness of a parallel program. He proposed that a
programmer-generated nondeterministic sequential artifact
could decompose the effort into the questions of parallelism
correctness and functional correctness. The key, Burnim
explained, is that the programmer should annotate intended
nondeterminism and then a system can check that the par-
allelization adds no more nondeterminism.

As an example, Burnim introduced a branch-and-bound
code and asked the attendees to consider the sequentially
expressed code as a parallel version by adding a few parallel
constructs; is the parallelization correct? Burnim offered
an interleaving that shows that the parallel answer may be
different but correct. Burnim hypothesized that a specifica-
tion in between the sequential and parallel codes is needed
to express the allowed nondeterminism and then provide a
framework for proving the correctness of the parallelization.

Their artifact is a nondeterministic sequential (NDSEQ)
expression of the code. Burnim introduced the nondeter-

; LO G I N : 	O C TO B E R	201 0	 CO N FE RE N CE	RE P O RT S	 109

ministic for loop as an element of the NDSEQ which runs
one iteration at a time but in any order. Burnim pointed
out that there are still interleavings to avoid some prunings
that the parallel version can express but the NDSEQ can-
not. As there is intended nondeterminism in the example,
Burnim introduced the use of if(*) to instruct the NDSEQ to
choose either branch. Burnim claimed the modified NDSEQ
expressed the intended nondeterminism in the parallel ver-
sion, and that the NDSEQ could generate a given parallel
interleaving. A question was raised about whether the paral-
lel algorithm was suboptimal, which Burnim conceded, but
he stated that it is reasonable and apt for the illustration of
their work.

Once the NDSEQ is provided, Burnim continued, the paral-
lel correctness and functional correctness can be proved
separately. He interjected an argument that the correctness
of the parallel version is undecidable and the correctness of
the NDSEQ is decidable, offering another justification for
the effort of creating the NDSEQ. Then Burnim demonstrat-
ed the correctness of the parallelism with a proof by reduc-
tion, consisting of the rearrangement of parallel interleav-
ings matched against the NDSEQ. Burnim was asked if the
proof works for nested loops. He said that the correctness of
the inner loop can be proved, then replaced with a sequen-
tial version to prove correctness of the outer loop.

Their future work will include automating the proof for real
benchmarks. Burnim suggested that their approach might
be applied to other model checking techniques. He also
suggested that instead of a static system, their work might
be integrated in a debugger to consider the correctness of a
parallel trace, where a bug might be classified in relation to
the parallelism or the functional correctness.

An attendee asked how to detect when the NDSEQ is incor-
rect. Burnim answered that there are two cases: when the
NDSEQ is too strict, the situation is manageable, as the
system could report parallel interleavings that the NDSEQ
cannot express to aid NDSEQ improvement; when the
NDSEQ is too weak, Burnim conceded that it becomes a
difficult problem. Several people asked Burnim about the
possibility of language solutions to avoid needing a correct-
ness checker. Burnim answered that when you get correct-
ness for free, language solutions are good, but some compu-
tations, such as types with a lot of guarantees, are hard to
express without sufficient nondeterminism.

■■ Synchronization via Scheduling: Managing Shared State in
Video Games
Micah J Best, Shane Mottishaw, Craig Mustard, Mark Roth, and
Alexandra Fedorova, Simon Fraser University, Canada; Andrew
Brownsword, Electronic Arts Blackbox, Canada

Micah Best introduced their work as a fruitful technique
for synchronizing threads via scheduling in the video game
domain, a domain in which performance and responsive-
ness are high priorities. Though it was not the subject of
his talk, Best covered the Cascade project, which expresses
a video game engine as a dataflow task graph. Their work

integrates with Cascade, he explained, and attempts to ease
the burden of managing task-shared state off the developer
through static analysis and new synchronization techniques
at runtime.

Best described how static analysis of the Cascade mark-ups
identifies constraints between tasks. The constraints are po-
tential conflicts, such as access to elements of a collection,
and their work uses a runtime strategy to determine the
actual constraints. Best stated that the scheduler uses task-
constraint profiles to synchronize access to shared data.

Best moved the discussion to a method of expressing
constraints in binary. References and members, he said, are
simply expressed. He continued with the expression for
arrays which occur frequently in video game kernels and re-
quire some analysis of indices. The hardest cases are forms
of indirection and will be addressed in their future work.

The constraints identified by static analysis are passed
through Bloom filters to produce a fixed-length bit string.
The bit string is a constraint signature for the task; Best
added that signatures are cheap to calculate and compare.
A task may run when its signature has no conflict with
running tasks, although signature comparisons may pro-
duce false positives but will never show a false negative. In
response to a question about user control over the signa-
tures, Best responded that users may tune the construction
parameters through Cascade.

Best characterized their scheduling algorithm as generation-
al. Tasks are batched by using logical-OR on their signa-
tures until no more tasks may be added without conflict. A
batch forms a generation and is sent to a core while the next
generation is batched.

