
84	 ; LO G I N : 	VO L . 	3 4 , 	N O. 	4

NSDI ’09: 6th USENIX Symposium on Networked 
Systems Design and Implementation

Boston, MA 
April 22–24, 2009

trust and privac y

Summarized by Michael Golightly (mgolight@princeton.edu)

TrInc: Small Trusted Hardware for Large Distributed ■■

 Systems
Dave Levin, University of Maryland; John R. Douceur, Jacob R. 
Lorch, and Thomas Moscibroda, Microsoft Research

Awarded Best Paper!

Dave described how equivocation, making conflicting 
statements to others, is a very common and powerful tool 
for selfish and malicious users in distributed systems. It 
occurs in the Byzantine general’s problem, voting, and 
BitTorrent, where traditionally 3f+1 users are needed to 
tolerate f malicious users. By using trusted hardware, 
equivocation can be made impossible, and now only 
2f+1 users are needed to reach consensus. To be practi-
cal, such trusted hardware needs to be small in order 
for it to be easily verifiable, ubiquitous via low cost, and 
tamper resilient. Dave then displayed a SmartCard that 
had TrInc, a trusted incrementer, implemented on it. 
TrInc consists only of a monotonically increasing counter 
and a key for signing attestations; a set of TrInc counters 
makes up what is called a trinket. There are two types of 
TrInc attestations: an advance attestation that increments 
a counter and forever binds a message to the counter’s 
value, and a status attestation that allows peers to deter-
mine others’ current counter values.

TrInc was used to implement trusted append-only logs 
that emulate attested append-only memory (A2M), which 
has been shown to solve Byzantine Fault Tolerance with 
fewer nodes. TrInc can also solve the problem of under-
reporting in BitTorrent. In this scenario, the counter 
represents the number of pieces the peer has received, 
and peers attest to what pieces they currently hold, along 
with the most recent piece they have received. Peers 
attest when they receive a piece and when they synchro-
nize their counters with one another. With TrInc, users 
can tell if a peer is underreporting and can choose to 
stop communicating with that peer. 

TrInc was also applied to PeerReview to drastically 
reduce communication overhead in the system, and 
it can be used to ensure fresh data in DHTs and to 
prevent Sybil attacks. The macro-benchmarks for the 
asymmetric performance of TrInc were shown to be 
around 200–225ms for advance and status attestations, 
while the equivalent symmetric attestations were about 
100–150ms. These operations are slow because trusted 
hardware is typically designed to be used for bootstrap-

conference reports

ThaNks	TO	Our	summarIzers

NSDI ’09: 6th USENIX Symposium 
on Networked Systems Design and 
Implementation .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .84 .
Devesh Agrawal
Michael Golightly
Evan Jones
Eric Keller
Wyatt Lloyd
Jeff Terrace
Patrick Verkaik

8th International Workshop on Peer-to-Peer  
 Systems (IPTPS ’09) .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .97
Ghulam Memon
Jeff Terrace

First USENIX Workshop on Hot Topics  
in Parallelism (HotPar ’09) .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 99
Micah Best
Rik Farrow
Eric M. Hielscher
Ben Hindman
Leo Meyerovich

12th Workshop on Hot Topics in Operating 
 Systems (HotOS XII) . .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .109
Vitaly Chipounov
Simon Peter
Tudor Salomie
Adrian Schüpbach
Akhilesh Singhania
Qin Yin
Cristian Zamfir



; LO G I N : 	auGusT	20 0 9	 cO N fe re N ce	re p O rT s	 85

ping and not in the manner that TrInc wishes to use it, but 
the hardware can be made faster.

Someone asked how secure TrInc would be in highly 
sensitive applications such as voting, and the response was 
that more investment would be made to make the trusted 
hardware resilient against reverse engineering and similar 
attacks in such scenarios. Another question was if counters 
could overflow and if they could be reset. The response 
was that TrInc assigns each counter a unique identifier, and 
overflow and resetting are handled by creating a new coun-
ter with a new unique identifier.

Sybil-Resilient Online Content Voting■■

Nguyen Tran, Bonan Min, Jinyang Li, and Lakshminarayanan 
Subramanian, New York University

Tran described how Sybil attacks pollute voting results in 
popular Web sites, such as Digg, by out-voting legitimate 
users. Sybil attacks are hard to defend against in such 
systems because it is easy to create user accounts that are 
not strongly connected to identity. Defenses against these 
attacks then need to be based on resources that cannot 
be easily acquired in abundance, such as links in a social 
network.

Tran presented SumUp, a Sybil-resilient vote aggregation 
system that leverages the trust network among users. Using 
a max flow algorithm to collect votes at a central collector 
in a social network, bogus votes become congested at at-
tack edges. To avoid congesting honest votes, link capacity 
assignment is done through a ticket distribution method 
that iteratively adjusts the number of tickets issued until the 
final number of votes collected approximates the number of 
honest votes expected to exist in the system. This approach 
assigns greater capacity to those edges closest to the vote 
collector, limiting the number of bogus votes collected. If 
an attacker manages to create attack edges in the legitimate 
network close to the vote collector, SumUp can leverage 
user feedback to reduce capacity on them or possibly ignore 
them altogether.

Simulations were conducted of SumUp’s performance on 
social networks and voting traces from YouTube, Flickr, 
and a synthetic model. In all networks, SumUp was able to 
collect greater than 90% of honest votes, and the average 
number of bogus votes per attack edge was close to one or 
very small, even when all nodes voted. To evaluate SumUp 
on Digg, the vote collector was designated to be Kevin Rose, 
the founder of Digg, and then SumUp was run for all votes 
cast before an article was marked popular. An article was 
considered normal if SumUp collected more than 70% of all 
votes; otherwise it was deemed to be suspicious. From man-
ual inspection, some of the suspicious articles were found to 
be composed of advertisements or phishing articles, indicat-
ing that a Sybil attack had in fact taken place. 

Someone asked if an attacker can manipulate voting results 
if he knows who the vote collector is. The response was that 
if the attacker can create attack edges closer to the collector, 

he can make his votes count more, but the feedback mecha-
nism of SumUp can help alleviate this problem.

Bunker: A Privacy-Oriented Platform for Network Tracing■■

Andrew G. Miklas, University of Toronto; Stefan Saroiu and Alec 
Wolman, Microsoft Research; Angela Demke Brown, University 
of Toronto

Stefan described how network tracing is indispensable in 
areas like traffic engineering and fault diagnoses, but that 
issues of data being lost, misused, stolen, or accidentally 
disclosed raise many security and privacy concerns. Data 
must then be anonymized in a way that preserves meaning-
ful information but destroys anything that can be used to 
identify users. Performing this anonymization offline has 
high privacy risks, while an online approach requires high 
engineering costs to process packets at line speed.

To solve this problem, the authors presented Bunker, a 
network-tracing system that buffers raw data on disk, only 
allowing anonymized information out. The logical design 
of the system has capture hardware directly interfaced with 
a closed-box virtual machine (VM) that encrypts data and 
moves it to disk for offline analysis. A separate open-box 
VM then provides access to trace data using a separate 
network interface card. A debugging configuration enables 
all drivers and allows access to the closed-box VM, while 
a tracing configuration disables all unnecessary I/O and 
drivers from the kernel and uses firewalls to allow access 
only through the open-box VM. Bunker took two months to 
develop, and its code base is an order of magnitude smaller 
than previous online tracing tools, since analysis of ano-
nymized data can now be done, offline, however the user 
wishes.

Bunker’s trusted computing base and narrow interfaces 
provide high security. Resources are isolated between the 
open-box and closed-box VMs, and a safe-on-reboot feature 
protects against many hardware-based attacks. Bunker may 
be vulnerable to cold-boot attacks and bus monitoring, but 
secure co-processors could provide a defense against those 
attacks.

Someone asked what the authors have learned trying to sell 
Bunker, with its admitted vulnerabilities, to network opera-
tors and whether they are looking for proof that Bunker is 
secure. The response was that a proof would be great, but 
given that one does not exist, carefully explaining poli-
cies and documentation helps operators to support Bunker. 
Another question was asked about how Bunker protects 
against human errors in the anonymization of data. The 
response was that Bunker provides the tools for anonymiza-
tion; it is still up to operators to inspect their code and poli-
cies to make sure data is anonymized correctly. Someone 
else asked how useful Bunker’s security model was, given 
that once attackers have physical access to the machine they 
can install a network tap anyway. Stefan said that Bunker 
reduces liability but does not stop someone with a subpoena 
from installing a network tap.



86	 ; LO G I N : 	VO L . 	3 4, 	N O. 	4

stor age

Summarized by Evan Jones (evanj@mit.edu)

Flexible, Wide-Area Storage for Distributed Systems with ■■

WheelFS
Jeremy Stribling, MIT CSAIL; Yair Sovran, New York University; 
Irene Zhang and Xavid Pretzer, MIT CSAIL; Jinyang Li, New 
York University; M. Frans Kaashoek and Robert Morris, MIT 
CSAIL

Jeremy Stribling presented WheelFS, a distributed file sys-
tem designed to operate over wide area networks. Operating 
across a wide area network presents many challenges due 
to the fundamental latencies between sites and the higher 
probability of link failures. WheelFS’s design is based on the 
observation that many applications each design their own 
distributed storage layer because they make different design 
choices for how to handle these challenges.

