
70	 ; LO G I N : 	VO L . 	3 4, 	N O. 	3

FAST ’09: 7th USENIX Conference on File and
 Storage Technologies

San Francisco, CA
February 24–27, 2009

opening rem arks and awards

Summarized by Dutch Meyer (dmeyer@cs.ubc.ca)

Program Chairs Margo Seltzer and Ric Wheeler opened
FAST ’09 by thanking the contributors and stressing the
value of interaction between students and attendees. Best
Paper awards were presented to “CA-NFS: A Conges-
tion-Aware Network File System” by Batsakis, Burns,
Kanevsky, Lentini, and Talpey of NetApp and Johns Hop-
kins, and to “Generating Realistic Impressions for File
System Benchmarking” by Agrawal, Arpaci-Dusseau, and
Arpaci-Dusseau of the University of Wisconsin, Madison.

Next, Garth Gibson took the floor to present the 2009
IEEE Reynold B. Johnson Information Storage Systems
Award to Marshall Kirk McKusick. McKusick was rec-
ognized “for fundamental contributions in file system
design, mentoring file system designers, and dissemi-
nating file system research.” In his acceptance speech,
McKusick stressed two themes: first, the collaboration
between hardware and software experts, and second, the
lessons drawn from his work on the Berkeley Fast File
System (FFS).

In thanking the awards committee, McKusick praised
their equal consideration of hardware and software nomi-
nees, a trend he hoped would continue. He stressed that
it is necessary to incorporate both sides of the hardware
and software interface with respect to storage. As an
example, he pointed to what he termed the “don’t lie to
me” bit, which tells mechanical disk drives to confirm
that data is written only when it actually reaches the per-
sistent medium. He also pointed to the FAST conference
itself as a unique forum in that it draws heavily from a
diverse community of hardware, software, academic, and
industry experts. This characteristic, he argued, was key
to the conference’s success.

Reflecting on his own work, McKusick began by noting
that FFS was initially created in a “target rich environ-
ment.” Because comparable systems were so slow, it
was relatively easy to demonstrate significant improve-
ments quickly. However, to remain relevant has required
constant effort. In its initial version, FFS weighed in at
a mere 1,200 lines of code. The current version, which
remains a canonical file system after 30 years, has grown
to 55,000 lines of code. This increase is the result of
steady improvement in the attempt to remain competitive
with new file system offerings and ideas. As he finished,
McKusick quipped that in comparison, ZFS’s 120,000
lines of code had been written in just a few years.

conference reports

ThaNks	TO	Our	summarIzers

FAST ’09: 7th USENIX Conference on File and
 Storage Technologies . .70
Rik Farrow
Chris Frost
Phillipa Gill
Ragib Hasan
James Hendricks
Michelle Mazurek
Dutch Meyer
Madalin Mihailescu
Brandon Salmon
Avani Wildani

First Workshop on the Theory and Practice of
Provenance (TaPP ’09) .84
Peter Macko
Kiran-Kumar Muniswamy-Reddy
Richard P. Spillane

; LO G I N : 	 j u N e	20 0 9	 cO N fe re N ce	re p O rT s	 71

keynote address

Summarized by Dutch Meyer (dmeyer@cs.ubc.ca)

n	 Cloud Storage FUD (Failure, Uncertainty, and Durability)
Alyssa Henry, General Manager of Amazon Simple Storage
Service (S3)

Alyssa Henry presented Simple Storage Service’s (S3) goals
and her team’s experiences with developing an Internet-
scalable and accessible storage system over the past four
years. The presentation mixed colorful anecdotes with a
description of the project’s motivation and design.

Henry’s major theme was that the S3’s broad audience had
many different requirements and workloads. To meet such
a wide range of users, S3 needed to be designed to toler-
ate a large degree of uncertainty. It is possible to identify
trends when a service is in active use, but these trends are
dynamic in practice and cannot be relied upon. Underly-
ing the design of the service is a low-cost “pay as you go”
model, which is supported by leveraging Amazon’s software
expertise against commodity hardware and balancing the
system’s architecture against the need to keep costs low.

Failures are intrinsic to systems at this large scale, and
Henry pointed out that even low probability errors begin to
happen regularly. She classified service disruptions across
two axes: duration, with errors ranging from temporary to
permanent, and scope, ranging from few clients to many.
Failures with sufficiently small scope and low duration
are essentially harmless, while persistent errors with large
scope are catastrophic.

The overarching strategy employed by S3 is to broaden
the class of harmless failures into the region that would
otherwise be considered catastrophic. Since perfection is
not attainable, the goal is to balance the odds of service
disruption against financial and complexity costs. The
specific methods used toward this end are a mix of tradi-
tional approaches such as redundancy, rate limiting, and
hardware diversity, with some newer ideas. Amazon’s focus
on the eventual consistency model was cited as one way in
which they break from tradition. Amazon Web Services also
routinely force failures to occur—for example, by yanking
power plugs when a system is to receive downtime and by
turning off whole datacenters for management. By stressing
error paths, often one can work with more assurance that
the countermeasures employed continue to be effective.

In closing, Henry commented that storage services represent
lasting relationships that require trust. She also noted that
reliability at low cost remains a difficult problem. She di-
rected parties interested in more information to visit Werner
Vogels’ blog (http://www.allthingsdistributed.com/) and the
Amazon Web Services blog (http://aws.typepad.com/aws/).

Sameer Ajmani from Google followed up on the hardware
diversity comment to ask if software diversity was also a
viable strategy. To this, the presenter noted that all aspects
of the system represent design tradeoffs. For S3’s needs,

software diversity would be going too far, at too great ex-
pense. David Rosenthal from Stanford University asked why
the system doesn’t publish a numerical goal for reliability, as
there is for availability. He pointed out that 100% reliability
is not realistic and that the provided EULA has no penalty
for data loss. Henry reiterated that the team’s reliability goal
was 100%, while in practice the service level agreement
specified 99.9%, and this seemed to satisfy customers. S3
performs internal measurements of the error rate, but the
resulting data is not disclosed. Stephen Spackman from
Quantum asked how Amazon balances the trade-off be-
tween centralizing data in one country and offshoring it. S3
pushes this issue to the end user, who can choose between
any combination of US and EU S3 offerings.

augmenting file system functionalit y

Summarized by Phillipa Gill (phillipa@cs.toronto.edu)

n	 The Case of the Fake Picasso: Preventing History Forgery
with Secure Provenance
Ragib Hasan, University of Illinois at Urbana-Champaign; Radu
Sion, Stony Brook University; Marianne Winslett, University of
Illinois at Urbana-Champaign

Ragib Hasan presented a secure provenance scheme imple-
mented at the application level. Hasan highlighted that most
previously developed provenance schemes were applied in
the domain of scientific applications. The provenance sys-
tem developed in this paper is designed to be more secure
so that it may be applied in finance or business applications.
The authors designed a system that aims to prevent unde-
tectable history rewriting. That is, any change or deletion of
provenance information must be detectable.