They tested their work by adding Cascade mark-up to
Cal3D, a library for animating character models where sepa-
rate animations may be blended and applied to the same
model. When the application of multiple animations have
a state conflict, the system synchronizes access; otherwise
animations may be applied concurrently. Best then present-
ed the experimental setup; a workload of four models with
eight animations was executed on a two-processor Xeon
totaling eight cores.

Their results were compared to a natural implementation
as a baseline, which Best defined as one written by a non-
expert, competent programmer. The baseline implementa-
tion applies animations in a straightforward way without
requiring synchronization. Best displayed an activity graph
from Cascade that showed banding effects in core usage be-
cause there was not enough work while waiting for the next
animation. With signatures and then a partitioning strategy
they obtained better core utilization. Best highlighted an
important result by presenting an expert-tuned version of
the benchmark that had the highest utilization. He con-
cluded that they had pursued parallelism too aggressively; a
method for finding the right amount of parallelism for given
overheads is future work.

110	 ; LO G I N : 	VO L . 	35, 	N O. 	5

Someone from Toshiba asked how they could encourage
adoption. Best answered that adoption is always a concern
for new parallel languages. One approach is to convince
programmers the benefits of the new language are undeni-
able and always be sure the language is addressing the true
problems facing the programmer. Nicholas Matsakis asked
how much work Cal3D was to port. Best replied that the
work was completed in a few weeks but noted that porting
the Cube 3D code was much more difficult. He attributed
this to the well-written source for Cal3D as opposed to
messy source for Cube 3D and concluded that bad code is
hard to parallelize.

■■ Get the Parallelism out of My Cloud
Karthikeyan Sankaralingam and Remzi H. Arpaci-Dusseau,
University of Wisconsin—Madison

Karthikeyan Sankaralingam asked whether the current
degree of focus on parallelism and multicore is out of
proportion to the number of applications for the research.
Implementing parallel software is complex, Sankaralingam
said, and by asking if real developers or users even want it
he stirred up a hornets’ nest.

Sankaralingam painted a future computing environment in
which notebooks and smartphones offload computation to
the cloud, and the average programmer can easily deploy
and maintain software in the cloud. He argued that a small
number of experts can implement the lower layers of the
cloud for multicore architectures, while the average pro-
grammer or user device sticks with a few-core model.

Their work addressed three myths that Sankaralingam
hypothesized are steering research away from improving
the cloud environment and toward an overemphasis on
multicore and parallelism. The first myth Sankaralingam
covered was that hardware drives software. He argued that
programmers historically spent significant software effort to
achieve efficiency with hardware, but the major hardware
problems are now solved. Now, he continued, programmers
must be productive and demand high-level languages to ex-
press programs with as little code as possible, and therefore
software is currently either decoupled from or even driving
hardware.

Sankaralingam moved on to the second myth: multicore
will be everywhere. He presented a graph describing the
relation of performance to energy and explained that tech-
nology scales the curve, but by only so much, and ulti-
mately the number of cores on a handheld device is limited.
Sankaralingam conjectured that the limit will be about 10
cores. An attendee asked what he meant by a core; San-
karalingam said he meant a programmable processor. He
concluded his discussion of this myth by pointing out that
the mobile device may not need multicore, because from its
perspective it gets free performance from the cloud without
paying energy.

The third myth Sankaralingam identified was that every-
one should become a parallel programmer. Sankaralingam
called parallel programming a great challenge that may even

disrupt the curriculum and suggested it should be left to
the experts. The average cloud application parallelizes over
many clients in the cloud without being a parallel program,
he said.

Sankaralingam summarized their work as an argument to
rethink the role of parallelism and then opened for ques-
tions by taking off his jacket, revealing a bull’s-eye embla-
zoned t-shirt. Krste Asanović stated that productivity will
always be important, and Sankaralingam agreed but used
Jango as an example of programmers never even seeing the
underlying SQL base. Someone from Qualcomm disagreed
that cloud computing will become dominant, because dis-
tance to the tower doesn’t follow Moore’s Law, but devices
are following it. Sankaralingam agreed that latency is a
hard problem in cloud computing, but offered an anecdote.
Sankaralingam had mounted a remote file system while
traveling to the workshop, with virtually no impact on
his environment; already, he said, the latencies are not so
apparent to the end user. Sean Halle began by saying that
Sankaralingam was very brave, and Sankaralingam replied
that his advisor, Remzi Arpaci-Dusseau, is responsible for
the things you disagree with. Halle pointed out that there
are 200,000 iPhone applications and asked if Sankaralingam
believed the iPhone successor will be single-core. San-
karalingam answered no, but continued by claiming that
a mobile device will never have 100 cores for the average
programmer to deal with. Sarita Adve asked who the PC
members were who accepted this paper, as she wanted to
talk with them later.

june 14 , 5 : 00 p.m .– 8 : 00 p.m . : poster session

Posters below summarized by Romain Cledat
(romain@gatech.edu)

The poster session included all the talks in the program, as
well as the papers reported here.