WheelFS provides a single file system namespace where 
these choices can be made on a per-file basis, by attaching 
what the authors call “semantic cues.” These cues are spe-
cial strings embedded in the file path—for example, /wfs/ 
.MaxTime=200/url, which specifies that the system should 
take a maximum of 200 milliseconds to try to locate the 
most recent copy, then return an error or whatever latest 
version was found. These cues can be used to implement a 
variety of services with very different requirements, such 
as a traditional distributed file system with strong close-to-
open consistency, or a distributed Web cache with much 
weaker consistency but lower latency.

Jeremy was asked if he had any big lessons after examining 
many different storage systems, and implementing WheelFS. 
His answer was that most applications need the same policy 
for both reads and writes, and a simple interface. The 
software and additional information can be found at http://
pdos.csail.mit.edu/wheelfs.

PADS: A Policy Architecture for Distributed Storage ■■

 Systems
Nalini Belaramani, The University of Texas at Austin;  Jiandan 
Zheng, Amazon.com Inc.; Amol Nayate, IBM T.J. Watson 
Research; Robert Soule, New York University; Mike Dahlin, 
The University of Texas at Austin; Robert Grimm, New York 
University

Nalini Belaramani presented PADS, a system to make it easy 
to build a custom distributed storage system. It grew out of 
the work on PRACTI, which took a microkernel approach, 
by providing a number of small building blocks that could 
be combined in interesting ways. However, Nalini found 
PRACTI too difficult to use to build a complete system. 
PADS addresses this problem by reducing the design of 
distributed storage systems to two parts: routing policy and 
blocking policy.

Routing policy specifies how data flows between nodes. The 
primary abstraction for routing is the subscription, which 
provides a flow of updates between nodes. Subscriptions 
propagate events that contain the updates to data objects. 

Triggers are points where the routing policy can make 
decisions, such as when a read blocks to obtain the most 
recent data. Routing policy is specified using Overlog, a 
domain-specific language for building peer-to-peer systems 
based on Datalog. Blocking policy specifies when opera-
tions should block in order to maintain the guarantees the 
storage system wants to provide. It is specified as a list of 
conditions for blocking points at data access. PADS provides 
built-in conditions as well as allowing system designers to 
implement custom conditions. The authors used PADS to 
build 12 different distributed storage systems, ranging from 
CODA to TierStore. Each one can be specified using fewer 
than 100 routing rules and 6 blocking conditions.

Nalini was asked what the division should be between a 
domain-specific language and a library in a system like 
this. Nalini answered that PADS’ main contribution is the 
abstraction of routing and blocking policies. While Over-
log helps, you could use Java with PADS if you wanted. It 
would still make the job easier. What about performance of 
the routing policies, since Datalog can be slow with large 
amounts of data? PADS does not maintain much state in 
their custom implementation, so it has not been an issue.

wireless  #1 :  soft ware r adios

Summarized by Patrick Verkaik (pverkaik@cs.ucsd.edu)

Sora: High Performance Software Radio Using General ■■

Purpose Multi-core Processors
Kun Tan and Jiansong Zhang, Microsoft Research Asia; Ji Fang, 
Beijing Jiaotong University; He Liu, Yusheng Ye, and Shen Wang, 
Tsinghua University; Yongguang Zhang, Haitao Wu, and Wei 
Wang, Microsoft Research Asia; Geoffrey M. Voelker, University 
of California, San Diego

Awarded Best Paper!

Kun Tan presented Sora, an implementation of an 802.11a/g 
SDR (software-defined radio) on a commodity PC architec-
ture. In SDR, the goal is to implement as much of the wire-
less protocol in software as possible, so that it is useful for 
research, development, and testing. However, achieving this 
goal is hard, because transferring and processing radio sig-
nals requires large I/O bandwidth (several Gbps) as well as 
a lot of computation. In addition, protocols such as 802.11 
define very tight deadlines (microseconds) to generate 
responses. Therefore, up until now SDR has often made use 
of FPGAs, which can meet these performance requirements 
but are not very programmable, or sacrificed throughput to 
programmability when using a general-purpose processor.

Enter Sora, which is an SDR implementation based on a 
general-purpose processor architecture, yet can operate 
at the highest 802.11a/g MAC rates. Sora achieves this by 
making use of current commodity hardware (PCI express 
and multicore processors) combined with clever optimiza-
tions. The radios are located on a PCI-e card that contains 
a minimal amount of logic. As examples of optimizations, 
Sora trades memory for calculation using lookup tables that 



; LO G I N : 	auGusT	20 0 9	 cO N fe re N ce	re p O rT s	 87

still fit in an L2 cache, takes advantage of SIMD instruc-
tions to exploit PHY data parallelism, and carefully allocates 
tasks to multiple cores and schedules them at compile time. 
Together, these optimizations achieve a 10–30x speedup as 
well as an end-to-end throughput comparable to commer-
cial (hardware-based) implementations. Taking advantage of 
SDR, the team experimented with several modifications to 
802.11, such as a TDMA MAC and jumbo frames. Kun also 
showed a screenshot of a nice visualization tool.

Someone asked whether Sora could be used for power-con-
strained platforms. In Kun’s view, SDR is currently useful 
mostly for experimentation rather than practical deploy-
ment, so energy use is not a concern. However, Sora could 
be deployed in base stations. Someone mentioned that a 
lot of the finer details of 802.11 deal with low-performance 
situations, such as weak signal strength and multipath. Kun 
observed that multipath is everywhere, and getting good 
throughput means that you must have handled it.

Not only did Sora win a Best Paper award, but Kun’s demo 
at the reception also won Best Demo!

Enabling MAC Protocol Implementations on Software-■■

Defined Radios
George Nychis, Thibaud Hottelier, Zhuocheng Yang, Srinivasan 
Seshan, and Peter Steenkiste, Carnegie Mellon University

George Nychis presented their work on implementing 
software-defined radios (SDR) using a “split functionality” 
approach. The idea is to place a small, performance-critical 
part of the SDR on the radio hardware (small enough to 
allow low cost and complexity) and the remainder on the 
host, where it can be easily programmed, and connect the 
two through an API. In contrast with the previous talk, on 
Sora, this work can still use a USB-based USRP radio and 
is claimed to be more independent of specifics of the host 
architecture, such as the instruction set architecture and the 
latency from the radio to the software part.

What components should the high-performance toolbox 
consist of? George presented two of the components they 
developed: precision scheduling and fast packet detection. 
For precision scheduling, the host is in charge of schedul-
ing an event (such as sending a packet) and specifies a 
time. The actual triggering at the given time, however, is 
performed by the hardware. The goal of fast packet detec-
tion is to detect whether an incoming signal is a packet 
before demodulating the signal, an optimization that saves 
processing power and allows faster turnaround time. In the 
split-functionality architecture, the host modulates the fram-
ing bits and passes that to the hardware. The hardware can 
then correlate an incoming signal with the modulated fram-
ing bits and detect an incoming packet. George described 
how they used their toolbox to implement 802.11- and 
Bluetooth-like protocols and compared their performance 
with host-based implementations of these. They found that 
while in terms of absolute performance both are limited by 
USRP, the split-functionality approach enables a throughput 
improvement of 2–4x over the host-based implementation.

An audience member asked how resilient the API is to pro-
tocols that have very specific features, such as virtual car-
rier sense in 802.11. George explained how they dealt with 
virtual carrier sense in particular, but he doesn’t claim the 
split-functionality approach can handle everything. They are 
currently working on “fast ACKs”: premodulating an ACK 
packet so that it can be sent quickly, yet allowing the ACK 
to contain the source address of the packet it is responding 
to. Someone else asked how generic the API is in consider-
ing new protocols, since in sensor networks it has turned 
out very hard to come up with a stable API. George an-
swered that it is hard to say whether the toolbox set is ever 
complete. Instead, they try to make it so that the API can be 
tweaked easily to support such new protocols.

content distribution

Summarized by Jeff Terrace (jterrace@cs.princeton.edu)

AntFarm: Efficient Content Distribution with Managed ■■

Swarms
Ryan S. Peterson and Emin Gün Sirer, Cornell University and 
United Networks, L.L.C.

Ryan S. Peterson presented AntFarm, a content distribution 
scheme that manages swarms of clients downloading a set 
of files. Instead of other approaches like the client/server 
model or traditional peer-to-peer networks (e.g., BitTorrent), 
an AntFarm coordinator actively manages content serv-
ers, seeds, and leechers by issuing tokens that clients can 
exchange for blocks of the files they desire.

The AntFarm coordinator uses an iterative algorithm to al-
locate bandwidth to target the highest aggregate bandwidth 
relative to seeder capacity. AntFarm significantly outper-
forms BitTorrent because it can optimize bandwidth use. 
Unlike BitTorrent’s random unchoking, AntFarm specifically 
allocates seeders to new swarms. The coordinator algorithm 
scales linearly to more hosts, and a single machine can 
calculate allocations for 10 thousand swarms and 1 million 
peers in only 6 seconds.

