
; LO G I N : Au Gust 20 0 9 cO N fe re N ce re p O rt s 109

CnC to TBB. In response to questions about code reuse she
added that both code and frameworks were amenable to
reuse. Additionally, reuse could be accomplished by linking
graphs.

Motohiro Takayama asked about a development environ-
ment (IDE) for CnC. Knobe said that they hadn’t yet looked
into it, but it needed to be addressed. She would like to
see it merged it with a GUI, including both a debugger and
visualizer. Romain Cledat asked what issues still remained
between the domain and tuning expert. Knobe responded
that issues such as grain size, support for tiling, and similar
facets still needed to be exposed. She would like to see
those made a little easier.

Optimizing Collective Communication on Multicores■■

Rajesh Nishtala and Katherine A. Yelick, University of
 California, Berkeley

Rajesh Nishtala noted that as core counts continue to grow
and application scalability takes the center stage, it is quick-
ly becoming infeasible to support uniform access to shared
memory. An audience member wondered whether there
was a limit, as sometimes applications simply don’t need to
go faster. Rajesh agreed, but this research was focused on
high-performance applications. The discussion then focused
on a product of the research, the Partitioned Global Address
Space Language. The central concept is to expose the idea
of locality to programmers, a technique that has proven suc-
cessful in distributed memory.

Nishtala discussed collective communications, which in-
volves an operation called by many threads to perform glob-
ally coordinated communication. Interfaces to the collec-
tives, used as parallel communication building blocks, are
typically delivered through a software library and exposed
in modern programming languages. Two categories of com-
munication were defined: one-to-many and many-to-many.
The focus of the work was given as reducing one-to-many
and optimizing the many-to-many pattern with barriers.
Example trees were given with barrier performance results.
Fast barrier enables finer-grained synchronous programs.
Optimizing collectives for shared memory allows the pro-
grammer to do finer-grained synchronous programs.

Potential synchronization problems were then discussed,
to highlight the need for strictly synchronized collectives.
These may be alleviated by using synchronization before
and after the collective and enforcing a global ordering of
the operations. The collective is considered complete once
all threads have the data.

In conclusion Rajesh reminded the audience that future sys-
tems will certainly rely on NUMA, underscoring the need
for this type of research. Application scalability will take
center stage. Tuning collectives for latency of throughput
can lead to significantly different algorithmic choices, neces-
sitating passing the requirements to the collective library.

Someone asked whether the type of communication was to
be specified by the user, if this was a “tuning issue.” Rajesh

responded that the collective library is designed to be part
of the runtime library, capable of detecting a situation where
loosely synchronized collectives are applicable. Another
question involved a particular comparison with p-threads
in the given results. Barriers using p-threads had taken
3ms on the Niagra. As a possible explanation, Rajesh noted
that p-threads assumes more threads than cores. When the
resources are not over-subscribed, the overhead becomes
detrimental.

12th Workshop on Hot Topics in Operating
 Systems (HotOS XII)

Monte Verità, Switzerland
May 18–20, 2009

keynote address

The Elements of Networked Urbanism■■

Adam Greenfield, Head of Design Direction, Nokia

Summarized by Simon Peter (simon.peter@inf.ethz.ch) and
Tudor Salomie (tsalomie@inf.ethz.ch)

Adam is working on a book called The City Is Here for You
to Use and his talk was related to that. Adam began with a
speculative manifesto and a diagnosis on where converging
technical and social possibilities in our environment are
taking civilization. If the promises of ubiquitous computing
came true, how would we be living?

Over 50% of the world’s population is now living in cit-
ies, and this trend is accelerating. Today’s mega-cities are
prototypes of the conditions within which post-urban
humanity is going to live in. On the other hand, there are
de-populating cities, like Detroit, that are beginning to lack
vital infrastructure, like police and fire-fighters.

By the end of 2012, embedded network sensors will be
responsible for 20% of non-video Internet traffic. By then
the Internet will no longer be primarily a human-to-human
communication channel. Instead, an increasing amount of
data about the physical environment will be exchanged.
Due to these factors, technology will be intersecting primar-
ily with an urban population, not civilization in general.

Adam structured his talk into 14 rough transitions that are
likely to develop in urban societies:

1. Networked resources will be the components of urban
environments. We will be surrounded by physical instal-
lations that have IP addresses and are probably program-
mable, afforded by IPv6.

2. Open APIs will become lingua franca. Consumers will be
plugging systems seamlessly into one another. Moore’s Law
has given us cheap, powerful sensors, and we are getting to
a point where we just incorporate them anywhere because
they are so cheap.

3. Building blocks of our cities will be able to adapt to
changing conditions. Buildings will be able to configure

110 ; LO G I N : VO L . 3 4 , N O. 4

themselves in real-time to conditions of load, weather, util-
ity, usage, etc. Large structures will be able to move, shift,
and adapt.

4. Latent quantities become explicit and abstractions grow
teeth as data generated by sensors is processed and visual-
ized in real-time. People’s decisions and actions will be im-
pacted much more by abstract quantities, such as restaurant
health inspections, air quality, and crime rates, than today,
providing a power shift in favor of citizens.

5. We will transition from browse to search urbanism.
Today, we browse based on our senses in the area we live.
In the future, we will be able to query the environment
as everything becomes networked. This consolidates our
natural desire for homogeneous communities. We will be
looking for things and people we are already comfortable
with, ignoring anything else. According to Adam, this will
have negative effects where it impacts democracy.

6. Instead of holding information, we will be sharing infor-
mation much more than today, as the cost of sharing drops
to almost zero.

7. We have built our culture on the expectation that in-
formation eventually expires. An artifact of the networked
condition is that information tends to persist. For example,
the criminal record of juvenile offenders would typically be
expunged from the records. In the networked world, such
information is much more likely to persist.

Someone asked whether falsehood will persist just as much
as truth. Adam agreed. As statements will likely be decon-
textualized when processed, their truth value will be much
harder to assess, even though there may be networked ways
around that, like distributed reputation databases and repu-
tation economies.

8. The transformation of a city from passive to interac-
tive has already begun, as exemplified by buildings whose
facades are transformed into active displays. Still, Greenfield
considers these dull and passive; true interactivity is only
achieved when one can push/turn/change the way things
look. He envisions the entire fabric of a city becoming inter-
active at a more fundamental level.

9. Another transition that Adam talked about is that from
way-finding to way-showing. The problem at hand is that
of going from point A to some other point, as described
by Kevin Lynch in The Image of the City. Currently, people
know how to navigate through a city, but with the appear-
ance of the new dimension, that of knowing one’s exact po-
sition, cartography and orientation change. Context-based
orientation leads us away from way-finding to way-showing
(envision the sidewalk lighting up just for us in order to
show us the way). The positive aspect is that it removes the
problem of getting lost, while the negative aspect is that it
eliminates serendipity. Greenfield also pointed out how fal-
lible such systems can be.

