
; LO G I N :  D ecem b e r 20 0 9 cO N fe re N ce re p O rt s 73

18th USENIX Security Symposium
Montreal, Canada 
August 10–14, 2009

opening rem arks and awards

Summarized by Rik Farrow

Fabian Monrose began with the statistics: 176 papers 
were submitted to the symposium. One was withdrawn 
and three rejected for double or triple submissions to 
conferences (resulting in the papers being automatically 
rejected from all the conferences). Three or more people 
reviewed each paper, with Monrose reading the vast 
majority of these papers. Many submissions were being 
edited right up to the deadline. By the time of the PC 
meeting, there were only 62 papers left to discuss. All 
PC members attended the meeting in Chapel Hill, and 
Monrose said there were some real battles there (beside 
the NCAA tournament). By the end of the meeting, 26 
papers were accepted.

There were 84 applications for student grant support; the 
USENIX Board provided $50,000. The two Outstanding 
Student Paper awards were “Compromising Electromag-
netic Emanations of Wired and Wireless Keyboards” 
(Martin Vuagnoux and Sylvain Pasini, LASEC/EPFL) and 
“Vanish: Increasing Data Privacy with Self-Destructing 
Data” (Roxana Geambasu, Tadayoshi Kohno, Amit A. 
Levy, and Henry M. Levy, University of Washington).

keynote address

Android: Securing a Mobile Platform from the Ground ■■

Up
Rich Cannings, Android Security Leader, Google

Summarized by Italo Dacosta (idacosta@gatech.edu)

With the increase in the adoption of smartphones as well 
as in our reliance on these devices, they will undoubtedly 
become the next target of cybercriminals. This makes 
the security of the mobile operating systems an area of 
critical importance. Rich Cannings described the main 
features of Android, Google’s open source mobile OS, 
and pointed out that its openness differentiates Android 
from other popular mobile OSes. In Android, any user 
can develop applications, because there is no centralized 
software signing authority, but this openness also makes 
Android more vulnerable to malicious software. Being 
aware of this risk, Android developers follow a security 
strategy based on four components—prevent, minimize, 
detect, and react—to protect Android’s core components, 
applications, and user data.

To prevent possible attacks based on the exploitation of 
unknown vulnerabilities, Android has partnered with 
security experts to target high risk areas such as re-
mote attacks and vulnerabilities in media codecs. Being 

conference reports

thaNks tO Our summarIzers

18th USENIX Security Symposium .  .  .  .  .  .  .  .  .  . 73 .
Prithvi Bisht
John Brattin
Kevin Butler
Martim Carbone
Shane Clark
Italo Dacosta
Todd Deshane
Rik Farrow
Kalpana Gondi
Salvatore Guarnieri
Stephen McLaughlin
Andres Molina
Michalis Polychronakis
Ben Ransford
Asia Slowinska
Patrick Wilbur

2nd Workshop on Cyber Security 
Experimentation and Test (CSET ’09) . .  .  .  .  . 101
Eric Eide
Arun Viswanathan

4th USENIX Workshop on Hot Topics in 
Security (HotSec ’09)  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .108
Tamara Denning
Akshay Dua
Michael Sirivianos



74 ; LO G I N :  VO L .  3 4 ,  N O.  6

an open source OS, Android does not rely on obscurity 
techniques for its security. In addition, well-known security 
mechanisms such as stack overflow protection (ProPolice) 
and heap protection (dlmalloc) have been implemented. 
Address Space Layout Randomization (ASLR) has not been 
implemented yet due to some platform constraints but is 
expected to be added in the future.

Cannings said that not only is it unfeasible to prevent all the 
possible security vulnerabilities in Android, but attackers do 
not always even need vulnerabilities to compromise an OS; 
social engineering techniques and bugs can also be used 
to install malware. Therefore, it is important to minimize 
the impact of compromised applications. For this, Android 
tries to extend the Web security model to the OS, using an 
application sandbox model for separation of privileges (each 
application runs with its own UID and virtual machine). 
Applications are locked down to their minimal functional-
ity, and permissions are required to grant more access to 
resources, a whitelist model. Users decide to give permis-
sions or not to the applications when they are installed. A 
challenge in this area is to determine the right number of 
permissions that should be asked of the user (granularity) 
because too many questions could cause the user to ignore 
this mechanism. In addition, media codec libraries are 
given lesser privileges than in other OSes, given the long 
history of vulnerabilities in media codecs.

To detect attacks, Android uses activities such as devel-
oper education, code audits, fuzzing tests, and honeypots. 
Because Android is an open source OS, anybody can detect 
and report security problems: users, developers, security 
researchers, etc. External reports from members of the 
security community have helped Android’s developers fix 
several security problems. Also, users are encouraged to 
report suspicious applications in the Android Market. Re-
ported applications are analyzed by Android personnel and 
removed from the Market if they are considered malicious.

Android relies on auto-updates to distributed security 
patches to fix critical security vulnerabilities. Android uses 
an over-the-air update system where user interaction is 
optional and no additional cables or computers are required, 
resulting in a high update rate. However, the main chal-
lenge to apply security updates is the testing of the updates 
and the coordination with different mobile network provid-
ers. For mobile carriers, updates are a concern because they 
could affect the availability of a great number of devices, 
resulting in financial and customer service problems. There-
fore, before being released, security updates should be care-
fully tested and approved by each mobile carrier, but this 
process can delay the release of the update considerably.

During the Q&A, Rik Farrow asked about the prevention 
of privilege escalation attacks. Cannings answered that one 
way to mitigate this type of attack is to reduce the num-
ber of processes running with root privileges. In Android, 
only ping and zygote (the application launcher) run with 
root privileges. Regarding the support of security hardware 
mechanisms, Cannings commented that they are evaluating 

the use of the execution prevention bit and other hardware 
mechanisms. How many of Android’s 5 million lines of 
code were written in type-safe language? Most of the An-
droid code is written in Java, not only for security but also 
for compatibility purposes. Finally, Gary McGraw asked 
what percentage of the vulnerabilities discovered in Android 
were discovered externally versus internally. The number 
of vulnerabilities discovered internally was several orders of 
magnitude greater than those discovered externally.

at tacks on privac y

Summarized by Shane Clark (ssclark@cs.umass.edu)

Compromising Electromagnetic Emanations of Wired and ■■

Wireless Keyboards
Martin Vuagnoux and Sylvain Pasini, LASEC/EPFL

Awarded Best Paper!

According to Martin Vuagnoux, the authors chose the 
keyboard as an attack vector because it is the first device 
in a system that handles sensitive data such as passwords 
electronically; security is not a priority in their design. 
They chose to examine electromagnetic emanations because 
many other attack vectors for I/O devices have been dem-
onstrated in the past, such as electromagnetic leakage from 
displays and acoustic emanation from keyboards.

To provide background for the work, Vuagnoux next intro-
duced radiative emanations and their capture. Radiative em-
anations are those requiring the source to act as an antenna. 
These are the emanations of interest for attacks, as others 
require physical contact with a wire. Radiative emanations 
can be further broken down into direct emanations (those 
caused by a keypress or other action) and indirect emana-
tions (those from carrier signals, modulation schemes, etc). 
To observe these emanations, the authors chose to attempt 
to capture the entire spectrum of interest simultaneously in 
order to capture the maximum amount of information with-
out scanning. They found that they were able to achieve this 
using a large conical antenna and a 5 GSa/s oscilloscope. 
After capturing the signals, they examined the Fourier 
transform of each to identify interesting characteristics.

Vuagnoux moved on from background and acquisition 
methodology to describe three attacks that are effective 
only against PS/2 keyboards. The first attack relies on the 
fact that PS/2 keyboards modulate a scan code onto a clock 
signal by pulling down a data line repeatedly. It is possible 
to exploit this direct emanation by observing the series of 
falling edges that this creates in the modulated signal, but 
this results in aliasing among the scan codes. The authors 
constructed a table of all keys and their corresponding 
signatures, which allowed them to reconstruct words typed 
based on the sequence of key presses. The second attack 
simply filters the same information and computes a dis-
tinct threshold in order to remove aliasing. The final PS/2 
attack actually demodulates the captured signal in order to 
remove noise from the clock. The only USB attack relies on 



; LO G I N :  D ecem b e r 20 0 9 cO N fe re N ce re p O rt s 75

the use of a matrix scan loop to poll pressed keys. Which 
key has been pressed can be discerned from the delay as-
sociated with scan reporting. This attack is also effective 
against PS/2 and wireless keyboards. All of the attacks were 
effective in realistic environments, including through walls, 
though at ranges sometimes less than a few meters. Surpris-
ingly, all attacks were much more effective when tested in 
an apartment building, owing to construction features such 
as common grounds and water pipes.

Xiaofeng Wang (IBM) asked what the implications are of 
multiple users typing in the same space simultaneously. 
Vuagnoux responded that they were able to fingerprint in-
dividual keyboard models based on clock signal differences. 
Perry Metzger asked a similar question, emphasizing the 
problem of separating users whose input is captured simul-
taneously, to which Vuagnoux responded that this should 
be possible in theory based on keyboard fingerprinting, but 
presented a technical problem because they were unable to 
actually trigger data capture accurately with current hard-
ware. This is something that the authors are still working 
on. Had the authors attempted similar attacks against mice? 
They hadn’t and, in fact, removed mice during their experi-
ments to minimize noise. Had the authors attempted any 
countermeasures, such as wrapping a keyboard in shielding 
material? A few keyboards implement shielding based on 
the results of the TEMPEST program, but they cost hun-
dreds of dollars and the authors were not able to purchase 
one without a military affiliation. Attempts by the authors 
to shield a keyboard themselves sometimes resulted in more 
visible emanations.

Peeping Tom in the Neighborhood: Keystroke ■■

 Eavesdropping on Multi-User Systems
Kehuan Zhang and XiaoFeng Wang, Indiana University, 
 Bloomington

Kehuan Zhang reported a new shared information vulnera-
bility present on multi-user UNIX-like systems and present-
ed an example attack on Linux. Zhang started by introduc-
ing legitimate uses of shared information on Linux systems 
and procfs, the mechanism for this sharing. It is common 
for users on a system to run commands such as top in order 
to see which users are logged in to a system, what processes 
are running, and what resources they are consuming. This 
information-sharing is enabled by the process file system, 
procfs, which is a pseudo file system that is globally read-
able. It contains per-process data such as image name, start-
ing address of the stack, and current stack pointer (ESP).

Zhang next discussed the attack, which performs keystroke 
inference using the information available in procfs. Before 
the attack can be mounted, the attacker must analyze the 
victim process offline and build a trace of the ESP variation 
in procfs as a result of user input. The attack also requires 
a multi-user system, the ability to execute programs, and a 
multicore CPU. These capabilities are necessary because the 
attacker must run a shadow process concurrently with the 
victim process in order to observe changes in procfs. The 
shadow process produces a partial ESP trace (as it is not 

possible to catch all changes reliably), which is then con-
verted into a longest common subsequence problem in order 
to extract keystroke timings. The timings are then given as 
input to a Hidden Markov Model (HMM) to perform key 
inference. Multiple timing traces are produced in order to 
increase HMM accuracy.

Zhang concluded by presenting performance results and 
discussing countermeasures. He noted that the percent-
age of keystrokes detected decreases rapidly as CPU usage 
increases for some applications, but with CPU usage under 
5%, all of the tested applications were vulnerable. Zhang 
showed server traces indicating that three test machines 
averaged under 4% CPU usage, to illustrate the feasibility of 
the attack on real-world systems. He next presented results 
for password inference using 50 keystroke captures. The 
authors’ keystroke inference system was able to reduce the 
password search space to between 0.05% and 7.8% of the 
initial space. Zhang noted that a kernel patch to remove 
the compromising information leakage is the short-term 
solution, but suggested a complete evaluation of informa-
tion leakage through shared information channels. Someone 
asked if this attack can be used to capture SSH keys, and 
Wang answered that it can.

A Practical Congestion Attack on Tor Using Long Paths■■

Nathan S. Evans, University of Denver; Roger Dingledine,  
The Tor Project; Christian Grothoff, University of Denver

Nathan Evans gave a talk on a new Tor attack which allows 
the attacker to determine the path data travels through the 
network. The Tor system is the most popular free software 
used to achieve anonymity on the Internet. Tor uses onion 
routing, which forwards data through the network, peel-
ing off a layer of encryption at each node. Each node in the 
network knows only the previous hop and the next hop. 
This is a key security goal for Tor, as the discovery of a 
complete circuit through the network makes it easier to de-
anonymize the originator of the traffic. Evans noted three 
design choices made by the Tor project that are relevant to 
his attack. First, no artificial delays are induced on any con-
nection. Second, path length is set at a small finite number 
(3). Third, paths of arbitrary length through the network 
can be constructed.

Evans described the attack and countermeasures in more 
detail. The attacker must first operate a Tor exit node that 
is in use by the victim. Next, the attacker uses a malicious 
client to create a long loop in the network before connecting 
to the requested server. This allows the attacker to load the 
intermediate nodes as desired. Finally, the exit node injects 
a JavaScript ping command into the traffic that reports back 
to the malicious client and is used to measure the latency 
along the circuit as the attacker loads possible first hop 
routers. Based on the observed latency, the attacker can 
determine which node is the first hop. Since the attacker 
also operates the exit node, she can determine what server 
the victim is connecting to. Evans showed that attack runs 
are clearly distinguishable from normal Tor traffic in testing 
and that the attack is effective even against high bandwidth 



routers. Finally, he presented several possible countermea-
sures, including the prohibition of infinite path lengths, 
which the Tor developers have implemented.

invited talk

The Building Security in Maturity Model (BSIMM)■■

Gary McGraw, CTO, Cigital, Inc., and Brian Chess,  
Chief Scientist, Fortify Software

Summarized by Salvatore Guarnieri  
(sammyg@cs.washington.edu)

The Building Security in Maturity Model (BSIMM, http://
bsi-mm.com/) ranks your corporation’s security practices 
against those of other corporations. This work differs largely 
from previous work in that it does not advocate security 
practices based on what seems like a good idea; it doesn’t 
actually recommend anything. The model simply compares 
corporations’ security practices. It is up to the users of the 
model to determine if they want to be like the organizations 
they are being compared to.

BSIMM is based on a study of nine large companies: Adobe, 
Depository Trust and Clearing Corporation (DTCC), EMC, 
Google, Microsoft, QUALCOMM, Wells Fargo, and two 
anonymous companies. BSIMM analyzed what these cor-
porations were doing for software security and found some 
expected and some unexpected results. Two basic and ex-
pected findings were that security was an emergent property 
of the entire system and that secure software requires deep 
integration with the Security Development LifeCycle (SDLC).

Since BSIMM is a model that compares company practices, 
one would think that the companies one is compared to 
would be important. For example, an independent software 
vendor (ISV) would have different security concerns and 
practices from those of a financial institution. The BSIMM 
study actually found that this is not the case. Financial 
institutions and ISVs have approximately the same software 
security model. Additionally, the size of the companies in 
the study ranged from hundreds to thousands of software 
developers. In all the companies, the size of the Software 
Security Group (SSG) was 1% of the total software develop-
ers. This doesn’t mean that the correct SSG size is 1% of 
developers, but if you like the security of these nine compa-
nies, maybe 1% is a pretty good target size for your SSG.

The model is a set of over 100 activities. You mark which 
activities your company does and then compare your results 
to the average of the nine studied companies. Each activity 
has a ranking associated with it that describes how easy it 
is to do. This ranking is also interpreted as how serious or 
mature a company is in a certain area of security. The end 
result is a simple comparison, but the speakers have devel-
oped a visualization that easily shows how one organization 
compares to the average. The model is available from the 
BSIMM Web site for free under a creative commons license.

There were a few surprising discoveries from the study, 
including the top 10 most unexpected results. These are all 

available on the Web site, but there were a few very inter-
esting things that everybody does. First, everyone is doing 
code review, using tools and, most importantly, looking for 
ways to automate the process. Second, SSGs do architectural 
analysis. Architectural analysis is difficult, and product 
teams have a hard time doing it, so SSGs need to help out. 
Third, every organization has an SSG, but each one had a 
different way of starting its SSG.

More companies need to be studied. Nine is a good starting 
point, but few statistics are valid with only nine data points. 
They are already up to 17 companies with their current 
work and they keep looking to expand. As they get more 
companies, they can start to say more interesting things, 
such as comparing big companies to small companies.

memory safet y

Summarized by Stephen McLaughlin (smclaugh@cse.psu.edu)

Baggy Bounds Checking: An Efficient and Backwards- ■■

Compatible Defense against Out-of-Bounds Errors
Periklis Akritidis, Computer Laboratory, University of Cam-
bridge; Manuel Costa and Miguel Castro, Microsoft Research, 
Cambridge; Steven Hand, Computer Laboratory, University of 
Cambridge

Periklis Akritidis described a technique called baggy 
bounds checking, which aims at increasing the efficiency 
of array bounds checking. Because type-unsafe languages 
such as C do not perform array bounds checking, previous 
research efforts have been made to add it to the language. 
Traditional backwards-compatible techniques (e.g., splay 
trees) require several memory accesses per check or use too 
much memory. To address this issue, the authors suggest 
allocating strategically sized buffers to make bounds checks 
more efficient.

The presented technique, baggy bounds checking (BBC), 
pads objects upon allocation to a size that is a power of 
two. Bounds checking is then performed, not on the object 
boundaries but on the allocation boundaries, which can be 
calculated from a pointer into the object and a single table 
lookup. Because BBC partitions memory into slots that are 
powers of two in size, the base address of an allocation 
can be found by clearing the lowest-order lg(size) bits of a 
pointer to an object, where lg is the log base two. A pointer 
to an object is used to index a global array that contains 
the log base two of the size of the containing slot, requir-
ing only one byte to track the bounds of each allocation. Of 
course, this technique cannot detect memory accesses that 
are within an allocation but outside an object. This is not a 
problem, as the padded regions are cleared upon allocation 
to remove any sensitive data from previous allocations.