HashCache: Cache Storage for the Next Billion■■

Anirudh Badam, Princeton University; KyoungSoo Park, 
 Princeton University and University of Pittsburgh; Vivek S. Pai 
and Larry L. Peterson, Princeton University

Anirudh Badam presented HashCache, a new algorithm 
for indexing a Web cache. In developing regions, Internet 
bandwidth is prohibitively expensive ($1500/Mbps/month), 
which makes Web caching very desirable. Although hard 
disks have been getting much cheaper ($100 for a 1TB 
drive), the memory required to index larger drives (10GB for 
a 1TB index) is expensive.

The solution, HashCache, calculates the hash of a URL and 
organizes the file system as the hash space. The basic ver-
sion of HashCache stores metadata in the first block of the 
disk, and therefore is optimized for a single disk seek per 
URL lookup. A more advanced version uses a configurable 
amount of memory for the cache index, uses 20–50x less 



88	 ; LO G I N : 	VO L . 	3 4 , 	N O. 	4

memory than Squid (an open source Web cache) and 6–10x 
less memory than Tiger (a commercial Web cache) while 
maintaining comparable performance.

Someone asked about the need for larger disk caches, since 
the advantage of a cache drops off quickly as the size of the 
cache grows. Anirudh replied that a larger cache allows for 
additional applications such as WAN acceleration and prefetch-
ing.

iPlane Nano: Path Prediction for Peer-to-Peer Applications■■

Harsha V. Madhyastha, University of California, San Diego; 
Ethan Katz-Bassett, Thomas Anderson, and Arvind Krishnamur-
thy, University of Washington; Arun Venkataramani, University 
of Massachusetts Amherst

Harsha V. Madhyastha presented iPlane Nano. Rather than 
P2P applications each trying to measure Internet paths 
independently, iPlane Nano provides a shared solution for 
other applications to use. iNano’s approach is similar to 
the previous iPlane in that it predicts the AS-level paths 
between end hosts, but instead of keeping a large database 
of paths, iNano uses a compact atlas of measured links. 
By choosing two links that intersect, the iNano algorithm 
can infer the AS-level path correctly 70% of the time, while 
using three orders of magnitude less storage space for the 
atlas (7MB versus 2GB). The atlas itself is updated daily, 
with 80% of the links staying the same between updates.

Someone asked what happens when the prediction is incor-
rect. Harsha replied that it does help applications choose 
peers, even if incorrect some of the time. Why download 
the atlas, as opposed to simply querying a server? For appli-
cations such as BitTorrent, the load on a query server would 
be very high. What is the overhead of the iNano measure-
ments? They are simply traceroutes, so they are low-cost 
(100KB of bandwidth per day). 

bft

Summarized by Wyatt Lloyd (wlloyd@cs.princeton.edu)

Making Byzantine Fault Tolerant Systems Tolerate ■■

 Byzantine Faults
Allen Clement, Edmund Wong, Lorenzo Alvisi, and Mike Dahlin, 
The University of Texas at Austin; Mirco Marchetti, The Univer-
sity of Modena and Reggio Emilia

Allen Clement noted that, contradictorily, all existing Byz-
antine Fault Tolerant (BFT) systems perform poorly or crash 
in the presence of Byzantine faults. In the quest for higher 
and higher throughput numbers, BFT system designers 
have adopted frailer optimizations that increase best-case 
performance but decrease worse-case performance. These 
fragile optimizations also introduce new corner cases that 
designers can easily overlook when implementing their 
protocols. Thus, the new goal for BFT research is to design 
robust systems that tolerate and even perform well under 
the Byzantine faults they were designed to tolerate.

Aardvark, the first system in the new spirit of robust BFT, 
challenges the conventional wisdom used in designing 

conventional BFT systems. It uses public-key cryptography 
to authenticate clients instead of MACs. It explicitly isolates 
its resource. For instance, it requires separate wires and 
separate NICs for each communication pathway. Finally, 
Aardvark regularly executes view-changes to continue rotat-
ing which replica is the primary. These design decisions, 
especially to use public-key cryptography, were traditionally 
considered too computationally expensive. However, Aard-
vark achieves a peak throughput of 38667 ops/sec com-
pared to PBFT’s 61710 ops/sec and Zyzzyva’s 65999 ops/sec.

One attendee asked why a MAC was being sent along with 
the client signature for requests. The speaker explained that 
misbehaving clients are blacklisted and that the primary 
can identify the client who sent a request using a MAC with 
significantly less computation than a signature. Another 
attendee noted that people in the real world don’t think BFT 
is worth the performance hit and that systems like Aardvark 
increase this hit further. The speaker said there are always 
tradeoffs in designing a system. A third attendee asked 
if they were sure there are no attacks related to multiple 
processor speeds. The speaker replied that they focused on 
systems with homogeneous processors.

Zeno: Eventually Consistent Byzantine-Fault Tolerance■■

Atul Singh, MPI-SWS and Rice University; Pedro Fonseca, MPI-
SWS; Petr Kuznetsov, TU Berlin/Deutsche Telekom Laboratories; 
Rodrigo Rodrigues, MPI-SWS; Petros Maniatis, Intel Research 
Berkeley 

Atul Singh said that availability has become king in the 
design of Web sites, with each hour of downtime costing 
major sites between $55,000 and $500,000. While some of 
these sites are designed to prevent crash faults, in practice 
Byzantine faults occur and have disastrous consequences. 
Combining these observations motivates Zeno, a Byzantine 
Fault Tolerant (BFT) system that strives to meet modern 
availability requirements.

All existing BFT protocols strive for strong consistency and 
will block if less than two-thirds of replicas are reachable. 
Zeno’s key idea is relaxing consistency for availability: make 
the service available when other replicas are not reachable 
even though this will allow temporarily divergent state. 
Zeno implements eventual consistency, meaning clients will 
not always see the effects of other clients’ operations imme-
diately, though eventually they will all be coalesced.

Zeno has two types of operations: strong and weak. Strong 
operations function like normal BFT operations, require 
strong quorums of 2f+1 replicas, and have unique sequence 
numbers. Weak operations have eventual consistency 
semantics, only require weak quorums of f+1 replicas, and 
do not always have unique sequence numbers. When a net-
work partition occurs that prevents strong quorums, strong 
operations cannot complete until the partition is healed and 
preceding weak operations that completed during the parti-
tion are merged. These merges require the partitions to roll 
back their state until they agree, agree on an order of opera-
tions, and then play forward those operations.



; LO G I N : 	auGusT	20 0 9	 cO N fe re N ce	re p O rT s	 89

An attendee commented that it would be interesting to 
explore structured partitions instead of arbitrary partitions 
and the speaker concurred. Another attendee asked what 
happens to weak operations that complete before strong op-
erations when state is rolled back for merges. Atul answered 
that the result seen by the weak operations may not be 
state that is actually represented in the final history of the 
system. Another attendee followed up by commenting that a 
client’s future operations may be based on the inaccurate re-
sults of previous operations. Atul replied that if that was the 
case, strong operations should be used. A fourth attendee 
stated that a Byzantine node could always cause divergent 
views that would need to be merged. Atul said that if signa-
tures were used, only the primary could do this.

evaluation /correctness

Summarized by Evan Jones (evanj@mit.edu)

SPLAY: Distributed Systems Evaluation Made Simple (or ■■

How to Turn Ideas into Live Systems in a Breeze)
Lorenzo Leonini, Étienne Rivière, and Pascal Felber, University of 
Neuchâtel, Switzerland

Étienne Rivière presented SPLAY, a system for building, 
deploying, and evaluating distributed systems. It is based on 
the observation that building large-scale systems is difficult, 
which leads many researchers to use simulations or small 
controlled deployments. SPLAY tries to make it easier to 
build real systems. It is designed to help users with all parts 
of the development process: implementation, deployment, 
and evaluation.

SPLAY exposes a Lua programming language interface. 
Lua is a high-level, dynamic programming language. Its 
concise and clear syntax, combined with SPLAY’s librar-
ies, produces implementations that can look very similar to 
the pseudocode describing the algorithms. As an example, 
Étienne showed the SPLAY implementation of Chord beside 
the pseudocode from the original paper. To assist with de-
ployment, SPLAY requires a single lightweight daemon to be 
installed on each machine that participates in the system. 
Multiple SPLAY applications can then be deployed using 
a command-line or Web-based interface. Each applica-
tion runs in its own sandbox, providing resource isolation. 
When evaluating a system, the SPLAY controller collects log 
data from multiple systems, which are then combined back 
on the user’s machine, making it as easy to collect data as 
with simulations. Additionally, the controllers can be used 
for reproducible churn experiments, where the same set of 
node joining and leaving events can be replayed.

Étienne was asked if SPLAY can assist in validating simu-
lation results. He said that the end user still must do this 
work, as SPLAY only provides infrastructure for running 
systems and does not understand any high-level information 
about the application. While the SPLAY implementation can 
be run on different testbeds, such as multiple processes on 
the local machine, PlanetLab, Emulab, or a private network 
of workstations, it currently does not support simula-

tors. Could they reproduce the strange transient behavior 
observed on PlanetLab? While SPLAY can reproduce churn, 
it does not record and replay other kinds of events. Does 
SPLAY provide tools to build systems that are topology-
aware, such as choosing local peers? While SPLAY does not 
have any tools like that in its set of libraries, the raw APIs 
are accessible, so they could be built. SPLAY is available at 
http://splay-project.org/.