■■ A Principled Kernel Testbed for Hardware/Software
 Co-Design Research
Alex Kaiser, Samuel Williams, Kamesh Madduri, Khaled
Ibrahim, David Bailey, James Demmel, and Erich Strohmaier,
Lawrence Berkeley National Laboratory

In this work, the authors developed high-level language
implementations of key kernels in HPC. They then imple-
mented each kernel in C. The kernels cover the seven
Dwarfs presented in the Berkeley vision. A tech report as
well as the full code in C will be released soon. Note that all
implementations are sequential. Contact: ADKaiser@lbl.gov.

■■ Contention-Aware Scheduling of Parallel Code for
 Heterogeneous Systems
Chris Gregg, Jeff S. Brantley, and Kim Hazelwood, University of
Virginia

This work looks at how best to choose where a program
needs to run: on the GPU or on the CPU. The assumption
is that most kernels will prefer the GPU but it depends on

; LO G I N : 	O C TO B E R	201 0	 CO N FE RE N CE	RE P O RT S	 111

whether the GPU is busy, the input size, the runtime of
the baseline, the historical runtimes for the program, etc.
 Contact: chg5w@virginia.edu.

■■ Capturing and Composing Parallel Patterns with Intel CnC
Ryan Newton, Frank Schlimbach, Mark Hampton, and Kathleen
Knobe, Intel

This work extends the CnC model by introducing modules
which encompass an entire graph as a single step. This al-
lows better reusability of code and modular building. CnC
also introduces more schedulers for the tuning experts. The
TBB scheduler is still the base scheduler, but there are now
schedulers to specify task priorities, ordering constraints,
and locality. Contact: ryan.r.newton@intel.com.

■■ General-Purpose vs. GPU: Comparison of Many-Cores on
Irregular Workloads
George Caragea, Fuat Keceli, Alexandros Tzannes, and Uzi
 Vishkin, University of Maryland, College Park

This work presents a PRAM-on-chip vision with a full
vertical integration from the PRAM model to the hardware
implementation. XMT is the PRAM abstraction and XMTC
is the C-like language built on top of it. The PRAM model
provides speedup in many cases, as well as ease of pro-
gramming. Furthermore, there is no need to reason about
race conditions. This model has been tried in classes and
people get it very quickly. Contact: {gcaragea,keceli,tzannes,
vishkin}@umd.edu.

■■ Leveraging Semantics Attached to Function Calls to Isolate
Applications from Hardware
Sean Halle, INRIA Saclay and University of California, Santa
Cruz; Albert Cohen, INRIA Saclay

The need for continuity with past systems in parallel pro-
gramming makes function calls very attractive (similar to
OpenGL). Indeed, big changes are expensive and take time,
and people feel comfortable with the way they were doing
things before. After the code has been written to inte-
grate the parallel function calls, a specializer can produce
different implementations for each call depending on the
platform. The code is therefore isolated from the platform.
Furthermore, this specialization step happens after the main
development cycle, which means that there is more time to
do it right. Another important aspect of the model is the use
of program virtual time to easily detect scheduling errors.
The final aspect of the model is the use of interfaces to im-
plement paradigms such as “divide work.” The application
implements an interface “how to divide” which the runtime
can call with the number of chunks to produce, depending
on the target platform. Contact: seanhalle@yahoo.com.

■■ Enabling Legacy Applications on Heterogeneous Platforms
Michela Becchi, Srihari Cadambi, and Srimat Chakradhar, NEC
Laboratories America

The goal of this work is to enable the re-targeting of legacy
applications to heterogeneous systems. The system uses
libraries to catch certain system calls, and each platform can

have its own library which implements the calls differently
depending on the platform. Contact: mbecchi@nec-labs.
com.

■■ OpenMP for Next Generation Heterogeneous Clusters
Jens Breitbart, Universität Kassel

This work is an extension of OpenMP. It works on shared
memory systems and adds PGAS-like semantics for distrib-
uted memory systems. In that case, the runtime will seek to
over-saturate the system to hide latencies. Annotations are
done just as in OpenMP. Contact: jbreitbart@uni-kassel.de.

■■ Energy-Performance Trade-off Analysis of Parallel
 Algorithms
Vijay Anand Korthikanti and Gul Agha, University of Illinois at
Urbana-Champaign

Energy is becoming a big issue: as performance increases,
energy increases quadratically. For embarrassingly paral-
lel applications, increasing the number of cores is good, as
it results in better time and a quadratic decrease in en-
ergy. The problem, however, lies in the energy required to
communicate. There is a sweet spot that optimally trades
off communication energy and core energy. Two metrics
are introduced: energy scalability under iso-performance
and energy bounded scalability. The goal of this work is to
determine the optimal number of cores based on the input
size. Contact: vkortho2@illinois.edu.