BBC is implemented as a compiler extension that works 
with the intermediate representation of a C program to 
modify memory allocation and add bounds checks. Heap 
allocation is modified to use buddy allocation at runtime, 
while globals are modified at compile time and the heap 

76 ; LO G I N :  VO L .  3 4,  N O.  6



; LO G I N :  D ecem b e r 20 0 9 cO N fe re N ce re p O rt s 77

allocator is modified in the library. BBC was evaluated 
for memory and performance overhead using the Olden 
and SPECINT 2000 benchmark suites on Windows. Each 
benchmark was compiled using both BBC and splay tree 
bounds checking. Most surprisingly, BBC had a smaller 
average memory overhead than splay tree checking on both 
suites, although the splay tree did slightly better on most 
SPEC benchmarks. On the Olden tests, the splay tree ver-
sion created 170% memory overhead, while BBC sometimes 
performed better than the default Windows allocator. Both 
of these effects are a result of the metadata overhead caused 
by the Olden benchmark’s many small allocations. The abil-
ity of BBC to detect bounds errors was tested utilizing 18 
buffer overflows from a suite of benchmarks used to test for 
memory errors. BBC detected 17 out of 18 errors. In the one 
exception, an array was allocated inside a structure. An out 
of bounds access to the array caused another pointer in the 
structure to be overwritten.

Someone asked how this scheme differed from SoftBound, 
which was presented at PLDI 2009. Akritidis said that 
SoftBound requires eight bytes to be stored for each pointer, 
causing high memory overheads.

Dynamic Test Generation to Find Integer Bugs in x86 ■■

Binary Linux Programs
David Molnar, Xue Cong Li, and David A. Wagner, University of 
California, Berkeley

Dave Molnar presented work on generating better test cases 
for finding integer bugs with fuzz testing and compared it to 
a black box fuzz tester running in Amazon’s Elastic Com-
pute Cloud. A large number of software errors are caused by 
integer bugs such as over- and underflows, non-value pre-
serving conversions, and signed and unsigned conversion 
errors. Typical black box fuzz testing does not deal with 
integer bugs, which may only occur for particular integer 
values. Molnar described SmartFuzz, a fuzz test generation 
tool that uses constraint solving to more quickly find inputs 
that should cause a program to crash.

SmartFuzz performs a symbolic execution of the program 
under test, yielding a set of constraints on integer variables. 
These constraints may then be solved to determine the set 
of inputs that should either be rejected or trigger a bug. In 
order to generate constraints on signedness, SmartFuzz uses 
a four-type system in which an integer is either unknown, 
signed, unsigned, or bottom. If at some point in execution 
the inferred type of a variable is bottom, SmartFuzz will 
search for a constraint to assign a negative value to that 
variable to test for a signed/unsigned conversion bug.

SmartFuzz gives fuzzed inputs to programs running in Val-
grind, which will detect any memory errors caused by fuzz-
ing. While effective at determining whether an input causes 
a bug, this use of Valgrind results in different test cases dis-
covering the same bug and different bugs being discovered 
by the same test case. This results in multiple reports being 
filed for the same bug on different test cases. The solution 
Molnar presented is a fuzzy stack hash which maps the first 

three frames of a stack trace to a bucket for a single bug. 
Then a single report is generated for each bucket.

MetaFuzz is run in the Amazon Elastic Compute Cloud 
(EC2), where CPU time can be rented for 10 cents per hour. 
The metric used for evaluating fuzz testers in this environ-
ment is dollars spent per bug found. The evaluation com-
pares SmartFuzz against zzuf, a block box fuzz tester. The 
two fuzz testers were run against six programs: mplayer, 
ffmpeg, convert, gzip, bzip2, and exiv2. SmartFuzz achieved 
a lower cost per bug than zzuf on two out of six programs 
and found two bugs in gzip, in which zzuf found none. The 
metafuzz framework can be accessed at http://metafuzz.com.

Someone asked why the black box fuzzer, zzuf, found more 
bugs than SmartFuzz on four of the six programs tested. 
Molnar explained that this is because zzuf changes much 
more of the fuzzed inputs between tests. This will find 
more bugs in unrefined code, whereas SmartFuzz is aimed 
at finding more obscure bugs in mature code. When were 
most bugs found? Molnar said, early on in the process. How 
difficult does the analysis become for programs that require 
complex inputs and user interaction? There was no relation-
ship between complexity of inputs and difficulty, but there 
are engineering issues that need to be overcome to fully 
automate the testing of interactive programs.

N■■ ozzle: A Defense Against Heap-spraying Code Injection 
Attacks
Paruj Ratanaworabhan, Cornell University; Benjamin Livshits 
and Benjamin Zorn, Microsoft Research

Ben Zorn described NOZZLE, a software detection method 
for heap-spraying attacks. Heap spraying is a method for 
achieving code execution in the face of address space layout 
randomization (ASLR). The goal is to place many instances 
of malicious code on the heap, then jump to some address 
in the heap with the injected code. Many instances are 
needed, as ASLR prevents the calculation of the correct ad-
dress of the malicious code.

NOZZLE provides protection against JavaScript-based heap-
spraying attacks in which the malicious code is placed on 
the heap through the allocation of objects, usually strings. 
NOZZLE does this by inspecting objects on the heap to de-
termine if they seem malicious (e.g., if they contain a no-op 
sled, a long series of no-op instructions that lead to execut-
able code). If a percentage of objects are malicious beyond a 
certain threshold, the offending script is stopped. The sim-
plest way to check if an object is malicious is to check for 
the presence of a no-op sled, but this technique produces 
too high a false positive rate. Instead, an object is marked as 
malicious if it contains a sequence of instructions that looks 
sufficiently like executable code. This is a hard task in itself, 
as virtually any byte sequence can be interpreted as x86 
instructions.

To detect executable code, NOZZLE uses program flow 
analysis on objects to determine their attack surface area 
(SA). The SA of each potential code block in an object is the 
likelihood that the block is reachable if execution occurs in 



78 ; LO G I N :  VO L .  3 4,  N O.  6

its containing object. The surface area is then propagated 
throughout the control flow. Blocks that contain invalid 
opcodes, such as those that must be executed in kernel 
mode, have zero SA. NOZZLE exhibits zero false positives 
and zero false negatives when tested on the 150 Web sites 
and 12 known heap-spraying attacks, respectively. Note 
that this is with a 100% sampling rate. In the case of full 
sampling, NOZZLE causes a maximum overhead of two 
times normal page-load time, and around 5–10% overhead 
with a 5% sampling rate. Zorn concluded the talk with a 
live demonstration in which NOZZLE successfully detected 
heap spraying.

Avi Rubin pointed out potential means for circumventing 
NOZZLE, including runtime-initialized objects and code 
obfuscation with junk data. Zorn pointed out that jumps to 
code in different objects is another way to trick the surface 
area calculation, and that they are exploring mitigations for 
all of the described escalations. Adam Barth (UCB) asked 
whether NOZZLE would be effective against a less aggres-
sive heap-spraying attack in which only 10% of objects are 
malicious. Zorn explained that NOZZLE would not detect 
such an attack, as the malicious surface area is too small, 
and that NOZZLE is not effective if an attacker is willing to 
settle for a low success rate.

invited talk

Toward a New Legal Framework for Cybersecurity■■

Deirdre K. Mulligan, School of Information, University of 
 California, Berkeley

Summarized by John Brattin (jbrattin@student.umass.edu)

Deirdre Mulligan spoke about the difficulties involved in 
designing laws to help protect end users from cyber-attacks. 
Her main ideas were: a public health analogy may be fitting, 
and a new legal framework for cybersecurity could benefit 
from this approach; by using tactics such as mandatory 
information disclosure, the law could be more flexible than 
technical standards in regulating software; and because we 
have a participatory government, people with computer se-
curity expertise should get involved in helping design a new 
legal framework for cybersecurity.

Lack of adoption is a major problem in computer security. 
There’s no point in coming up with new, stronger security 
practices if no one will bother to use them. “Security in the 
marketplace is remarkably below what known best prac-
tices could provide.” In many cases, it isn’t even a techni-
cal problem—we have the theories, and we even have the 
theories implemented in software, but people choose not to 
use the software. Many people use virus protection software 
but don’t update definitions. Many people don’t download 
critical security patches.

Mulligan notes that law is a somewhat unpopular channel 
for effecting change in the cybersecurity community. People 
think law moves too slowly, lagging significantly behind 

changes in technology. Currently, cybersecurity law focuses 
on deterrence: “increasing the celerity, severity, or certainty 
of punishment for criminal activity.” However, certainty of 
punishment is remarkably difficult to increase, as cyber-
criminals are notoriously difficult to identify and, once 
identified, are frequently not under our jurisdiction. For 
these reasons, deterrence seems like a poor choice of policy.

Another option is to “incentivize the good guys” to use 
more secure practices. One way we could get developers 
to use secure practices is by using notification laws: when 
a company emits a large volume of toxic waste, they must 
report it to the government, and eventually the information 
becomes public. This may lead companies to limit emissions 
in order to avoid bad publicity. This “mandatory reporting” 
method prevents the government from directly interfering, 
but creates incentives for developers to address security 
concerns.

Cybersecurity will continue to be an important issue; as 
technology changes and improves, so, too, do technological 
attacks. We will never completely stop these attacks. We 
also put ourselves at risk by having an open flow of com-
munication—just as you can defend yourself from biological 
viruses by staying in your house, you can defend yourself 
from computer viruses by avoiding the Internet. Another 
parallel between public health and computer health is that 
viruses spread in a monoculture. If we had more diversity 
in systems, particularly operating systems, viruses might 
not spread as easily.

Public law is a useful channel through which to combat 
cybercrime, primarily because it is more flexible than using 
rigid technical standards. By using public law, we can guar-
antee that a certain problem is addressed by software, or we 
can guarantee information disclosure that results in greater 
security, without enforcing the use of any particular system 
that may quickly become outdated. The law gives another 
layer of abstraction, in essence. However, people with tech-
nical know-how should participate in the construction of 
appropriate laws.

A member of the audience suggested that people don’t 
patch because patching requires the user to restart, which 
is time-consuming. She also suggested that it is difficult to 
enforce security when there aren’t clear standards. Mulligan 
proposed a checklist strategy: if a developer has in some 
way addressed every problem on the list, she’s done her job. 
Another strategy would be to let developers come up with 
their own standards and merely report when those stan-
dards are violated. Another audience member noted that 
although diversity may slow the spread of viruses, software 
becomes more useful the more people use it. He then asked 
if the government should somehow regulate the develop-
ment of patches, to make sure nothing breaks. Mulligan 
expressed doubt that the government would ever interfere 
so directly in development.



; LO G I N :  D ecem b e r 20 0 9 cO N fe re N ce re p O rt s 79

net work securit y

Summarized by Ben Ransford (ransford@cs.umass.edu)

Detecting Spammers with SNARE: Spatio-temporal ■■

Network-level Automatic Reputation Engine
Shuang Hao, Nadeem Ahmed Syed, Nick Feamster, and 
 Alexander G. Gray, Georgia Tech; Sven Krasser, McAfee, Inc.

Shuang Hao spoke about SNARE, a system that uses 
network-level (as opposed to content-level) features of email 
transmissions to detect spam. Hao cited familiar figures on 
the cost of worker productivity lost to spam and the preva-
lence of spam; he also pointed out that spam is increasingly 
being used as a vector for malware. He stressed the high 
cost of content filtering in terms of both network traffic and 
human time. IP blacklists, commonly used in addition to 
content filtering, are incomplete, and many spam senders 
are newly infected machines without reputations. The au-
thors’ approach in SNARE incorporates empirically derived 
heuristics to classify email transmissions, given as little as a 
single packet. Hao asserted that network-level features may 
be cheaper to analyze than content-level features, because 
they require less input data; they may also be more difficult 
for a spammer to vary. Hao offered the basic intuition that, 
because over 75% of spam is thought to come from botnets, 
the sending patterns of spammers should be distinguishable 
from those of human non-spammers.

SNARE uses a set of thirteen features to classify spam. Hao 
focused on five heuristics that classify messages based on 
the receipt of a single packet (and, in some cases, using 
auxiliary knowledge gained from previous interactions with 
the sender). First, Hao asserted that most legitimate email 
does not need to travel a long distance geographically from 
the sender’s computer to the recipient’s; according to their 
data set, 90% of legitimate messages travel 2,500 miles or 
less. Second, because clients participating in botnets tend to 
share network space with other botnet participants, spam 
often arrives directly via IP addresses that are numerically 
close to others that have submitted messages; legitimate 
messages tend not to exhibit this pattern. Third, legitimate 
senders and spammers exhibit different sending patterns 
throughout the day, with spam traffic peaking slightly later 
than legitimate traffic. Fourth, while legitimate email tends 
to arrive via mail servers that listen on standard mail-relat-
ed ports, spam does not; Hao noted that 90% of the spam 
senders in their data set had none of the standard mail-
related ports open. Finally, because some ISPs are more 
spam-friendly than others—the top 20 ASes in their data 
set hosted 42% of the spamming IP addresses—the sender’s 
AS may provide a clue to the legitimacy of the message. Hao 
concluded that SNARE is capable of providing an effective 
first line of defense against spammers.

George Jones asked whether SNARE consulted lists of 
known dynamically assigned IP addresses; Hao answered 
that it did not. Had the authors considered ways to improve 
on the linear function used to score messages? They consid-

ered improvements to the classifier a separate problem. Mi-
chael Sirivianos expressed doubt that the geodesic distance 
feature was equally valid for non-US recipients; Hao agreed 
that different regions might exhibit different characteristics, 
and he remarked that the use of several different features 
made SNARE more robust. An audience member asked 
which of the classifying features was the best predictor of 
spam in the authors’ experiments. Hao replied that it was 
the sender’s AS number.

Improving Tor using a TCP-over-DTLS Tunnel■■

Joel Reardon, Google Switzerland GmbH; Ian Goldberg, 
 University of Waterloo

Joel Reardon spoke about a way to improve the performance 
of Tor. Reardon introduced Tor as an overlay system that 
grants anonymity to anyone on the Internet, most impor-
tantly to people who are subject to Internet censorship. The 
authors propose a change to the way in which Tor routers 
handle concurrent connections; their change reduces packet 
delivery latency and, according to the authors, makes Tor 
more usable.

The authors studied latency in Tor in an attempt to find 
bottlenecks. Reardon remarked that communication 
delays—that is, those imposed by throughput limitations—
were negligible compared to overall latency. By running a 
Tor node at a university and exchanging several pieces of 
data, they eventually found a bottleneck in the buffering 
strategy Tor uses to multiplex connections. While input buf-
fers drained quickly, output buffers occasionally required 
packets to wait a long time to be sent. Because Tor uses 
one socket per router-router link and because the underly-
ing asynchronous communication library, libevent, waits 
to send on a socket until the operation is guaranteed not to 
block, data queues up in the output buffers waiting for the 
socket to become writable. The authors investigated further 
and found that TCP congestion control was the primary 
cause of such blocking: if circuits A and B are multiplexed 
along a link E, then congestion control on E will affect A 
and B regardless of the respective traffic on each. Reardon 
showed several graphs illustrating how output buffers on 
a Tor router changed over time. As an alternative to multi-
plexing, the authors implemented a scheme in which each 
circuit that traversed two routers received its own TCP 
connection between the routers. To avoid several problems 
(e.g., information leaks) with using TCP directly, the authors 
tunneled TCP over UDP streams with Datagram Trans-
port Layer Security (DTLS). To prevent clients having to 
modify their kernels, the authors implemented a user-space 
TCP stack that can assemble packets suitable for sending 
via DTLS. Each router advertises a single UDP socket that 
multiplexes data for all incoming connections; congestion 
control is performed on a per-circuit basis in the user-space 
TCP stack. Reardon showed performance graphs demon-
strating that Tor with TCP-over-DTLS exhibits much less 
latency under load than unmodified Tor. Reardon discussed 
future work involving Tor’s new user-space TCP stack and 
rethinking Tor’s buffering strategy.



80 ; LO G I N :  VO L .  3 4 ,  N O.  6

Michael Sirivianos asked whether it would make sense to 
make Tor an IP-level service with congestion control only 
at the entry and exit nodes. Reardon remarked that such 
a strategy would decrease throughput, because congestion 
control does not work well on long paths.

Locating Prefix Hijackers using LOCK■■

Tongqing Qiu, Georgia Tech; Lusheng Ji, Dan Pei, and Jia Wang, 
AT&T Labs—Research; Jun ( Jim) Xu, Georgia Tech; Hitesh 
 Ballani, Cornell University

Tongqing Qiu spoke about LOCK, a system that locates IP 
prefix hijackers by using PlanetLab to monitor traffic to 
hijacked networks. The Internet comprises tens of thou-
sands of networks (called autonomous systems, or ASes) 
that exchange packets according to an inter-network routing 
protocol called the Border Gateway Protocol (BGP). BGP’s 
lack of authentication allows any AS to announce ownership 
of any other AS, which means any network can hijack, or 
steal, another network’s traffic. Qiu described three kinds 
of hijacking: blackholing, in which an attacker drops all 
traffic destined for the victim; imposture, in which the at-
tacker pretends to be the victim such that the victim never 
receives the hijacked traffic; and interception, in which the 
attacker transparently interposes her own AS into the chain 
of networks leading to the victim. Previous approaches to 
the problem of prefix hijacking have been stymied by the 
difficulty of changing the Internet’s routing infrastructure 
or have otherwise been focused on recovering the network 
without pinpointing the source of the error. Qiu claimed 
that his team’s work was the first study of the hijacker loca-
tion problem. Their system, called LOCK, aims to locate 
hijackers automatically in order to minimize the effort 
required for mitigation and recovery.

LOCK uses monitoring software on PlanetLab nodes distrib-
uted around the world. Given a network prefix P (owned by 
a specific AS) to monitor, LOCK’s constituent nodes periodi-
cally observe the AS paths from their own networks to P. If 
some monitoring nodes detect that their respective paths to 
P have changed—Qiu called such nodes “polluted”—they 
follow an algorithm that infers the location of the hijacker. 
The algorithm finds the ASes within one hop of the prefix 
P in a public database of AS relationships. It then considers 
all the neighbors of ASes on the new paths to P. Because a 
hijacker cannot manipulate the path to her own AS that tra-
verses her upstream providers, her AS will appear in the set 
of neighbors, so the algorithm restricts its search to that set. 
Because paths from polluted monitors (which are distrib-
uted diversely around the Internet) to the hijacker naturally 
converge around the attacker’s AS, simply ranking the ASes 
in the neighbor set by the number of times they appear in 
paths from polluted monitors allows a quick whittling of the 
search space. Qiu showed experimental evidence that, for 
real and synthetic hijacking events, LOCK correctly ranked 
the hijacker’s AS in the top spot up to 94.3% of the time.