Hasan described their method for providing secure prov-
enance. The method uses the concept of a provenance
chain which is made up of provenance entries (records of
users’ modifications and context). Adversaries in the system
include users who may add or delete provenance entries or
collude with each other to modify entries (more detail about
adversaries in Hasan et al., ACM Storage SS 2007). Auditors
are trusted entities who may verify the accuracy of the prov-
enance chain by using checksums to prevent undetectable
changes to the provenance entries. This is done by comput-
ing the checksum of an entry as a function of the previous
entry’s checksum and the new entry. Selective confidential-
ity is provided by encrypting the modification details and
distributing the encryption key in such a way that only the
auditors trusted by a user can see modification details. The
scheme also allows selective disclosure to third parties by
redaction of sensitive attributes without invalidating the
integrity checksums. Hasan also talked about experimen-
tal results: for most typical real-life workloads, this secure
provenance scheme incurs only 1%–13% runtime overhead.

The audience raised the issue of how the provenance system
could handle a document that may be composed of multiple
elements (e.g., an HTML page). Hasan stated that the cur-

72	 ; LO G I N : 	VO L . 	3 4, 	N O. 	3

rent scheme is applied to a single file but that a provenance
chain may also be constructed for a whole document. The
issue of security guarantees when multiple users collude
and create multiple entries was also raised. Hasan stated
that the colluding users can only modify their own entries
and would not be able to tamper with provenance entries
from benign users.

Hasan provided a URL for more information: http://tinyurl
.com/secprov. [See p. 12 for an article about this paper.]

n	 Causality-Based Versioning
Kiran-Kumar Muniswamy-Reddy and David A. Holland,
 Harvard University

Kiran-Kumar Muniswamy-Reddy began by explaining
a motivating example for causality-based versioning. He
described the situation in which a piece of software is
installed, but when it is uninstalled some changed files re-
main. A versioning system would enable a user to roll back
the system but would not provide information about which
files were modified. In another example, users continue
their database work even after a malicious entity begins to
tamper with the database. In these cases it is important not
only to roll back the system, but also to know which pieces
of data were modified (that is, which bits to keep).

Muniswamy-Reddy contrasted two different versioning
schemes, open-close and version-on-write. Open-close
is coarse-grained and versions when files are opened or
closed, while version-on-write is fine-grained, creating a
version for each write. Open-close has much lower overhead
than version-on-write, but also provides less fine-grained
versioning.

Muniswamy-Reddy then described the Cycle-Avoidance and
Graph-Finesse algorithms proposed by his paper. Cycle-
Avoidance preserves causality, but only uses local informa-
tion when deciding to create a new version. As a result, it
creates more versions than necessary. However, by only
using local information, it has lower overhead. The Graph-
Finesse algorithm uses global knowledge and as a result
creates fewer versions. However, it has higher overhead than
the Cycle-Avoidance algorithm. Implementation results were
shown and the authors concluded that adding causality to
versioning-based systems only increases overhead by 7%.

The audience asked how the system would compare to the
open-close method on a single process. Muniswamy-Reddy
emphasized that the causality becomes necessary only when
a second process is present. The audience also asked how
the algorithm would perform in a system with a large num-
ber of files. The author stated that for Cycle-Avoidance it
would depend on the size of the local data, but that Cycle-
Avoidance would perform much better than Graph-Finesse,
which uses global data.

n	 Enabling Transactional File Access via Lightweight Kernel
Extensions
Richard P. Spillane, Sachin Gaikwad, Manjunath Chinni, and
Erez Zadok, Stony Brook University; Charles P. Wright, IBM T.J.
Watson Research Center

Richard Spillane presented the audience with the results of
his work extending the kernel to support transactional file
access. Spillane described Valor, a file interface that requires
only a small amount of modification to the page writeback
mechanism and some additional module code. Valor adds
seven new system calls to the kernel that allow processes to
utilize atomic, consistent, isolated, and optionally durable
transactions. In serial overwrite benchmarking tests, Spill-
ane noted that Valor is 2.75 times slower than ext3, but it
has lower overhead than Stasis, which runs 4.8 times slower
than ext3. Spillane also showed that Valor outperforms
Berkeley DB by a factor of 8.22.

An audience member asked if Valor performed dependency
resolution between transactions. Spillane referred the ques-
tioner to the paper for details of Valor’s isolation semantics.
The audience also asked for more detail on the kernel and
user-space implementations. Spillane explained that moving
transactional support to the user level is difficult because
performance will be impacted. Also, kernel support gives
transactional support true transparency. The impacts of the
transactional support on non-transactional I/O were also
discussed. Spillane stated that non-transactional writes to a
page that was being written to by a transaction would have
to wait for both page writeback and any isolation locks on
that page to be released. Margo Seltzer commented that the
benchmarking workload used was not one that Berkeley
DB (BDB) was made for and that the configuration would
have also impacted the performance of BDB. She also noted
that the page size chosen for BDB was sub-optimal. Spillane
pointed out that Stasis provides an upper bound on the
performance of BDB since it also utilizes a user-space page
cache implementation, but Stasis is not restricted to writing
into a B-Tree.

diagnosis

Summarized by Ragib Hasan (rhasan@uiuc.edu)

n	 Understanding Customer Problem Troubleshooting from
Storage System Logs
Weihang Jiang and Chongfeng Hu, University of Illinois at
Urbana-Champaign; Shankar Pasupathy and Arkady Kanevsky,
NetApp, Inc.; Zhenmin Li, Pattern Insight, Inc.; Yuanyuan Zhou,
University of Illinois at Urbana-Champaign

Weihang Jiang presented a tool for analyzing storage system
logs to assist in customer troubleshooting. Today’s complex
storage systems need to deal with constant failures, which
cause costly service downtime. Manual troubleshooting is
also very costly for vendors. Problems may happen at differ-
ent layers. Customer problem issues are reported to vendor
support centers in two ways: human-generated reports (e.g.,

; LO G I N : 	 j u N e	20 0 9	 cO N fe re N ce	re p O rT s	 73

phone call, email) and automated built-in monitoring tools
(e.g., storage system logs). Jiang said that manual processing
of customer service requests often has a long turnaround
time. He argued that by analyzing logs in a systematic way,
it is possible to troubleshoot many problems automatically.