10. All objects will evolve into services. Adam sees the
physical object as realizing its full potential only when it

becomes a networked object. For example, his motorbike,
only used 20% of the time, could reach a higher degree of
utilization if it were shareable and bookable (transforming
it into a service). The issue that is observed is that when an
object becomes a service it will not morph, but it will be
very hard to anticipate what it can actually do.

11. We should stop thinking about vehicles and more about
mobility services. Every trip is going to involve walking,
private vehicles, shared private vehicles, and public vehicles.
These networked services will allow you to build your
agenda and itineraries using them as resources offered by
mobility services.

12. Adam underlined the next transition as very important
from his perspective. He talked about ownership and use.
In contrast to owning music, online services provide access
to music libraries at minor costs (listening to commercials
every so many minutes). It undermines the current eco-
nomic model, as goods become nonrival (they can be used
simultaneously by multiple consumers).

13. When talking about the transition from community to
a social network, Adam began by trying to express what is
meant by community. Subconsciously, a community sees it-
self as a network. He wondered whether in this case we are
the nodes of such a network, but he could not give an an-
swer. He is capable of envisioning what networking means
for things such as blocks or buses, but not for people. The
second topic he touched on in the context of this transition
was that of the FOAF (friend-of-a-friend) specifications.
Such specifications only allow neutral or positive character-
izations. Adam disagreed with this and countered that in
order to define ourselves we must be able to say what we are
not, as well as what we are.

14. The final transition goes from consumer to constituent.
We have learned how to consume goods, services, and ex-
perience. Adam hopes that, based on all the transitions he
mentioned, we shall all become more active producers and
take a greater role in transforming the world.

Adam concluded by saying he cannot foresee all the impacts
of networked urbanism and he leaves this as an open ques-
tion. He said that the people designing systems had no clue
that things would change when you connect them!

Jorrit Herder asked about the technical challenges involved
in accelerating or decelerating these transitions. Adam
replied that there are no technical challenges; the challenges
are in the openness of standards, systems, or APIs, which
would lead to lower costs of understanding and connection.

Michael Scott, considering the final transition from con-
sumer to constituent, worried that technology would
concentrate the power and the money even more, rather
than democratize it. He argued his case using the example
of pay phones, which are dying out. Adam agreed that
a small number of nodes will concentrate a lot of power
within the urban network, and he also pointed out the
digital divide, in which rich people will be able to “hide”

; LO G I N : Au Gust 20 0 9 cO N fe re N ce re p O rt s 111

from the network, while the poorer will have to rely on the
network. Following up on this idea, Michael asked whether
everything will be accessible as long as you pay for it. Adam
clarified: you will pay through loss of privacy, not with
money. His example is that it becomes impossible to refuse
connectivity, as sometimes the social incentives to it are too
powerful.

Tim Brecht asked whether the cities mentioned are poor
cities and therefore have less access to technology. Adam
cited the rural area of Chengdu (Sichuan, China), where the
penetration curve of mobile phones is extremely high, of-
fering an incredible platform for networking and ubiquitous
computing. He added that only a couple of years ago half
of the world’s population had yet to make their first phone
call, while today it is down to the last billion.

Michael Kozuch said he understood the network part of the
talk but was unclear what was so special about the urban-
ism. Adam answered that the human species is becoming
an urban species. He classified locations into urban areas
(characterized by a high density of nodes with a lot of ag-
gregation possibilities), suburban areas (in which conditions
for connectivity exist), and rural areas (in which a push fac-
tor is required for the network to come to life). Adam sees
suburbanization within the urban as creating homogeneous
groups within the urban environment.

it ’s dead, j im

Summarized by Adrian Schüpbach (scadrian@inf.ethz.ch)

Hierarchical File Systems Are Dead■■

Margo Seltzer and Nicholas Murphy, Harvard School of Engi-
neering and Applied Sciences

Margo explained that browsing is increasingly transitioning
to search. She claims that many file systems are dead now.
Namespaces are hierarchies, she explained, but real people’s
view of namespaces is search. So what should be done? Files
are objects with different attributes, and a decision has to be
made where they should be stored. Deciding that depends
on the creation of the namespace. It also means designating
a most important attribute, the one where the hierarchical
name starts.

Margo noted that we have to know something about an
object to be able to find it; the problem is that we have to
organize the physical world and model it as a virtual world.
Filing cabinets, for example, may be used for papers and
organized by author. The problem here is that there is only
one physical object, which leads to serious constraints. But
taking this model to the virtual world releases some con-
straints, because objects can, for example, be duplicated, if
the amount of data is not too big. Though we often have too
much data for duplicating, we can use database systems to
manage and query large amounts of data efficiently. Data-
base systems are sometimes too heavyweight or too expen-
sive, however, so the “poor man’s” data management is done
using a file system.

Margo proposes a new architecture that would eliminate the
hierarchy as structuring mechanism. This new architecture
consists of stable storage, an object index, and metadata.
On top of this, type-specific indexes, like POSIX names,
and full-text or image search can be implemented. Rather
than implementing and indexing on top of POSIX, Margo
and her group are implementing this architecture because
POSIX is too limiting and it could be simpler to start from
scratch.

Steve Candea pointed out that not every document has attri-
butes or tags assigned by users, and users might not remem-
ber where the document is after a time. Margo replied that
by using indexes it might be easier to find documents even
after a long time. Someone wondered if she was compar-
ing a file system to the Internet. Margo replied they are not
trying to compete with the Internet, but users do not need
to know where their data is stored, just how to access it.
How did they control access to objects in their approach? In
file systems this is done by access bits on directories. Margo
replied that security should be done by security attributes
assigned to objects rather then by performing access control
on directories. Directory-based access control only makes
sense if similar documents are stored in the same directory.

An End to the Middle■■

Colin Dixon, Arvind Krishnamurthy, and Thomas Anderson,
University of Washington

Colin said that we don’t need middleboxes such as caches,
traffic shapers, firewalls, NATs, VPN, proxies, and load bal-
ancers: we only need the functionality these boxes provide.
He said the reason why we are using these boxes is that
they are convenient, but they are expensive. For example, a
Cisco box costs $3000–$4000, so companies spend a lot of
money on these boxes.

He noted that large networks today are usually managed
via a diverse set of proprietary hardware middleboxes with
mixed interoperability, and small and home networks are
usually built with unmanaged low-cost routers which do
almost nothing. Unlike companies, home networks don’t
need high performance, but they do need a reliable network
all or almost all the time.

To make the management of these networks more efficient
for the users, he proposes a new approach. In their ap-
proach, the network services run in specialized attested
VMs, which is an attested execution environment. Current-
ly, this is a lightweight Linux VM. Colin says that distribut-
ed systems are complicated, especially because some types
of networks are not reachable or too expensive, but he still
wants to tackle the problems.

Armando Fox said that the problem is that these middle-
boxes are not commoditized, but they should be. If you
have to trust a chain of VMs that run network services,
someone wondered, why not trust a Cisco router? Colin
answered that in our architecture there are only VMs with
shared hardware resources.