George Jones remarked that, although LOCK’s detection 
mechanisms appear sound, the design sidesteps the basic 
issue that no authoritative central registry of AS relation-

ships is kept up-to-date, thereby making it impossible to 
determine with total certainty whether a new AS announce-
ment is good or bad. Qiu agreed that the lack of a central 
registry was a fundamental problem. An audience member 
asked whether an attacker couldn’t simply prepend arbitrary 
AS numbers into the AS path it announces, and whether 
that affected LOCK’s ability to infer the hijacker’s neighbor-
hood. Qiu remarked that some existing routers implement 
sanity checks that would flag such announcements, but 
agreed that a hijacker might be able to foil the neighbor-
hood inference by including arbitrary AS numbers in its 
announcement.

invited talk

Modern Exploitation and Memory Protection Bypasses■■

Alexander Sotirov, Independent Security Researcher

Summarized by Martim Carbone (mcarbone@cc.gatech.edu)

Security researcher Alexander Sotirov, well known for his 
work on offensive techniques, gave a very instructive talk 
on the past, present, and future of memory exploitation. 
His talk also covered the other side of the game by analyz-
ing the evolution of countermeasures, from virtual inexis-
tence to techniques such as Data Execution Prevention and 
Address Space Layout Randomization (ASLR). Overall, his 
presentation gave useful information and insight to the au-
dience on the nature of this arms race that has been going 
on for many years and shows no sign of stopping.

Sotirov started by introducing some basic concepts, such 
as what exactly constitutes a memory corruption vulner-
ability and an exploit. The latter is defined as a way to make 
the target process execute arbitrary code by exploiting the 
vulnerability. Although these two concepts are commonly 
coupled, the difficulty of finding a vulnerability and that 
of effectively exploiting it are not closely related. Sotirov 
explained that the distance between the two has varied over 
time, as our understanding of memory exploitation and 
countermeasures has increased.

In the late ’90s, finding a vulnerability could be a hard task, 
but once found, building a working exploit for it was trivial, 
given the absence of mitigations. As time passed, tech-
niques for finding new vulnerabilities were systematically 
improved, reaching a climax in the summer of 2004. At 
that time, several classes of vulnerabilities were known with 
no effective mechanisms to counteract them, along with 
effective techniques for automatically finding such vulner-
abilities, such as fuzzing. Examples mentioned by Sotirov 
include the infamous stack overflow, structured exception 
handler (SEH), heap overflow, and format string exploita-
tion techniques. As he pointed out, all these exploitation 
techniques relied on assumptions made about the target 
process’s execution environment. Examples are the fixed 
locations of code and data regions in memory, a well-known 
stack layout, and the fact that data placed on a program’s 
stack/heap can be executed as code. The “golden age” of 
exploitation came to an end as operating systems started 



; LO G I N :  D ecem b e r 20 0 9 cO N fe re N ce re p O rt s 81

being shipped with some basic mitigation mechanisms that 
invalidated some of these assumptions.

Windows XP Service Pack 2, released in August of 2004, 
was the first attempt at mitigation and included support for 
features like disallowing code execution at the stack and 
heap of programs by leveraging new hardware support (the 
NX bit), safe heap header unlinking to prevent using un-
linking to control execution flow, and stack cookies. Sotirov 
explained some of the workarounds that were developed 
to counteract these mitigation techniques and the other 
mitigation techniques that were developed in response. For 
example, a simple way to circumvent stack cookies was 
to no longer rely on overwriting the return address but to 
use other variables and function arguments. In response to 
this, compilers started supporting variable reordering in the 
stack by placing all the buffers at the end of the local stack 
frame. However, exploitation was still possible by overflow-
ing into other buffers or even the stack frame of the calling 
function. Exploitation and mitigation techniques involving 
SEHs were also discussed.

Two state-of-the art mitigation techniques were given spe-
cial focus in the presentation: Data Execution Prevention 
(DEP) and Address Space Layout Randomization (ASLR). 
The first effectively closes the window for code injection 
attacks by disallowing code execution in the program’s 
data regions. The second operates by loading executables 
at randomized locations in virtual memory, preventing an 
exploit from correctly guessing the address of its payload. 
Sotirov explained that DEP and ASLR are only useful when 
deployed together. Alone, DEP can be circumvented through 
return-into-libc-style attacks and return-oriented program-
ming, techniques that execute the program’s own code in a 
controlled manner for malicious purposes. If ASLR is used 
alone, exploitation is still possible by using “heap spraying,” 
which fills the program’s heap with copies of the malicious 
payload, to the point that an exploit writer can say for sure 
that a certain address will contain a copy of it, despite 
the randomization. Although included in Windows Vista, 
these two mitigation techniques had limited impact, since 
DEP was disabled by default and ASLR was only used for 
a small set of system services. It is expected that Windows 
7’s implementation of DEP and ASLR will have much better 
support for third-party applications.

Due to these new mitigation techniques, the situation at 
the moment is the opposite of that of the late ’90s: finding 
vulnerabilities has become a relatively easy task, whereas 
exploiting them now sometimes requires many man-months 
of hard work, according to Sotirov. In light of this, he 
moved on to discuss new possibilities in memory exploita-
tion as well as interesting research directions. These include 
the development of techniques to disclose memory content, 
which would allow ASLR to be bypassed, as the secrecy of 
a program’s location in memory would be lost. Another one 
relies on partially overwriting the low-order bytes of point-
ers, giving an exploit access to the region of the address 
space occupied by the target process. This works because 

ASLR randomizes only the 16 high-level bits of addresses, 
i.e., programs are still 64K-aligned. Entropy attacks against 
ASLR are also possible. In these, an exploit is executed 
many times until all possibilities for a program’s location in 
memory are covered. Sotirov also mentioned the possibility 
of corrupting a program’s non-control data as a way to ma-
nipulate its internal logic. This attack would require a more 
detailed understanding of the program’s semantics, though. 
Finally, he proposed as a research direction the use of pro-
gram analysis techniques to better understand and control a 
process’s memory layout, as a way to oppose ASLR.

Sotirov concluded by arguing in favor of current mitigation 
techniques, as they significantly raise the bar against ex-
ploitation. The question of whether they are enough is hard 
to answer, but it is likely that the arms race will continue 
for the time being. And, as he pointed out, “we will always 
have the Web and all of its brokenness to look at.”

Rik Farrow wondered why format string vulnerabilities had 
disappeared so quickly. Sotirov replied that it was because 
they were so easy to find. Peter Kristic asked whether using 
virtual machines (like VMware) makes any difference with 
regard to exploitation techniques. It makes no difference, 
since full virtualization replicates the execution environ-
ment of a real machine. Ben Zorn asked whether Sotirov 
had thought about any new mitigation techniques which 
might help to defend against some of the new attacks, to 
which he comically replied, “Certainly, but I will not tell 
you what they are.” Sotirov also mentioned (citing the exam-
ple of Microsoft) that as a result of this arms race, program-
mers’ awareness about writing secure code had increased, 
but he cautioned the audience never to underestimate the 
potential of developers to introduce new vulnerabilities into 
code. And in the unlikely circumstance that all memory 
corruption vulnerabilities are found and fixed, the Web will 
always be there as a fertile ground for future exploitation, 
with whole new classes of vulnerabilities.

javascrip t securit y

Summarized by Ben Ransford (ransford@cs.umass.edu)

G■■ atekeeper: Mostly Static Enforcement of Security and 
Reliability Policies for JavaScript Code
Salvatore Guarnieri, University of Washington; Benjamin 
Livshits, Microsoft Research

Ben Livshits explained that Gatekeeper statically analyzes 
JavaScript code to check for violations of security and reli-
ability policies. Statically analyzing JavaScript is difficult 
because it offers many ways to accomplish any given task. 
For example, to materialize an alert box one can call simply 
call alert(), one can use document.write() to write a call to 
alert(), one can create an alias of document.write() and call 
it, one can use eval() to write a call to document.write() 
that writes a call to alert(), and so on. Gatekeeper allows 
administrators to set simple policies that disallow certain 
JavaScript features. It uses a whole-program static analysis 



82 ; LO G I N :  VO L .  3 4,  N O.  6

approach that is, according to the authors, general enough 
to be used for purposes other than policy enforcement.

Gatekeeper recognizes two subsets of JavaScript: JavaScript_
{GK}, which lacks several JavaScript features including 
eval(), and JavaScript_{SAFE}, which further lacks several 
more features. The subsets are such that the SAFE variant 
is fully statically analyzable without runtime checks, while 
the GK variant requires basic instrumentation at runtime 
to aid policy enforcement. Livshits described the authors’ 
experiments on over 8,500 JavaScript widgets from three 
major Web sites owned by Microsoft and Google, noting 
that the majority of those widgets were already in the SAFE 
subset or GK subsets without any need for modifications. 
Given a program in one of the JavaScript subsets, Gate-
keeper uses points-to analysis to track object relationships, 
thereby ensuring that object aliases do not confound the 
policy checker. Livshits said that Gatekeeper’s points-to 
analysis is sound, meaning that its policy checker finds all 
violations it knows to look for. To illustrate the syntax of 
policy declarations, he showed an example of a Datalog rule 
that recognizes calls to document.write(). Finally, he offered 
experimental results: with nine security policies and two 
reliability policies in hand, Gatekeeper found 1,341 policy 
violations across 684 of the 8,500 widgets; it also found 113 
false positives spread across only two of the widgets.

Adam Barth asked whether Gatekeeper had to parse HTML 
in order to catch violations; Livshits responded that disal-
lowing document.write() was sufficient to make parsing 
HTML unnecessary, and that they did not test their system 
without disallowing it. The session chair, Lucas Ballard, 
expressed appreciation for the authors’ choice of a small, 
tractable data set (viz., widgets), and asked whether they 
had attempted to apply their techniques to more complex 
content. Livshits remarked that analysis of such content 
was one of the authors’ long-term goals, but that most large 
applications use some of the constructs Gatekeeper flags as 
suspicious. Livshits suggested that by-hand annotation of 
legitimate uses of such constructs would be a reasonable 
way to allow them without confusing Gatekeeper. Ballard 
proceeded to ask how the authors’ work relates to JavaScript 
strict mode, to which Livshits replied that there were vari-
ous connections. He remarked that current approaches 
required subsetting JavaScript and expressed hope that, 
for the sake of simplicity, some of the current approaches 
would be implemented directly in the browser.

Cross-Origin JavaScript Capability Leaks: Detection, ■■

 Exploitation, and Defense
Adam Barth, Joel Weinberger, and Dawn Song, University of 
California, Berkeley

Joel Weinberger spoke about using JavaScript heap-graph 
analysis to find a previously unnoticed class of browser 
vulnerabilities. The JavaScript security model includes a no-
tion of contexts, which are separate containers for separate 
collections of objects. Such separation is designed to prevent 
private information from leaking between pages or page ele-

ments, specifically those with different origins; for example, 
an advertisement from an ad network should not be able to 
steal cookies from the page that embeds it. The policy of 
separating objects from different origins is commonly re-
ferred to as the same-origin policy. Weinberger claimed that 
the authors’ work uncovered a new class of vulnerabilities in 
browsers’ enforcement of the same-origin policy.

Weinberger pointed out that browsers implement two 
concurrent—and different—security models when it comes 
to JavaScript. Although the Document Object Model (DOM) 
that exists in each JavaScript context has a reference moni-
tor and a concomitant same-origin policy enforcement 
mechanism, the JavaScript engine is a separate entity that 
uses a separate capability-based policy: if you hold a refer-
ence to an object, you are granted access to that object. The 
authors call the circumvention of the DOM’s policy in favor 
of the permissive one a cross-origin JavaScript capability 
leak: if context B somehow obtains a reference to an object 
in context A (e.g., if context A passes a reference to context 
B, or if such a reference leaks), then context B is allowed to 
access the object without obtaining permission from context 
A’s reference monitor. To detect these capability leaks, the 
authors instrumented WebKit’s JavaScript engine with calls 
into an analysis library at object creation, destruction, and 
reference. As the program executes, the library fills out a 
heap graph.

Weinberger showed several heap graphs of increasing com-
plexity, then described their automated heap graph analy-
sis as a tree traversal which flags edges that span multiple 
contexts. Running their heap graph analysis on the secu-
rity-related tests from the WebKit test suite revealed two 
new vulnerabilities, of one of which Weinberger showed a 
graphical example. The same technique found several major 
flaws in the open-source CrossSafe cross-domain JSON 
request library. Finally, Weinberger suggested access control 
checks on every object property access as an in-browser 
defense mechanism, and he remarked that the results of 
the added checks could be cached using a mechanism that 
already exists in modern browsers.

Ben Zorn pointed out that JavaScript benchmarks have tight 
loops that result in access control checks being handled pri-
marily from cache, and he asked whether the authors have 
tested the overhead of their proposed defense mechanism 
on code other than test suites. Weinberger responded that 
the authors have tested other code informally and found 
their mechanism’s performance to be qualitatively good. 
Lucas Ballard asked Weinberger whether any Web page 
could exploit the WebKit vulnerabilities to gain access to 
any other Web page, and Weinberger remarked that before 
WebKit was patched such exploitation had been possible.



; LO G I N :  D ecem b e r 20 0 9 cO N fe re N ce re p O rt s 83

Memory Safety for Low-Level Software/Hardware ■■

 Interactions
John Criswell, University of Illinois; Nicolas Geoffray, Université 
Pierre et Marie Curie, INRIA/Regal; Vikram Adve, University of 
Illinois

Nicolas Geoffray spoke about SVA-OS, a system that identi-
fies memory safety violations in low-level software-hardware 
interactions with the goal of defanging kernel bugs. He 
defined software-hardware interactions as sequences of 
instructions that manipulate hardware resources. Such 
interactions, even when expressed in perfectly valid code 
free of type errors, can circumvent the execution environ-
ment’s memory safety guarantees or corrupt the hardware 
resources they manipulate. Geoffray cited processor state, 
I/O objects, and MMU mappings as examples of manipula-
ble hardware properties whose misuse can result in security 
violations. As a set of enhancements to the SVA compiler-
based virtual machine, SVA-OS comprises a Linux 2.4 
instance plus low-overhead compiler analysis and runtime 
checking of hardware accesses.

Geoffray presented details about how SVA-OS intervenes 
in several hardware interactions; the interventions are 
implemented either as special instructions in the SVA VM 
or as runtime checks. To prevent a task’s processor state 
(e.g., the program counter) from being manipulated before 
it is properly restored by a context switch, SVA-OS adds an 
instruction that, instead of temporarily storing a task’s pro-
cessor state in memory where it can be manipulated at rest, 
atomically swaps one task’s processor state for another’s. To 
ensure that memory-mapped I/O operations behave prop-
erly, SVA-OS adds I/O-specific load and store instructions 
whose operation parallels that of regular memory loads and 
stores; it then segregates memory operations into those that 
do and those that do not affect I/O. Further, SVA-OS adds 
runtime checks on MMU updates to ensure that kernel 
memory is not mapped into user space and that physi-
cal memory is not remapped to incorrectly typed virtual 
pages. Geoffray reported that SVA-OS caught bugs that SVA 
did not: they tested two real-world MMU exploits, which 
SVA-OS disallowed; they injected errors into their Linux 
kernel and observed that SVA-OS prevented crashes; and 
they discovered that SVA-OS would have caught a serious 
bug in an Ethernet driver for Linux 2.6 that disabled many 
network cards. Geoffray showed several performance graphs 
demonstrating that SVA-OS imposes negligible overhead 
compared to SVA.

An audience member asked how SVA-OS preserves type 
safety during MMU remapping and wondered whether 
SVA-OS maintained type information for physical memory. 
Geoffray responded that SVA (rather than SVA-OS) did so 
by segregating physical memory by type.

invited talk

How the Pursuit of Truth Led Me to Selling Viagra■■

Vern Paxson, EECS, University of California, Berkeley, and 
Senior Scientist, International Computer Science Institute

Summarized by Todd Deshane (deshantm@clarkson.edu)

Vern Paxson, a self-proclaimed empiricist, admittedly loves 
data. The reason he loves data so much is because he has 
a thirst for the truth and also a phobia about being fooled. 
In this invited talk, Dr. Paxson described over two decades 
of Internet measurements and how the changes have been 
both incredible, at times surprising, and often unpredict-
able. He started with a general description of network char-
acteristics and then talked about some early manual attacks, 
followed by the emergence of worms, botnets, and spam. He 
explained how this led him to begin a campaign to pretend 
to sell Viagra.

There are three invariants throughout his study of Internet 
data: growth, explosive onset, and diversity. Between the 
time when Vern applied to graduate school in 1988 to the 
publication of his paper “Growth Trends in Wide Area TCP” 
in 1994, the Internet grew from about 56,000 Internet hosts 
to about 3 million. The growth was attributed to the explo-
sive commercial use of the Internet, exemplified by WWW 
traffic doubling every eight weeks from late 1992 to 1994.

Dr. Paxson’s first demonstration of explosive onset appears 
in his quest to understand some seemingly anomalous data 
that he received regarding USENET bulletin board traffic. 
His data from 1986 to 1994 shows exponential growth of 
USENET usage (80% growth per year). Plotting this data 
on a log linear graph shows a perfect fit to the line. The 
only problem was that the data ends in 1994, but Vern re-
ally wanted to follow up on the data. He conjectured that 
it couldn’t keep growing exponentially; generally, data like 
that breaks downward (fades gradually before coming to 
an end), but it turned out that two new data points showed 
the contrary. After some investigation, he determined that 
between 1994 and 1996, abuse, in the form of piracy and 
porn, arrived on USENET and the Internet as a whole. That 
abuse broke a decade-old invariant (the consistent exponen-
tial data growth) upward and not down as would have been 
expected.