The authors analyzed a large problem database containing
600,000 problem cases and 300,000 logs. They found that
hardware fault and misconfiguration are the main causes
of problems. Software bugs caused only 3% of the errors,
but they required a larger amount of troubleshooting time.
Most of the customer problems are low-impact, and only
3% caused system crashes. Jiang described three techniques
for analyzing logs: using critical events only; using single
events; or combining multiple events. A score is computed
based on how well the event signature can uniquely identify
the cause. Jiang commented that they found logs to be noisy
and verbose. Important log events are not easy to locate or
link together. However, it is possible to identify and link
patterns in the logs with specific types of problems. By
applying clustering techniques, the tool described in the
paper can help identify the causes of problems and help in
troubleshooting.

An audience member asked what the authors do when an
error starts as a hardware error but later causes software
errors. Jiang replied that they only consider the initial cause
when classifying errors. When asked why software errors
are so expensive, Jiang explained that hardware errors are
easy to solve simply by replacing the malfunctioning hard-
ware component. But replacing software is not so easy. The
audience raised the question of whether proactive action can
be taken on the fly when a SCSI bus problem is detected.
Jiang argued that not all SCSI errors lead to a problem,
and finding the correlation between the SCSI error and a
problem/crash is challenging. Finally, a question was raised
about the nature of the study and whether the underlying
system’s properties changed during the study, e.g., after
a software version update. Jiang replied that instead of a
single type of system, they had studied a large number of
logs from different storage systems, and most of the errors
were caused by failing hardware rather than software. [See
the related article on p. 31.]

n	 DIADS: Addressing the “My-Problem-or-Yours” Syndrome
with Integrated SAN and Database Diagnosis
Shivnath Babu and Nedyalko Borisov, Duke University; Sandeep
Uttamchandani, Ramani Routray, and Aameek Singh, IBM
Almaden Research Center

Nedyalko Borisov presented DIADS, a tool that provides a
holistic view of query execution and assists SAN and DBMS
administrators during troubleshooting. The authors applied
machine learning techniques and expert knowledge, and
also implemented a data abstraction called Annotated Plan
Graph (APG) that carefully integrates the DBMS and SAN
monitoring data.

Borisov discussed various challenges in building the APG
and how to solve them. He introduced a running example
of SAN misconfiguration that causes performance degrada-
tion of a business intelligence query. In the DIADS work-
flow, the administrator first specifies the queries that had
satisfactory and those that had unsatisfactory performance.
The set of operators correlated with the query’s performance
are then identified, and an anomaly score is computed using
the kernel density function. Later, these operators are used
to look into related SAN components and calculate the
anomaly score for them. Next, a symptom database is used
to identify the root cause(s). Borisov discussed several chal-
lenges, such as expressiveness of the symptoms and missing
symptoms. Once a root cause is identified, DIADS calcu-
lates its impact on the query performance. This reduces
false positives and negatives and allows identification of
high-impact root causes. Borisov concluded by presenting
DIADS’ evaluation scenarios, which consisted of incremen-
tal increase in complexity of the problems and investigation
of the tool’s ability to diagnose them.

An audience member asked whether DIADS can diagnose
problems when the real SAN is replaced with a virtual-
ized one. Borisov explained that monitoring data needs to
be collected from the virtualization level of the SAN, and
that DIADS will then be able to provide diagnosis. Another
questioner asked whether the authors have considered
creation of a performance metrics library to provide more
useful monitoring data. Borisov argued that it is not known
in advance when a problem will happen; thus, having
intrusive data collection enabled all the time would cause a
significant performance hit on the production system.

work-in-progress reports (wips)
part one

Summarized by Michelle Mazurek
(mmazurek@andrew.cmu.edu)

n	 Progress on FileBench
Andrew Wilson, Sun Microsystems

Wilson discussed recent additions to FileBench, a model-
based approach to improving file system benchmarking.
Existing macro benchmarks are too time-consuming, while
existing micro benchmarks are not comprehensive enough.
In addition, the wide variety and lack of standardization
in benchmarking can be frustrating. FileBench solves this
problem by allowing the tester to model workloads in a
high-level language, quickly run the test, and collect results.
Recently added features include random variables, multi-
client support, extension to support file sets as well as indi-
vidual files, and composite operations that resemble inline
subroutines. An NFSv3 plugin is nearing completion.

74	 ; LO G I N : 	VO L . 	3 4 , 	N O. 	3

n	 When “More and More” Does Not Help: Sensible Partition-
ing of Cache
Hamza Bin Sohail, Purdue University

Bin Sohail presented a new approach to partitioning the
buffer cache among applications. Current algorithms that
do not partition the cache can result in cache hogging by
certain processes, to their detriment. Bin Sohail proposes
partitioning the cache and allocating larger portions to
“good” processes whose instantaneous hit ratio increases as
cache allocation increases. Simulation results indicate that
statically allocating more cache to a historically “good” pro-
cess and less cache to a historically “bad” process results in
increased system performance. The next step is to partition
the cache dynamically by monitoring processes as they run;
it remains to be seen how effective this method will be and
how much overhead it will require.

n	 Solving TCP Incast in Cluster Storage Systems
Vijay Vasudevan, Hiral Shah, Amar Phanishayee, Elie Krevat,
David Andersen, Greg Ganger, and Garth Gibson, Carnegie
 Mellon University

Vasudevan discussed the TCP incast problem, which oc-
curs when synchronized reads in a cluster environment
cause TCP timeouts, resulting in a throughput collapse.
The default 200 ms delay between TCP retransmissions is
too long and wastes resources; can reducing or eliminat-
ing this lower bound provide a safe, effective, and practical
solution? The standard TCP implementation relies on timers
with millisecond granularity; a 5 ms timeout improves
performance on systems with small stripe widths but fails
for larger stripe widths. Using the Linux kernel’s high-
resolution timer with microsecond granularity, the incast
problem can be avoided for at least 47 concurrent senders.
As datacenters move toward increased bandwidth and more
servers, response time at the latency of the network will be
increasingly important. For more information, see tinyurl
.com/incast.