Modeling and Emulation of Internet Paths ■■

Pramod Sanaga, Jonathon Duerig, Robert Ricci, and Jay 
 Lepreau, University of Utah

Jonathon Duerig presented his work on emulating Internet 
paths. When evaluating a system using a tool such as Emu-
lab, users would like to be able to emulate behavior that is 
observed between two hosts on the Internet. Previous work 
provides ways to emulate the characteristics of single links. 
Emulating Internet behavior would require many links, 
each of which needs to be provided many specific param-
eters, such as queue sizes, delay, and data rate. Instead, this 
work attempts to provide accurate modeling of WAN paths 
using a single link, with some additional parameters. The 
techniques that Jonathon presented are tuning queue sizes, 
separating the effects of capacity and available bandwidth, 
and reactivity of cross traffic.

First, to emulate a WAN path the queue size must be set 
appropriately. In this work, both a lower and upper bound 
on the queue size are derived using both the desired 
bandwidth-delay product and the available bandwidth. 
This frequently leads to sizes which are not satisfiable, due 
to the lower bound being greater than the upper bound. 
To solve this, the authors observed that in real paths, the 
path capacity—the rate at which all packets are transmit-
ted on the path—is different from the available bandwidth, 
the rate at which the application’s packets are transmitted. 
Thus, the capacity can be adjusted until the queue sizes can 
be satisfied. Then constant bit-rate cross traffic is added to 
leave the desired available bandwidth on the path. Next, the 
cross traffic must react to the foreground traffic, as it would 
on the real Internet. This work adjusts the cross traffic as a 
function of the number of foreground flows. To evaluate this 
emulation, Jonathon presented results comparing measured 
performance on the Internet with emulated paths, show-
ing that the bandwidth and latency are within 10% of the 
measured values.

Jonathon was asked about the distribution of round-trip 
times, which are more noisy on the Internet than in the 
emulation. His answer was that the model captures the 
high-level RTT behavior, but the individual RTT distribu-
tion will be different from the Internet RTTs. Why didn’t 
they compare PlanetLab performance to their emulation for 
the BitTorrent experiments? From their previous work, they 
found that host contention on busy PlanetLab nodes makes 
it very difficult to measure the actual network conditions for 
typical applications under normal loads. Had they con-
sidered providing pre-defined scenarios, based on careful 
measurements? This would make it easier for researchers 



90	 ; LO G I N : 	VO L . 	3 4 , 	N O. 	4

to do experiments without setting hundreds of parameters. 
Jonathon said that is the ultimate goal of this research. 

MoDist■■ : Transparent Model Checking of Unmodified 
 Distributed Systems 
Junfeng Yang, Columbia University and Microsoft Research 
Silicon Valley; Tisheng Chen, Ming Wu, Zhilei Xu, Xuezheng 
Liu, Haoxiang Lin, and Mao Yang, Microsoft Research Asia; 
Fan Long, Tsinghua University; Lintao Zhang and Lidong Zhou, 
Microsoft Research Asia and Microsoft Research Silicon Valley

Junfeng presented MoDist, a system for finding bugs in dis-
tributed systems implementations. The standard technique 
is stress testing or randomized testing using a synthetic 
workload. However, these tests do not trigger many of the 
rare corner cases. MoDist addresses this challenge through 
model checking techniques. Model checking exposes all 
possible actions at each state. To eliminate redundant se-
quences of actions, MoDist uses partial order reduction and 
remembers previously visited states. Unlike other systems, 
it runs unmodified applications on top of the operating 
system. A lightweight system call interposition layer makes 
executions deterministic and reproducible, as well as being 
capable of injecting errors. A static analysis technique is 
used to expose implicit timers as actions to the model 
checker. A set of default checks are performed at each state, 
and users can supply additional checks, including checks 
over the global state.

To use MoDist, the developer supplies a configuration file, 
telling it how to start the initial processes. MoDist runs 
the processes and explores the state space. When it finds a 
bug, it writes a trace file. This trace file can be fed back into 
MoDist to reproduce and debug the error. Junfeng presented 
a bug that was found in Berkeley DB after running for an 
hour. The authors used MoDist to test three systems: Berke-
ley DB; Microsoft’s Paxos implementation, called MPS; and 
Pacifica, a distributed storage system. It found 35 bugs, 31 
of which were confirmed by the original developers. Ten of 
those were serious protocol-level bugs.

Junfeng was asked how MoDist’s implementation compares 
to work designed for checking multi-threaded systems. He 
said that MoDist’s implementation handles threads as well 
as communication in distributed systems. There are differ-
ent kinds of failures in distributed systems, so it is unclear 
how it could be used for multi-threaded systems. 

CrystalBall: Predicting and Preventing Inconsistencies in ■■

Deployed Distributed Systems 
Maysam Yabandeh, Nikola Knežević, Dejan Kostić, and Viktor 
Kuncak, EPFL

Dejan presented CrystalBall, a system for finding and pre-
venting bugs in distributed systems. CrystalBall can help 
find these bugs and prevent them from causing inconsisten-
cies in deployed systems. The idea is to use model checking 
to see whether potential future actions can lead to incon-
sistencies or other errors. This can find bugs that typical 
model checking would not, since it examines states that 
are far from the initial conditions. These are relevant states 

because the search begins from a state observed in the real 
deployment. CrystalBall can, in most cases, prevent a bug 
it has found from violating safety properties. In order to 
model check the system at each node, it collects a consistent 
snapshot of a node’s neighborhood, along with the normal 
messages. When an action arrives that CrystalBall has de-
termined could lead to an inconsistency, it prevents it with 
a filter. It uses filters to cause events that could happen due 
to other reasons, such as breaking a TCP connection instead 
of delivering a message that triggers a bug.

CrystalBall is based on the MaceMC model checker, and 
thus systems are implemented in Mace. CrystalBall was 
evaluated using the Mace implementations of RandTree, 
Chord, and Bullet, using 6–100 participants on 25 ma-
chines. They found seven inconsistencies that were not 
found by MaceMC or by manual debugging. They also 
looked at a Paxos implementation where they injected two 
failures that were reported in previous research. Execution 
steering was able to avoid the inconsistencies in 95% of the 
random runs they examined. The performance impact was 
less than 5% for BulletPrime downloads, due to the addi-
tional overhead of transmitting checkpoints.

Dejan was asked to comment on the CPU overhead. 
CrystalBall fully utilizes one CPU on each node in order 
to model-check future states. What about systems that are 
multi-threaded and scale up with more CPUs? It would be 
possible to parallelize the model checker in order to explore 
states in parallel. What was the size of the state space? In 
order to explore eight levels, it takes approximately 600KB 
of RAM. Thus, this fits into the L2 cache of most CPUs. 

wide-area services  and replic ation

Summarized by Wyatt Lloyd (wlloyd@cs.princeton.edu)

Tolerating Latency in Replicated State Machines Through ■■

Client Speculation
Benjamin Wester, University of Michigan; James Cowling, MIT 
CSAIL; Edmund B. Nightingale, Microsoft Research; Peter M. 
Chen and Jason Flinn, University of Michigan; Barbara Liskov, 
MIT CSAIL 

Benjamin Wester observed that replicated state machines 
(RSMs) are used to make services fault-tolerant. To truly 
achieve fault tolerance, the machines implementing the 
RSMs should be geographically distributed, but this can 
significantly increase latency. This latency can be hidden 
through client speculation.

Clients take a checkpoint of their state before issuing 
requests and then speculatively execute based on the first 
reply they receive. If consensus agrees with this first reply, 
the client continues its execution normally. If consensus 
disagrees with the first reply, the client rolls back its state to 
the checkpoint and executes based on the consensus reply. 
This new protocol changes the fast path of execution; now 
the latency of the first reply matters much more than the 
latency of the consensus reply.



; LO G I N : 	auGusT	20 0 9	 cO N fe re N ce	re p O rT s	 91

When clients issue requests during speculative execution, 
this dependency must be made explicit. These dependen-
cies can be expressed as predicates. For instance, if a client 
speculates it won the lottery and then issues a request to 
buy a car, that request should be “buy car if lottery=win.” 
There may be a large list of these predicates—for instance, 
“buy insurance if lottery=win and car=bought.” Client spec-
ulation was implemented on top of PBFT, with the primary 
sending a speculative reply as soon as it received a request. 
Evaluation showed that PBFT-CS was able to decrease la-
tency under a variety of scenarios at the cost of decreasing 
peak throughput by 18%.

An audience member suggested using client speculation 
under low load and then switching it off for higher through-
put under high load. Wester agreeed that the technique 
could work quite well and said it could be implemented 
easily by simply having the primary stop sending specula-
tive replies when it was under high load. Was there a way 
to tether speculation across multiple RSMs? It would be 
possible if a distributed checkpoint and rollback mechanism 
was implemented, or the client could simply block before 
executing requests external to the system. 