In the mid-1990s, Internet abuse started becoming a major 
concern. The operators Paxson was in contact with at Law-
rence Berkeley National Laboratory (LBL) wanted to know if 
he could use the data he was collecting to give some insight 
into the intrusions. Not only did he think that it was pos-
sible, but he thought it could be done in real time. This led 
him to create the Bro Intrusion Detection System (an open 
source, UNIX-based project that is still actively worked on 
by Vern and others), which was running 24 hours a day and 
7 days a week starting in 1996. Much of the data presented 
in the rest of the talk was gathered by Bro.



84 ; LO G I N :  VO L .  3 4 ,  N O.  6

The ability to use Bro at LBL and the ties with LBL opera-
tional deployment were “research gold.” In particular, from 
host-scanning data Paxson was able to describe in detail the 
traffic changes starting with the emergence of the Code Red 
worm and the beginning of the worm era in 2001. Worms 
such as Code Red, Nimba, and Blaster were just the begin-
ning, however. Again, using the scanning data, he was able 
to describe the emergence (around 2002) of what he refers 
to as auto-rooter tools, more commonly known as bots. At 
this time there was another significant increase of traffic, 
which he attributes to malice. Another interesting phenom-
enon he described was the diversity of the attacks, both 
in terms of the services attacked and the patterns of when 
the attacks occurred. For instance, ports scanned included 
common well-known ports as well as more obscure ports 
(such as the Sasser backdoor). The patterns of when scan-
ning occurred ranged from heavy traffic during the day, to 
consistent scanning traffic regardless of time, to scanning 
the entire Internet at a certain time of day, every day.

In the second part of the talk, he described how he led an 
effort to infiltrate the Storm botnet and run a spam cam-
paign. The inspiration for the spam campaign was the fact 
that he had studied the enemy and understood that profit 
was the motive of the botnet masters. The shift from curios-
ity and fame to an underground botnet-based economy 
had begun. He showed screenshots of professional spam 
software, sites that auction stolen eBay accounts, sites that 
sell social networking bots (with separate services that 
would integrate CAPTCHA bypassers), and affiliate pro-
grams that allow people to refer others and get a cut of the 
profits on these malicious tools. He realized that a large part 
of the business model was based on turning exploits into 
bots, then turning the bots into spam worker threads, then 
converting user clicks into sales. The spam campaign is 
described in further detail in “Spamcraft: An Inside Look at 
Spam Campaign Orchestration” presented at LEET ’09. He 
continued by highlighting the fact that spam-filtering soft-
ware and blacklisting spam bots filtered much of the spam 
to junk mail folders, which meant that only a small percent-
age of the spam was actually seen by users in their inboxes. 
During what he calls their spam conversion experiment 
(counting fake sales of Viagra) they were able to instrument 
1.5% of the Storm botnet workers. They estimate that if they 
had been able to instrument the entire botnet army, they 
would have been able to make around $3 million. He notes 
that there was a lot of FUD (Fear, Uncertainty, and Doubt) 
about the Storm botnet in the news, where the media made 
claims of very large profits from Storm (orders of magnitude 
larger than reality) that are erroneous due to flaws in mea-
surement methodology.

Paxson concluded with some reflections on the enormous 
changes he has seen in the Internet in just a couple of 
decades, especially in cybercrime (for profit) and the latent 
threat of cyberwarfare. He emphasized that measuring is 
easy, but measuring in a meaningful and sound way is hard 
(full of unfun grunt work dealing with messiness and error). 

Despite the challenges, he argues, it is the only way to get 
the truth and you can even run into some very interesting 
surprises (including diversity, exponential growth, unex-
pected threats, and rapid changes in the landscape). He 
encouraged the students in the audience to take on the chal-
lenge, as there is a deep fundamental need for well-ground-
ed empirical data in the computer security field.

An audience member asked whether he thought that more 
success might come with more waves (repeat customers) of 
the spam campaign, to which he agreed that it was possibil-
ity, but he also noted that there is a tension over whether 
the botnet would be able to go after these follow-up sales 
or if the pharmaceuticals themselves would follow up. 
Steve Bellovin wondered about the ethics and IRB process 
involved. Paxson responded that he had lawyers look at the 
experiment, but that it didn’t go through the IRB process, 
although he admits that it should have. A second follow-
up study is currently going through a long IRB process, 
he noted. He also mentioned that there is an upcoming 
workshop that focuses on ethics at Financial Cryptography 
and Data Security ’10. An admirer of the Spamalytics paper 
asserted that spam makes a lot of money, to which Paxson 
responded that he would have thought it would have been 
more (not only around $2 million per year as according to 
his data). He recommended that people think about the 
problem of network saturation (a “tragedy of the commons” 
scenario). Were the phishing attacks from the same players? 
He didn’t know and speculated about the structure of the 
attackers, whether there were one or a few kingpins, or if 
there were, instead, a lot of ankle biters.

r adio

Summarized by Italo Dacosta (idacosta@gatech.edu)

Physical-layer Identification of RFID Devices■■

Boris Danev, ETH Zürich, Switzerland; Thomas S. Heydt- 
Benjamin, IBM Zürich Research Laboratory, Switzerland;  
Srdjan Cǎpkun, ETH Zürich, Switzerland

RFID chips are important components in the security of 
systems such as electronic passports (ePassports) and iden-
tity cards. Three security mechanisms have been defined 
to protect ePassport RFID chips, but only one is required 
by the standards. On the other hand, multiple attacks 
against these mechanisms have been published by security 
researchers. These attacks against ePassports prompted the 
authors to determine whether RFID chips can be uniquely 
identified based on their physical-layer features and the 
accuracy of the identification techniques. As Boris Danev 
noted, this work attempts to achieve a form of hardware 
biometrics. A direct application of this technique will be the 
prevention of cloning attacks against ePassports.

Danev described the experimental setup and the different 
experiments used to collect features from the RFID chips. A 
total of 10 ePassports and 50 Java cards were analyzed. The 
authors used three techniques to analyze the data collected: 
time, modulation shape, and spectral features analysis. 



; LO G I N :  D ecem b e r 20 0 9 cO N fe re N ce re p O rt s 85

From these techniques, the analysis of modulation shape 
and spectral features were found to be the most effective 
(spectral features in particular). Based on the analysis, the 
authors were able to identify the ePassports’ country and 
year of issuance, and some model and manufacturer chips 
design. The techniques evaluated also showed good accura-
cy: a 95% successful identification rate (5% equal error rate). 
In addition, Danev said that the accuracy can be improved 
dramatically through the combination of burst and sweep 
techniques. Finally, the authors have done some prelimi-
nary work to determine how hard it is to reproduce the fin-
gerprints to defeat the identification techniques proposed.

Danev was asked if environmental conditions such as 
temperature and age could affect the fingerprinting of RFID 
chips. Current work is trying to determine if aging can af-
fect the proposed identification techniques, and more work 
is needed to analyze the impact of other environmental 
factors. Several members of the audience were concerned 
about the privacy risks of fingerprinting RFID chips, such 
as the remote profiling of individuals. Danev mentioned that 
such privacy attacks may be possible but not by using the 
features analyzed in this work, because such features can-
not be measured reliably from a distance. Another question 
related to the use of physical protection mechanisms (i.e., 
metal shields) in current ePassports. The author mentioned 
that some techniques are being implemented, but they vary 
from country to country. Finally, in response to a question 
regarding the relationship between the quality and the vari-
ability of an CRFID tag, Danev mentioned that the cheaper 
the design the more variability an RFID chip will have and, 
therefore, the easier it will be to identify.

CCCP: Secure Remote Storage for Computational RFIDs■■

Mastooreh Salajegheh, Shane Clark, Benjamin Ransford, and 
Kevin Fu, University of Massachusetts Amherst; Ari Juels,  
RSA Laboratories, The Security Division of EMC

Computational RFID (CRFID) tags introduce a lot of in-
teresting possibilities due to their additional components: 
a micro-controller, flash memory, and one or more sen-
sors. However, these devices are also affected by hardware 
constraints: small memory size, tiny energy reservoir, and 
reboots every few seconds. Using the fact that radio trans-
missions are cheaper than writing to flash memory, the 
authors proposed outsourcing storage to a reader to save 
energy. However, using remote storage presents several 
security challenges: the data is transmitted over the air and 
the reader may not be trusted. Shane Clark introduced a 
new protocol, Cryptographic Computational Continuation 
Passing (CCCP), that adds the minimum security guaran-
tees to allow CRFID tags to use a reader as a remote storage 
mechanism in an energy-efficient and secure way. The main 
goals of the protocols are to use remote storage to get real 
computational progress out of these devices and to elimi-
nate Sisyphean tasks that result from the short power cycles 
of the CRFID tags.

The authors outlined a set of security goals: confidentiality, 
integrity, authentication, and data freshness. Based on these 
security goals and the CRFID tag constraints, the authors 
defined some basic and efficient security primitives: the use 
of stream ciphers (XOR operations) for confidentiality, and 
universal-hash-function-based MAC (UMAC) for integrity 
and authentication. To support the use of stream-keys, the 
authors introduced pre-computation when the tag is idle 
(good power season) to create stream-key bits. For data 
freshness, the authors used a unary encoding technique 
(hole punching) which allowed a counter in memory to be 
updated more efficiently.

Clark described the experimental testbed used to evaluate 
CCCP and the methodology followed. Energy was chosen 
as the most appropriate metric during the evaluation. The 
main result of the evaluation was that using radio for secure 
remote storage is cheaper than using local storage up to a 
data threshold size of 96 bytes. Finally, Clark suggested 
some future work in this area: the development of more 
efficient CRFID tags, extensions for long-term storage, work 
on WOM codes, and a public key system for CRFID tags.

Clark was asked about his expectations regarding flash 
memory costs in the future. Clark commented that back-
scatter transmissions used only one transistor, while flash 
memory operations used several, and that he was quite 
confident that in the near future flash will not be cheaper 
than radio. What about atomicity issues with data transmis-
sion in the CCCP protocol? A solution to this issue was to 
increase the counter in two steps: one before and one after 
data is sent.

Jamming-resistant Broadcast Communication without ■■

Shared Keys
Christina Pöpper, Mario Strasser, and Srdjan Cǎpkun, ETH 
Zurich, Switzerland

It is a well-known fact that RF communications are vulner-
able to jamming attacks. Traditional defenses against this 
type of attack are the use of spread spectrum (SS) tech-
niques such as frequency-hopping SS or direct sequence 
SS (DSSS). These techniques rely on the use of a shared 
code to spread the transmitted messages. However, these 
techniques do not work well on broadcast communication 
scenarios where a sender wants to broadcast one or more 
authenticated messages to a potentially large number of 
receivers and some of the receivers may be unknown or un-
trusted (e.g., emergency and navigation systems). This paper 
presents a novel technique, Uncoordinated-DSSS (UDSSS), 
to solve this problem. UDSSS uses DSSS communication 
but releases the requirement of a shared secret key by using 
randomization and the following key observation: “What-
ever has arrived unjammed at the receiver can be decoded.” 
To an attacker, UDSSS looks similar to DSSS. The difference 
is that the code sequence used to spread the messages is 
chosen randomly from a set of public code sequences that 
both the sender and the receiver know. The receiver records 
the spread messages and tries to de-spread them using 



86 ; LO G I N :  VO L .  3 4,  N O.  6

the public code sequences in a trial-and-error fashion. For 
successful de-spreading of the messages, it is important to 
choose the same public code sequence used by the sender, 
as well as the right synchronization.

Pöpper described the prototype implementation of UDSSS, 
based on Universal Software Radio Peripherals (USRP) and 
GnuRadio, as well as the experimental setup and meth-
odology used. Several adversaries were considered during 
the analysis, using the jamming probability with respect 
to a given message transmission. Also, message transmis-
sion time was used as the main metric during the evalua-
tion. The results show that increasing the processing gain 
is much more harmful for the message throughput than 
increasing the size of the public code set, and that message 
throughput increases with the use of large message sizes. 
While UDSSS has lower performance than DSSS, it can be 
enhanced to achieve similar performance to DSSS in the ab-
sence of jamming; through the use of two parallel transmis-
sions, one using a single code sequence and the other using 
normal UDSSS. Pöpper also suggested an optimization that 
is not described in the paper: using UDSSS to transmit only 
the spreading code and not the message, which allows faster 
decoding times and larger message sizes. Finally, Pöpper 
described a practical application of UDSSS in a navigation 
broadcast system.

invited talk

Summarized by Salvatore Guarnieri  
(sammyg@cs.washington.edu)

Designing Trustworthy User Agents for a Hostile Web■■

Eric Lawrence, Senior Program Manager, Internet Explorer 
Security Team, Microsoft

Eric Lawrence learned a lot while working on Internet 
Explorer 8 (IE8), and he talked about how IE was designed, 
where the current threats are, and the future of Web secu-
rity.

Internet attacks are always evolving, so mechanisms to pre-
vent or limit the effectiveness of these attacks must evolve 
as well. In Internet Explorer 7 (IE7), the goal was to reduce 
the attack surface on the local machine. This meant that IE7 
had fewer vulnerable areas than previous versions of the 
browser. Now the local machine isn’t as valuable a target. 
Much data lives in the cloud, so cross-site scripting (XSS), 
cross-site request forgery (CSRF), and other similar attacks 
are major problems. IE8 tries to address these new types of 
attack that don’t necessarily target the local machine but, 
rather, the way in which confidential or high-integrity data 
is handled in the browser.

Security is difficult for the Web because the space is very 
complex. The browser needs to be secure and Web develop-
ers need to produce secure Web sites. This is a problem, 
since some Web developers don’t even understand what 
same-origin policy is. Furthermore, security for the Web 
was largely an afterthought, and many of the interesting 

security models for the Web don’t fit how the Web is being 
used today. Finally, since Internet Explorer (IE) has been 
around for a while, users expect that things that worked in 
an old version will work in a new version. This means that 
changes to the browser cannot break backward compatibil-
ity. It turns out that if backward compatibility is broken, de-
velopers don’t update their sites to work in the new browser, 
so users simply refrain from upgrading and are left with a 
less secure browser visiting possibly insecure pages.

The security team for IE is focused on three areas: (1) secu-
rity feature improvements, (2) secure features, and (3) se-
curity and compatibility. Security feature improvements are 
new features (e.g., the XSS filter) that exist solely to improve 
security. “Secure features” refers to the process of ensuring 
that new features (e.g., IE8’s accelerators) are secure and do 
not increase attack surface. Security and compatibility fo-
cuses on ensuring that the security features are compatible 
with Web sites. Users need the security feature to work on 
the Web sites they visit or they will roll back to a less secure 
browser that does work.

IE8 has some features that make attacks much less effective. 
Data Execution Prevention (DEP) and Address Space Layout 
Randomization (ASLR) are turned on by default. This is a 
huge help, because they greatly limit the exploitability of 
memory-related vulnerabilities in the browser. Some new 
features improve security by reducing the amount of na-
tive code needed in the system. Plug-ins such as browser 
toolbars provide some functionality to users but are usually 
written in conventional languages like C and often contain 
security bugs. IE8 has accelerators and Web slices, which 
allow third parties to enhance the user experience without 
introducing potentially buggy native code.

No matter how secure the browser is, there is still a user 
involved in the system. Users are faced with social engi-
neering attacks, such as phishing and malware-distribution 
sites, that trick them into granting the attacker permission 
to perform unwanted actions. People have tried a lot of 
things to warn users about potentially unsafe actions. IE8’s 
SmartScreen Filter feature can provide a bold, unambiguous 
warning to block known-unsafe actions because Microsoft 
actively searches out dangerous content on the Internet and 
flags it using the URL Reputation Service.

securing web apps

Summarized by Shane Clark (ssclark@cs.umass.edu)

xBook: Redesigning Privacy Control in Social Networking ■■

Platforms
Kapil Singh, Georgia Institute of Technology; Sumeer Bhola, 
Google; Wenke Lee, Georgia Institute of Technology

Kapil Singh gave a talk about the problems with privacy 
control in social networking platforms and xBook, a system 
designed to allow fine-grained and reliable control over 
applications for such platforms. Singh noted that social net-
working sites such as Facebook, Twitter, and Orkut are still 



; LO G I N :  D ecem b e r 20 0 9 cO N fe re N ce re p O rt s 87

growing rapidly in popularity. Many sites are also evolving 
into platforms that expose APIs to third-party developers, 
giving any developer’s application access to almost all stored 
user data. A user must generally agree to this access when 
adding an application, but there is no guarantee that the ap-
plication will use exposed data appropriately or that it will 
only access data that is necessary for its advertised func-
tionality. The goal of xBook is to provide privacy protection 
to users without requiring changes to the browser or any 
discernible usability changes from the user’s standpoint.

Singh next introduced the high-level approach taken with 
xBook. All applications are run from within the trusted 
xBook domain to allow mediation. Applications are then 
monitored at runtime in the browser. While they are still 
allowed access to any user data, applications are required to 
make the use of such data explicit to the user; xBook is able 
to enforce this policy by tracking information flow. xBook 
also requires applications to be split into client and server 
components that are confined appropriately. For example, 
JavaScript must be written in a safe subset of the language 
called ADsafe and not have access to a page’s DOM ele-
ments. To enable necessary DOM accesses, xBook imple-
ments a DOM wrapper that gives client-side components 
access to only those elements that belong to the same ap-
plication. Even when the components of a single application 
are communicating among themselves, the data that they 
are able to exchange is subject to the explicit restrictions 
specified by the application developer and agreed to by 
the user. Application components are also subject to these 
restrictions when communicating with external entities. 
The authors implemented xBook as a Facebook application 
to demonstrate its effectiveness, and they also implemented 
two applications that ran on top of xBook.

An audience member asked if the authors have performed 
any experiments to test usability. Singh answered that they 
have not completed any experiments but have designed the 
system to be easy to use. Another audience member wanted 
to know why users should be more willing to trust xBook 
with their data than any given application. He was also 
concerned that application developers may not be willing 
to target xBook because they want direct access to user 
data without added restrictions. Singh responded that users 
already trust a large number of other applications, all with 
the same privileges. Trusting xBook only requires users to 
add a single application, minimizing the number that must 
be trusted overall. If users choose to use xBook, developers 
will be forced to target xBook with their development in 
order to achieve widespread use. Finally, an audience mem-
ber pointed out that developing applications for xBook is 
not necessarily an indicator of ease of use. He asked wheth-
er the authors had attempted to port an existing application 
and, if so, what their experience was. Singh countered that 
the two applications they implemented mirror the function-
ality of existing apps, but he acknowledged that there may 
be a learning curve for their cross-platform APIs.