112 ; LO G I N : VO L . 3 4, N O. 4

No Time for Asynchrony■■

Marcos K. Aguilera, Microsoft Research Silicon Valley; Michael
Walfish, University College London, Stanford, University of
Texas at Austin

Marcos explained the problem of node failing in distrib-
uted systems. If, for example, the primary fails, after some
timeout the backup becomes the new master. However, an
end-to-end timeout is hard to get right. If it is too short,
there are two masters, and if it is too long, the system is
unavailable for too long. Someone should attempt to build a
system without timing assumptions. The conventional wis-
dom is to design for asynchrony; many systems have Paxos
and are safe under asynchrony, but it comes with costs—
algorithmic costs and hardware costs—because asynchrony
requires at least three machines.

There are three different approaches to the problem: (1)
keep it simple and rely on timeouts; (2) keep it safe and de-
sign for asynchrony; (3) their approach, which is that there
is good in both views but both are extreme. They want sim-
plicity, safety, high availability, and no end-to-end timeouts.

To attain this, Marcos proposes spies which indicate a crash
in an authoritative way, by using local information like local
time or enforcing a crash by killing a process.

Marcos argued that asynchrony is problematic in practice
because higher levels often use deadlines and might decide
wrongly. Safety and liveness are separable in theory but not
in practice. Under asynchrony, components hide useful in-
formation. If components are not responding, higher layers
have to guess why and a wrong guess leads to loss of safety.
Asynchrony has a complex design which leads to mistakes
and safety violations.

Marcos introduced the perfect failure detector abstraction
(PFD), which always tells “up” or “crashed” for a given
service with strong accuracy and completeness. They realize
PFDs not by killing whole machines as current approaches
do, but by taking smart decisions on what to kill. Knowl-
edge of different layers of the local system tells the PFD
whether a certain component crashed. Spies in different
levels control each other. They can find the smallest crashed
component. That leads to a simple, safe, and live distributed
system.

Someone noted that in shooting to kill, he would need to
wait for a certain time until he was sure his target was dead.
Does that lead to timeouts again? Marcos responded that
they rely on local timing. Margo asked how she would know
that killing worked. Did you move the third Paxos ma-
chine to the switch? Armando answered that he moved the
responsibility from the third Paxos machine to the switch,
which gives more evidence that killing worked. Roscoe
asked what the metric is for simplicity. How do you mea-
sure that a spy is less complex than Paxos? Marcos replied
that they could count the number of lines of code. Someone
else asked what would it cost to implement spies vs. having
a guru implement Paxos. Most systems only implement
something Paxos-like, not really Paxos. For spies it is easier,

because they can just look at the process table and know
that a process is dead.

heads in the clouds

Summarized by Qin Yin (qyin@inf.ethz.ch)

Computer Meteorology: Monitoring Compute Clouds■■

Lionel Litty, H. Andrés Lagar-Cavilla, and David Lie, University
of Toronto

Lionel started by defining cloud computing as Iaas (Infra-
structure as a service) and stating that security is the main
challenge facing cloud computing. His talk focused on
protecting the cloud resources from abuses, such as sending
spam, hosting illegal contents or attacking other virtual ma-
chines. Other than ISP, cloud providers could use introspec-
tion to examine the VMs’ behavior for signs of misbehavior.

Lionel then compared four representative introspection
approaches along three axes. The four approaches are host-
based agent, trap and inspect, checkpoint and rollback, and
architectural monitoring. The three axes are power-defining
the scope of VM events it can monitor, robustness based on
the assumptions made about the monitored VM, and un-
intrusiveness characterizing the disturbance introduced in
the monitored VM. The first approach hampers unintrusive-
ness, the middle two are not robust, and the last one is not
as powerful. Lionel then illustrated an introspection task to
determine the applications run by a customer VM and their
versions. He discussed the tradeoffs among these introspec-
tion techniques and came to the conclusion that architec-
tural introspection is promising and more research work is
needed to explore the full range of events. Introspection is
not a silver bullet, however, and cloud providers should be
aware of its limitations.

Steven Hand asked why the spam senders will pay Amazon
EC2 if botnets are free. Lionel responded that cloud is an-
other way to send spam and spammers will even use stolen
credit numbers to get Amazon resources. Garth Gibson
asked whether there are ways to use introspection to assure
the CIOs that the data will not be stolen or damaged after
outsourcing internal applications to EC2. Lionel answered
that introspection can provide assurance by checking
whether the code running is known by the VM. Garth wor-
ried that CIOs may not be willing to tell what applications
are running in their VMs.

Wave Computing in the Cloud■■

Bingsheng He, Mao Yang, and Zhenyu Guo, Microsoft Re-
search Asia; Rishan Chen, Microsoft Research Asia and Beijing
University; Wei Lin, Bing Su, Hongyi Wang, and Lidong Zhou,
Microsoft Research Asia

Bingsheng defined the cloud as large-scale data process-
ing. The current cloud computing systems such as Google’s
MapReduce, Yahoo’s Hadoop, and Microsoft’s Dryad provide
scalability, fault tolerance, and query interfaces using high-
level languages. However, by examining the query trace
from a production system, Bingsheng concluded that I/O

; LO G I N : Au Gust 20 0 9 cO N fe re N ce re p O rt s 113

and computation efficiency of the query execution was far
from ideal, because of redundant I/O on input data and
common computation steps. This redundancy was caused
by strong temporal and spatial correlation among queries.

Bingsheng then proposed to use the Wave model to capture
the correlations. Data is modeled as a stream with periodic
updates, query is the computation on the stream, and query
series are recurrent queries. To wave the computation in the
cloud, their system will decompose the submitted queries,
combine multiple queries into a jumbo query with reduced
redundancies, and enable cross-query optimization. Finally,
Bingsheng presented some promising preliminary results of
their ongoing project Comet, which incorporates the Wave
model into DryadLINQ.

In the Q&A session, several attendees asked about the pro-
duction systems and the trace in the experiment. Bingsheng
explained that the trace is per-day access logs or other logs
for different business units. How did they estimate the cost
of the queries and choose which queries to combine into
one jumbo query? The cost model can be derived from
past runs and the jumbo query is constructed by examin-
ing the correlations in the queries. Matt Welsh asked about
the relationship between the Wave model and multi-query
optimization in conventional and streaming query optimi-
zation. They took a hybrid approach. Margo Seltzer asked
whether we really need a middle point between MapReduce
and parallel database. Bingsheng replied that we need data-
base management in the cloud and cooperation between the
system and database communities.