■■ Prospector: A Dynamic Data-Dependence Profiler to Help
Parallel Programming
Minjang Kim and Hyesoon Kim, Georgia Institute of Technology;
Chi-Keung Luk, Intel Corporation

This work introduces Prospector, a profiling approach to
dynamically determine data-dependencies. This greatly
improves auto-parallelization. The main contribution of this
work is the implementation of efficient compression of the
profiling data. This produces much better results than Intel
Parallel Advisor, for example. Contact: minjang@gatech.edu.

■■ Bridging the Parallelization Gap: Automating Parallelism
Discovery and Planning
Saturnino Garcia, Donghwan Jeon, Chris Louie, Sravanthi Kota
Venkata, and Michael Bedford Taylor, University of California,
San Diego

This work introduces pyrprof, which is a profiler for paral-
lelism. It relies on the idea that potential parallelism is the
ratio of work and the length of the critical path. Pyrprof
ranks regions of code based on their parallelism potential
and reports this information back to the user. The program-
mer can provide feedback to improve the accuracy of the
system. Pyrprof will soon be publicly available. Contact:
http://parallel.ucsd.edu/pyrprof.

■■ Checking Non-Interference in SPMD Programs
Stavros Tripakis and Christos Stergiou, University of California,
Berkeley; Roberto Lublinerman, Pennsylvania State University

This work is like Lint for CUDA. It uses an SMT solver to
determine if there are interferences in blocks separated by

112	 ; LO G I N : 	VO L . 	35, 	N O. 	5

__syncthreads. Contact: chster,stavros@eecs.berkeley.edu,
rluble@psu.edu.

■■ Molatomium: Parallel Programming Model in Practice
Motohiro Takayama, Ryuji Sakai, Nobuhiro Kato, and Tomofumi
Shimada, Toshiba Corporation

This framework allows easy parallel programming of plat-
forms such as TVs. Mol is a C-like language that borrows
characteristics from Haskell (functional and lazy evalua-
tion). It describes the parallelism present. It is compiled to
a bytecode. Atom describes the platform code (the target is
mostly Cell). Contact: motohiro.takayama@toshiba.co.jp.

Posters below summarized by Rik Farrow (rik@usenix.org)

■■ DeNovo: Rethinking Hardware for Disciplined Parallelism
Byn Choi, Rakesh Komuravelli, Hyojin Sung, Robert Bocchino,
Sarita Adve, and Vikram Adve, University of Illinois at Urbana-
Champaign

The key concept here is that by creating disciplined soft-
ware, problems in designing hardware will become simpler.
They have written Deterministic Parallel Java as an exem-
plar. DPJ allows partitioning the heap into named regions,
and language constructs define data dependencies between
regions. Cache coherency becomes easier as the relation-
ships between cache lines are spelled out in software, and
message passing can be used for updating invalidated cache
lines. Contact: denovo@cs.illinois.edu.

■■ Lock Prediction
Brandon Lucia, Joseph Devietti, Tom Bergan, Luis Ceze, and Dan
Grossman, University of Washington

The authors wrote a trace generator that wrapped around
the pthreads library to collect calls of lock acquisition func-
tions. They investigated the PARSEC benchmark suite of
multithreaded programs and performed offline analyses of
the traces to predict the next thread to acquire a given lock.
Using a handful of models for lock transitions, they tested
the accuracy of each model against the traces for differ-
ent programs. Each program had different lock acquisition
characteristics, but past work has shown that accurate lock
acquisition prediction does improve code performance.
Their most frequent transition predictor model worked the
best in general. Contact: http://sampa.cs.washington.edu.

■■ Resource Management in the Tessellation Manycore OS
Juan A. Colmenares, Sarah Bird, Henry Cook, Paul Pearce,
and David Zhu, University of California, Berkeley; John Shalf
and Steven Hofmeyr, Lawrence Berkeley National Laboratory;
Krste Asanović and John Kubiatowicz, University of California,
Berkeley

In Tessellation, applications and OS services are assigned to
Cells, an abstraction that contains parallel software compo-
nents and supplies resource guarantees. A two-level sched-
uler separates global resource allocations from local sched-
uling and resource usage. A policy service determines how
resources are allocated to each Cell, and application-specific
schedulers, such as Lithe, are responsible for scheduling

threads within each Cell. At the global level, gang-level
scheduling ensures that components within a Cell are
 available during scheduled runtime. Contact: yuzhu@eece
.berkeley.edu.

■■ Processes and Resource Management in a Scalable
 Many-core OS
Kevin Klues, Barret Rhoden, Andrew Waterman, David Zhu,
and Eric Brewer, University of California, Berkeley

ROS provides a new process abstraction, the manycore
process (MCP). With MCP, there is only one kernel thread
per process, rather than per thread, and cores provisioned
to an MCP are gang-scheduled. Traditional system calls are
asynchronous and non-blocking, and processes are noti-
fied before a core or other resource is revoked. Resources
 include anything that can be shared in a system: cores,
RAM, cache, on-and off-chip memory bandwidth, access
to I/O devices, etc. Contact: brho@eecs.berkeley.edu and
yuzhu@eece.berkeley.edu.

june 15 , 8 : 30 a .m .– 10 : 00 a .m .