n	 Improving I/O Performance by Co-scheduling of I/O and
Computation on Commodity-Based Clusters
Saba Sehrish, Grant Mackey, and Jun Wang, University of
 Central Florida

Sehrish presented a framework for more efficient scheduling
of Map-Reduce tasks in a fault-tolerant system like Hadoop.
The scheduling algorithm improves efficiency by intel-
ligently assigning multiple DFS (Distributed File System)
blocks per map task, based on data locality. The algorithm
considers three cases: dependent DFS blocks combined
statically as an application requirement, independent DFS
blocks combined statically to improve performance, and
independent DFS blocks combined dynamically to improve
performance. In the first case, the node with the most
participating DFS blocks is chosen as the host node for
the task, and each remaining block is retrieved from the

node with minimal latency. The second case resembles the
first, but the latency of transferring data to the host node is
compared with the overhead of creating a separate task for
the remote node to determine the optimal configuration. In
the third case, one task is created for each set of co-located
participating blocks; the number of tasks and the number of
blocks per task are determined dynamically.

n	 Predictable and Guaranteeable Performance with Through-
put, Latency, and Firmness Controls in Buffer-Cache
Roberto Pineiro and Scott Brandt, University of California,
Santa Cruz

Tolerance of I/O performance degradation ranges from
services that require hard realtime guarantees to those
that require soft guarantees and even those that tolerate
best-effort. Pineiro proposed a system that supports a mix
of such services by providing different levels of predict-
able and guaranteeable performance in the buffer cache. To
enforce hard guarantees, Pineiro focused on coordination of
components in addition to conservative assumptions. The
system uses device time utilization rather than softer met-
rics like bandwidth to manage devices, and it enforces hard
isolation of components. I/O rate and deadline requirements
are enforced both into and out of the buffer cache, which
is partitioned according to I/O properties and performance
requirements. Test results comparing this system to Linux
using CFQ (Completely Fair Queuing) yield more stream
isolation, more stable performance relative to the guarantee
type, and a slight improvement in overall throughput.

n	 NFSv4 Proxy in User Space on a Massive Cluster Architec-
ture: Issues and Perspectives
Philippe Deniel, Commissariat à l’Énergie Atomique, France

Deniel noted that server architectures are evolving from
individual clusters to aggregations of clusters. This presents
a problem for using NFS, as exponential growth in clients
will overwhelm the servers. Deniel proposes using proxy
servers based on the existing NFS-GANESHA tool and
running in user space to solve this problem. Serving an
aggregation of clusters with one main proxy server would
be perfect for read-only workloads; in the real world, write,
create, and delete operations lead to cache incoherency.
To solve this, Deniel is developing a protocol for commu-
nication among proxy servers. The first implementation is
expected by the end of the year.

n	 Comparing the Performance of Different Parallel File
 System Placement Strategies
Esteban Molina-Estolano, Carlos Maltzahn, and Scott Brandt,
University of California, Santa Cruz; John Bent, Los Alamos
National Laboratory

Molina-Estolano presented a trace-driven simulation ap-
proach to comparing file-placement strategies used by dif-
ferent parallel file systems. The goal is to compare only the
file placement strategies rather than the file systems them-
selves. Simulated clients using various placement strategies
are driven by traces from different workloads, including

; LO G I N : 	 j u N e	20 0 9	 cO N fe re N ce	re p O rT s	 75

scientific computing and Web server workloads. The effects
of normalizing chunk size and turning off redundancy were
also considered. Preliminary results, which measured bal-
ance across the cluster, found the PanFS and Ceph strate-
gies to be comparably balanced. Turning off redundancy
in Ceph has limited effect, but turning off redundancy in
PanFS increases balance. In addition, reducing chunk size
in Ceph increases balance. Future simulations will measure
performance in addition to balance. Molina-Estolano also
discussed the need for more workload traces, particularly
those related to data-mining and enterprise workloads.

n	 Overlapped HPC Checkpointing with Hardware Assist
Christopher Mitchell and Jun Wang, University of Central
Florida; James Nunez and Andrew Nelson, Los Alamos National
Laboratory

Mitchell noted that as high-performance computing systems
get larger, they spend more and more time on failure mitiga-
tion processes such as checkpointing and error recovery,
reducing system utilization. To solve this problem, either
checkpoints must write less data or they must happen
faster. Mitchell proposed adding a fast, non-volatile check-
point buffer between the application and the file system.
The prototype system will have three main components:
a fleet of servers with connected buffers, a daemon to
migrate checkpoint data from the buffer to the file system,
and an API allowing application developers to access this
checkpoint method. Currently, the servers and daemon are
operational and the API is nearing completion. Prelimi-
nary testing shows significant improvements over existing
methods.

n	 Moderated Collaboration to Modify Shared Files Among
Wireless Users
Surendar Chandra and Nathan Regola, University of Notre
Dame

Chandra presented a system for wireless file collaboration
among multiple authors. Analysis indicates that contempo-
rary users mainly use wireless devices such as laptops and
are typically available for only short sessions with rela-
tively long duration between them. Traditional approaches
such as mandatory locking and epidemic propagation fail
when multiple users are online at the same time. Chandra
proposed creating one writable version of each collabora-
tion file per user; users can also hoard read-only copies of
other users’ versions, distributed via epidemic propagation.
Each user manually reconciles his changes with those of the
other authors until convergence is achieved. Logs that track
causal provenance allow users to determine whether their
changes have been incorporated into the latest version. A
prototype of this system, developed using FUSE, achieves
acceptable performance in terms of memory used as well as
file transfer time.

n	 Probabilistic Reputation for Personal Trust Networks
Avani Wildani and Ethan Miller, University of California, Santa
Cruz

Wildani discussed the issue of trust verification in peer-
to-peer storage. Out-of-band trust verification such as
OpenPGP’s web of trust is difficult and expensive. Wildani
proposed an alternative approach where trust is calculated
dynamically by individual nodes and used to make locally
optimal decisions. Individual nodes sort peers into trust
clusters, where the innermost cluster is most trusted. When
a node successfully reads a file from a peer, the reputation
of that peer is updated. When writing, a node sends out a
number of replicas proportional to the perceived trustwor-
thiness of the recipients. This system limits the severity of
an attack: if a node is compromised, the attacker only gains
information about that node’s trust relationships. Because
there is no central repository of reputation, there is no sin-
gle attack point for poisoning trust relationships. Develop-
ment of a simulated system using PlanetLab is in progress.