On Availability of Intermediate Data in Cloud Computa-■■

tions
Steven Y. Ko, Imranul Hoque, Brian Cho, and Indranil Gupta,
University of Illinois at Urbana-Champaign

Steven’s talk focused on the need to treat intermediate data
as a first citizen for dataflow programming frameworks in
clouds. Dataflow programming consists of multiple compu-
tation stages and a set of communication patterns between
them. One common characteristic of different dataflow
programming frameworks is the existence of intermediate
data between stages. The intermediate data is short-lived,
used immediately, written once and read once; it also exhib-
its a distributed, large-scale, computational barrier nature.
Through an experiment with Hadoop on Emulab, Steven
showed that the availability of intermediate data is critical
for execution, and if it’s lost, current “store-locally, regener-
ate-when-lost” solutions will cause cascaded re-execution,
which is very expensive.

Steven concluded that storage is the right abstraction—rep-
lication can stop cascaded re-execution and guarantee in-
termediate data availability; however, aggressive replication
can cause network interference on foreground network traf-
fic. Finally, he presented three replication policies to achieve
minimal interference: replication using spare bandwidth,
deadline-based replication, and cost-model replication.

Dejan Kostić asked about failure rates of existing systems.
Steven gave anecdotal evidence: Google experimented with
running a MapReduce job for six hours on 4000 machines
and found at least one disk loss during each experiment.
Cristian Zamfir asked about the window for keeping rep-
licated data and avoiding re-execution. Steven answered
that the ongoing work of deadline-based replication will
replicate data every N stages and thus determine the degree
of cascaded re-execution. Garth Gibson asked how the
decisions will be made. Steven said that the programmer or
system administrator sets the policy; in the future they will
probably apply machine-learning techniques to autotune
the parameter. Margo Seltzer said Stonebraker claims they
can get two orders-of-magnitude better performance using
a parallel DB instead of MapReduce; therefore their prob-
ability of failure is significantly reduced. The question of
why not choose to use a parallel database to compute more
efficiently and deal with fewer failures was left open.

sm all is beautiful

No reports were provided for this session.

things your os should do . . . but doesn’t

Summarized by Akhilesh Singhania (akhi@inf.ethz.ch)

Migration without Virtualization■■

Michael A. Kozuch, Michael Kaminsky, and Michael P. Ryan,
Intel Research Pittsburgh

Michael discussed the typical benefits of virtualization: im-
proved communication between closely coupled workloads,
migration of workloads from failing hardware, improved
power management by consolidating workloads and shut-
ting down parts of a cluster, and improved utilization of
heterogeneous hardware by matching tasks to suitable
machines while load balancing.

He then described the various forms of migration options
traditionally used, pointing out their costs and benefits.

Process migration: where one application process is moved
from one operating system to another. This approach has
the benefit of migrating relatively small footprints but suf-
fers because the migration engine needs to support a very
wide interface (e.g., sockets, file descriptors, memory ac-
cesses), is very OS-specific, and generally is not used.

Virtual machine (VM) migration: where one VM image is
migrated from one VMM to another. The advantages of this
approach have been well studied, it is well defined, and it is
widely utilized. Some drawbacks of this approach are that it
continually complicates the software stack by pushing more
functionality into the hypervisor to virtualize device driv-
ers, and often the hypervisor does not expose the raw hard-
ware interface or all the available hardware the VM image
could utilize. To drive his point home, Michael showed
some performance data of DPRSim2 benchmark running
in various configurations. When running inside a VMM,

114 ; LO G I N : VO L . 3 4, N O. 4

a significant performance degradation is observed. Steve
Hand from Cambridge asked if he should expect similar
performance from hardware-virtualized NICs and Michael
responded, maybe lower overhead, but yes.

Obviously, Michael continued, running the OS on bare
metal is a better situation, so can we then come up with
some way of migrating an actual OS from one bare metal to
another? The biggest challenge for this is that the OS should
bind to device drivers, and when the OS is migrated, it
needs to bind to the new device drivers, as the drivers will
be pegged to the specific machine they are running on.

Michael now described the design space for OS migration.
First there are various types of migrations possible, such
as shutdown/reboot, hibernate, suspend/resume, and live
migration. Then there are different locations available for
migration, such as migrating to the same machine, migrat-
ing to a different machine but with identical hardware, and
migrating to a different machine with different hardware.
Suspend/resume and live migration are not currently sup-
ported at all. Finally, when migrating to a different machine
with different hardware, the shutdown/restart method
works with some support to account for new device drivers
but none of the other types of migration techniques is possi-
ble. If support for live migration was added to this, all other
types of migrations would be possible as well. Michael then
presented a list of challenges and solutions for supporting
live migration.

Michael concluded by pointing out some assumptions
made. These assumptions include suggestions that the
devices can be mapped to the target machine, that the OS
has the necessary drivers, that devices are not visible in the
user space, and that hardware attestation is available. OS
migration is a valuable tool for a number of purposes but a
fair bit of work is required to support it. Further, support
for features like hotplugging and power management will
make it easier to support it.

Steve Hand asked about the benefits of migrating like this,
which would abstract away the changes in the hardware.
And how does Michael propose to migrate storage (without
moving tons of data around)? They use network storage,
not local disks, and employ hotplug and unplug techniques.
Lionel Litty asked why a VM is needed for suspend. It is not
always necessary, but if a target machine is not available,
then it is essential.

Operating Systems Should Provide Transactions■■

Donald E. Porter and Emmett Witchel, The University of Texas
at Austin

Don started with an example of how a common OS incon-
sistency can happen. Suppose you want to upgrade your
browser plug-in. The new plug-in binary is written first,
and then the browser configuration is updated to point to
the new binary and new arguments. However, if the user
tries to use the browser in the midst of the upgrade, or the
upgrade crashes, the browser can be in an inconsistent state

and various forms of corruptions can occur. What the user
desires is either to have the entire installation or none at all.
The POSIX API is broken.

Typically, users have simple synchronization requirements
but are forced to use a fairly complex database for the tasks.
This gives support for system calls in applications with
transactional memory, allows fault tolerance in untrusted
software modules, and atomically updates file contents and
ACL. This will also make it easier to write OS extensions.
Quicksilver and Locus provide some support for transac-
tions but have weaker guarantees. TxF and Valor provide
file system transactions, while they argue for making every-
thing a transaction. Paul Barham mentioned that Windows
provides many types of transactions, but people still have a
poor understanding of them.

Don then showcased their system. They extended the Linux
2.6.22 kernel to support transactions. They term it TxOS.
It is based on the lazy version-management technique to
roll back failed or incomplete transactions. All transactions
operate on their own copy of the data and commit the data
when the transaction is done. For the specific example given
above, the system would lock the file, make a copy of it, and
then unlock it. This is made still more efficient by using
copy-on-write and other techniques. Since the technique
does not hold any kernel locks, there are no risks of dead-
locking and the operations always happen on private copies;
when committing the transaction, the file is relocked, the
changes are propagated, and then the file is unlocked.

The implementation of the system added 8.6 klocs to the
system and required modifications to 14 klocs, with the
goal of simple use. Among the performance measurements,
there was a 40% increase in a dpkg install.