Nemesis: Preventing Authentication & Access Control ■■

Vulnerabilities in Web Applications
Michael Dalton and Christos Kozyrakis, Stanford University; 
Nickolai Zeldovich, CSAIL, MIT

Michael Dalton presented his work on Nemesis, a system 
designed to automatically prevent authentication and access 
control vulnerabilities in Web applications. Dalton first 
introduced some of the failings of Web authentication with 
an illustrative example. If a user Bob uploads a photo to a 
Web application, for example, that photo is typically stored 
in the database using the credentials of the Web server 
user. The database has no knowledge of Bob, and the Web 
application’s user account necessarily has privileges equal to 
or greater than those of any user that exists in the applica-
tion. According to Dalton, this semantic gap fundamentally 
breaks Web authentication by requiring the application pro-
grammer to accurately insert access control and authentica-
tion checks before every file-system or database operation. 
This must be done perfectly in order to adequately secure 
any Web application.

Dalton next introduced the two classes of attacks that 
Nemesis addresses and the approach to preventing each of 
them. Authorization bypass vulnerabilities occur when a 
user is able to access a resource without authorization, often 
as the result of a missing or incorrect authorization check. 
Authentication bypass vulnerabilities occur when success-
ful authentication occurs without valid credentials, often 
caused by a poor URL/cookie validation method or simply 
weak cryptography. Nemesis stops both classes of vulner-
abilities by inferring when authentication is performed cor-
rectly using dynamic information flow tracking (DIFT), also 
known as taint tracking, and automatically enforcing access 
control lists (ACLs) for Web application user accounts (as 
opposed to Web server processes). To support the use of 
Nemesis, DIFT functionality must be added to the language 
interpreter in use, and ACL enforcement must be added to 
the language’s core library. Nemesis does not require the 
modification of the application code.

A Nemesis prototype has been implemented for the PHP 
language and Dalton presented some examples of vulner-
abilities in real-world applications that Nemesis is able to 
prevent. The prototype stopped authentication and autho-
rization bypass vulnerabilities in six popular PHP applica-
tions without any discernible performance overhead, but 
does suffer from some limitations. There is currently no 
SQL query rewriting support, forcing the authors to manu-
ally insert code to perform ACL and authentication checks 
in some cases. The current prototype also lacks automatic 
ACL generation, which leaves application administrators to 
write their own. Both SQL query rewriting and automatic 
ACL generation based on logs are slated for future work.

Bryan Parmo asked if Nemesis could be easily extended to 
work with sites that use authentication methods other than 
passwords. Dalton answered that Nemesis currently relies 
on a byte-by-byte comparison of two strings in order to 
infer successful authentication, but as long as there is some 



88 ; LO G I N :  VO L .  3 4,  N O.  6

authentication mechanism that Nemesis can be made aware 
of, it should be possible to support that method. Parmo 
followed up by asking if Nemesis is effectively removing the 
responsibility for authentication from the Web application 
and handling it completely. This is possible but Nemesis 
actually requires some amount of ground truth in the appli-
cation that it can trust as a valid authentication technique. 
Finally, David Wagner asked if Dalton believed that Neme-
sis is applicable to other popular Web application languages 
and if he foresees any particular challenges in supporting 
these other languages. Dalton answered that many popular 
languages have had DIFT support implemented for them in 
the past and it should be straightforward to add Nemesis 
support. The authors chose to use PHP because they found 
the interpreter easy to modify, and there are many insecure 
PHP applications currently in use.

Static Enforcement of Web Application Integrity Through ■■

Strong Typing
William Robertson and Giovanni Vigna, University of California, 
Santa Barbara

William Robertson noted that Web application vulnerabili-
ties make up more than half of all reported vulnerabilities 
over the past two years, according to Symantec. The major-
ity of these Web vulnerabilities are either cross-site script-
ing (XSS) or SQL injection vulnerabilities. He acknowledged 
that there are a number of existing solutions such as ap-
plication firewalls, automated code analysis, and penetra-
tion testing, but argued that these are clearly insufficient 
measures, considering the continued prevalence of XSS and 
SQL injection vulnerabilities.

Robertson said that a major source of Web application vul-
nerabilities is the treatment of Web documents and database 
queries as unstructured character sequences. Because there 
is no knowledge of appropriate structure and content at the 
language or framework level, developers are responsible for 
manually sanitizing this content. Developers will inevita-
bly fail at this task, as correctness requires perfect code. In 
order to address this problem, the authors implemented a 
language-based solution intended to explicitly denote struc-
ture and content using a strong type system. This approach 
shifts responsibility for integrity enforcement from the 
developer to the language and removes the need for separate 
testing or analysis to ensure that an application is secure.

The authors’ prototype solution took the form of a Haskell-
based application framework, and they presented evalua-
tion results. The framework enforces integrity by requiring 
the application to construct a tree of document nodes that 
it then “renders” into serialized raw text for display. Each 
node of the tree is sanitized during the rendering process in 
order to prevent XSS vulnerabilities. The framework is able 
to remove SQL injection vulnerabilities by simply requir-
ing applications to exclusively use prepared statements 
where possible. When prepared statements are not possible, 
the framework enforces integrity using a node rendering 
approach similar to that for document nodes. Robertson 

claimed that their framework achieved full sanitization 
coverage and that they had confirmed correct sanitizer 
operation using a large number of randomly generated test 
cases. Finally, Robertson showed that their framework’s 
performance was similar to that of Tomcat and Pylons. They 
found that the performance of their prototype fell between 
the other two frameworks in testing and is thus acceptable.

Adam Barth asked if the authors have investigated the 
possibility of removing XSS vulnerabilities stemming from 
client-side code such as JavaScript. Robertson answered 
that they are investigating this problem. One promis-
ing approach might be to compile a representation of the 
client-side code on the server side into JavaScript, similar 
to Google Web Toolkit’s approach. Benjamin Livshits asked 
about using symbolic execution to verify sanitizers, as op-
posed to random testing. The authors have not looked into 
this, but it seems like a useful approach. Finally, David 
Wagner complimented Robertson on the system’s removal of 
the ability to even express some server-side vulnerabilities 
and asked if the authors have looked into any other classes 
of vulnerabilities. They chose to focus on SQL injection and 
XSS because they can be simply expressed and prevented. 
The authors are considering other vulnerabilities, but they 
may be more difficult to address.

invited talk

Compression, Correction, Confidentiality, and Comprehen-■■

sion: A Modern Look at Commercial Telegraph Codes
Steven M. Bellovin, Professor of Computer Science, Columbia 
University

Summarized by Kevin Butler (butler@cse.psu.edu)

Steve Bellovin delved into historical archives to present an 
enlightening investigation of telegraph codes, looking back 
with a modern perspective and uncovering remarkable 
similarities to our current network structures and protocols. 
An example of these surprising findings was discovering 
that telegraph systems contained protocol stacks—the link 
layer was well defined—and error correcting codes. Some 
mechanisms were different, e.g., the job of a router was 
performed by an operator who would relay telegraphs to 
the correct destination link, but many of the problems were 
similar to those we currently face. Steve focused on four 
areas: compression for reducing the cost of transmission; 
detection and correction of coding errors; confidentiality to 
deal with operators seeing messages as they are transmit-
ted; and comprehension of the culture of the time, which is 
strikingly conveyed in how the codes were structured.

The talk described a succession of codes from Sir Home 
Popham’s naval code in 1805, which was expressive enough 
to allow conversation, through to the telegraph era, where 
codes were compiled not only for general use but for specific 
industries as well. As an example, theater codes differentiat-
ed between specific capabilities desired of chorus girls, each 
description compressed to a single code word. It was noted 



; LO G I N :  D ecem b e r 20 0 9 cO N fe re N ce re p O rt s 89

that we still use domain-specific compression: Lempel-Ziv 
doesn’t work as well on multimedia as JPEG or MP3. Early 
codes did not provide redundancy, and techniques such as 
terminal indices and mutilation tables were created. These 
would provide potential endings for words where the first 
two letters were known, and usually about five possibilities 
were available. Based on the sentence, the code could either 
be retransmitted or disambiguated contextually.

Confidentiality was an issue, identified in an 1870 docu-
ment that described a threat model for communication 
security. However, it was not particularly well implemented 
in many codes. Techniques included mono-alphabetic 
substitution and constant additives. Even the US Govern-
ment’s code consisted of constant additives built on top of 
the Western Union code, and this was state of the art until 
around World War I. Bloomer’s Commercial Cryptograph 
was a more successful code, a “holocryptic cipher” that was 
unreadable without a key. This was a user-created two-part 
code.

Some interesting details also appeared about threats to 
confidentiality, such as Britain requiring cable compa-
nies to turn over copies of all international telegrams, and 
copyright, where the US was not a signatory to the Berne 
Convention until 1976, causing publishers to often publish 
their works first in the US to ensure copyright there before 
publishing in the rest of the world. A particularly interesting 
reference to copyright infringement as “piracy” appeared in 
a code book from 1936.

Telegraph codes were only recently supplanted in many 
places, with China using them regularly until around the 
year 2000. Much of what can be found in modern codes is 
an evolution of what was done then, with formalized and 
mathematical models now created, but the basis was set for 
these techniques at least 75 years previously. A draft paper 
of these findings can be found on Steve’s Web page at http://
www.cs.columbia.edu/~smb/papers/codebooks.pdf.

In the Q&A session, Matt Blaze pointed out that some early 
military codes were based on poetry, and that codes are 
only as secure as the people compiling them. Steve added to 
this by discussing how early Russian OTP codes were not 
in fact random; their randomness depended on the people 
generating the pads.

applied cryp to

Summarized by Andres Molina (amolinaf@nsm.umass.edu)

Vanish: Increasing Data Privacy with Self-Destructing Data■■

Roxana Geambasu, Tadayoshi Kohno, Amit A. Levy, and Henry 
M. Levy, University of Washington

Awarded Outstanding Paper!

Roxana Geambasu made the case that currently, when data 
is communicated over the Internet, it lives forever. More-
over, while it is in transit, different providers create multiple 
copies of the data. The users do not know where these 

copies reside or for how long they will be kept. Some of this 
data may be sensitive and resurface in a manner that is un-
wanted by the user; for example, by means of a subpoena. 
The speaker referred to this type of attack as a retroactive 
attack on archived data. She also pointed out that current 
solutions such as PGP do not protect against such attacks, 
because the key to recover the archived material can be ob-
tained by legal means. This problem also occurs in central-
ized services in which a provider maintains the data in an 
encrypted form. The speaker gave the example of Hushmail, 
an encrypted email provider that, in at least one case, al-
lowed access to email content as required by a subpoena.

Vanish is a system that combines distributed hash tables 
(DHTs) together with secret sharing techniques to accom-
plish the goal of destroying data. The data gets encrypted 
using a key that is split using Shamir shared secrets, gets 
stored using the DHT in key-value pairs, and gets destroyed 
after the data is successfully encrypted. Properties of DHT 
systems such as member churn and discarding of key-value 
pairs after a timeout is reached allow the proper destruction 
of the shared key after an expiration date without requir-
ing any action by the user. With Shamir shared secrets, 
a threshold amount of the shared key must be recovered, 
and once that threshold can no longer be obtained the key 
is gone forever. An attacker would need to capture the key 
before or while it is being distributed, but this only applies 
to premeditated attacks, not retroactive attacks.

The system has currently been realized using a Firefox 
plug-in as the front end, allowing users to interact with 
services such as Gmail, Hotmail, Facebook, Google Docs, or 
essentially any other Web application that deals with plain 
text. However, the speaker mentioned that Vanish can easily 
be implemented as a plug-in to Thunderbird or other email 
clients. The presentation only addressed some aspects of 
the evaluation relevant to security, referring the audience to 
other details of evaluation criteria in the paper.

A member of the audience asked about the selection of the 
parameters from the user’s perspective. Geambasu re-
sponded that the current implementation provides the user 
with reasonable default parameters that can be modified to 
balance security and performance. Someone noted the refer-
ence in the talk to the need to use encryption techniques 
like those employed in PGP to protect the data in transit. 
Geambasu said such encryption techniques should be used 
in addition to Vanish, not instead of it. Someone pointed 
out that there are other existing solutions to the problem, 
such as the Tahoe distributed file system, although this 
system could pose a major drawback in terms of usability. 
Geambasu was not aware of Tahoe and agreed that usabil-
ity was a major consideration in the design of Vanish. How 
does Vanish protect the anonymity of the recipient, since if 
the recipient is known, it would be possible to subpoena the 
recipient’s computer in order to obtain the contents of the 
caches? The Vanish model assumes that the attacker would 
not know about the sender or recipient until after the data 



90 ; LO G I N :  VO L .  3 4,  N O.  6

has expired and enough time has elapsed for the data to be 
destroyed.

For more information and to obtain the application, see 
http://vanish.cs.washington.edu/.

Efficient Data Structures for Tamper-Evident Logging■■

Scott A. Crosby and Dan S. Wallach, Rice University

Scott Crosby started his talk by noting that everyone has 
logs and that there are many applications that require stor-
age using tamper-evident techniques. Some of the examples 
that were given included HIPAA regulations and credit card 
payment contracts. Scott also pointed out that current com-
mercial solutions to this problem rely on the correct opera-
tion of the appliances and are too slow.

Crosby then proposed the use of efficient data structures 
for tamper-evident logging. This approach would allow a 
third party to prove the correctness of the solution using 
known cryptographic techniques. Additionally, this solution 
offers logarithmic performance in all operations, instead 
of the linear performance that previous solutions offer. 
The proposed solution based on history trees would offer 
performance of 1,750 events per second, including digital 
signatures, and 8,000 audits per second.

Crosby explained that audits are essential for this type of 
application. If a malicious logger could anticipate that a par-
ticular log entry was not going to be audited, then he could 
easily replace that entry. For that reason, it is necessary to 
ensure that every event has a non-zero probability of being 
audited. Furthermore, the author distinguished two types 
of audits: audits to verify correct insertion of events and 
audits to verify consistency among commitments. This new 
paradigm requires that both insertions and audits are cheap 
in terms of CPU, communication, complexity, and storage. 
The solution proposed makes this possible by using Merkle 
binary trees that avoid having to compute linear chains of 
hashes. The solution allows the probabilistic detection of 
tampering by only verifying a subset of events. Additionally, 
this solution allows the computation of Merkle aggregates 
and the performing of safe deletion by using tree pruning 
techniques.

The system was evaluated with a syslog implementation, 
logging 4 million events using 11 hosts over four days. The 
experiment was repeated 20 times, using DSA signatures 
and SHA1 hashes. While the results were reasonable (1,750 
events/sec; 8,000 audits/sec), approximately 83% of the 
runtime was spent computing signatures. Also, compression 
reduced performance by about 50%. The authors suggested 
that concurrency and replication would improve perfor-
mance. Additionally, given that the major bottleneck is due 
to the computation of signatures, a performance gain is 
expected if only a subset of the commits are signed, a faster 
public key encryption scheme is used (such as ECC), or the 
computation of the signatures is offloaded to other servers. 
Using the latter approach, it is possible to process up to 
10,000 events/sec.

Someone asked if it would be possible to perform data 
reduction preserving the tamper-proof properties. Yes, 
this is possible by employing tree pruning techniques and 
appropriately using Merkle aggregation predicates with 
each event. Another member asked if the technique would 
account for trees with different depths, to which the author 
responded affirmatively.

VPriv: Protecting Privacy in Location-Based Vehicular ■■

Services
Raluca Ada Popa and Hari Balakrishnan, Massachusetts Insti-
tute of Technology; Andrew J. Blumberg, Stanford University

Raluca Popa presented VPriv, a system that can be used in 
various transportation systems to compute functions over 
driver paths, such as usage costs. These computations are 
performed while preserving users’ privacy. Current systems 
such as EZPass do not offer adequate levels of privacy, as it 
is possible to track the times and places where an EZPass 
has been used. The solution came from observing that it 
is possible to compute costs associated with a path with-
out actually knowing all the details of the path, by using 
zero-knowledge proofs and secure multi-party computation. 
VPriv was designed from the start to be efficient by exploit-
ing the properties of homomorphic encryption and families 
of random functions. The system relies on the ability to 
compute functions on tuples containing times, locations, 
and random tags unique to each tuple.

The security model considers two parties: a client, such 
as a driver, and a server. The client is not trusted, as he or 
she has incentives to alter the protocol in order to reduce 
personal costs. The server, on the other hand, is partially 
trusted. That is, the server will be trusted to perform the 
protocol correctly, but it will not be trusted to preserve the 
privacy of the client. The speaker mentioned that the paper 
also discusses a protocol dealing with a malicious server; in 
other words, a server that is not trusted even to perform the 
protocol correctly. While the talk focuses on the applica-
tion of usage tolls, the speaker briefly explained how the 
system can easily be customized for other applications such 
as “pay-as-you-go” insurance and speeding violations. The 
protocol was divided into three phases. In the first phase, 
referred to as registration, random tags are created to which 
the client commits. The second phase involves the upload-
ing of the tuples containing the random tags generated in 
the previous phase, together with the locations and times. 
Finally, the reconciliation phase is when the client would 
compute the owed cost and allow the server to verify the 
result without compromising the privacy of the client.

The evaluation of the protocol showed linear performance 
on the number of tags and the number of tuples uploaded 
to the server. The system is three orders of magnitude faster 
than Fairplay, a state-of-the-art general-purpose secure 
multi-party computation compiler. Raluca mentioned that 
it is possible to serve roughly a million customers with 21 
server cores. The system was evaluated on Cartel, an MIT 
project, with 27 taxis and 4,826 one-day paths. The experi-



; LO G I N :  D ecem b e r 20 0 9 cO N fe re N ce re p O rt s 91

ments showed that the enforcement scheme is effective and 
efficient. The authors hope to see this system implemented 
in the car sharing company Zipcar.