Summarized by Chris Gregg (chg5w@virginia.edu)

■■ Dynamic Processors Demand Dynamic Operating Systems
Sankaralingam Panneerselvam and Michael M. Swift, University
of Wisconsin—Madison

Sankaralingam Panneerselvam started by discussing the
symmetric chip multiprocessor and why it does not support
sequential workloads well. He then went on to show that
the asymmetric chip multiprocessor satisfies diverse work-
loads well, but not as well as we would like. A dynamic
multiprocessor, however, is flexible enough to adapt to the
right configuration based on need. Dynamically variable
processors lead to better performance with merging re-
sources and shifting power and also lead to better reliability,
because of the ability to have redundant execution.

Geoff Lowney asked why we need to reconfigure the OS.
Panneerselvam said that an unexpected processor shut-
down can lead to thread execution stopping (in the case of
a lock, for instance) or other stalls. He then described Linux
HotPlug, which allows dynamic addition or removal of a
processor. This allows for partitioning and virtualization,
and for physical repair of the processor. It can be used for
long-term reconfigurations, which assumes that the proces-
sor will never come back online, and all relevant systems
are notified.

Dan Grossman asked, “When you say ‘short-term recon-
figuration,’ what time frame are we talking about?” Panneer-
selvam answered, “Milliseconds.” Performance is good for
virtualization, but too slow for rapid reconfiguration. Next,
Panneerselvam described the “processor proxy,” which is a
fill-in for an offline processor. The proxy does not actually
execute threads, but ensures that everything else continues.
Proxies are not a long-term solution, but if the reconfigura-
tion is long-term, it is better to move to a stable state. To do

; LO G I N : 	O C TO B E R	201 0	 CO N FE RE N CE	RE P O RT S	 113

this, a “deferred hotplug” happens, which means that a CPU
that is currently proxied is removed. A “parallel hotplug”
can also happen, which is the reconfiguration of multiple
CPUs. These methods provide greatly improved perfor-
mance.

Timothy Roscoe asked, “Why is Linux the right OS to try
this in? How much of this is about monolithic kernels?” and
there was a long discussion about the role of the monolithic
kernel. Panneer Selvam said that if we assume the virtual
case, or a hypervisor, we want a number of things added to
the OS in order to handle it. The OS wants to know about
the changes, and we can implement those changes in Linux,
in the monolithic kernel. Monolithic kernels aren’t going
away soon.

■■ Design Principles for End-to-End Multicore Schedulers
Simon Peter and Adrian Schüpbach, ETH Zurich; Paul Barham,
Microsoft Research, Cambridge; Andrew Baumann, ETH Zurich;
Rebecca Isaacs and Tim Harris, Microsoft Research, Cambridge;
Timothy Roscoe, ETH Zurich

Simon Peter described the scheduler in Barrelfish, an
experimental operating system. He started by asking why
having two applications, one CPU-bound and one a barrier
application, are a problem for OpenMP, in particular on a
16-core system. The barrier application shows decreased
performance as the number of barrier threads increases.
This is because of the increasing cost to execute the barri-
ers. This situation works fine for a small number of threads,
but eventually the performance drops significantly. Their
approach mitigates this with gang scheduling and smart
core allocation. Peter proposed an end-to-end approach,
involving all components that can cut through classical OS
abstractions, focusing on OS and runtime integration.

Peter then described the five design principles Barrelfish
implements. First, he discussed time-multiplexing cores that
offer real-time quality of service for interactive applications.
David Patterson said, “There is a possibility in the future
that we cannot turn on and off cores at will, because of
power issues. Is it still worthwhile to use time-multiplexing
instead of space-multiplexing?” Peter answered that actu-
ally, this is a perfect case for time-multiplexing, because you
might have to time-multiplex the cores that you do have
access to.

Peter then discussed scheduling at multiple timescales. He
described the need for a small overhead when scheduling,
because synchronized scheduling on each time-slice won’t
scale. This is implemented in Barrelfish with a combination
of techniques, including long-term placement of applica-
tions on cores, medium-term resource allocation, and
short-term per-core dispatch. David Patterson then asked,
“What is the problem this is trying to solve?” Peter replied
that they are trying to decouple things so we don’t have to
reschedule all the time. Barrelfish has phase-locked gang
scheduling, which decouples schedule synchronization from
dispatch. There may be a future re-sync necessary, but this
happens at coarse-grained time scales.

Peter then outlined the “system knowledge base” in Bar-
relfish, which contains a rich representation of the hardware
in the system. The OS and applications use this database.
David Patterson asked, “Why did you go with a system
knowledge base, which seems like a central bottleneck?
Why didn’t you make it a runtime database?” Peter an-
swered that the hardware discovery information, boot-time
micro-benchmarks, etc., go into the database. The data can
be comprehensively queried, and the applications can use
the database effectively. The centralized database was their
first attempt, and it will be improved in the future.

june 15 , 10 : 30 a .m .– 12 : 30 p.m .