David Mazières said that he does not use such system calls
but uses sockets and the NFS interface to access files, to
which Margo replied that certain techniques work but this
is a general mechanism. Michael Scott said that their use of
lazy concurrency control may not always work, since not all
things can be modeled as such, for example, I/O. The ques-
tion was which parts of the system can they support and
which can they not. Donald replied that they are not sure
which parts of the system they can currently support.

Your computer is already a distributed system. Why isn’t ■■

your OS?
Andrew Baumann, Simon Peter, Adrian Schüpbach, Akhilesh
Singhania, and Timothy Roscoe, ETH Zurich; Paul Barham and
Rebecca Isaacs, Microsoft Research, Cambridge

Andrew described how modern multicore architecture in-
creasingly resembles a network, so operating systems should
be designed as a distributed system, not as a multi-threaded
program. He showed a figure of an eight-socket machine
with four AMD cores per socket. The picture looks very
much like a network, with interconnect latencies varying
from core to core and a fairly complex interconnect with
a routing table. It will be difficult to design a shared data

; LO G I N : Au Gust 20 0 9 cO N fe re N ce re p O rt s 115

structure to work efficiently on such a complex system and
even harder to make it portable on different types of ma-
chines. Also, systems increasingly have many heterogeneous
components, such as programmable NICs and GPUs. Then
there are dynamic changes such as hotplugable memory,
cores that can fail, and general power management. All
these observations point to the machine exhibiting proper-
ties of a distributed system, so it should be treated as one.

Andrew showed the implications of treating the machine
in such a way by a simple example comparing the costs
of message passing and shared memory access. Accessing
remote cache is like performing a blocked RPC, with cores
blocked waiting for the cache lines to arrive and the opera-
tions limited by the latency of the interconnect round trips.
This can be optimized by instead using nonblocking RPC
such as sending a message to the remote server to perform
the modifications. Messages are better because it is easier to
reason about them, it decouples the system structure from
the inter-core communication, it supports heterogeneous
nodes, and it can even work without cache coherency.

Andrew discussed the trade-off of message passing vs.
shared memory. Messages can be more expensive when the
amount of data to be modified is fairly small. When using
messages, state has to be replicated and partitioned between
cores. Such techniques were already used in Tornado, K42,
and clustered objects. This changes the traditional program-
ming model: instead of blocking on operations, operations
are split-phased, which ends up being a trade-off between
latency and overhead. This also helps with heterogeneous
architectures, since only the communication between dif-
ferent cores needs to be supported, and other parts of the
system can be core-specific.

Andrew introduced the multi-kernel architecture, where,
instead of one giant kernel, each core runs an individual
kernel. This does not constrain the applications; they can
still use shared memory over as many cores as they desire.
Andrew suggested some optimizations to this design. Some-
times the message-passing default can be too heavyweight,
such as for tightly coupled cores; in such cases shared
memory should be supported.

George Candea suggested that this technique could be used
to provide reliability as well, with resources granted by
using leases. Could Andrew provide any insights into using
something similar? Little is known about how to deal with
hardware failures, but this technique can be employed to
cope with software failures. Leases can also help in figuring
out how much optimization is required for message passing.
Steve Hand asked what kinds of services and applications
will work on this system. They have studied a few core
applications such as image processing, and other types de-
signed for manycore workloads. They also want to support
running many general-purpose applications and ensure that
the OS does not get in the way of scalability. What happens
if you instead run a VM on each core? It may well turn out

that this architecture will end up looking quite similar to
the proposed multi-kernel architecture.

hardware

No reports were provided for this session.

think big

This was a discussion session.

Summarized by Vitaly Chipounov (vitaly.chipounov@epfl.ch)
and Cristian Zamfir (cristian.zamfir@epfl.ch)

Teaching Concurrency■■

Michael Scott, University of Rochester

Michael asserted that the current way of teaching concur-
rency is broken: “we are setting out to teach undergraduates
what we have not yet, despite forty years of effort, figured
out how to do ourselves, namely how to write parallel pro-
grams.” Usually, people teach concurrency in an OS course
by starting with Peterson’s algorithm and then introducing
locks, semaphores, etc. However, Michael complained that
this approach to teaching is low on motivation.

Michael advocates introducing concurrency at every level
of the curriculum, following a top-down approach, instead
of teaching it solely in the OS course. For example, it is
possible to talk about it in Web programming or program-
ming languages courses. Message-based concurrency could
be taught in networking courses. To avoid the need to teach
intricacies like data-race freedom or memory models right
from the start, he proposed encapsulating all these func-
tionalities in high-level libraries and using them as needed.

Michael argued that there is a need for a language with
built-in concurrency. He compared the concurrency in Algol
68, Java, and C#: while Algol can need as little as two lines
of code to execute two statements in parallel, Java would
need a page of code. C# would need slightly more than
Algol. This is why he proposed C# as an alternative for
teaching concurrency.

Timothy Roscoe argued that some people fiercely oppose
this kind of approach, because people stop half-way and
then specialize without understanding the low-level compo-
nents. In many cases they do not understand hash tables or
linked lists. In the worst case all they know is how to put
together lines of code in an IDE. Michael replied that he was
not convinced that somebody who just wanted to become a
professional programmer needed to understand the memory
model. If they understand data-race freedom, that’s probably
enough. David Andersen thought that it is better to teach
students distributed operating systems first, and if they are
really interested in the lower-level details, they should take
an OS course.

Margo Seltzer argued that young students who learn to
program Lego robots are already familiar with a language
that expresses concurrency. This language is visual and the

116 ; LO G I N : VO L . 3 4, N O. 4

students explicitly see the parallelism. She argued, however,
that the academics are trying to unteach that when the
students enter university.

QoI >> QoS■■

Kimberly Keeton, Hewlett-Packard Labs, and John Wilkes,
Google

Kimberly Keeton and John Wilkes explained why the qual-
ity of information (QoI) is more important than quality of
service (QoS). They argued that what is done with data is
probably much more important than whether the system
is fast. They also presented metrics for information qual-
ity (IQ). Most of the talk consisted of real-world examples
emphasizing the importance of quality of information. For
instance, they recalled the NATO bombing of the Chinese
embassy in Belgrade in 1999 because the data that led to
that decision was inadequate. Another case for IQ is a sen-
sor network monitoring earthquakes. Poor IQ could, for
example, lead to a bad decision about whether to shut down
a nuclear power plant, leading to severe financial conse-
quences.

Some of the presented metrics for IQ included the freshness
of the measurements and the level of aggregation (too much
aggregation could lead to the eviction of outliers, potentially
masking problems). Metrics can be discrete (reliable/not
reliable) or continuous (e.g., relevance of a search result).
Finally, metrics can be either context independent (“stand-
alone”) or context dependent. Kimberly argued that the
stand-alone and context-dependent metrics are not the same
and the role of research is to understand what is appropriate
to measure.

The speakers also argued for tracking the IQ as information
is flowing through the system, including cross-correlating
data from multiple sources. They pointed out trade-offs
between IQ and metrics such as performance, energy, or
reliability. Margo Seltzer remarked that collecting prov-
enance transparently is hard. John replied that low-hanging
fruit might be attainable (e.g., error bars for the graphs
in papers). Finally, the speakers indicated that database
people have been researching IQ for a long time and we also
needed to understand it in the context of systems.