In a system like this, will it be hard for a customer to dis-
pute a bill when there is no actual record of the trips on the 
server side? This is handled by the reconciliation phase, in 
which the fees due are actually computed by the customer 
and only verified by the server. Is it possible to leak some 
information by allowing the server to identify where the 
tuples are uploaded from? The system may be complement-
ed with the use of an anonymizing system, such as TOR, 
to upload the tuples. Ian Goldberg asked if more complex 
functions could be used to compute costs beyond simple ad-
ditions. It is possible to compute conditional functions, and, 
in theory, any polynomial function could also be computed 
using similar techniques, but the details would have to be 
explored in future work. In the security model, although 
the server is trusted to perform the protocol correctly, it 
may also have incentives to prevent the protocol from being 
performed correctly. The paper includes an extension to the 
system that takes into account a malicious server. In such a 
case, efficiency would be affected.

invited talk

Top Ten Web Hacking Techniques of 2008: “What’s  possible, ■■

not probable”
Jeremiah Grossman, Founder and CTO, WhiteHat Security

Summarized by Stephen McLaughlin (smclaugh@cse.psu.edu)

Jeremiah Grossman presented the top 10 Web hacking tech-
niques of 2008. Tenth is Flash parameter injection (FPI). 
FPI uses embedded Flash media as a vector for accessing the 
HTML content of the containing page. One method for FPI 
requires that an attacker assign values to global variables 
which are initialized from values in HTTP requests.

Another technique that leverages a browser plug-in, ActiveX 
repurposing, comes in at number nine. In this attack, a 
malicious Web page takes advantage of the update function-
ality in the Juniper SSL-VPN client to first save a malicious 
configuration file to a known location, then place a path to 
it in the ActiveX control’s INI file.

The eighth Web hack, tunneling TCP over HTTP over SQL 
injection, uses the reDuh server and client to give an attack-
er control of a remote machine behind a firewall. In this at-
tack the reDuh server, which tunnels TCP traffic over valid 
HTTP commands, is uploaded to an SQL server behind a 
firewall that only allows HTTP traffic. The SQL server is 
used as a gateway between the attacker and the internal net-
work. While Grossman pointed out that database hardening 
is one defense against this attack, the reDuh server may also 
be uploaded to an application server as a JSP page.

Web hack number seven can be used to determine if a 
victim is logged in to a given Web site or by observing the 
stylesheets from another Web page. A link to a target inline 
stylesheet from a malicious page can be used to obtain 

the cross-domain style definition. The malicious page can 
then check for style properties indicating the user is logged 
in to the target site. The sixth Web hack, abusing HTML 
5 client-side storage, uses any cross-site scripting (XSS) 
vulnerability to either leak information from or inject code 
into HTML 5 client-side stored objects. Web hack five is a 
different Opera. The goal of this attack is to execute code in 
the Opera browser running in the opera:* context, which 
will give an adversary the ability to modify browser settings 
with opera:config. This is achieved by a cross-site request 
forgery to opera:historysearch, which already contains an 
XSS from a previously visited page.

Clickjacking, the fourth Web hack, uses the CSS opacity 
property and JavaScript to place an invisible button pulled 
from a form on a target page directly under the user’s 
mouse. This causes the user to click the invisible button 
instead of some visible part of the page. If the user has 
already authenticated to the target site, this will result in the 
site taking some action on the attacker’s behalf. Examples 
of target sites may be CPC advertisements, Digg links, and 
options on DSL router configuration pages. Grossman went 
on to say that this exploit may be used to trick users into 
enabling a laptop’s camera and speakers through a Flash 
applet, allowing for remote surveillance through a Flash 
application. Grossman had a recommended countermeasure 
to the camera-enabling attack: placing tape or a sticker over 
the camera lens.

The third Web hack uses a feature of Safari in which any 
file of a type not recognized by the browser is saved to the 
desktop. This allows malicious site to effectively “carpet 
bomb” the target machine with garbage files or malware.

Coming in at second place is an attack on Google Gears 
which bypasses the cross-origin security policy. This is pos-
sible if an attacker can insert Google Gears commands into 
a file uploaded to a target site. These commands are likely 
to pass input filtering, as they lack suspicious tokens like 
<script> tags. A malicious Gears-enabled site then executes 
the commands in the context of the target site in the vic-
tim’s browser.

The number one Web hack of 2008 is the GIFAR, a concat-
enation of a GIF image and a Java JAR archive. Because GIF 
files are parsed from the first byte and any garbage at the 
end is ignored, and JAR files are the exact opposite, append-
ing a JAR file to the end of a GIF creates a GIFAR, which 
will pass input validation for file uploads while allowing 
the JAR file to be embedded in a page that will run in the 
targeted site’s context.

Several of the questions after the talk concerned classify-
ing Web hacks by type, technique, and trends. Grossman 
said that the trend in 2008 was toward attacks against the 
browser, while in 2009 we are likely to see a shift back to-
ward servers with HTTP parameter pollution attacks. Also, 
according to Grossman, as diverse as 2008’s Web exploits 
are, they can likely all be classified according to MITRE’s 
Common Weakness Enumeration (CWE). He gave the ex-



92 ; LO G I N :  VO L .  3 4 ,  N O.  6

ample that clickjacking could be classified as a UI redress-
ing attack. Rik Farrow asked if Grossman used NoScript as 
a countermeasure, and Grossman said that he did. When 
Farrow then asked the same question of the audience, very 
few hands went up. (See p. 16 of this issue for Grossman’s 
article on Web hacks and p. 21 for an article on NoScript.)

poster session

Posters below summarized by Kalpana Gondi  
(kgondi@cs.uic.edu)

An Examination of Secure Programming Practices Through ■■

Open Source Vulnerability Patch Characteristics
Mark Plemmons, Andrew Falivene, Jonathan Peterson, Adam 
Wenner, Will Quinley, Jing Xie, and Bill Chu, University of North 
Carolina at Charlotte

Mark Plemmons presented a study to understand secure 
programming practices by analyzing characteristics of 
patches for vulnerabilities in open source applications. 
Authors analyzed Linux kernel vulnerabilities and their 
patches for the period of 2006–2008 (from kernel.org) 
to learn characteristics such as number of files and lines 
changed. For the buffer overflow vulnerabilities, patches 
were localized to a small number of files. The methodology 
followed was software vulnerability cognitive complex-
ity (SVCC), where SVCC = Lines of Code added + Lines of 
Code removed.

The Impact of Structured Application Development ■■

 Framework on Web Application Security
Heather Lipford, Will Stranathans, Daniel Oakley, Jing Xie, and 
Bei-Tseng Chu, University of North Carolina at Charlotte

Will Stranathans presented this work about the effects of 
structured application development frameworks on Web 
application security. The authors have studied practically, by 
training a few members to observe the behavior of the soft-
ware they have written after taking the training in applica-
tion development frameworks (especially struts). There were 
two groups of people, those with and without the knowl-
edge of application development framework, who wrote the 
software. The software was tested against attacks like SQL 
injection, XSS, and system information leaks, and there was 
a major difference in defense against XSS and information 
leaks between the software developed with and without the 
application framework knowledge. The authors observed 
that the knowledge of frameworks will help in writing the 
secure code.

Toward Enabling Secure Web 2.0 Content Sharing Beyond ■■

Walled Gardens
San-Tsai Sun and Konstantin Beznosov, University of British 
Columbia

San-Tsai Sun discussed enabling secure content shar-
ing where there are no proper mechanisms in Web 2.0 to 
provide content sharing among individuals in a controlled 
manner across content-hosting or application service 

provider (CSP) boundaries. The design includes OpenID 
email protocol and RT policy service. OpenID email pro-
tocol enables OpenID identity providers to use email as an 
alternative identity. RT policy provides services for Internet 
users to organize their role-based trust-management access 
control policies and for CSPs to make access decisions. The 
two key concerns are usability and interoperability.

A Self-Certified Signcryption Scheme for Mobile ■■

 Communications
Ki-Eun Shin and Hyoung-Kee Choi, Sungkyunkwan University

Ki-Eun Shin pointed out that securing mobile commu-
nications is challenging because communicating entities 
(i.e., mobile devices) are resource-constrained, and mobile 
networks restrict Internet access. Hence, cryptosystems 
developed for mobile communications should be efficient, 
and overhead associated with the security protocol needs to 
be minimal. The intervention by the conventional trusted 
authority should also be minimized because of the restrict-
ed access to outside networks. The authors propose a self-
certified signcryption scheme to withstand such obstacles in 
mobile communication.

Developing Security and Privacy Requirements for a Local ■■

Area COllaborative Meeting Environment (LACOME)
Fahimeh Raja, Kirstie Hawkey, and Kellogg S. Booth, University 
of British Columbia

Fahimeh Raja explained that they tried to look beyond 
usability toward security and privacy. The authors have 
developed software to provide a multi-user platform to 
support sharing of co-located and collaborative work in the 
same platform. This is more useful for group discussions in 
the corporate world or any group, for that matter, discuss-
ing and sharing information on a particular topic. The key 
challenges here include: authentication, client authentica-
tion and authorization, and unintended disclosure of private 
data. They are focusing on performing one-on-one inter-
views and focus groups to get the end users’ privacy and se-
curity requirements and to implement security and privacy 
controls, especially for those in front of a large audience. 
Finally, they want to test the scheme in real meetings. 

Posters below summarized by Prithvi Bisht  
(bishtspp@yahoo.com)

Comprehensive Redaction for Neurological Imaging■■

Alex Barclay, Laureate Institute for Brain Research; Nakeisha 
Schimke and John Hale, University of Tulsa

Alex Barclay presented a technique to preserve privacy of 
patients’ data captured in neurological imaging. According 
to Barclay, researchers often share imaging data for collabo-
ration and research purposes. However, it may compromise 
the privacy of patients, e.g., by reconstructing the face, time 
of capturing the image, etc. He presented a technique to 
preserve privacy by deleting certain data from images and 
presented a disk level algorithm to achieve this.



; LO G I N :  D ecem b e r 20 0 9 cO N fe re N ce re p O rt s 93

Java Data Security Framework (JDSF) and Its Applications: ■■

API Design Refinement
Serguei A. Mokhov, Concordia University

Serguei A. Mokhov presented a framework to evaluate/com-
pare various implementations of security algorithms in a 
homogeneous environment, primarily in Java. According to 
Mokhov, this framework provides interfaces to implementa-
tion providers. Further, according to him, such a frame-
work enables evaluation of disparate implementations of an 
algorithm on dimensions and metrics set by the framework, 
such as runtime and memory usage.

Towards Investigating User Account Control Practices in ■■

Windows Vista
Sara Motiee, Kirstie Hawkey, and Konstantin Beznosov, 
 University of British Columbia

Sara Motiee presented a study plan to investigate patterns of 
usage for administrative or normal user accounts in Win-
dows Vista. Specifically, the planned study aims to discover 
if users prefer admin/non-admin accounts, what challenges 
are faced in non-admin accounts, and how these patterns 
vary across disparate user groups.

Large-scale Multitouch Interactive Network Visualization■■

Cody Pollet, George Louthan, and John Hale, The University of 
Tulsa

George Louthan presented an approach to graphically rep-
resent network traffic in large-scale networks. The goal is to 
allow a human to understand and reason about the real-
time condition of the network. He further discussed plans 
to integrate a multi-touch screen in such a system to provide 
collaboration among different users.

FloVis: Flow Visualization System■■

Diana Paterson, Joel Glanfield, Chris Smith, Teryl Taylor, 
 Stephen Brooks, and John McHugh, Dalhousie University;  
Carrie Gates, CA Labs

Diana Paterson presented an approach to render the net-
work traffic through visual artifacts. A real-time traffic visu-
alization may allow security administrators to more quickly 
discover patterns of hostile activity and diagnose compro-
mised hosts. It may also be useful in maintenance: e.g., 
heavy traffic on a few nodes may represent an in-progress 
denial-of-service attack as well as a heavily loaded subnet.

Posters below summarized by Asia Slowinska  
(asia.slowinska@gmail.com)

Beatrix: A Malicious Code Analysis Framework■■

Christian Wressnegger

Beatrix is a framework designed to reduce the effort re-
quired to build a prototype for a malware detection tech-
nique. The framework introduces a plug-in infrastructure 
that divides the entire analysis process into six disjoint sub-
tasks: e.g., input, extracting, or formatting. This architecture 
enables utilizing existing components, which lets the system 
conduct significant parts of the examination of malicious bi-

naries and thus reduces programmers’ efforts. Future work 
includes extending the set of modules available.

SAND: An Architecture for Signature-Based Automatic ■■

Network Protocol Detection
George Louthan and John Hale, The University of Tulsa

George Louthan targeted the problem of network traffic 
classification, and proposed a content-aware method based 
on the actual contents of packets. His solution overcomes 
the prevalent lack of adherence to standard port numbers, 
which could result in incomplete traffic identification in 
port-based network monitors. The general SAND strategy 
for identifying a stream involves matching a set of string 
signatures describing a known protocol format. For ex-
ample, the SSH identifier finds the strings “SSH-” and “CR 
LF” and takes the string between them to be the protocol 
version. Future work includes a thorough analysis of the 
performance and effectiveness of the system.

Posters below summarized by Patrick Wilbur  
(patrick.wilbur@gmail.com)

Securing the Application Acquisition Chain: Security ■■

Concerns & Human Factors of Application and System 
Acquisition in the Enterprise
Eric Goldman, Rochester Institute of Technology

Eric Goldman explained that this work examines to what 
extent, if any, security is considered in an organization’s 
selection of information technology software and hardware. 
They focused on small- to medium-sized organizations, 
which generally lack the resources, time, and experience 
to adequately address security. He considered both the 
processes of acquisition in information technology and the 
psychology of good decision-making, and he concluded that 
all businesses and individuals, regardless of size, deal with 
sensitive and valuable data to varying degrees, and that 
those organizations and individuals that do not keep up 
with security concerns become easy prey as others advance 
their security focus, despite those organizations’ seemingly 
small size and value.

Exploring the Human-Behavior Driven Detection Approach ■■

in Identifying Outbound Malware Traffic
Huijun Xiong, Chih-Cheng Chang, Prateek Malhotra, and 
 Danfeng (Daphne) Yao, Rutgers University

Chih-Cheng Chang noted that outbound malware network 
traffic is unintended by the user and does not always corre-
late with a user’s actions on the system or the user’s intend-
ed actions. In this work, both user inputs and outbound 
traffic are semantically examined to see if a valid correla-
tion exists between actions and outbound traffic. This work 
assesses the actions a user performs and exposes invalid 
outbound traffic, which could signify malware traffic that is 
undesired by the user.



94 ; LO G I N :  VO L .  3 4,  N O.  6

Towards Improving Identity Management Systems Through ■■

Heuristic Evaluation
Pooya Jaferian, David Botta, Kirstie Hawkey, and Konstantin 
Beznosov, University of British Columbia

Pooya Jaferian pointed out that good identity management 
is absolutely critical in an organization’s access control 
framework. However, this work finds that identity manage-
ment systems can host significant usability problems. The 
goal of this work is to expose usability problems in identity 
management that could result in mistakes being made while 
using or administering those systems, which, in turn, could 
result in the improper granting of access to resources.

A Spotlight on Security and Privacy for Future Household ■■

Robots: Attacks, Lessons, and Framework
Tamara Denning, Cynthia Matuszek, Karl Koscher, and 
Tadayoshi Kohno, University of Washington

In the future, robots and automation will become increas-
ingly ubiquitous in the household. Tamara Denning and 
Karl Koscher presented this examination of various house-
hold robots for security vulnerabilities, which include hard-
coded passwords, lack of strong encryption, and other easy-
to-avoid weaknesses. Although each individual household 
robot proved to be fairly innocuous on its own, this work 
reveals several complex attack vectors spanning multiple, 
differently purposed (and differently skilled) household 
robots that could lead to more serious attack payloads (e.g., 
combining dexterity-rich and vision-rich robots to hold and 
scan your keys for duplicates to be made by an attacker).

Performance Testing the Vulnerability Response Decision ■■

Assistance (VRDA) Framework
Art Manion, CERT/Coordination Center; Kazuya Togashi, 
JPCERT/CC

Art Manion and Kazuya Togashi presented this work about 
the Vulnerability Response Decision Assistance (VRDA) 
framework, a decision support system used for predicting 
an organization’s responses to vulnerability report stimuli. 
In order for the VRDA framework to be an effective tool, it 
must accurately predict the organization’s responses relative 
to vulnerability reports. This work analyzes errors in VRDA 
predictions using several techniques (hit rate, off-by-one, 
mean of squared errors, and mean of the errors) in order to 
quantitatively evaluate the effectiveness of the VRDA frame-
work. With the help of the Vulnerability Analysis team at 
the CERT/CC, this work offers a multitude of numerical 
error assessment results on various tasks for which the 
VRDA framework can predict responses.

m alware detection and protection

Summarized by Andres Molina (amolinaf@nsm.umass.edu)

Effective and Efficient Malware Detection at the End Host■■

Clemens Kolbitsch and Paolo Milani Comparetti, Secure Systems 
Lab, TU Vienna; Christopher Kruegel, University of California, 
Santa Barbara; Engin Kirda, Institute Eurecom, Sophia Antipo-

lis; Xiaoyong Zhou and XiaoFeng Wang, Indiana University at 
Bloomington

Clemens Kolbitsch introduced his talk by mentioning the 
weaknesses of existing malware detection solutions that rely 
on binary signatures or on the detection of artifacts. Kol-
bitsch suggests that a better solution to this problem would 
be to look for patterns of malicious behavior. He claims 
that a system based on detecting these patterns is harder to 
obfuscate and is more stable. A major contribution of the 
presented work is to provide a solution to detect malware 
that combines the effectiveness of behavior-detecting tech-
niques with the efficiency of previous solutions based on 
binary signatures.

First, in a detection phase in which the characteristics of the 
malware’s behavior are determined, the malware is executed 
in a full system emulator called Anubis. During this phase, 
the system monitors the interaction with the operating sys-
tem. This observation allows the tool to perform a detailed 
analysis in order to generate behavior graphs. These detec-
tion graphs describe a sequence of required system calls 
leading to the security-relevant system activity, together 
with the dependencies to the related previous calls. Finally, 
the end host is monitored and all the system call activity 
of unknown executables is logged and matched against the 
behavior graphs obtained. The speaker described how this 
would work, using a trojan horse as an example. Clemens 
described their proposed way of matching behavior graphs 
using recorded execution semantics and then extracting 
data propagation and manipulation formulas.