work-in-progress reports (wips)
part t wo

Summarized by Rik Farrow

n	 Can Clustered File Systems Support Data Intensive
 Applications?
Rajagopal Ananthanarayanan, Karan Gupta, Prashant Pandey,
Himabindu Pucha, Prasenjit Sarkar, Mansi Shah, and Renu
Tewari, IBM Research

Mansi Shah said that extreme data applications, such
as Web page indexing and genome searches, demand a
storage layer that is scalable and cost-effective, as well as
fault-tolerant. Special file systems like Hadoop Distributed
File System (HDFS) and the Google File System can also
ship computation to the nodes that contain the data to be
searched. Shah argued that cluster file systems, such as
Lustre and IBM’s GPFS, can do that as well. They experi-
mented with GPFS, first increasing the block size, which
worked poorly. But by changing the block allocation scheme
to mimic a large block size, and through exposing block
location via an ioctl() call, they were able to match the per-
formance of HDFS while still maintaining performance for
legacy tasks in GPFS.

n	 Data Destruction: How Can You Destroy Data and Prove It
Is Destroyed?
Dan Pollack, AOL LLC

AOL leases systems and thus has a strong interest in data
destruction techniques that do not involve destroying
hardware. When they return equipment, they must be able
to prove to auditors that they have destroyed any data in
storage. At the same time, storage systems are getting larger:
overwriting a disk at 1GB/sec translates into 3.6TB/hour,
which is slow if you have petabytes to destroy. And the
increased workload on drives during the overwriting pro-

76	 ; LO G I N : 	VO L . 	3 4 , 	N O. 	3

cess can result in failed drives before the overwrite can be
completed. They saw a five-fold increase in device failures
during the most recent attempt at destroying data. Pollack
asked the community for help in coming up with effective
ways of destroying data.

n	 SmartStore: A New Metadata Organization Paradigm with
Semantic-Awareness
Yu Hua, Huazhong University of Science and Technology; Hong
Jiang, University of Nebraska—Lincoln; Yifeng Zhu, University
of Maine; Dan Feng, Huazhong University of Science and Tech-
nology; Lei Tian, Huazhong University of Science and Technol-
ogy and University of Nebraska—Lincoln

Lei Tian posed the problem of finding files in very large
systems where there may be millions of files and nearly
an exabyte of storage. Tian said their system, SmartStore,
is different from Spyglass (FAST ’09) in that it groups and
stores files according to their metadata semantic correla-
tions. They use Latent Semantic Indexing to measure
semantic correlations and construct multiple logical R-trees
that improve search. Tian used graphs to demonstrate the
dramatically improved performance of range searches (e.g.,
all files that took less than 30 minutes to generate and are
less than 2.6GB) and top-k queries (e.g., find the top ten
matching files) over a conventional file system and a DBMS
with stored metadata. Their prototype emulates I/O behav-
iors of a large storage system by scaling up I/O traces both
spatially and temporally for testing purposes.

n	 Making the Most of Your SSD: A Case for Differentiated
Storage Services
Michael Mesnier and Scott Hahn, Intel Corporation; Brian
 McKean, LSI Corporation

Michael Mesnier introduced the notion of Differentiated
Storage Services (DSS) as a method for making the most
out of SSDs when mated with disks. They modified ext3 by
adding policies that assign quality of service (QoS) levels for
different classes of writes, with metadata, journal, direc-
tory, and small files being given priority. The main idea is to
separate policy from hardware implementation so that file
systems can assign a QoS to a write request that the hard-
ware can optionally respond to. Mesnier argued that simply
using an SSD coupled with a hard drive as a cache wastes
potential performance gains. He also said that this work ap-
plies not only to SSD but to other storage hierarchies.

n	 On the Consistability of Storage Systems
Amitanand Aiyer, Eric Anderson, Xiaozhou Li, Mehul Shah, and
Jay J. Wylie, HP Laboratories

Amitanand Aiyer defined consistability as an attempt to
describe the different levels of consistency found in a stor-
age system at any point in time. In a perfectly performing
storage system, the system may provide atomic consistency.
But in a system that experiences some fault 20% of the time,
the system provides atomic consistency 80% of the time and
regular consistency 100% of the time. An example of a fault
would be network partitioning, where the ability to get that

last value put into the system degrades into the ability to get
one of K most recent values.

n	 Speedy and Scalable File-System Benchmarking with
 Compressions
Nitin Agrawal, Andrea C. Arpaci-Dusseau, and Remzi H.
Arpaci-Dusseau, University of Wisconsin—Madison

Nitin Agrawal explained how their tool, Compressions,
can be used to simulate very large storage systems. As the
amount of disk storage has grown, it has become more dif-
ficult to create realistic simulations for benchmarking, and
synthetic benchmarks are also hard to create. Compressions
allows an evaluator to run a large benchmark using a much
smaller disk—for example, 100GB to simulate 1 terabyte.
They do this by doing away with all data blocks and laying
out metadata blocks (inodes, directories, indirect blocks,
etc.) more efficiently on disk. All data writes are discarded,
and reads are supplied with mock data that may resemble
what is expected. Delays are added to disk operations to
simulate full-scale operation while using just 10% as much
disk space.

n	 Out-of-Place Journaling
Ping Ge, Saba Sehrish, and Jun Wang, University of Central
Florida

Ping Ge presented work on improving the performance of
journaling file systems. Journaling file systems maintain
system integrity through atomic writes by writing to the log
(journal) and then by committing the log entries. The sec-
ond step proceeds by copy-on-write (COW) or by updating
pointers to the data written by the log. Ping Ge presented a
third mechanism, which they have implemented and tested
in ext3: they use a mapping layer between the file system
and the device driver to map logical blocks. After data gets
written to the log, the mapping layer commits this data by
redirecting requests for the data to the blocks in the log. If
the system crashes, description records in the log can be
used to rebuild the mapping layer.

poster session

Summarized by Madalin Mihailescu (madalin@cs.toronto.edu)

n	 On the Consistability of Storage Systems
Amitanand Aiyer, Eric Anderson, Xiaozhou Li, Mehul Shah, and
Jay J. Wylie, HP Laboratories

Amitanand Aiyer proposed quantifying the consistabil-
ity modes of a storage system under various operating
conditions. The intuition is that systems that offer differ-
ent consistency levels can be compared by estimating the
percentage breakdown of the levels each system achieves in
the presence of various failure scenarios. Current work is
being conducted to better understand design/implementa-
tion trade-offs for a key-value store.