Sustainability■■

Geoffrey Werner Challen

Geoffrey explored the problem of sustainability in the IT
industry. He presented different aspects, such as energy
consumption, efficiency, obsolescence of equipment, and
recycling. He drew an analogy between computers and cars
and noted that, despite technological advances, the average
number of miles per gallon had remained constant over the
years. According to him, the main reason for this is accel-
eration: today’s cars have the acceleration equivalent of the
sports cars of the seventies. He then wonders whether our
desktop computers are equivalent to 2008’s Hummers.

The audience talked about ways to reduce the energetic
footprint of IT. Armando Fox argued that it would be better

to run computer-intensive experiments in the cloud, e.g.,
on Amazon EC2, instead of investing in dedicated clusters.
George Candea proposed discouraging universities from
buying new equipment. He argued that EPFL should intro-
duce a new line in the IT budget, “IT services,” which could
be used to purchase EC2 credits.

They then discussed the problem of idle desktop computers
that are never turned off. An audience survey showed that
most of the attendees did not turn off their desktops for the
duration of the conference. One participant remarked that
computer systems are often left on because they need occa-
sional network presence. He referred to two papers at NSDI
’09 that proposed powering off the computer while using
the network card as a proxy to do things like BitTorrent.

Michael Scott brought up the issue of obsolescence of equip-
ment. He argued that, in the US, people discard 100 mil-
lion cell phones per year, although many of them are still
functional. He asked whether we could make use of this
hardware instead. Margo Seltzer remarked that recycling is
often done in Third World countries without concern for
environmental safety.

Finally, Armando Fox remarked that in universities electric-
ity is not directly billed to the users. Thus, people will prob-
ably not realize the importance of sustainability until there
is a clear incentive, whether financial or political.

Email Is Dead ■■

Armando Fox

Armando argued that most people prefer instant-messaging
(IM) and social networks to email. Email is still used for
formal communication, but certainly for informal communi-
cation it is deprecated. Moreover, 90% of the email travers-
ing long-haul networks is spam. There is also a certain
cost associated with fighting spam, starting from the cost
of filtering, the extra hardware resources, and the effort of
people innovating in that area.

In a dialog with Margo Seltzer, Armando argued that white-
listing is not scalable, and he cited faulty email delivery
between the two of them. However, social networks have
the property that messages can only be sent to friends. The
fundamental question raised is if there is any functionality
of email that cannot be replaced with a combination of IM
and social networks.

An audience member argued that email is fairly decentral-
ized and it would not be scalable to have everyone sub-
scribed to the same trust management system. Armando
replied by asking what the distribution of email providers is
and if it is not already the case that most people host their
email at a few major sites (e.g., Gmail).

Timothy Roscoe argued that social networks are also ex-
posed to spam and Colin Dixon said it is unrealistic to as-
sume that everyone keeps their Facebook password safe. Ar-
mando stood his ground, maintaining that the term “social
network spam” is underdefined at the moment. John Wilkes
gave an example of spam on Facebook: people who inform

; LO G I N : Au Gust 20 0 9 cO N fe re N ce re p O rt s 117

him of “every move in their universe,” which is spam, vs.
people who send him messages for professional reasons.

Dejan Kostić argued that email has the very important
feature of plausible deniability. Another speaker said that
searching IM logs is hard; usually communities who discuss
an issue on IRC will later summarize the discussion in an
email. Armando countered by saying that often people also
summarize long email threads and that normally we do not
use our email as a primary repository of useful knowledge.

John Wilkes and David Andersen thought that the main
limitation of all means of social communication is lack of
good access control management: that is the problem to be
solved first.

don’t touch that dial

Summarized by Akhilesh Singhania (akhi@inf.ethz.ch)

Security Impact Ratings Considered Harmful■■

Jeff Arnold, Tim Abbott, Waseem Daher, Gregory Price, Nelson
Elhage, Geoffrey Thomas, and Anders Kaseorg, Massachusetts
Institute of Technology

Jeff described the current practice of patching in Linux
distributions. When an OS developer discovers and patches
a bug, the patch is assigned an impact rating which the
maintainers can use to prioritize which patches to apply.
The problem is that assigning a bug a low-impact rating
means it may not be patched right away, and detailed docu-
mentation of the bug gives hackers an easy tool to attack
these unpatched systems. Impact ratings can thus actually
be harmful to system maintenance.

Jeff gave the example of the sudo bug from 2001, which al-
lowed an attacker to control a pointer used by syslogd. This
was given a low impact rating, but eventually the vulner-
ability was exploited by attackers. Similarly, in 2003, when
a patch for a bug had been available for around eight weeks,
many systems still were not patched and were compro-
mised. A member of the audience suggested that only two
attacks in 15 years is not a bad track record. Jeff pointed
out, with the help of a figure, how many bugs were dis-
closed but not rated and the number of days it took to give
them a CVE rating. There is a fair delay between when a
bug is found and when the security impact for it is assigned.

Jeff said that OS vendors and maintainers should not dis-
tinguish between security updates and other bug fixes and
should apply them in a timely manner. Applying patches
frequently is problematic because the system or the software
often needs to be restarted. Therefore, they suggest using
the hot update techniques (called Ksplice) laid out in their
previous work to avoid the hassle of restarting the system.

Someone questioned whether people really care about keep-
ing the system up-to-date. They still use older versions.
Does the argument work for typical applications? Jeff replied
that they are trying to address the core of the system and
are not sure about what happens for applications.

If It Ain’t Broke, Don’t Fix It: Challenges and New ■■

 Directions for Inferring the Impact of Software Patches
Jon Oberheide, Evan Cooke, and Farnam Jahanian, University of
Michigan, Ann Arbor

Jon showed statistics of recent Linux kernel vulnerabilities,
taken off data from http://www.milw0rm.com, revealing
the continued vulnerability of software, with security alerts
coming out frequently. To address this, they have developed
PatchAdvisor to automatically infer the impact of a patch on
a software system so that system administrators won’t have
to assess the impact of a given patch on the data center.

Applying all available patches all the time quickly exhausts
the resources of system administrators and may also have
adverse effects on the patched system; patches sometimes
introduce new bugs, cause incompatibilities and regressions,
or might have other unintended negative impact on the
reliability, performance, and security of software. A survey
on the number of patches of production issued on Gentoo
systems shows that a system administrator would need to
review and deploy one patch per hour to keep up with the
issue rate.

Matt Welsh wondered whether a lot of the presented patch-
es for Gentoo are for programs that are never run. Why not
just patch a program when the user first runs it, instead of
all the time? Jon agreed and said their work actually went
along those lines. A discussion about whether system ad-
ministrator burden is a problem ensued, based on different
views of the dimensions of the data centers that a system
administrator has to patch.