Cimbiosys: A Platform for Content-based Partial ■■

 Replication
Venugopalan Ramasubramanian, Thomas L. Rodeheffer, and 
Douglas B. Terry, Microsoft Research, Silicon Valley; Meg 
 Walraed-Sullivan, University of California, San Diego; Ted 
Wobber and Catherine C. Marshall, Microsoft Research, Silicon 
Valley; Amin Vahdat, University of California, San Diego

Douglas Terry suggested considering a photo-sharing 
scenario where Alice uploads her pictures to her home PC 
and then tags and rates them. Then all of her photos tagged 
“family” should be replicated on her laptop and her Mom’s 
computer. All her photos tagged “public” should be upload-
ed to her Flickr account, and all of her photos rated 5 stars 
should be put in her digital picture frame. This scenario 
leads to two observations. First, devices want to selectively 
replicate with each other data that they both are interested 
in. Second, there may not be a full mesh between all de-
vices. For instance, Alice’s Mom’s computer may get photos 
from Alice’s laptop when Alice is visiting but may have to 
get photos via Flickr at other times.

Cimbiosys aims to address this scenario by incorporating 
content-based filtering with eventual consistency. A filter 
selects which data items it is interested in, such as only 
photos with the family tag. Cimbiosys achieves what is 
termed “eventual filter consistency.” Eventual filter consis-
tency means that each device will eventually store the items 
that its filter would select from a set of all items in the entire 
distributed collection.

Devices synchronize to exchange items and metadata about 
items. Devices only transfer items and meta-data about 
items selected by their filter. Complications arise with this 
protocol when filters or items are updated so that items no 
longer belong to filters. For instance, a photo may be re-

rated to be 4 stars instead of 5. To deal with this situation, 
metadata about items that have fallen out of the filter is kept 
and propagated in synchronizations until certain conditions 
explained in the paper are met.

One attendee was confused about the semantic of the filter 
and asked if they could be composed. Terry replied that 
a filter’s only requirement was being able to decide yes or 
no for every item. The same attendee asked how you could 
define a filter to be consistent. Terry replied that there is no 
notion of a filter being consistent. Another attendee asked 
how Cimbiosys dealt with failures. Terry replied that the 
system works for fail-stop faults but not for Byzantine faults. 
A third attendee asked what the trust model of the system 
was. Terry replied that they used an access control policy to 
govern the operations each device was allowed to perform 
on each item. Another attendee asked how this system is 
different from PRACTI. Terry replied that PRACTI provides 
a framework to build protocols and policies, so PRACTI 
could be used to implement Cimbiosys.

RPC Chains: Efficient Client-Server Communication in ■■

Geodistributed Systems
Yee Jiun Song, Microsoft Research Silicon Valley and Cornell 
University; Marcos K. Aguilera, Ramakrishna Kotla, and Dahlia 
Malkhi, Microsoft Research Silicon Valley

When applications scale across heterogeneous and geo-
graphically diverse machines, Yee Jiun Song noted that 
remote procedure calls (RPCs) impose rigid and inefficient 
paths of communication. For instance, consider a webmail 
application where the front-end server communicates with 
an authentication server, a storage server, and an advertising 
server. Assuming these operations are not parallelizable, a 
more efficient communication path would go from the front-
end server to the authentication server to the storage server 
to the advertising server and then back to the front-end 
server. RPC chains include logic along with RPCs that can 
be used to implement complex communication paths, such 
as the one described above.

The first step in creating RPC chains is embedding the 
chaining logic in the RPC call, by embedding C# static 
method names in the calls. These methods are stored at a 
central server so that servers may fetch them the first time 
they are encountered. The second step is maintaining a 
stack of chaining functions and state. This allows an RPC 
chain to spawn subchains that block its progress until they 
complete. The third step is allowing chaining functions to 
specify splits and merges so different parts of the chain can 
continue in parallel. With these three components, RPC 
chains can express complex communication paths that 
regular RPCs cannot. However, RPC chains make debug-
ging, profiling, exceptions, and fault isolation more difficult.

One attendee asked about timeouts and noted that their op-
timizations of best-case performance would actually make 
worse-case performance much worse. The speaker replied 
that nodes along the chain are required to report back to 
the initiating node at every step, so liveness could be moni-



92	 ; LO G I N : 	VO L . 	3 4 , 	N O. 	4

tored. Another attendee asked if the process of creating RPC 
chains was automated or if application developers had to do 
it themselves. The speaker replied that it wasn’t automated 
but also wasn’t too difficult; the webmail application chain-
ing code was only 40–50 lines.

botnets

Summarized by Patrick Verkaik (pverkaik@cs.ucsd.edu)

Studying Spamming Botnets Using Botlab■■

John P. John, Alexander Moshchuk, Steven D. Gribble, and 
Arvind Krishnamurthy, University of Washington 

John John described Botlab, which automates botnet analy-
sis using a black-box approach (execute the bot and study 
its behavior). In particular they are interested in botnets 
that send spam. However, getting hold of such bots turns 
out to be tricky: running a simple honeypot did not catch 
any in over a month. The reason is that botnets these days 
expand mostly through social engineering techniques such 
as fake e-cards. Therefore Botlab enhances honeypots with 
a component that actively crawls spam emails (clicking 
“yes” on everything) from a spam feed from the University 
of Washington. Once Botlab has obtained a bot, it needs to 
figure out if it’s a duplicate, which is challenging since bots 
obfuscate themselves. Botlab creates what is called a “net-
work fingerprint” by running the bot inside a sandbox and 
observing what connections it creates. Botlab also uses these 
fingerprints to see if a bot detects whether it’s running inside 
a virtual machine, by running the bot both inside a VM and 
on the bare metal and comparing its network fingerprints.

Botlab sends as many as six million spam emails per day 
to a wide variety of destinations (from just a dozen bots!), 
giving a local view of spam producers and a global view 
of spam produced. On the other hand, the University of 
Washington mail feed provides a local view of spam gener-
ated almost entirely by external producers. How do we map 
between these two complementary sources? The solution, as 
John explained, is to realize that different botnets tend to 
use different subjects in their spam. So Botlab identifies bot-
nets based on email subjects. They found that 80% of spam 
comes from just six botnets, and most botnets contact only 
a small number of C&C servers. Additionally, they found a 
many-to-many relationship both between botnets and spam 
campaigns and between spam campaigns and Web hosting 
services.

An audience member asked how bots behave when a user 
is present, since the Botlab study shows that they can send 
very aggressively, which must surely inconvenience the user. 
According to John, some bots will back off when they detect 
mouse movement. However, they did not study this, since 
Botlab has no users. Another audience member observed 
that since the Botlab study shows that the Web hosting 
providers are so concentrated, they must have enormous 
bandwidth. John said that the bandwidth requirement 
depends on the click rate of users, which is pretty low after 
spam filtering.

Not-a-Bot: Improving Service Availability in the Face of ■■

Botnet Attacks
Ramakrishna Gummadi and Hari Balakrishnan, MIT CSAIL; 
Petros Maniatis and Sylvia Ratnasamy, Intel Research Berkeley

Ramki Gummadi presented their work on how to prove that 
human activity really is generated by a human rather than a 
bot. Currently, service availability suffers from over-zealous 
flagging of human activity as bot activity (preventing Ramki 
from sending email to his session chair!), and mail servers 
are getting overloaded with spam generated by bots. Ramki 
presented their solution, Not-a-Bot. The idea is based on 
having an “attester” built into each PC that checks whether 
some action generated by the PC (such as sending an email) 
was likely triggered by human activity. To do this, the at-
tester monitors input peripherals such as the keyboard and 
“attests” the action if it was preceded by input device activ-
ity within some time window. The time window bounds the 
amount of malicious traffic a bot can generate. At the server 
end, a verifier is responsible for checking the attestation. 
For example, if a server is overloaded, it could choose to 
prioritize attested requests.

So where is the crypto to make it work? Many PCs today 
come with a Trusted Platform Module (TPM) chip. In Not-a-
Bot, the TPM guards a certified key pair. On boot, the TPM 
verifies the integrity of the attester, after which the TPM 
releases its keys to it. Once everything is running, an appli-
cation such as a mail client can request an attestation from 
the attester, which includes a signature of, say, an email and 
the certified public key. A nice aspect is that all this can be 
made to work even if the OS is compromised, so long as the 
attester is able to monitor peripherals without help from the 
OS. Ramki next described their Xen-based prototype imple-
mentation and their evaluation based on traces of clicks, 
spam, and DDoS. For these traces, Not-a-Bot would have 
removed around 90% of bot traffic.

Someone asked if it was possible to outsource TPMs similar 
to how captchas have been outsourced. Ramki answered 
that there would be little point: each outsourced TPM 
would only be able to generate a small amount of bad traf-
fic. The next question was, How would Not-a-Bot cope with 
peripherals that require (updated) device drivers, and what 
about keystrokes generated by remote access? Ramki first 
clarified that the virtual machine implementation was just a 
prototype; the real thing would be using trusted hardware. 
Second, the input device must always be physically con-
nected to the PC in some way, and that physical connection 
can be used to identify user input. At that point we ran out 
of time, so the remote access question did not get answered. 