Summarized by Rik Farrow (rik@usenix.org)

■■ OoOJava: An Out-of-Order Approach to Parallel
 Programming
James C. Jenista, Yong hun Eom, and Brian Demsky, University
of California, Irvine

Jim Jenista described how they had created a version of Java
that can add parallelism to serial programs. In this work,
they added a single language construct, the reorderable
block, or rblock, that designates portions of code that can be
executed out of order. Rblocks can be executed as soon as
all dependencies are satisfied.

The OoOJava compiler builds graphs between parent and
child blocks and safely determines all data dependencies au-
tomatically. Jenista admitted that their implementation has
several limitations, including a single exit point from each
rblock. Dan Grossman immediately asked about exceptions,
and Jenista answered that they use a subset of Java with no
exceptions. He went on to describe a simple code example
with two rblocks and explained the tree of dependencies
that would be created, then walked, during execution. This
graph shows that heap dependencies are properly handled,
that all writes to a memory location occur in the same
order.

Someone asked about virtual functions, and Jenista re-
plied that they make a summary of all possible methods
and combine them. Another person wondered if they had
threads. Jenista answered that their subset has no threads,
exceptions, global variables, or reflections. But, given a se-
rial program, OoOJava creates a parallel program out of it.

David McCool asked how many lines of code this required,
and Jenista said several thousand. They convert Java into C
code that is compiled, resulting in a decent speedup. The
code is available at http://demsky.eecs.uci.edu/compiler.php
and includes other research features as well. David Padua
wondered what happens if the compiler fails, and Jenista
answered that the compiler reports that to you and suggests
changes.

114	 ; LO G I N : 	VO L . 	35, 	N O. 	5

■■ User-Defined Distributions and Layouts in Chapel:
 Philosophy and Framework
Bradford L. Chamberlain, Steven J. Deitz, David Iten, and
 Sung-Eun Choi, Cray Inc.

Brad Chamberlain described Chapel, a new language that
supports parallelism. Chapel is part of the DARPA-led High
Productivity Computing Systems program. The language is
designed to improve the programmability, robustness, and
performance of parallel programs and targets both multi-
core and commodity cluster systems. You can download the
source code from http://sourceforge.net/projects/chapel/.

Parallelism and data locality are driving concerns in Cha-
pel. Chapel includes notation for arranging data in arrays
and how data parallel operators should be implemented.
 McCool asked about their strategy for vector instructions,
and Chamberlain responded that they haven’t created vector
compilers, but generate C code.

Chamberlain then explained domains and domain map-
pings. Domains takes lists of indices, and domain maps
specify how the data will be accessed—for example, with
a blocking factor or by tiling. An example mentioned a
zippered domain map, and someone asked what “zippered”
meant. Chamberlain explained that you would use zipper-
ing to suggest to the compiler which iterator to use when
you have two domains with different layouts.

Chamberlain said that Chapel includes a user-defined
domain-map framework and that at Cray they use this
framework themselves. They don’t want to have an unfair
advantage using a tool that is publicly funded. McCool
asked if the compiler can convert nested multiple arrays,
and Chamberlain answered, not currently, but there are
default domain maps you can use to support this explicitly.
Dan Grossman asked if using Chapel avoids static analysis,
and Chamberlain said that you still have to do this yourself.
Grossman said that you expose this, but Chapel does not
understand it, and Chamberlain agreed. He said that you
want to implement the right domain maps whenever possible.

One goal of Chapel is not to impose arbitrary limitations.
They do want to support separation of roles, with parallel
experts writing domain maps and others using them. Cha-
pel does support both CPUs and GPUs. They have com-
pared Chapel to CUDA and gotten the same performance
using a smaller code base. Sarita Adve asked about loads
and stores, and Chamberlain responded that they support
normal C indexing and that memory consistency is incred-
ibly relaxed. The programmer is responsible for arranging
copying data between main memory and the GPU.

Grossman asked if the goal of Chapel is to become popular
or develop new language structures, and Chamberlain an-
swered that either would be satisfactory. The main goal is to
make users more productive. Grossman asked about status.
Chamberlain said that performance is not good enough yet,
but please try Chapel and provide feedback. You can find
the slides for this presentation at http://www.usenix.org/
events/hotpar10/tech/slides/chamberlain.pdf.

■■ On the Limits of GPU Acceleration
Richard Vuduc, Aparna Chandramowlishwaran, Jee Choi,
Murat Efe Guney, and Aashay Shringarpure, Georgia Institute
of Technology

Richard Vuduc started his talk with a quote: always com-
pare your results with scalar, unoptimized Cray code, as
this will make your code look good. He then said that his
paper was more of a survey, perhaps a story. The story
begins with Scott Klasky posing a question: should I port
my application to GPUs? A quick literature search turns up
amazing speedups, 30–100 times faster than running on a
modern CPU. What Vuduc and his fellow researchers found
was something very different.