; LO G I N : 	 j u N e	20 0 9	 cO N fe re N ce	re p O rT s	 77

n	 Can Clustered File Systems Support Data Intensive
 Applications?
Rajagopal Ananthanarayanan, Karan Gupta, Prashant Pandey,
Himabindu Pucha, Prasenjit Sarkar, Mansi Shah, and Renu
Tewari, IBM Research

Mansi Shah argues that cluster file systems such as Lus-
tre and PVFS can be tweaked to support data-intensive
applications, thus eliminating the need for specialized file
systems, e.g., GFS and Hadoop DFS. One advantage with
this approach comes from deploying a single file system that
supports both data-intensive and legacy applications. The
authors changed IBM’s GPFS to accommodate the Map-Re-
duce framework. Preliminary evaluation shows comparable
performance with Hadoop DFS.

n	 Adaptive Context Switch for Very Fast Block Device
Jongmin Gim, Kwangho Lee, and Youjip Won, Hanyang Univer-
sity, Korea

Jongmin Gim notices that context-switching processes when
performing I/O could be inefficient when using current
non-volatile memory drives, such as SSDs. This is based on
the observation that context-switch overhead can be as high
as 300µs, while I/O access time on SSDs is an order of mag-
nitude lower. To address this problem, the authors built an
adaptive context-switch algorithm. The algorithm tries, by
analyzing I/O response times, to determine whether context
switch is beneficial. Preliminary results show performance
improvements of up to 16%.

n	 SmartStore: A New Metadata Organization Paradigm with
Semantic-Awareness
Yu Hua, Huazhong University of Science and Technology; Hong
Jiang, University of Nebraska—Lincoln; Yifeng Zhu, University
of Maine; Dan Feng, Huazhong University of Science and Tech-
nology; Lei Tian, Huazhong University of Science and Technol-
ogy and University of Nebraska—Lincoln

SmartStore targets the problem of efficient metadata
retrieval in large-scale storage systems. In particular, it
focuses on range queries and top-k queries. It uses Latent
Semantic Indexing to group semantically correlated files,
based on their metadata. Furthermore, an R-tree is used to
store the metadata, based on the grouping obtained from
LSI. Compared against an R-tree scheme without semantic
knowledge and a DBMS, SmartStore has very low query
latency numbers.

n	 Comparing the Performance of Different Parallel File
 System Placement Strategies
Esteban Molina-Estolano, Carlos Maltzahn, and Scott Brandt,
University of California, Santa Cruz; John Bent, Los Alamos
National Laboratory

Esteban Molina-Estolano proposed a comparison among
the various placement strategies implemented in current
parallel file systems. He implemented a basic simulator for
the placement strategies used in Ceph, PanFS, and PVFS.
Preliminary evaluation using real and synthetic I/O traces
showed the three file systems having comparable placement

techniques in terms of balance. The chunk size and redun-
dancy strategy used by each file system have an impact on
the balance. Future work includes improving the simulator
to allow for performance comparison.

n	 Supporting Data-Intensive Applications on Accelerator-
Based Distributed Systems
M. Mustafa Rafique, Ali R. Butt, and Dimitrios S. Nikolopoulos,
Virginia Tech

Mustafa Rafique argues that current large-scale clusters
that leverage computational accelerators, such as GPUs, for
high-performance computing implement either ad hoc or
specific solutions. Thus, there is a need for understanding
alternative designs in this space, depending on the capabili-
ties of various accelerators, in the context of data-intensive
applications. Accelerators are classified based on their
compute power and, mainly, the extent to which they can
manage external resources, e.g., I/O devices. This led to
four configurations, which were evaluated against a number
of Map-Reduce applications. The experimental setup was
built using Sony PS3s and a multicore cluster. Future work
will try to make the framework more generic.

n	 Exploiting the Overlap Between Temporal Redundancy and
Spatial Redundancy in Storage System
Pengju Shang, Saba Sehrish, and Jun Wang, University of Cen-
tral Florida

Pengju Shang proposed bridging the gap between applica-
tion-level temporal redundancy techniques (e.g., a database
log record) and storage-level spatial ones (e.g., RAID). The
authors built a transactional RAID, or TRAID, for database
systems, which aims to take advantage of the redundancy
overlap. TRAID lowers the log wait time and log size while
ensuring the database ACID semantics. Results show that
TRAID can improve RAID by 40–50%, depending on the
RAID version. Current work is being done to adapt this
technique to versioning file systems, e.g., ext3cow.

n	 Using Realistic Simulation to Identify I/O Bottlenecks in
MapReduce Setups
Guanying Wang and Ali R. Butt, Virginia Tech; Prashant Pandey
and Karan Gupta, IBM Almaden Research

Dumbo is a simulator for the MapReduce framework. It can
be used to analyze application performance by understand-
ing the impact of various configuration parameters for typi-
cal MapReduce deployments, e.g., storage, compute capacity,
network topology, or data layout. The analysis is done with
minimal resources. A prototype implementation managed
to uncover a network-related performance inefficiency in
Hadoop, an open source version of MapReduce.

[Editor’s Note: Many more posters were not summarized or
have been summarized as WiPs. See http://www.usenix.org/
events/fast09/poster.html for the full list of posters and their
abstracts.]

78	 ; LO G I N : 	VO L . 	3 4 , 	N O. 	3

scheduling

Summarized by Brandon Salmon (bsalmon@ece.cmu.edu)

n	 Dynamic Resource Allocation for Database Servers
 Running on Virtual Storage
Gokul Soundararajan, Daniel Lupei, Saeed Ghanbari, Adrian
Daniel Popescu, Jin Chen, and Cristiana Amza, University of
Toronto

The paper includes two parts: building a latency model, and
building a resource partitioner which operates on this la-
tency model. They consider three resources in their models
and controllers: file system cache, database buffer pool, and
disk bandwidth.