BotGraph: Large Scale Spamming Botnet Detection■■

Yao Zhao, Northwestern University and Microsoft Research 
 Silicon Valley; Yinglian Xie, Fang Yu, Qifa Ke, and Yuan Yu, 
Microsoft Research Silicon Valley; Yan Chen, Northwestern 
 University; Eliot Gillum, Microsoft Corporation 

Yao Zhao observed that Hotmail receives many signups 
from bots for accounts that are used to send spam. The goal 
of their work, BotGraph, is to mitigate such behavior based 



; LO G I N : 	auGusT	20 0 9	 cO N fe re N ce	re p O rT s	 93

solely on user activity logs (signups, logins, emails sent). 
This is a challenging problem, since each botnet may have 
access to many accounts and thus only needs to send a few 
emails from each to be effective. BotGraph introduces two 
new techniques. The simpler of the two looks at the number 
of account signups from each IP address over time and flags 
anomalies as malicious. This technique was able to detect 
20 million malicious accounts in two months and can be 
executed in real-time. The main part of the talk, however, 
concerned the second technique, which examines the AS 
number of the IP address that a user connects from when 
logging into their email account. Human users typically 
share just one such AS number with other user accounts 
(for example, several users in the same home might share an 
IP address). Bots, on the other hand, work collaboratively, 
and their account logins tend to share multiple ASes. To 
distinguish between the two, BotGraph creates a graph of 
user accounts that weights an edge between two accounts 
with the number of shared ASes and subsequently considers 
the edges with weight greater than one. The problem then 
reduces to detecting a giant connected component formed 
by bot-controlled accounts.

The implementation of BotGraph is based on DryadLinq 
running on a 240-machine cluster. Yao presented a num-
ber of optimizations that reduce the runtime 5x. They 
performed validation of the results using a combination 
of manual checks on samples and a comparison with a 
list of Hotmail accounts known to be used by spammers. 
BotGraph detected 80% of known spammer accounts and 
discovered 54% more accounts than in the known spam-
mer account list. In addition, BotGraph has a false positive 
rate of less than 0.5%. Yao claims that the only way to evade 
BotGraph is to be stealthy (send few emails) and bind an 
account through just one AS number. However, doing so 
would severely limit an attacker’s spamming throughput.

The session chair observed that while the false-positive 
rate as a percentage is low, the absolute number is actually 
quite high. Yao answered that their estimates of the false-
positive rate are conservative and probably over-estimate. In 
addition, a false positive doesn’t mean the user account is 
immediately blocked. Instead, the user may be subject to an 
additional test to verify they are human.

net work m anagement 

Summarized by Eric Keller (ekeller@princeton.edu)

Unraveling the Complexity of Network Management■■

Theophilus Benson and Aditya Akella, University of Wisconsin, 
Madison; David Maltz, Microsoft Research

High complexity in the design and configuration of enter-
prise networks leads to a lot of manual effort in managing 
the network. Theophilus Benson explained that there is 
currently no way to quantify how complex an enterprise 
configuration is. They found that complexity is unrelated to 
the size of the network or the line count of the configura-
tion. Because of this, network operators cannot understand 

how changes they make now will affect the difficulty of 
future changes. 

Based on a study of seven enterprise and campus networks, 
the authors defined three metrics which succinctly describe 
the design complexity, can be automatically calculated from 
configuration files, and are aligned with operators’ mental 
models (i.e., they can predict difficulty of future changes). 
The first metric, referential complexity, is the number of 
references between the stanzas across all of the routers’ 
configuration (e.g., a routing protocol references an inter-
face, the interface stanza creates a reference to an ACL, and 
a separate configuration might have reference to a similar 
subnet). A greater number of links means higher complexi-
ty, because of the dependencies. The second metric, number 
of roles, was not discussed in the presentation. The third 
metric captures the inherent complexity of the network—
identical or similar policies among all routers has low 
complexity; subtle distinctions across groups of users have 
higher complexity. 

Someone asked if complexity was introduced for non-
technical reasons (cost), did the network operators know 
what they were doing, and did the metrics help them since 
they knew it would be more complex? The operators did 
know what they were doing, so the metrics would not have 
helped. Why normalize by number of devices? It helps com-
pare across networks of different sizes, but they do hope to 
further refine the metrics. Someone commented that the 
approach is pretty syntactic and asked whether they thought 
about the complexity of provisioning versus runtime 
(provisioning could be done by scripts, but runtime issues 
cannot)? This is a first step, so as they learn more, they’ll 
explore that.

NetPrints: Diagnosing Home Network Misconfigurations ■■

Using Shared Knowledge
Bhavish Aggarwal, Ranjita Bhagwan, and Tathagata Das, Micro-
soft Research India; Siddharth Eswaran, IIT Delhi; Venkata N. 
Padmanabhan, Microsoft Research India; Geoffrey M. Voelker, 
University of California, San Diego

Ranjita Bhagwan said that home networks consist of many 
components (router, firewall, servers, etc.). The setup is 
highly diverse from one home network to another and there 
is no network administrator. Misconfiguration of these 
components leads to application failures, of which there are 
a huge set of example problems: some are router miscon-
figurations, some are on end-hosts, and some are remote 
problems where local changes can work around the problem.

NetPrints, which stands for network problem fingerprinting, 
automates problem diagnosis using shared knowledge. Each 
network periodically sends configuration information of all 
devices to the NetPrints service, which builds a knowledge 
base of configurations and state (working/not working) tied 
directly to an application. Someone with a problem will 
send their configuration and report which application is 
not working correctly, and NetPrints will suggest a fix. In 
response to a user with a VPN client who has experienced 



94	 ; LO G I N : 	VO L . 	3 4 , 	N O. 	4

a failed connection, for example, NetPrints will provide 
instructions to set pptp_pass to 1 in the router’s configura-
tion, since NetPrints has seen that problem before. Different 
configurations can have different costs associated with them 
(setting pptp_pass to 1 is less costly than changing routers), 
and the recommendations take that into account.

Someone asked if they’d considered merging trees in cases 
where NetPrints couldn’t find a solution? They are look-
ing at that, but the challenge is finding an application that 
is similar enough. Are there any user-specified constraints 
(weights)? Not at the moment, but the server can respond 
with several choices. In the examples given, the trees were 
not too big; would they still be small if NetPrints went be-
yond connectivity management (VPN)? They haven’t faced 
that in the examples they’ve tried. There are cases that are 
notoriously hard to debug (e.g., plugging into uplinks, run-
ning two home networks. Can NetPrints handle cases where 
the user fails to report something (because it wasn’t cap-
tured or was non-deterministic)? No, the system is limited 
to the configuration that they can and do capture. 

green net worked systems

Summarized by Michael Golightly (mgolight@princeton.edu)

Somniloquy: Augmenting Network Interfaces to Reduce PC ■■

Energy Usage
Yuvraj Agarwal, University of California, San Diego; Steve 
Hodges, Ranveer Chandra, James Scott, and Paramvir Bahl, 
Microsoft Research; Rajesh Gupta, University of California,  
San Diego

Energy efficiency is a key driver in PCs today, and although 
sleep has solved the problem of maintaining application 
state, it does not maintain presence or allow occasional 
remote access. The goal is to reach a hybrid state, where the 
machine is in a sleep state but is perceived as awake and 
responsive across the entire protocol stack, with no changes 
to infrastructure or user behavior.

Yuvraj presented Somniloquy, which enables PCs to “talk 
in their sleep” by augmenting network devices with a low-
power processor, memory, flash storage, and network stack 
that operates when the host is asleep. Stateless applications 
are supported by filters that can be specified at any layer of 
the network stack to wake the host under predefined condi-
tions. Stateful applications are supported by application 
stubs that are specifically programmed to run on the limited 
resources of the low-power processor. Currently, these stubs 
have been generated manually for BitTorrent, Web down-
loads, and instant messaging.

The prototypes of Somniloquy were built using the gumstix 
platform with a USB connection to the host. The evaluation 
of network reachability found that a host was unresponsive 
to pings for the 4–5 second transition between sleep and 
awake states. Stateless applications were found to have 3–10 
seconds of additional setup latency, a small proportion of 
the overall session length. In no case was the prototype 

solution consuming more power than the original unmodi-
fied host. Assuming a 45-hour work week, one could save 
$56 annually or reduce 10% of one’s carbon footprint using 
Somniloquy on a desktop PC. Somniloquy also increased 
battery life from 6 to 60 hours for laptops. Using workload 
traces from 24 desktop PCs, energy savings ranged from 
38% to 85%. Lastly, using the Web download application 
stub, Somniloquy was able to use 92% less energy than a 
host-only solution.

Someone asked how this differed from Windows Sideshow. 
Yuvraj answered that Windows Sideshow does not keep the 
network active and that Somniloquy could augment this 
technology. Why are only clients augmented rather than 
other points in the network? Somniloquy works well for 
individual users; it might be better from a cost perspective 
in the enterprise setting to focus elsewhere in the network, 
but there would be huge overheads in implementation and 
security. How difficult would it be to integrate Somniloquy 
into a motherboard? Somniloquy could be implemented 
anywhere; the prototype is an initial solution. 