Vuduc pointed out that current GPUs are bandwidth-
bound, as they sit on the PCIe bus. A related issue has to do
with memory access patterns. McCool asked if working-set
size matters, and Vuduc said that has some influence. Even
with the GPU on the same die as the CPU, there could still
be bandwidth issues. Patterson asked if he was suggesting
a second memory, and Vuduc pointed out that you might
need to keep GPU memory even in the on-die version.

The bottom line is that with code properly tuned to run on
a multicore system, like a Nehalem, the big exciting differ-
ences fade away. The authors tried three different scientific
computations: (1) iterative sparse linear solvers, (2) sparse
Cholesky factorization, and (3) the fast multipole method.
Geoff Lowney asked how much work was involved in tun-
ing, and Vuduc said that someone spent perhaps one month
of work, producing roughly twice the number of lines of
code, in tuning one application. Lowney then wondered
if the NVidia GPU code also represented tuned code and
Vuduc said they were well tuned, with NVidia’s cooperation.

In the sparse matrix and fast multipole methods, the issue
is clearly bandwidth related. Andrew Bauman asked if
pipelining would help, and Vuduc said that a student is
working on that. By tuning code, they found that a multiple
core version on Nehalem was only 10% slower than a dual
GPU version. In summary, one GPU is roughly equal to one
CPU. If you look at power, CPUs are better. Someone asked
why it was easier to gain so much speedup on GPUs? Vuduc
answered that it isn’t really, that it took an equal amount of
effort to tune and prepare code for either GPU or CPU.

june 15 , 2 : 00 p.m .–4 : 00 p.m .

Summarized by Romain Cledat (romain@gatech.edu)

■■ Gossamer: A Lightweight Programming Framework for
Multicore Machines
Joseph A. Roback and Gregory R. Andrews, The University of
Arizona, Tucson

Gossamer is a framework for annotating existing applica-
tions to make them parallel. Roback first presented the
15 annotations that compose Gossamer. The annotations
are meant to encompass as large a domain as possible and
support task spawning through constructs such as fork,

; LO G I N : 	O C TO B E R	201 0	 CO N FE RE N CE	RE P O RT S	 115

parallel, divide and replicate, memory synchronization
with join, barrier, atomic, buffered, copy, ordered, shared,
and the map-reduce paradigm. Roback then illustrated the
annotations with a variety of well-known examples. In the
n-queens problem, he showed how fork and join could be
used. In bzip2, the presenter also demonstrated the “or-
dered” keyword, which allows a serialized join in the order
of spawning.

Roback briefly described the source-to-source translator
that is used to compile down the annotations and generate
bookkeeping artifacts. For example, the translator tries to
limit the number of locks required to enforce “atomic” sec-
tions by finding the best middle ground between one global
lock and one lock per variable.

Roback then described the runtime involved. The appli-
cation-level threads are referred to as “filaments” and are
stackess and stateless, making them extremely lightweight.
The filaments share the stack of the thread they are run-
ning on. A member of the audience asked if, once placed
on a thread, a filament had to run till completion. Roback
said yes, at this time, as the threads are stackless, but the
authors are exploring medium-weight threads that could
be interrupted. David Padua asked about the producer-con-
sumer paradigm and Roback said this was also future work.
Recursive and task filaments are scheduled in a round-robin
fashion: iterative filaments are scheduled in groups to maxi-
mize cache locality, and domain decomposition filaments
are scheduled statically with one filament per processor.

Results were presented that demonstrated the very low
overhead of the system. The super-linear speedup in the
matrix-multiplication benchmark is due to the fact that
when the benchmark runs on two sockets, it has a larger L2
cache. Results also showed Gossamer comparing positively
to Cilk and OpenMP in most situations.

In conclusion, Gossamer is a simple portable framework
and the translator is available as a stage in the compilation
process and can therefore be simply plugged into GCC or
ICC.

David Patterson asked if they were thinking about trying
out larger applications (like the Dwarfs and the implementa-
tion presented at this year’s HotPar). Roback answered that
the goal was to try to fit as many applications as possible.
David Padua asked why OpenMP was so much slower at
times than Gossamer, since the approach seemed similar.
It’s because the task implementation in OpenMP is cur-
rently not very good.

■■ Reflective Parallel Programming: Extensible and
 High-Level Control of Runtime, Compiler, and
Application Interaction
Nicholas D. Matsakis and Thomas R. Gross, ETH Zurich

Matsakis presented the concept of “reflective parallelism,”
which he describes as a program’s ability to reason about its
own schedule at runtime. Consider, for example, two tasks
“A” and “B.” Questions that could be answered with reflec-

tive parallelism are: “Do A and B always run in parallel?”
and “Must A finish before B starts?” The results from queries
should return results that hold true for all executions and
the program should be able to dynamically modify the
schedule by adding scheduling constraints. Matsakis stated
that reflective parallelism could be used for many things,
from schedule visualization to testing frameworks to data-
race detection. In this paper he focused on data-race detec-
tion.