The evaluation of the system covered aspects of the ef-
fectiveness and efficiency of the system, showing that the 
behavior detection is fast enough for the end hosts and that 
the approach is robust against any kind of binary obfusca-
tion, including polymorphism and metamorphism. Further-
more, in some cases the system can detect malware variants 
that were never seen by the graph generator.

A member of the audience said that it is difficult to distin-
guish installers from malicious behavior, especially given 
that trojans seem to be the most common type of malware 
these days. Kolbitsch pointed out that trojans actually 
download other malware following very precise patterns, 
and the system described already detects these trojans. He 
noted that the authors plan to explore this kind of detection 
further in future work.

Protecting Confidential Data on Personal Computers with ■■

Storage Capsules
Kevin Borders, Eric Vander Weele, Billy Lau, and Atul Prakash, 
University of Michigan

Billy Lau began his talk by noting that many users need to 
work with sensitive data, such as financial records, while 
using a PC that is not trusted. Lau proposed a solution to 
this problem using storage capsules. He started by describ-
ing a typical workflow for a solution using TrueCrypt, 
pointing out that such a solution should not be considered 
safe, because when the document is open it also becomes 



; LO G I N :  D ecem b e r 20 0 9 cO N fe re N ce re p O rt s 95

available to malware. He said that Trusted Boot, another 
existing solution, is also not completely appropriate because 
all software is required to be verified before installation, and 
verifying documents is even more complex.

The authors’ solution consists of dividing the modes of op-
eration into normal and secure modes. In the normal mode, 
a user would face no restrictions but should perform only 
non-sensitive operations and would not have any storage 
protection. In the secure mode, network output would be 
prevented, but editing sensitive documents would be pos-
sible and changes would be encrypted to storage capsules. 
The speaker said that from the user’s perspective the work-
flow should be very similar to using a solution such as True-
Crypt. The solution with storage capsules is implemented 
by running a primary virtual machine and a secure virtual 
machine. The I/O is restricted across different modules 
between the Secure VM, the Primary VM, and the VMM 
that handles the physical device drivers, while the system is 
in secure mode.

Paul Van Oorschot from Carleton University questioned 
the speaker’s claim to offer a system with better usability, 
given that the authors did not conduct a study to evaluate 
this claim. Another member of the audience also pointed 
out that since the primary OS is not trusted and the viewer 
is run in this system, it may be hard for a user to trust the 
viewer. Lau and one of the co-authors responded that the 
viewer is not trusted in the proposed model, and it can be 
thought of as a malicious client. How would their solution 
compare to simply rebooting the machine into another 
more trusted OS, given that entering and exiting the trusted 
modes takes a couple of minutes? The transition in their 
system would still be faster than rebooting into another 
system. Would all covert channels be mitigated to avoid 
leakage from the Secure VM in this system? The authors did 
not claim to eliminate all covert channels. Instead, the in-
tention was to eliminate as many as possible at the layer of 
abstraction provided by the authors. An audience member 
pointed out that buffer overflows may have to be addressed 
by this architecture. Lau noted that, while this point should 
be taken into account, the system is currently implemented 
in Python, a type-safe language.

Return-Oriented Rootkits: Bypassing Kernel Code Integrity ■■

Protection Mechanisms
Ralf Hund, Thorsten Holz, and Felix C. Freiling, Laboratory 
for Dependable Distributed Systems, University of Mannheim, 
Germany

Ralf Hund noted that the kernel has elevated privileges and 
that not even virtualization solutions allow the detection of 
malicious programs at lower privileged levels. Hund argued 
that it is necessary to prevent malicious programs from 
executing in the first place. The key idea is that current in-
tegrity protection mechanisms do not protect against attacks 
in which the attacker re-uses existing code within the ker-
nel to perform malicious computations. He explained how 
this procedure can be automated by providing a framework 

with three core components: a constructor, a compiler, and 
a loader which can currently be used in 32-bit Windows 
operative systems running IA-32.

Hund described the instruction sequences that are use-
ful for performing these types of attacks. He also briefly 
described the designs of the so-called automated gadget 
construction, the compiler, and the loader. Hund gave a 
demo of the rootkit implementation, which can be used to 
traverse the process list and remove a specific process. This 
rootkit is only 6KB in size, and, as shown in the demo, can 
be used to eliminate the program Ghost.exe from the Win-
dows Task Manager while the process is still running.

Hund concluded by claiming that the problem is malicious 
computation, not malicious code, and, therefore, code integ-
rity itself is not enough to provide a secure OS. Future work 
would include the implementation of the rootkit in other 
operating systems in order to show its portability and to 
develop some countermeasures against this sort of attack.

A member of the audience asked if address randomization 
could prevent this kind of attack. Hund responded that in-
deed this could be effective in mitigating the attack but not 
in the way it is currently implemented, not even in Win-
dows Vista, where the randomization is done in user space. 
Could something be done to the kernel compiler to prevent 
these attacks? Although possible, this approach would re-
quire the recompilation of every single system component.

invited talk

Hash Functions and Their Many Uses in Cryptography■■

Shai Halevi, IBM Research

Summarized by John Brattin (jbrattin@student.umass.edu)

Shai Halevi divided his talk on cryptographic hash func-
tions into four main parts. The first described some stan-
dard uses for hash functions; the second explained a mo-
tivating application for hash functions; the third described 
how hash functions should be used; and the last described 
some of the considerations taken into account during the 
implementation of Fugue, the IBM submission for NIST’s 
SHA-3 hash function competition.

Traditionally, hash functions have been used to compress, 
encrypt, and authenticate data, or for error-checking. Hash 
functions can be used in digital signature algorithms, in 
message authentication codes, in pseudo-random number 
generators, and in key derivation functions. Halevi de-
scribed briefly how one would go about implementing each 
of these things.

The important properties of a hash function are also the 
defining characteristics of a “random function”: each output 
is equally (im)probable; collisions (e.g., a and b such that 
H(a)=H(b)] are hard to find; fixed points [e.g., a such that 
a=H(a)] are hard to find; and so on. The “random oracle 
paradigm” is a method of creating a cryptosystem in which 
you assume you have a random function, design a system 



96 ; LO G I N :  VO L .  3 4 ,  N O.  6

around that function, prove that that system would be 
secure, and then replace the ideal random function with 
a practical, somewhat nonrandom hash function. In most 
cases, this paradigm is successful, resulting in secure 
cryptosystems. When the paradigm fails, it is due to some 
nonrandom property of the hash function.

However, every hash function has some nonrandom proper-
ties which can be exploited, because every hash function 
is computable. There are degenerate cases of cryptosystems 
designed using the random oracle paradigm, which are 
provably secure with a random function but trivially break-
able with any hash function. According to Halevi, the best 
way to minimize the effect of the nonrandom properties of 
hash functions is to rely on very weak security assumptions, 
i.e., to claim that a cryptosystem is secure only when several 
external conditions are met. Halevi described several sys-
tems with weak security assumptions, including enhanced 
target collision resistance (eTCR).

The final section of the talk concerned Fugue, IBM’s sub-
mission for the NIST hash competition. Many modern hash 
functions rely on the Merkle-Damgard construction, which 
is an iterative method that hashes the first part of the mes-
sage, then hashes that result with the next part of the mes-
sage, and so on. However, this construction has very little 
intermediate state. At each iteration, a nontrivial amount 
of work is done to hash part of the message, but that work 
is all thrown away and only the hashed result is preserved 
for the next iteration. Alternatively, Fugue carries along 120 
bytes of intermediate state, making it harder to find inter-
nal collisions, which have been used in attacks on previous 
hash functions, eventually leading to real collisions.

A member of the audience asked if a PRG could be used to 
extend a short salt into a longer salt in the eTCR scheme. 
Halevi replied that it could be done but that the resulting 
salt may be easier to guess—if the attacker knows the PRG 
and can guess the seed, then they’ve generated your salt and 
it’s easier to break the eTCR. Dan Boneh noted that Halevi 
talked about Fugue’s collision resistance but didn’t mention 
other nice properties of random functions—fixed points, 
low Hamming weight, and so on. Halevi responded that 
second-preimage analysis worked out to be very similar to 
the analysis he gave, and pseudo-randomness would also 
work out to be similar in some ways. He hadn’t looked into 
analysis of fixed points.

browser securit y

Summarized by Todd Deshane (deshantm@clarkson.edu)

Crying Wolf: An Empirical Study of SSL Warning ■■

 Effectiveness
Joshua Sunshine, Serge Egelman, Hazim Almuhimedi, Neha Atri, 
and Lorrie Faith Cranor, Carnegie Mellon University

In the talk, Joshua Sunshine described a user study done 
at Carnegie Mellon University (CMU), in which the goal 
was to study the effectiveness of SSL warnings presented to 

users by various browsers and also some custom warnings 
devised by their research group. Most, if not all, modern 
browsers warn about SSL certificate problems in the cases of 
domain mismatch, unknown certificate authority, or expira-
tion. These warnings happen in two types of cases, either 
as a final protection against man-in-the-middle attacks or 
when a user is contacting a legitimate server. One example 
of a legitimate server that would issue an SSL warning is the 
Carnegie Mellon Library Web site, which uses the Carnegie 
Mellon certificate authority. Since most browsers don’t have 
the Carnegie Mellon authority added by default, the users 
will see an SSL warning.

Josh showed three native browser warnings, from Firefox 
2 (FF2), Internet Explorer 7 (IE7), and Firefox 3 (FF3), as 
well as two custom warnings, a single-page and a multi-
page warning. He noted the change from popup style 
warnings (pre-2007) to warnings that take up the entire 
page (post-2007). He also described the shift from a default 
action of ignoring the warning and continuing anyway to 
browsers that make it very difficult to ignore the warning, 
often forcing the user to make more than a single click to 
get by. In the FF3 case, four steps are necessary to ignore 
the warning and get through. In fact, in one of the alpha 
releases of FF3 there were 11 steps.

Next, Josh described his team’s principled approach to 
designing two custom warnings based on an online survey 
and some warning science guidelines. The outcomes of the 
online survey taught them that content sensitivity (what the 
user is currently doing) is important to take into account. 
Also, they learned that users will ignore warnings out of 
habit (they ignored the warnings in the past and noth-
ing bad happened). From the survey, they also found that 
people confused the SSL warnings with much less seri-
ous warnings, such as sending unencrypted information 
over the Internet via a Google search. The warning science 
guidelines they used, as taken from applied psychology 
literature, were to avoid warnings when possible, clearly 
explain the risk, and provide straightforward instructions 
for avoiding the risk. In their custom multi-page warning, 
they first asked the user what type of Web site they were 
visiting (bank, e-commerce, other, don’t know). If the user 
chose bank or e-commerce, then a second page appeared 
wgucg gave a severe warning, based on the FF3 phishing 
warning and using the most severe, red Larry icon. The 
only two buttons on that second page were “Get me out of 
here” and “Why was this blocked?” with a small link in the 
bottom right to ignore the warning. If the user chose “other” 
from the previous warning page (as the type of site), they 
bypassed the severe warning page and were directed right 
to the destination site. Their custom single-page warning, 
as opposed to the multi-page warning, was simply the red, 
severe warning page, without asking users the type of site 
they were visiting.

The user study had 100 participants, all CMU students, who 
were randomly assigned to the different warnings (FF2, 
FF3, IE7, custom single-page, and custom multi-page). SSL 



; LO G I N :  D ecem b e r 20 0 9 cO N fe re N ce re p O rt s 97

warnings were shown to the user in two of the four tasks, 
the bank task and the library task. For each task, the users 
were presented with an alternative method for completing 
the task, such as calling or using a different Web site. The 
bank task required them to enter their credentials for the 
bank, while the library task didn’t require any sensitive 
information. The hypotheses of the study were that the IE7 
and FF2 warnings would be ignored at both Web sites, par-
ticipants would likely obey the FF3 and the custom single-
page warning on both sites, and participants who saw the 
multi-page warning would obey on the bank Web site but 
continue on the library site.

The hypotheses turned out to be validated, but with some 
interesting findings along the way. First, although it was less 
likely that users would continue to the bank Web site, even 
in the best case (the single-page warning), 45% of the users 
visiting the bank Web site still ignored the warning! Also, 
the FF3 warning turned out to be a significant deterrent, 
even in the library task. Finally, it was surprising that even 
though fewer people continued through the bank task than 
the library task, the difference was slight, generally only one 
or two users. Based on an exit survey, the authors found 
that their single-page warning was more effective at convey-
ing the risk and intent of the warning. They also noticed 
that 4 out of the 20 users of FF3 confused the warning 
with the “Page not found” (404) error. The FF3 warning 
also caused the most (10 times as much) hesitation actions 
(clicking back, refreshing, re-typing URLs, etc.) than any 
other warning.

The CMU team feels there are weaknesses that need to be 
addressed with their multi-page warning, such as better 
context-sensitive information. Finally, they conclude that 
forcing users to do the right thing (such as using systems 
like Perspectives and ForceHTTPS) is the correct way to go.

Someone asked about the backgrounds of the participants. 
Josh responded that as students at CMU they were rather 
technical, many of them in technical master’s degree 
programs, such as information networking and software 
engineering. What is the general applicability of the results? 
The results should be applicable to the general population; 
technical expertise did not seem to play a role in the actions 
of the users. What is the statistical significance of the graph 
comparing users who ignored warnings on the library task 
vs. those who ignored warnings on the bank task? The only 
two cases where there was statistical significance was for the 
single and multi-page warnings. Another questioner won-
dered about the recommendation to force safe practices and 
in turn get rid of self-signed certificates. Josh said that in an 
ideal world he would recommend getting rid of self-signed 
certificates and use Perspectives and ForceHTTPS, although 
this avenue may be too costly, and he surmised that IE 
developers would not support it. Had the users entered their 
actual credentials, which would imply that they could have 
captured 45% of users’ actual credentials? Josh confirmed 
both were true. Did users have an alternate way to succeed 

in the task? Josh said that they were allowed to use the 
phone or visit a different Web site.

The Multi-Principal OS Construction of the Gazelle Web ■■

Browser
Helen J. Wang, Microsoft Research; Chris Grier, University of 
Illinois at Urbana-Champaign; Alex Moshchuk, University of 
Washington; Samuel T. King, University of Illinois at Urbana-
Champaign; Piali Choudhury and Herman Venter, Microsoft 
Research

Alex Moshchuk acknowledged the trend of users to store 
information in the cloud as opposed to on their own com-
puters. He explained that the existing browser technolo-
gies, such as IE8 and Google Chrome, take the approach 
of protecting valuables on the desktop via sandboxing 
and other similar techniques, but fail to protect Web sites 
from stealing data from each other. Therefore, the authors 
set out to design their Gazelle browser to apply operating 
system concepts directly in the browser’s security model: for 
instance, moving all of the complicated resource allocation, 
protection, etc., into a small, trusted, and simple browser 
kernel. Taking the OS analogy one step further, instead of 
treating users as principals they treat individual Web sites 
as the principals by putting them into protection domains. 
The real challenge arises when dealing with Web sites that 
embed content from other Web sites, as is done with mash-
ups.

The design of Gazelle builds on the concept of same-origin 
policy by labeling content based on origin and isolating 
Web site origins into Web site principals. Further, they 
separate principals into principal instances if, for example, 
multiple browser tabs from the same origin are open. In 
their design, principal instances would run in their own 
processes, but finer-grained methods of separation (e.g., 
based on type-safe code) could be applied. The architecture 
of the system is a single browser kernel that mediates all re-
source access of the principal instances, including network, 
storage, and user display. Gazelle requires that principal in-
stances use the Gazelle API to interact with the system and 
each other. Even Flash (and other plug-ins) would run in its 
own process and would interact via Gazelle function calls.

The Google Chrome and IE8 browsers combine content 
from different origins on the same tab into the same pro-
cess, where a malicious Web site could compromise data 
from another in the same tab. In contrast, Gazelle separates 
each of the principals from different origins into its own 
process, thus protecting the data of another site even if one 
of the principals is compromised. The goals of Chrome and 
IE8 are reliability and stability (keeping the browser going 
even if another tab crashes), while the goal of Gazelle is to 
introduce more security by protecting principals from each 
other.

Next, Alex briefly discussed the backward compatibility 
vs. security trade-off and noted that it is a policy issue. He 
also discussed in detail the concept of display in Gazelle 



98 ; LO G I N :  VO L .  3 4,  N O.  6

and explained how to use display access control to limit 
both the creator window (landlord) and embedded content 
(tenant) in order to allow proper control of data or display. 
The concepts exist to some extent in modern browsers, but 
are intermixed too much and the complexity leads to bugs. 
Gazelle is designed to more easily protect against CSS his-
tory stealing and clickjacking by carefully processing events 
and maintaining the proper protection between principals 
in the browser kernel.

The implementation is in C# and makes use of the Trident 
rendering engine of IE. The evaluation described in the talk 
showed that Gazelle could perform on par with other mod-
ern browsers, specifically IE7 and Chrome, for single-origin 
pages and has a fair amount of overhead for multiple-origin 
pages. He noted, however, that Gazelle is still a research 
prototype and has not been tuned for performance. He 
noted several optimizations that could bring performance 
closer to Chrome and IE7, and he mentioned Xax and Na-
tive Client (NaCl) as examples.

The first two questions concerned the overhead and the 
feasibility of using Xax and NaCl. Alex responded that 
he didn’t have numbers for the overhead involved, but he 
didn’t think it would be a problem, based on the overhead 
of system calls they had been experiencing. He mentioned 
that they are considering implementing a new renderer for 
Gazelle so that they can take advantage of Xax or NaCl-style 
sandboxing. He considered the process of adding sandbox-
ing support to be more of an engineering effort, since XaX, 
NaCl, and Google Chrome had already accomplished it. 
There was a question regarding plug-ins; Alex responded 
that they are prioritizing support for a Flash plug-in. Rik 
Farrow asked about their decision to support transparent 
frames (thus opening up the possibility for clickjacking). 
Alex explained that they are studying the top sites and that 
they considered backward compatibility issues. He noted 
that the policy of allowing same-origin transparent frames 
was just one possibility and that other policies are being 
considered by his team.

invited talk

DNS Security: Lessons Learned and The Road Ahead■■

David Dagon, Georgia Institute of Technology

Summarized by Michalis Polychronakis (mikepo@ics.forth.gr)

During 2008, the DNS infrastructure underwent a major 
disruption due to a new and improved DNS cache poison-
ing attack. David Dagon presented a timeline of the events 
that led to the public release of the attack details, including 
the response steps the DNS community took to mitigate the 
attack, and discussed current and emerging DNS security 
issues that remain open.