Skilled in the Art of Being Idle: Reducing Energy Waste in ■■

Networked Systems
Sergiu Nedevschi, International Computer Science Institute and 
Intel Research; Jaideep Chandrashekar, Intel Research; Junda Liu, 
University of California, Berkeley, and International Computer 
Science Institute; Bruce Nordman, Lawrence Berkeley National 
Laboratories; Sylvia Ratnasamy and Nina Taft, Intel Research

The authors’ work is a trace-driven evaluation of the benefits 
and design tradeoffs for energy savings that can be obtained 
with simpler, more adoptive techniques. Sergiu presented 
results from a four-week trace of 250 Intel hosts, 90% 
laptops and 10% desktops, in both an office and a home set-
ting. Desktops were found to be idle greater than 50% of the 
time, wasting upwards of 60% of their energy. Given that 
there are 170 million desktop PCs in the US, this translates 
into 60 terawatt hours per year wasted, or $6 billion.

Incoming host traffic was found to be high but bursty, mak-
ing it infeasible to wake for every packet. Packets then need 
to be handled transparently, by waking the host, or non-
transparently, by ignoring them. Key multicast and broad-
cast offenders of sleep deprivation whose packets could be 
ignored were found to be NBDGM, IPX, HSRP, and PIM. 
ARP, NBNS, IGMP, and SSDP were also found to be key 
offenders, but could be handled simply. For unicast, key of-
fenders were TCP and UDP, but by looking at port numbers, 
it was found that some can be handled simply, while others 
such as DCE/RPC and SMB/CIFS cannot.

A general proxy architecture should consist of rules, trig-
gers, and actions. A trigger is a regular expression on 
incoming packets, and actions define whether to wake the 
host or to drop, respond, or redirect the packet. The authors 
implemented a proxy in Click as a stand-alone machine on 
the same LAN as hosts. It masqueraded as sleeping ma-
chines, waking them when necessary. It used a simple, non-
transparent set of rules and learned hosts’ state by sniffing 



; LO G I N : 	auGusT	20 0 9	 cO N fe re N ce	re p O rT s	 95

traffic. This approach required no modification to end 
systems and could be sold as a separate network product; 
it is agnostic to whether the proxy runs on the NIC, server, 
router, or elsewhere.

Someone asked about the tradeoff between using idleness 
for prefetching purposes and saving power. Sergiu replied 
that a host should wake up periodically and do work in 
batches at a higher utilization rate. Why was there such 
high background traffic touching idle hosts? This traffic was 
mainly caused by background services that would prob-
ably not be seen if hosts could enter sleep states. Could the 
problem be completely solved by proxy or would application 
and protocol support be a better approach? Proxy-friendly 
applications and protocols would help, but it is uncertain 
whether they could solve the problem alone. 

wireless  #2 :  progr a mming and tr ansport

Summarized by Devesh Agrawal (dagrawal@cs.umass.edu)

Wishbone: Profile-based Partitioning for Sensornet ■■

 Applications
Ryan Newton, Sivan Toledo, Lewis Girod, Hari Balakrishnan, 
and Samuel Madden, MIT CSAIL

There is an important class of sensing applications that use 
high-data-volume sensors. These also require significant 
computation and processing. Examples include animal 
localization using acoustic sensors and pothole detection 
using vibration sensors. Ryan presented Wishbone, a system 
providing two key benefits to the design of such applica-
tions, First, it optimally partitions the sensing application 
across the embedded and back-end servers, subject to the 
CPU, bandwidth, and energy constraints. Second, it enables 
the application to be automatically deployed across a range 
of hardware, including TinyOS-based motes, JavaME-based 
smartphones, and full-blown embedded Linux microservers.

Wishbone is built on top of the WaveScope system. The 
application is specified in the WaveScript language. Wave-
Scope converts this high-level representation into a dataflow 
graph. Nodes of the graph represent stream processing 
operators, and the edges represent the dataflow across the 
operators. Sensing data is fed into this graph and the result-
ing processed output is either stored or visualized at a base 
station. The Wishbone system first optimally partitions this 
graph across the sensor network and the base station. It 
then compiles and loads the partitions onto the embedded 
nodes and the server.

Offline profile-based partitioning is at the heart of the 
Wish bone system. This partitioning assumes that the input 
data rates are fairly stable and a representative data trace is 
easily obtained. This representative trace is used to profile 
the dataflow graph to measure the CPU time taken by each 
node and the flow rate across each edge. Along with the 
available network bandwidth, this information is fed into an 
integer linear program that finds an optimal (offline) parti-
tion subject to the CPU and network constraints.

Ryan presented two case studies to evaluate Wishbone: a 
speaker-identification application and a seizure-detection 
application. The speaker identification had a linear pipeline 
of eight steps, while the EEG application had more than 
1400 nodes. In both cases, Wishbone correctly identified 
the optimal partitioning point if feasible or the partition 
having the highest throughput otherwise. Particularly note-
worthy was the example that in the speaker identification 
application many partitions resulted in zero data through-
put, while the best partition was more than 20 times better 
than the worst partition, thereby highlighting the crucial 
importance of correct partitioning.

During Q&A, Ryan clarified that the static offline partition-
ing scheme does not work for dynamic operators that adapt 
to the offered load. He also conceded that while the current 
implementation only works with homogeneous embedded 
devices, they are working toward supporting a fully hetero-
geneous network having a variety of embedded platforms. 

Softspeak: Making VoIP Play Well in Existing 802.11 ■■

 Deployments
Patrick Verkaik, Yuvraj Agarwal, Rajesh Gupta, and Alex C. 
Snoeren, University of California, San Diego

VoIP over WiFi is becoming increasingly popular with 
the advent of 802.11-enabled mobile handsets. Hence it is 
important to understand the impact of VoIP users on 802.11 
deployments. Patrick presented Softspeak, a system that 
dramatically improves VoIP call quality and its impact on 
data transfers. There are two main reasons why VoIP makes 
inefficient use of WiFi. First, VoIP packets are just tens of 
bytes long and hence incur significant framing and header 
overheads. Second, VoIP has a high packet rate, which 
causes excessive contention at the AP. This significantly 
hurts data transfers and impacts call quality.

Softspeak employs TDMA in the uplink direction (from 
clients to the AP). In contrast to the usual DCF of 802.11, 
the TDMA schedule does not suffer backoff and collision 
overheads and hence improves the VoIP channel utiliza-
tion. However, data packets do not know about this TDMA 
schedule, which raises two key implementation issues. First, 
VoIP packets contend with data packets and may miss their 
slots. Softspeak addresses this by changing the 802.11 car-
rier sense time for VoIP packets such that VoIP packets can 
grab the channel ahead of the data packets. Second, a late 
VoIP station may miss its assigned slot and contend with 
another station in the following slot. This is also addressed 
by letting the late VoIP station proceed first. Softspeak 
uses downlink aggregation to amortize framing and header 
overheads (from AP to the clients). It batches multiple VoIP 
packets, possibly addressed to different client nodes, into a 
single IP packet and unicasts it to one of the intended re-
cipients. Other intended recipients overhear this packet and 
extract the relevant VoIP packets for themselves.

Patrick demonstrated that Softspeak significantly improves 
call quality as well as throughput of data flows compared to 
the status quo in both 802.11b and 802.11g networks. For 



96	 ; LO G I N : 	VO L . 	3 4, 	N O. 	4

example, he showed that without Softspeak, a voice call in 
the presence of ten competing VoIP stations was extremely 
choppy and barely audible, whereas with Softspeak the 
same voice call was as good as when there were no contend-
ing VoIP stations.

In response to a question, he said that Softspeak can also 
handle multiple collision domains and multiple APs, as 
is the case in most enterprise WLANs. He conceded that 
reserving a special channel for VoIP traffic might obviate 
the need for Softspeak, but reserving a channel is seldom 
possible, due to the very narrow WiFi spectrum available. 
Softspeak is available at http://sysnet.ucsd.edu/wireless/soft-
speak/. 

Block-switched Networks: A New Paradigm for Wireless ■■

Transport
Ming Li, Devesh Agrawal, Deepak Ganesan, and Arun 
 Venkataramani, University of Massachusetts Amherst 

Ming presented Hop, a high throughput wireless transport 
protocol that achieves orders of magnitude better perfor-
mance than TCP. Decades of wireless transport research 
have provided two main insights into TCP’s poor perfor-
mance: First, TCP’s end-to-end congestion control is error-
prone and fails to effectively utilize the available wireless 
capacity. Second, there is a significant per-packet overhead 
due to the lossy and broadcast-nature of wireless links. Hop 
recognizes that most of TCP’s problems stem from its legacy 
as a transport protocol for the wired Internet, where losses 
were rare, links quite stable, and storage expensive. Recog-
nizing this, Hop advocates a clean-slate re-design: End-to-
end becomes hop-by-hop, and packets change to blocks.