Jon explained that the basis for PatchAdvisor is to patch
common code paths as a middle ground between the
two extremes of not patching at all and always patching,
as these have a greater (positive and negative) impact on
the total functionality of the system. PatchAdvisor is able
to infer this impact via a combination of trace and static
analysis to determine code coverage. Finally, he presented a
preliminary evaluation of a patch to the psycopg2 package,
which forms part of a bigger Web application suite. He ar-
gued that Web application suites provide a good evaluation
opportunity because they exercise many layers of operating
system and application code.

Future directions for the work are to improve the current
ranking heuristics, to see if bugs cause great impact even in
seldom executed code portions, whether application-specific
knowledge about a bug or patch can be incorporated into
the tool, and whether composite patches can be sliced into
individual bits, removing areas of high risk. Also, the prob-
lem of classifying a patch to its purpose (bugfix, perfor-
mance upgrade, security patch, etc.) might be addressed by
their group.

Michael Scott said, Suppose your tool tells me that there is
a lot of overlap between the patch and the code I run. What
exactly is this supposed to tell me? Jon answered, To test
better and be careful. Scott then pointed out that PatchAd-

118 ; LO G I N : VO L . 3 4, N O. 4

visor is telling me that this patch is likely to be something I
really need, while at the same time it might be very dan-
gerous to apply it. Jon said that’s the eternal question. The
important and difficult part of this work is to find out what
the trade-off to applying a patch is.

outr ageous opinions, open mic ,
and happy hour

Summarized by Vitaly Chipounov (vitaly.chipounov@epfl.ch)
and Cristian Zamfir (cristian.zamfir@epfl.ch)

Dan Wallach made two points. First, vast available hard-
ware resources are virtually unused. Even though the
community is driven by performance, we should consider
more algorithms and systems that can make use of these
resources even though they are more complex (e.g., O(n^3)
algorithms, as long as n is reasonably small).

The second point was that the conference reviewing/sub-
mission system is broken and there are a lot of papers that
get resubmitted to many conferences even though they do
not seem to have a chance. Dejan Kostić argued that those
papers are not a problem and that the difficult ones are the
ones in the middle. Dan proposed to borrow the model
from the cryptography community: once a paper has been
submitted, it is immediately made public as a technical
report. He suggested that since USENIX is quite flexible and
more willing to embrace new ideas, it can lead the way in
improving the citation/tenure/review system.

Michael Scott mentioned the battle for making conferences
more important than journals in the systems community
while the main journal, Transactions in Computer Systems
(TOCS) is losing importance. Matt Welsh said that the turn-
around time for TOCS is extremely high.

Prabal Dutta suggested using an FAQ per paper that ACM
should keep as part of ongoing dialogs. Margo Seltzer con-
tinued to discuss the concept of a “living paper,” and Matt
Welsh and David Mazières argued for, respectively, a blog/
wiki and a forum model to represent the content. David
also suggested that such an open space for discussion will
prove useful for reading groups.

Steve Hand proposed to do something similar for the His-
tory of Programming Language Conference (HOPL) for the
systems community.

Matt Welsh also proposed that we archive videos of the
talks and at least convince speakers to provide the slides.
Ellie Young replied that this is already done for most
USENIX conferences.

Several members of the audience discussed making reviews
public. Timothy Roscoe argued that for SOSP, reviewers can
opt for making the reviews public. Margo Seltzer expressed
her concern that these reviews do not represent the final
version of the paper.

On a related note, Matt Welsh and Steve Hand commented
on anonymity of the reviews and an analogy to the judicial

system, where judges publish their opinions in the public
records and are not allowed to maintain their anonymity.

George Candea gave an example of how short rebuttals can
change the PC decision about a paper. The audience also
discussed how PC meetings can make reviewers change
their reviews, which makes the review process look biased.
Finally, everyone pleaded for reproducible results, which
makes papers more convincing.

get ting a bet ter handle on
distributed systems

Summarized by Qin Yin (qyin@inf.ethz.ch)

Simplifying Distributed System Development■■

Maysam Yabandeh, Nedeljko Vasić, Dejan Kostić, and Viktor
Kuncak, EPFL

Maysam talked about how to make choices at runtime to
gain better performance. The current practice of insert-
ing a choice-making strategy into the basic functionality
of distributed systems leads to complexity and more bugs.
He proposed a new programming model for distributed
systems: the application explicitly exposes to the runtime
the choices it needs to make and the objectives it needs to
achieve, and with the aid of a predictive model, the runtime
support will make the right decision based on the current
status of the environment.

One way to express choices is to implement a distributed
system as a state machine with multiple simple and ap-
plicable handlers, which have simpler code and thus fewer
bugs. Developers need to expose high-level objectives of
safety, liveness, and performance for the runtime support to
maximize. One possible implementation of the runtime is
the predictive model inspired by Maysam’s previous work,
CrystalBall. The predictive model considers every choice
and the consequences of the applicable handler, and re-
solves the choice by state-space exploration for performance.

John Wilkes mentioned relevant work from the Interna-
tional Conference of Autonomic Computing (ICAC), and
Matt Welsh commented that a related field is control theory,
which is used for tuning dynamic systems. Maysam said
that the choice in his work is not resolved at development
time but left to a sophisticated runtime system. Matt asked
whether pushing the complexity to the controller will create
fewer bugs. Maysam answered that the separation makes
the main function simpler, and the common knowledge in
the library can be shared by different modules.

Automated Experiment-Driven Management of (Database) ■■

Systems
Shivnath Babu, Nedyalko Borisov, Songyun Duan, Herodotos
Herodotou, and Vamsidhar Thummala, Duke University

Vamsidhar argued that in current systems, management
techniques are limited and inadequate for end-to-end
system management. Vamsidhar showed the importance of
experiments in system management, introducing the con-

; LO G I N : Au Gust 20 0 9 cO N fe re N ce re p O rt s 119

cept of experiment-driven management and the necessity of
automating it.

Through a case study of an advisor for tuning database
configuration parameters, Vamsidhar dissected experiment-
driven management and talked about how to set up experi-
ments, where and when to run experiments, and which
experiments to run. Representative workload and data
are necessary to set up experiments, which can only use
underutilized resources in the production environment and
never harm the production workload. Due to cost and time
limitations, good algorithms to find the best subset of ex-
periments are also important. In the case study, Vamsidhar
proposed an experiment-selection algorithm called “adaptive
sampling,” which starts with a small bootstrap set of experi-
ments and then conducts experiments based on estimated
benefits and costs. He concluded that experiments should
be supported as first-class citizens in database and general
systems, with the cloud providing the foundation for a pow-
erful workbench for automated, online experiments.

John Wilkes recommended research work in Duke about
measuring and building models of NFS. Matt Welsh asked
whether production systems have already done some work
for online model construction. People thought that com-
panies do performance experiments on their production
systems to tune online provisioning.