In a poisoning attack, a recursive DNS server is forced to 
perform a lookup for which it does not have any cached 
answer and thus needs to ask an authoritative resolver. In 
the meantime, the attacker floods the recursive server with 

spoofed answers using the source address of the authori-
tative server. If the race between the misleading and the 
legitimate responses ends in favor of the attacker, then the 
relevant DNS cache entry will be changed to point to any 
malicious server the attacker chooses.

In order to succeed, one of the spoofed responses has to 
match the 16-bit query ID used in the original request. In 
the past, DNS poisoning was not very effective, because cor-
rect answers were cached for a long period, so the window 
of opportunity for the attacker was very limited. However, 
in early 2008 Dan Kaminsky disclosed a new poisoning 
technique that is not affected by the retention of legitimate 
responses and thus has no “wait” penalty. The technique 
exploits the fact that name server (NS) locations are com-
municated through updates included in the DNS responses. 
The attacker first sends a query for a random child label, 
such as abcd.example.com, and then floods the server with 
responses containing a malicious NS update. If the query 
ID field is not matched, the attacker does not have to wait, 
but repeats the attack immediately by requesting a different 
child label, e.g., wxyz.example.com, in essence making the 
attack only bandwidth-limited.

The response of the DNS community was immediate. Since 
enhancements like DNSSEC cannot be deployed in a very 
short period, most vendors chose an opaque mitigation 
technique that increases the size of the query ID by adding 
16 more bits of randomness through source port random-
ization. With an unprecedented simultaneous effort, most 
DNS server vendors had released patches before any exploit 
details were released. However, port randomization is not a 
perfect solution, since it adds a considerable resource over-
head, and in many cases it is negated by NAT devices that 
do not preserve the source port.

Almost simultaneously with the disclosure of the Kaminsky 
attack, David Dagon and his team proposed 0x20 encoding, 
a practical technique that makes DNS queries more resistant 
to poisoning attacks. DNS-0x20 increases the randomness 
of the query ID by mixing upper- and lowercase in the 
domain name in the query. Since almost all DNS servers 
preserve the mixed-case encoding in their answers, attack-
ers now have to also guess the correct mixed-case encoding.

Port randomization and DNS-0x20 have been widely adopt-
ed. However, David presented results of studies which sug-
gest that about 20% of the DNS servers remain vulnerable. 
Unpatched servers can be exploited by attackers for various 
malicious purposes, including email message interception.

DNS prefetching is another emerging issue that has started 
affecting the DNS infrastructure. DNS prefetching aims to 
improve the responsiveness of client applications, especially 
Web browsers, by aggressively resolving host names in ad-
vance, before the user actually requests them. For example, 
after loading a page, the browser can resolve the host names 
of all URLs in the page before the user actually clicks on 
any of them. In another example, as a person types in the 



; LO G I N :  D ecem b e r 20 0 9 cO N fe re N ce re p O rt s 99

address bar, the browser can predict matching domain 
names and attempt to resolve them with the hope that the 
correct response will have arrived before the user actually 
presses the return key.

The spurious requests made due to DNS prefetching can 
have a major impact on the DNS infrastructure. For ex-
ample, while typing a domain name ending in “.com”, a 
request for the “.co” TLD may be sent before the letter “m” 
is typed, incurring extra overhead to the “.co” TLD serv-
ers. Furthermore, DNS prefetching can be abused for spam 
delivery verification using unique domains seeded in spam 
messages, or as a DoS attack multiplier, through nonce child 
labels in the victim authority that are posted in popular 
forums or spam messages.

DNS is also widely misused by malware. An old technique 
is to change the resolver or manipulate the “hosts” file of the 
victim computer to redirect traffic to a malicious server. Re-
cently, malware uses “DNS agility” for botnet command and 
control operations. For instance, the Conficker worm used 
50,000 unique domain names per day, making tracking the 
actual C&C servers challenging.

Finally, David presented the current state and future of 
DNSSEC deployment. DNSSEC uses public-key asymmetric 
cryptography to validate content in a zone, providing mes-
sage integrity. This enables other innovative uses besides 
DNS mappings, such as distribution of PGP keys and email 
addresses.

In the Q&A session, Niels Provos asked about the actual 
severity of the DNS poisoning problem. David mentioned 
that the remaining unpatched servers are being exploited, 
but it is hard to actually detect an attack since the observer 
should be on path with the poisoning in order to detect it. 
However, the cost for mounting a successful HTTP redirec-
tion attack is significant, since it requires additional steps 
besides attacking a DNS server.

Bill Cheswick mentioned that another similar case of mas-
sive cooperation among vendors to fix a severe problem was 
the SYN packet attack in 1996. (See the article on p. 35 in 
this issue.)

work-in-progress reports ( wips )

WiPs below summarized by Kalpana Gondi  
(kgondi@cs.uic.edu)

Full-Datapath Secure Deletion■■

Sarah M. Diesburg, Christopher R. Meyers, and  
An-I Andy Wang, Florida State University

Sarah Diesburg presented this work focusing on erasing file 
data securely and completely. There exist previous solutions 
to secure delete, but these cannot guarantee fine-grained 
deletion. Diesburg is trying to come up with an extension 
to secure deletion solutions using a module for the Linux 
kernel to keep track of blocks to be deleted. The proposed 
approach is to delete not only the files but also the meta-

data of the files, so that no traces are left in the hard disk. 
Also, the module takes care of deleting the data residing at 
multiple locations (e.g., on flash drives). Complete removal 
is necessary for users’ privacy when a large amount of data 
is to be deleted permanently—individual files from bank 
accounts, for example.

Cacophony: BitTorrent over VoIP■■

Rhandi Martin and Angelos Stavrou, George Mason University

Rhandi Martin described Cacophony, a usability tool to 
enable information sharing when there are legal restric-
tions. It is like steganography where the information sharing 
is not noticeable to network traffic analyzers. The authors 
are proposing this solution especially for BitTorrent traffic, 
which may be blocked by educational institutions or ISPs. 
The main idea is to hide the BitTorrent traffic in VoIP. As 
a result this traffic will not be noticeable to the network 
administrators/packet inspectors who can watch the traffic 
to block any data. As the authors acknowledge, the main 
limitation would be to conceal the large amount of BitTor-
rent traffic given the number of connections. To resolve the 
size limitation, authors propose the use of multiple vectors 
such as teleconferencing traffic and relaying.

WiPs below summarized by Prithvi Bisht  
(bishtspp@yahoo.com)

Easier Passwords for the iPhone■■

Bill Cheswick, AT&T Research

Bill Cheswick presented a system that enables users to 
quickly and securely enter passwords on the iPhone. Ches-
wick mentioned that hard passwords are, ironically, hard 
to remember. This problem is aggravated for mobile phones 
due to their small form factor, and may make entering such 
passwords difficult and insecure (e.g., with increased time-
to-enter, users can fall prey to shoulder surfing attacks). Ac-
cording to Cheswick, this work attempts to bring “usability” 
and “security” together. To retain strong entropy of pass-
words, Cheswick proposed using a combination of multiple, 
easy to remember, dictionary words as passwords. To allow 
users to quickly enter the password, Cheswick proposed the 
iPhone’s spell checker feature to reduce the burden on users 
to enter all words correctly and, hence, reduce the time 
needed to enter passwords.

Lightweight Information Tracking for Mobile Phones■■

William Enck and Patrick McDaniel, Penn State University; 
Jaeyeon Jung and Anmol Sheth, Intel Labs Seattle; Byung-gon 
Chun, Intel Labs Berkeley

William Enck presented an approach to implement infor-
mation-flow tracking in mobile phones. He briefly touched 
upon the lack of security in existing mobile phones and 
presented an approach to enable taint tracking in Android 
Virtual Machine. According to Enck, mobile platforms are 
amenable to such taint tracking, as most sensitive informa-
tion is retrieved from single-purpose interfaces and thereby 
allows for automatic tagging. He further indicated the pos-
sibility of enforcing precise security policies in the pres-



100 ; LO G I N :  VO L .  3 4 ,  N O.  6

ence of system-wide taint information. Preliminary results 
indicate that the taint tracking does not adversely impact 
the performance of the system.

WiPs below summarized by Patrick Wilbur  
(patrick.wilbur@gmail.com)

The OSCKAR Virtualization Security Policy Enforcement ■■

Framework
Todd Deshane and Patrick F. Wilbur, Clarkson University

User applications and virtual appliances (applications pack-
aged within virtual machines) can be difficult to secure and, 
upon distribution, can potentially be run in environments 
that are ill-equipped to meet their unique security require-
ments. Furthermore, without clear environmental aware-
ness of the specific needs and behaviors of applications 
and virtual appliances, malware can exploit vulnerabilities 
and wreak havoc on the installed system and others. This 
work develops an extensible policy enforcement framework 
and contract specification—where the application package 
maintainer who knows best can clearly define the applica-
tion’s needs and behaviors—to mitigate malware problems 
by eliminating the majority of their payload.

An Introduction to LR-AKE (Leakage-Resilient ■■

 Authenticated Key Exchange) Project
SeongHan Shin and Kazukuni Kobara, Research Center for 
Information Security (RCIS), National Institute of Advanced 
Industrial Science and Technology (AIST), Japan

SeongHan Shin described Authenticated Key Exchange 
(AKE) protocols as a core cryptographic primitive, and 
these are used for establishing both mutual authentication 
and secure channels of communication. Traditional AKE 
protocols assume shared secrets are and will remain secure; 
in practice, however, these shared secrets are often leaked, 
resulting in the cryptographic system becoming insecure. 
The Leakage-Resilient Authenticated Key Exchange Proj-
ect works to design a new Authenticated Key Exchange 
method that mitigates the risks associated with the leak-
age of shared secrets, while also recognizing the threat of 
dictionary attacks on traditional password-based protection 
of shared secrets.

Towards Exploitation-Resistant Trust Models for Open ■■

Distributed Systems
Amirali Salehi-Abari and Tony White, Carleton University

Amirali Salehi-Abari noted the importance of trust models 
in establishing agent reputation within distributed systems, 
where the reputation of an agent is formed from informa-
tion collected from those who have interacted with the 
agent in the past. This work adds exploitation resistance to 
the traditional trust model criteria. This requires the trust 
model to also protect against the exploitation of the system 
by an adversary who understands the internal workings of 
the trust model in use. This work thwarts trust exploita-
tion by an individual agent by cautiously incrementing trust 
after defection and issuing larger punishments after each 
defection.

Scalable Web Content Attestations■■

Thomas Moyer, Penn State University

As Web content is received, a Web user can tell which serv-
er the content is being sent from, but a user generally has 
no indication of the integrity or authenticity of the content 
they are viewing. This work attempts to better inform the 
user of the level of content integrity by leveraging TPM and 
integrity measurement technologies. This work provides a 
clear binding between the state of a server hosting content 
and the content being served, and does so efficiently despite 
the slowness of conducting TPM operations.

Exploring the Trusted Computing Base of User Applications■■

Hayawardh Vijayakumar, Penn State University

The Trusted Computing Base (TCB) of an operating system 
is large, consisting of both the kernel and trusted programs, 
despite the fact that an individual user application might 
only need to interact with parts of the kernel and some 
trusted applications. Based on the hypothesis that typi-
cal user-space applications use only a small fraction of the 
TCB that runs on a typical OS, this work looks at applica-
tions and attempts to find what that fraction is. This work 
then deploys an application in separate virtual machines 
equipped only with the dependencies the application needs.

Further Improving Tor’s Transport Layer■■

Chris Alexander, University of Waterloo

Tor’s current transport layer employs a user-level TCP 
stack and Round Robin to transfer data and multiplex data 
across common paths, which poses problems with resend-
ing portions of multiplexed data as well as fair congestion 
control in accordance with the primary purposes of Tor. 
This work replaces the user-level TCP stack with user-level 
Stream Control Transmission Protocol (SCTP) in order to 
decrease memory requirements and allow customization of 
the congestion control mechanism. Furthermore, this work 
replaces the round-robin scheduling so that bursty traf-
fic (e.g., HTTP) can compete with large, steady traffic (e.g., 
BitTorrent), which is fairer for traffic closer to Tor’s primary 
purposes (i.e., anonymity and censorship circumvention).

WiPs below summarized by Asia Slowinska  
(asia.slowinska@gmail.com)

Challenges in Sinkholing a Resilient P2P Botnet  ■■

(Is It Possible or Not?)
Greg Sinclair, iDefense/UNCC; Brent Hoon Kang, UNCC

Brent Hoon Kang presented the layered architecture of 
Waledac, a P2P botnet, and described the resilient protec-
tion mechanisms that Waledac has employed to protect the 
botnet against common mitigation efforts. The hierarchy 
introduces a number of layers, starting from spammer nodes 
at the bottom. Above these come repeater nodes, which 
forward messages to/from higher parts of the hierarchy. 
Subsequently, the TSL layer protects the bot master located 
at the top. The research conducted demonstrates that Wale-
dac introduces a number of mechanisms preventing it from 



; LO G I N :  D ecem b e r 20 0 9 cO N fe re N ce re p O rt s 101

being sinkholed. For example, taking down the TSL layer 
nodes may result in converting some of the repeater (or 
new) nodes to new TSL nodes. Also, unlike the Storm bot-
net in the past, the new information about new TSL server 
lists is signed by the private key of the upper layer, making 
any modification to TSL information impossible.

Advanced Metering Infrastructure Security Analysis■■

Steve McLaughlin and Patrick McDaniel, Penn State University

The Advanced Metering Infrastructure (AMI) is a set of 
smart meters and communication networks forming the 
basis of smart grid. These smart meters observe one’s 
energy consumption and communicate that information to 
customers, the local utility, and the grid. Steve McLaughlin 
presented his research on the security implications of the 
meter functionality. The penetration testing that was con-
ducted employs an attack tree methodology, where the root 
of the tree defines a goal, e.g., committing energy theft. The 
subgoals are defined as the child nodes. Finally, the leaves 
determine the types of attack to mount. The results identify 
numerous vulnerabilities and exploits possible: by unplug-
ging a meter from a phone connection at the right time, for 
example, one will be able to impersonate the meter using 
a regular computer and forge demand values. The work is 
published at CRITIS 2009.

Enhancing the Formal Cyberforensic Approach with ■■

 Observation Modeling with Credibility Factors and 
 Mathematical Theory of Evidence
Serguei A. Mokhov, Concordia University

Serguei Mokhov presented his work on refining the formal 
cyberforensics approach by Gladyshev to model cybercrime 
investigations, evidence, and witness accounts in order 
to reconstruct the event and verify whether a given claim 
agrees with the evidence. With the invention and use of an 
intensional programming language called Forensic Lucid, he 
improves Gladyshev’s finite state automata (FSA) approach 
in order to increase the usability of the entire system. Cur-
rent work is being conducted to enable defining credibility 
of witnesses or evidence in a case using the Dempster-Sha-
fer mathematical theory of evidence.

Decompiling Android Applications■■

Damien Octeau, Penn State University

Damien Octeau presented his approach to decompiling the 
Android application bytecode back to Java source code. He 
claimed that this might prove useful for several reasons: for 
instance, to unearth security policies buried in the source 
code, which is inaccessible if one holds a binary only. 
Android applications are written in Java but run in a virtual 
machine called Dalvik VM, which significantly differs from 
the traditional JVM (Dalvik VM is register-based, for exam-
ple, as opposed to the stack-based JVM). Octeau built a tool 
for converting Dalvik executable files (.dex) into new Java 
bytecode files (.class), which can be further processed by 
existing Java bytecode tools to recapture the original source 
code. Initial results show that the method is effective.

CSET ’09: 2nd Workshop on Cyber Security  
 Experimentation and Test

Montreal, Canada 
August 10, 2009

Sessions below summarized by Arun Viswanathan 
(aviswana@usc.edu)

opening rem arks

Douglas Maughan, Program Manager in the Cyber Security 
R&D center from DHS, opened the conference on behalf 
of General Chair Terry Benzel from USC/ISI by giving a 
very brief talk on the importance of testbeds and security 
experimentation.

He was followed by Jelena Mirkovic from USC/ISI and 
Angelos Stavrou from George Mason University, who wel-
comed the attendees and thanked the Program Committee 
members. Jelena presented the statistics for CSET ’09. There 
were 27 papers submitted for the conference, of which 
nine were accepted. Three papers were off-topic and were 
rejected. Of the 22 finally reviewed, 13 were on experimen-
tation (four were accepted), five on testbeds (three accepted) 
and four on education (two accepted). She noted that the 
common problems found in rejected papers were lack of 
novelty, bad timing, and missing lessons learned.

On the future of CSET, she was enthusiastic that total 
submissions were up this year, with 25/27 papers coming 
from people unrelated to the DETER testbed. She, along 
with Angelos, commented on the lack of awareness among 
researchers about existing testbeds such as DETER/GENI. 
This situation will, hopefully, improve with newer and 
larger testbeds like GENI and NCR. Jelena noted a need for 
more submissions in the areas of education, tools, experi-
ment methodology, and result validation. She concluded by 
stating that she was hopeful about having CSET ’10 co-
located with USENIX Security ’10.

keynote address

The Future of Cyber Security Experimentation and Test■■

Michael VanPutte, DARPA Program Manager for US NCR

Michael VanPutte started his keynote by giving a short tour 
of the DARPA mission and key accomplishments from 1960 
to date (from contributions during the space era, through 
their key role in building the Internet, to today’s latest in 
warfare). He then classified today’s cybertesting commu-
nities into two groups: operational and R&D. The cyber-
operational community’s mission is operational testing and 
training, whereas the mission for the R&D community is 
to experiment with new ideas. The operational community 
deals with inflexible, expensive, special-purpose testbeds, 
does manual configuration and management, has rigid test 
schedules, deals with constraining bureaucratic policies, 
and is largely driven by operationally focused policies. This 
leads to unrealistic testing, questionable results, and slow 