The main building block of Hop is reliable per-hop block 
transfer, in which a node reliably sends a large block (for 
example, up to 1MB) of data to its next hop. Blocks signifi-
cantly reduce control overhead, as the sender requires only 
one handshake for the entire block of data, as opposed to 
doing ARQ for each packet. Further, Hop leverages exist-
ing 802.11e features, such as burst mode transfer and 
disabling link layer ARQ, to exploit the available wireless 
bandwidth. Hop’s end-to-end loss recovery mechanism uses 
in-network caching to only transfer data to nodes that do 
not have the data cached. This strategy prevents wasteful 
retransmissions. It uses back pressure–based congestion 
control, wherein each node limits the number of outstand-
ing blocks per flow. Two key benefits of this simple scheme 
are that the source stops sending if the downstream path is 
congested, and network utilization is improved by allocating 
bandwidth to good links over bad ones. Hop also addresses 
hidden terminals by serializing the data transfers to a com-
mon receiver and, finally, employs several optimizations to 
improve the delay performance of small blocks.

Ming demonstrated that Hop achieves significant gains over 
TCP over one hop, over multiple hops, and in a WLAN set-
ting. But the most impressive result was that Hop achieved 
more than two orders-of-magnitude improvement under a 

highly loaded mesh network scenario. He showed that in 
such high-load conditions, TCP allocates almost the entire 
bandwidth to a couple of flows while starving the rest. By 
contrast, Hop distributes the network bandwidth almost 
equitably, thereby improving fairness.

During Q&A, Ming discussed a simple proxy-based solu-
tion to bridge a Hop connection on the wireless side with 
TCP on the wired side, while conceding the possibility of 
more sophisticated proxy-based solutions. He also clarified 
that the back-pressure mechanism is on a per-flow basis 
and there is no explicit rate allocation across different flows. 
Hop can be downloaded from http://hop.cs.umass.edu/. 

routing

Summarized by Eric Keller (ekeller@princeton.edu)

NetReview: Detecting When Interdomain Routing Goes ■■

Wrong
Andreas Haeberlen, MPI-SWS and Rice University; Ioannis 
Avramopoulos, Deutsche Telekom Laboratories; Jennifer Rexford, 
Princeton University; Peter Druschel, MPI-SWS

Andreas Haeberlen pointed out that the Internet’s inter-
domain routing is vulnerable to errors: misconfigurations, 
buggy software, failing equipment. Rather than attempt to 
prevent specific problems, with NetReview the approach is 
to detect problems and identify the offending party. This 
leads to greater coverage and easier deployment than previ-
ous approaches.

To do this, one could enable full logging at all routers and 
upload each log to a central entity that inspects them for 
problems. However, this has privacy concerns (logs contain 
sensitive info), has reliability issues (logs inaccurate, bugs, 
hackers), has impacts on automation (lots of data to in-
spect), and is difficult to deploy (can’t assume global deploy-
ment). Instead, in NetReview, all border routers maintain 
logs of all BGP messages (both sent and received). These 
logs are tamper-evident: one can reliably detect and obtain 
proof if faulty routers omit, forge, or modify entries. This is 
done through the use of hash chains. 

A neighbor can audit the AS by requesting the logs from 
each border router (note that the auditor can be a server). 
The auditor can then talk to the neighbors of the auditee 
to see if any entries are missing or modified. The auditor 
locally replays the logs to get a series of routing states and 
evaluates the rules over the routing state to see if any have 
been violated. From this the auditor can extract evidence 
from logs.

In the evaluation, they found that there were few rules 
needed, low processing requirements, a manageable storage 
requirement, and an insignificant bandwidth requirement.

Someone asked how, without a public key infrastructure, one 
can tell a log hasn’t been tampered with. No PKI is needed, 
because you know who is on the other end of the link and 
therefore can certify the identity of that AS. Does their sys-



; LO G I N : 	auGusT	20 0 9	 cO N fe re N ce	re p O rT s	 97

tem handle collusion among ASes? Colluding ASes cannot 
hide bad behavior or create evidence against a good AS; they 
can only hide the messages between those two ASes.

Making Routers Last Longer with ViAggre■■

Hitesh Ballani, Paul Francis, and Tuan Cao, Cornell University; 
Jia Wang, AT&T Labs—Research

Hitesh Ballani said that routing-table sizes are increasing 
rapidly. As the IPv4 address space runs out, this problem 
will become even worse as hierarchical aggregation de-
teriorates, and switching to IPv6 would cause very large 
tables. These routing tables need to be in fast memory in the 
forwarding information base (FIB). Throwing more RAM at 
the problem has technical and cost issues. 

Rather than each router having an entire table, ViAggre 
splits prefix space into virtual prefixes (not necessarily of 
the same size) and assigns each split to a particular router. 
For the control plane, an external router peers with a route 
reflector which then sends only a subset of routes to each 
router. For the data plane, when a router receives a packet 
for which it does not have a route, it has an entry for the 
virtual prefix that says the next hop is the aggregate router 
that was assigned that prefix space (the packet traverses an 
MPLS tunnel to get to that router). As an optimization, since 
95% of all traffic goes to only 5% of the prefixes, they main-
tain this 5% on all routers. The choice of aggregation points 
leaves room for tradeoffs: the more aggregation points you 
have, the less stretch there is, but the bigger the FIB size.

An audience member asked if IP–in-IP tunneling was done 
on slow path. They use MPLS, which is on fast path. The 
underlying premise is that routing tables are growing faster 
than traffic: why is that? That is not necessarily true. Big-
ger ISPs have large pipes and may have to upgrade only to 
address memory concerns. Why not only maintain popular 
prefixes and ship the rest to a default upstream router? One 
approach for this is route cache (hierarchy of memory). 
This hasn’t worked in the past: unpredictable performance. 
Plus, for medium ISPs, you may have multiple upstreams (or 
peers), so you don’t know where it would go. Can you apply 
this to data centers (switch tables)? SEATTLE from SIG-
COMM did that last year—ViAggre works at layer 3. Why 
is it expensive to do route suppression from the RIB to the 
FIB? They achieved this through the use of ACLs, which on 
Juniper and Cisco are heavyweight mechanisms today. 

Symbiotic Relationships in Internet Routing Overlays■■

Cristian Lumezanu, Randy Baden, Dave Levin, Neil Spring, and 
Bobby Bhattacharjee, University of Maryland

Two nodes are in symbiosis when they can benefit from one 
another (i.e., there is mutual advantage). Examples include 
file sharing (BitTorrent), backup systems (Samsara), AS 
relationships—no tragedy of the commons, no free riding. 

Cristian Lumezanu presented PeerWise, a latency-reducing 
routing overlay based on this concept of mutual advantage. 
Suppose node A in Maryland wants to talk to node C in 
Seattle. The direct path takes longer than going through 

node B in Boston. In PeerWise, B wouldn’t let this happen 
unless B wants to communicate with D in San Diego, which 
happens to be faster if packets go through A first.

In their measurement study, they collected two sets of 
latency data and found that 21% and 51% of all node pairs, 
respectively, would benefit from detours, with half being 
eliminated due to PeerWise’s restriction of mutual advan-
tage. To test if user-level applications can benefit, they used 
wget to download 500 popular Web sites using direct and 
PeerWise detour and found 58% were faster (if delay due to 
PlanetLab was removed, 80% would be faster).

Since using network coordinates seems counter-intuitive, an 
attendee wondered, why not use more topological infor-
mation? Network coordinates give pretty good results, so 
they haven’t looked elsewhere. Had they considered going 
beyond bilateral agreements into more complicated situa-
tions (e.g., A helps B, B helps C, so C will help A)? Not yet. 
Had they looked at including the load of the nodes in the 
weighting (to account for PlanetLab overhead)? No, they had 
not. Since this work used TCP relays, which has benefits on 
its own, had they separated the benefits of splitting the TCP 
connection from the benefits of going through a detour? Not 
sure how they would.

8th International Workshop on Peer-to-Peer  
 Systems (IPTPS ’09)

Boston, MA 
April 21, 2009

robustness

Summarized by Ghulam Memon (gmemon@cs.uoregon.edu)

Bringing P2P to the Web: Security and Privacy in the ■■

Firecoral Network
Jeff Terrace, Harold Laidlaw, Hao Eric Liu, Sean Stern, and 
Michael J. Freedman, Princeton University

Jeff presented Firecoral, a P2P content distribution network, 
and addressed the security and privacy concerns in such 
a network. It runs a tracker to which the content provider 
delegates the responsibility of content distribution. To en-
sure that the tracker does not change the content, Firecoral 
uses a trusted Signing Service (SS). The SS has the respon-
sibility to compute content hash and encrypt it with its own 
private key. The tracker can only distribute these encrypted 
hashes. Each client possesses the public key of the SS. This 
approach prevents the content from being modified.

Firecoral has three components: the tracker, 1000 lines 
of PHP running on Apache; SS, 700 lines of Python code; 
and the client (Firefox extension), 7000 lines of Javascript, 
XUL, and CSS. The Firefox extension uses a whitelist and 
a blacklist. The whitelist is for those Web sites for which 
Firecoral must be used, e.g., popular news aggregators and 
under-provisioned Web sites. The blacklist contains well-
provisioned Web sites.