FLUXO: A Simple Service Compiler■■

Emre Kıcıman, Benjamin Livshits, and Madanlal Musuvathi,
Microsoft Research

Large-scale Internet service is difficult to architect because
of performance, reliability, and scalability requirements, but
these requirements exhibit common architectural patterns,
such as tiering, partitioning, replication, data duplication
and de-normalization, and batching long-running jobs.
Emre pointed out that these patterns have been redesigned
and reimplemented according to measurable metrics such as
component performance, resource requirements, workload
distribution, persistent data distribution, read/write rates,
and intermediate data size.

Emre introduced FLUXO, whose goal is to separate an
Internet service’s logical functionality from the architectural
choices. Using a simplified social news service as an exam-
ple, Emre explained how FLUXO maps high-level descrip-
tion down into an implementation with caching, replication,
and service partitioning performed automatically. FLUXO
works by accepting dataflow programs with annotations
(such as consistency requirements and side-effects), keep-
ing detailed runtime tracing, analyzing runtime behavior,
performing programs transformations in the performance
optimization space, and outputting a deployable optimized
program.

Matt Welsh asked whether the developers will have to dig
down into the generated programs to understand the map-
ping from high level to low level. Emre admitted that it’s
possible that developers will dig into the generated code to
find bugs in FLUXO or do extra tweaks for performance im-

provement. Steven Hand asked how practical the extracted
architectural patterns are. Emre replied that they investigat-
ed high-level diagrams of several Microsoft internal services
as test cases and discovered that most services are logically
simple and mostly use hash tables. Colin Dixon asked how
to show that FLUXO is a better idea than the handout sys-
tems. Emre pointed out two important benefits: agility, and
more efficient resource use. Timothy Roscoe asked about
the relationship between FLUXO and Web service choreog-
raphy. Emre’s opinion was that Web service choreography
is involved more with semantic issues of logical functional-
ity integration than with system performance availability
problems. Jeff Mogul commented that the problem is not
only that of optimizing on a fixed infrastructure but also
adjusting to workload changes and making decisions on the
right infrastructure scale.

lever aging emerging technology trends

Summarized by Adrian Schüpbach (scadrian@inf.ethz.ch)

Reinventing Scheduling for Multicore Systems■■

Silas Boyd-Wickizer, Robert Morris, and M. Frans Kaashoek,
Massachusetts Institute of Technology

Silas argued that caches on current multicores are underuti-
lized. He proposed a new type of scheduler to overcome this
problem. Caches are crucial for the performance, because
access to main memory is slow. He said that an application
with many threads and a big working set should fill first the
L1 caches, then L2 caches and L3 caches, and go to main
memory only when they are full.

He proposes a scheduler that focuses on data affinity, fits it
to caches, and decides where to run threads. They imple-
mented a prototype, called O^2. It assigns objects to caches
and migrates threads to objects. Threads are also loaded
to the cache of the same core. If a thread starts manipulat-
ing another object, load it to another core’s L1 cache and
migrate the thread to that core. Then migrate the thread
back to the original core so that the thread can continue to
manipulate the original object.

Silas identified the two operations: o2_start(id), which
marks the start of an operation and is also the point where
a thread might migrate to another core, and o2_end, which
marks the end of an operation and is also the point where a
thread might migrate back to its original core.

Someone wondered if the assignment of data to caches can
be complex. Can the overhead not be quite large? Sure,
it can, said Silas. Might it be that threads migrate all the
time? Silas wondered why that is a problem. Someone else
said it is not always the case that the threads go where
data is. Threads need to access objects, but also parameters
to methods and globals. Is it cheaper to move threads to
objects or might it be cheaper to move objects to threads
where parameters are? They use statistic counters to find
out whether to move threads or objects according to cache
misses. Someone pointed out that since parameters to

120 ; LO G I N : VO L . 3 4, N O. 4

methods should hopefully be in the shared L3 cache, they
are accessible from all the cores. Can you control that by
explicit cache instructions? Silas replied that this would be
interesting to look at.

FAWNdamentally Power-efficient Clusters■■

Vijay Vasudevan, Jason Franklin, David Andersen, Amar
 Phanishayee, and Lawrence Tan, Carnegie Mellon University;
Michael Kaminsky, Intel Research, Pittsburgh; Iulian Moraru,
Carnegie Mellon University

Vijay pointed out that power has become an important
issue in the last few years and that it always was an issue in
chip production. Now it is very important in data centers.
Google places data centers according to the power infra-
structure. The goal is to increase the efficiency of the infra-
structure of data centers by using dynamic power scaling.

FAWN (fast array of wimpy nodes) consists of an array of
well-balanced low-power systems and reduces the amount
of energy to do data-intensive computing. The prototype
is built with a 4W AMD Geode with 256MB DRAM and a
4GB compact flash card. Vijay claims that whole data cen-
ters can be built using these nodes.

Vijay provided four reasons why FAWN should be used.
First, fixed power costs dominate and using DVFS only
does not minimize the power consumption of a whole node,
since CPUs don’t dominate power consumption. Second,
FAWN balances energy consumption: in traditional ap-
proaches the CPU-to-disk ratio grows, and a CPU needs
power even if it is waiting. Third, it targets the “sweet spot
in efficiency.” The fastest CPUs are inefficient in that they
need too much energy per instruction, because they need
transistors for speculation and out-of-order execution.
Finally, FAWN reduces peak power consumption, which
is important for cooling, power supplies, and UPS. Vijay
showed some energy-per-instruction results.

Someone asked what the lifetime of FAWN is, compared to
traditional systems. Vijay replied that it is used in embed-
ded systems and it lives long. Roscoe pointed out that more

nodes also means more networking. Did they consider the
costs of cooling networking gears and switches? They don’t
necessarily need more networking and haven’t considered
these costs yet. John asked if the performance measure-
ments are throughput-based, not latency-based, and Vijay
responded affirmatively. John pointed out that we also have
latency, not only throughput, and that might give more
bounds not shown on Vijay’s graph. Vijay agreed. Why
haven’t Google data centers, for example, not yet moved
to low-power machines? Vijay didn’t know, but it could be
because they invested a lot in traditional systems and cool-
ing systems.

wr ap -up talk

Armando Fox, Program Chair

Summarized by Tudor Salomie (tsalomie@inf.ethz.ch)

Armando revisited some of the topics that he considered the
most interesting:

1. From Adam Greenfield’s talk about networked urbanism:
we should follow the effects of going from passive to net-
worked resources to their social and logical conclusions. We
should switch from passive objects to network services.

2. On the topic of sustainability, we need to look into fund-
ing models, what we should do when talking to people
who dispense money, and how we should avoid having idle
machines.

3. Regarding the conference submission process, the idea
of having living papers and of a dialog beyond the review
process should be considered. Maybe we should also re-
think the role of a journal and that of a conference, as it was
pointed out by Michael Scott: we got what we asked for, but
is that what we really wanted?

4. Teaching concurrency is important. Is the way we teach
concurrency for distributed systems the same way we
should be teaching it for multicore systems?