Matsakis then exposed the big problem with current
threads: they construct their schedule through primi-
tives such as “start,” “join,” and “wait,” but the schedule
is therefore never explicit until after the whole program
has executed. Even after the program has run, it is nearly
impossible to analyze the schedule and come up with asser-
tions that are always true. Reverse-engineering the program
to build the schedule is also risky.

Matsakis then introduced his answer to these problems:
make the schedule a first-class entity in the program
with the use of intervals where their use can express the
schedule through declarative methods. The three concepts
captured by the model are: (1) intervals that represent an
asynchronous task or group of tasks; (2) points that repre-
sent the start and end of intervals (the point right before an
interval and right after) on which “HappensBefore” relation-
ships can be specified; and (3) locks that can be held by
intervals to specify a constraint without imposing an order.
Alexandra Federova asked how this was different from TBB,
and Matsakis responded that although a task-graph existed
in TBB, it was more low-level with reference counts and was
thus not a first-class entity.

Matsakis then briefly described the scheduling model where
a “ready()” method expresses to the runtime that an interval
is ready to run. “HappensBefore” relationships can be added
dynamically, but they cannot be removed, which guarantees
monotonicity and makes scheduling easier.

Finally, Matsakis defined how reflection can be used to
specify “guards” on data objects. Guards can evaluate a con-
dition based on information gleaned through reflection to
determine whether the object they are guarding can be ac-
cessed. Many of these conditions can be known at compile
time, but even if they cannot, they can be quickly evaluated
at runtime and warn the user of any data-race.

In summary, the intervals framework, available at http://
intervals.inf.ethz.ch, allows users to specify access condi-
tions using information reflected back about the schedule.

Geoff Lowney asked how the system handles the case where
there is no guard on an object. Matsakis responded that the
framework mandates a guard for all fields. Another per-
son asked how to know if this is the right way to proceed.
Matsakis said it was a tough question to answer but that
they had tried this model in undergrad classes with suc-
cess. Finally, a member of the audience asked how many
of the checks were dynamic. Matsakis answered that many

116	 ; LO G I N : 	VO L . 	35, 	N O. 	5

checks could be done statically and, as is the case for most
type systems, some small restructuring of the program can
expose even more static checks.

■■ Task Superscalar: Using Processors as Functional Units
Yoav Etsion, Barcelona Supercomputing Center; Alex Ramirez,
Barcelona Supercomputing Center and Universitat Politècnica de
Catalunya; Rosa M. Badia, Barcelona Supercomputing Center;
Eduard Ayguade, Jesus Labarta, and Mateo Valero, Barcelona
Supercomputing Center and Universitat Politècnica de Catalunya

In this talk Etsion presented the idea of extending out-of-
order instruction pipelines to tasks to aid in exposing the
operations that can execute in parallel and manage data
synchronization. Indeed, for many years out-of-order pipe-
lines have been managing parallelism in a sequential stream
of instructions. Although ILP does not scale well, due to the
problems of building a large instruction window (difficulty
with building a global clock, as well as the limited scalabil-
ity of dependency broadcasts) and the unpredictability of
control-paths, Etsion believes that out-of-order task parallel-
ism may work better.

The presenter then moved on to explain the StarSS pro-
gramming model, where tasks are modeled as abstract
instructions. A master thread spawns the various tasks
encountered, which are dispatched to the worker proces-
sors. A runtime dynamically resolves dependencies and
constructs a task-graph. It is important to note that the
task-graph can get very complicated very quickly but that
StarSS can build it and exploit it efficiently.

The need to do the task-decoding and scheduling in hard-
ware is due to the high latency of software (between 700ns
and 2.5us).

The model of execution is very similar to that of out-of-or-
der instruction execution: tasks are decoded and pushed to
reservation stations. Data dependencies are taken care of in
the same way as for instructions. Etsion showed results that
demonstrated that parallelism could be uncovered in many
scientific applications.

Etsion explained that task parallelism will scale more than
ILP, for a variety of reasons. Firstly, broadcasts do not have
to be used, since the latencies involved are much higher.
Dependencies can therefore be dealt with using point-
to-point communication, which is much more scalable.
Secondly, there is no need for a global clock. Thirdly, the
multiplex reservation stations allow multiple tasks in the
same data structure, making the representation much more
compact. Tasks also are not speculative, although the au-
thors are looking at task predication.

As future work, the authors wish to exploit locality-based
scheduling and also to gather tasks using a similar kernel
and package them off to a GPU. They also wish to explore
which instruction-level optimizations can be applied.

David Padua asked if tasks can interrupt each other. At this
point they cannot, but nothing verifies that this is the case.
Another audience member asked how energy-efficient the
model is. It is difficult to predict, although it seems to be
more efficient than having a dedicated big core decode and
schedule the tasks.