To build the cache models, they observe that if the caches
are LRU, then the larger cache dominates the smaller, so
they simulate both the file system and database caches as
a single cache of the size of the larger cache. To model the
disk, they model the latency based on the latency the appli-
cation would have with the disk to itself, and they assume a
large sharing quanta. To handle cases where the models are
inaccurate, they use cross-validation, and in regions where
the models are inaccurate, they sample and interpolate.

Given these models, they can provide multi-level resource
allocations, which give up to 3x performance improvement
over a conventional single-level resource allocator.

n	 PARDA: Proportional Allocation of Resources for
 Distributed Storage Access
Ajay Gulati, Irfan Ahmad, and Carl A. Waldspurger,
VMware Inc.

This paper focused on providing proportional resource
allocation, based on tickets given to each VM to specify its
relative importance, to virtual machines running on several
different physical hosts without requiring coordination
between the physical machines.

Host-level schedulers are not sufficient, since each host may
have multiple VMs. To address the problem they keep a
queue for each host based on the proportion of the tick-
ets given to that host. To avoid problems with choosing
metrics, each VM is given some number of slots which it
is allowed to keep full at any given time. However, PARDA
needs to be sure that the queue is appropriately deep to
avoid increasing latency above a threshold.

To do so, each VM tracks the latency to a common shared
file and then adjusts the queue length appropriately. Evalu-
ations show that this allows PARDA to provide proportional
sharing with minimal impact on performance.

n	 CA-NFS: A Congestion-Aware Network File System
Alexandros Batsakis, NetApp and Johns Hopkins University;
Randal Burns, Johns Hopkins University; Arkady Kanevsky,
James Lentini, and Thomas Talpey, NetApp

Awarded Best Paper!

Conventional NFS systems are prone to problems with
congestion on the network when too much traffic is going to
the servers. However, in conventional systems the clients do
not know how to trade off the various resources consumed
by operations. CA-NFS approaches this problem by assign-
ing a price to each resource in the system based on the cur-
rent scarcity of that resource, and then combining to pro-
vide a utilization metric. CA-NFS considers the resources:
server CPU, client and server network, server disk, client
and server memory, and client read-ahead effectiveness.

This allows clients to make decisions about whether to send
asynchronous writes or reads back to the server, for ex-
ample, or whether to hold them in local memory instead. It
does so by comparing the price it would be willing to pay to
free its resources with those consumed by the server. Evalu-
ations show that these methods provide a 20% performance
improvement over standard NFS for several workloads.

tools you wish you had

Summarized by James Hendricks
(James.Hendricks@cs.cmu.edu)

n	 Sparse Indexing: Large Scale, Inline Deduplication Using
Sampling and Locality
Mark Lillibridge and Kave Eshghi, HP Labs; Deepavali Bhagwat,
University of California, Santa Cruz; Vinay Deolalikar, HP Labs;
Greg Trezise and Peter Camble, HP Storage Works Division

Mark Lillibridge presented his results on data dedupli-
cation for disk-to-disk backup. As disks get bigger and
cheaper, backing up to disk rather than tape makes sense
and provides many benefits. Unlike tape, the random ac-
cess available with disks allows for deduplication of data.
Data deduplication replaces duplicate data with pointer(s)
to the original data. One approach to data deduplication is
chunk-based deduplication, in which data is broken into
chunks and the chunks are hashed. Under the standard of
implementation, the hash values are then looked up in a
table kept in RAM. If the hash value for a particular chunk
is already present in the table, that chunk has already been
stored, so only a pointer to that chunk is stored. If no hash
value is found, that entire chunk is stored and its hash value
is added to the table. The problem with this approach is
that 100 terabytes of physical disk requires over 1 terabyte
of hash values, which exhausts available RAM. One op-
tion is to store hashes on disk, but then each chunk lookup
requires a slow disk lookup.

Storing hashes on disk but caching recently used hash
values does not work, because backup streams exhibit little
temporal locality. For example, a file will be read today,

; LO G I N : 	 j u N e	20 0 9	 cO N fe re N ce	re p O rT s	 79

then terabytes of other data will be read, and then the file
will be read tomorrow. Instead of temporal locality, backup
workloads exhibit chunk locality, which means that if a
chunk reoccurs, it tends to occur near other chunks that
were nearby when it was last seen. Rather than tracking all
hashes in RAM, this paper uses a technique called sparse
indexing. Consecutive chunks of data are grouped into seg-
ments, and only a few hashes are sampled per segment. The
sampled hashes form a sparse index that fits in RAM. To
back up a segment, its samples are looked up in the sparse
index to find previously backed up segments that contain a
lot of chunks in common with the new segment. The new
segment is then deduplicated against a few of the found seg-
ments by loading in from disk lists of the chunks contained
in those segments. By chunk locality, over 99% of the dupli-
cate data can be removed this way even though only a small
number of segments rather than the entire store are dedu-
plicated against. Thus, sparse indexing allows deduplication
of large-scale backup data.

Hakim Weatherspoon of Cornell University asked how
much of the gain was due to a common chunk such as
the chunk of all zeroes. Mark said that removing the top
100 most common chunks often reduced the data size by
1%, but sometimes by up to 10%. Hugo Patterson, CTO of
Data Domain, asked about read performance compared to
the approach in last year’s paper from Data Domain. Mark
said that chunks are stored in the same way as last year’s
paper proposed, so read performance should be similar. Bill
Bolosky of Microsoft Research asked why chunk size makes
much difference. Mark said that files often aren’t quite the
same. Bill also questioned whether compressing data before
storing would do as well as suggested in the paper, because
a lot of data is already compressed (music, archives, etc.).
Mark replied that it varies widely.

n	 Generating Realistic Impressions for File System
 Benchmarking
Nitin Agrawal, Andrea C. Arpaci-Dusseau, and Remzi H.
Arpaci-Dusseau, University of Wisconsin, Madison

Awarded Best Paper!

“For better or for worse, benchmarks shape a field” (Dave
Patterson). Nitin Agrawal presented a tool, Impressions, that
creates representative file system images for benchmarking.
The community already knows properties of metadata and
disk fragmentation, and Nitin argued that there is a need
for an easy-to-use tool to create representative, controllable,
and reproducible file system images. Impressions provides
such functionality by taking file system distributions as
input along with user-specified parameters such as total file
system size. For example, Impressions can use the metadata
distribution from the presenter’s FAST ’07 paper. Impres-
sions has an advanced mode where several knobs can be
turned and a basic mode that provides reasonable defaults.

Impressions uses a generative probabilistic model to create
files and directories. Each directory is created, then a par-

ent is chosen according to a probability model. Each file is
created and its size, extension, and parent are created by a
similar model. Traditionally, file sizes were assumed to be
distributed lognormal. More recent studies have shown a
bimodal distribution. Impressions’ model of file system size
is hybrid, using a lognormal body but a Pareto tail. Files are
generated according to size model and then are attached to
directories.

The tool will be available soon at http://www.cs.wisc.edu/
adsl/Software/Impressions.

Ajay Gulati of VMWare asked if the tool could be aug-
mented to run in reverse, such that one could run it on a
machine to extract statistical properties and then generate a
reasonable file system. Nitin said he had something simi-
lar for in-house testing but a full version for release is not
available. Drew Wilson of Sun said FileBench already does
this. Nitin replied that his contribution was to allow one to
contribute newer designs and data sets and to make it easier
to plug in distributions. Mike McThrow of Cal Poly San Luis
Obispo asked if image creation is reproducible. Nitin said
the random seeds can be set for reproducibility. Geoff Kuen-
ning of Harvey Mudd University asked how long it takes
to build a big image. Nitin said the tool currently writes
images at10MB/sec, but the tool could be optimized to go
much faster. The last questioner asked if filename length
was modeled. Nitin said filename lengths in the data sets
were anonymized.

n	 Capture, Conversion, and Analysis of an Intense NFS
Workload
Eric Anderson, HP Labs

This paper describes new industrial-strength NFS trac-
ing techniques needed to capture workloads at scale. The
goal was to collect a customer’s NFS traces, but standard
techniques failed due to the huge volume of data. Many
improvements were incremental, but all were needed to
achieve the goal. Eric wanted to highlight two big take-
away points. First, if you take traces, read the paper and
apply the techniques. For example, future traces should not
drop packets—lindump, driverdump, or endacedump can
capture traces without dropping packets. The improved data
analysis techniques allow for handling these gigantic traces
on modest systems. Second, if you need workloads, look at
the ones he describes here. The workload is much different
and significantly larger than prior workloads. All of the data
and tools are open-sourced under a BSD license, so anyone
can reproduce the results of the paper or conduct further
analysis. Eric argued that there is an acute need for new
traces. There are many different workloads but few traces
over the past decade, so trace-based studies do not reflect
most modern workloads. Eric encouraged the community to
publish more traces and more trace analysis.

The customer was a feature animation (movie) company.
The applications read models, textures, and animation
curves and wrote intermediates and pictures. There were

80	 ; LO G I N : 	VO L . 	3 4 , 	N O. 	3

thousands of clients, tens of NFS servers, twenties of NFS
caches, many rack switches, and a few core routers. The
workload was different from many that have been previ-
ously studied. For example, most files have a single read, so
any prefetch mechanism must work across files. The work-
load was very intense, which reduces the need to arbitrarily
speed up a replay of the trace to evaluate a system. The
workload also had many small files, which means that re-
playing the trace would really stress a system’s performance.

The tools are available from http://tesla.hpl.hp.com/open-
source/, and the traces are available from http://apotheca.
hpl.hp.com/pub/datasets/animation-bear/.

Brent Welch of Panasas asked if Eric could figure out the
working set for the textures and models. Eric replied that
he didn’t do much analysis on the trace, but he hopes other
researchers will explore the trace in more depth. Brent
Callaghan of Apple asked if packet reassembly was done
to process readdir. Eric replied that a flaw discussed in the
paper prevented this.

metadata and op timization

Summarized by Avani Wildani (agadani@gmail.com)

n	 Spyglass: Fast, Scalable Metadata Search for Large-Scale
Storage Systems
Andrew W. Leung, University of California, Santa Cruz;
 Minglong Shao, Timothy Bisson, and Shankar Pasupathy,
 NetApp; Ethan L. Miller, University of California, Santa Cruz

Searching through petascale storage systems has become
more and more difficult to manage. Current techniques
include crawling metadata or building a DBMS that mirrors
the system’s metadata. Leung described the approach used
in Spyglass as creating a versioned metadata index that gets
stored as part of the storage server.

The authors surveyed users to get a list of requirements and
analyzed storage systems used at NetApp and UCSC. They
found that most searches involved multiple search param-
eters and had strong locality. For example, a user searching
for lost files only needs to search within her own partition
of the storage system. Spyglass takes this further, with hier-
archical partitioning and signature files that use a bit map
to provide hints for the classes of metadata found within
each partition. Spyglass also takes advantage of a feature of
NetApp’s WAFL file system, snapshots, so that updating the
index only involves looking at new versions of files. They
compared the performance of Spyglass to systems based
on PostgreSQL and MySQL and found that Spyglass could
answer most queries in less than a second, something that
the DBMS versions could only occasionally accomplish.

An audience member asked how they deal with directory
renaming. Andrew answered that since the index itself is
versioned, the next version reflects the rename. Versions
are merged over time to recover space, and the partitioning

strategy isn’t strict, so even if the directory is moved, the
worst that happens is that two partitions get searched.

n	 Perspective: Semantic Data Management for the Home
Brandon Salmon, Carnegie Mellon University; Steven W.
Schlosser, Intel Research Pittsburgh; Lorrie Faith Cranor and
Gregory R. Ganger, Carnegie Mellon University

Brandon Salmon made a polished presentation clearly
demonstrating the need for semantic file naming and
transparent file migration for nontechnical users. He began
by describing case studies of users to learn how file names
are used. As an example, Brandon described how a student
might want to find a song by a particular artist and copy it
to another device she owns. The problem is that iTunes, for
example, organizes files semantically, by artist, album, and
song, whereas the Mac Finder uses hierarchical names that
do not map clearly to the iTunes view.

Perspective addresses the core issues in several ways. It
captures the decentralized nature of devices by being P2P. It
allows semantic management of data, allows for rule-based
data management, and provides a way for automation tools
to do things for the user while giving the user readable
feedback. Perspective provides a global namespace across
devices. Files are accessible through FUSE, and any replica
of a file can be modified at any time. Devices aren’t forced
into a topology, and conflicts are handled similarly to previ-
ous systems. Views are used in file management: if a user
wants all of her files on a given device—on a cell phone or
a desktop, for example—she can specify that in a view. An
automated system may ask to move files across from the
phone to the desktop if the phone fills, and it will modify
the views as it does. The views are human-readable, to
make it easy to customize any automated decisions.

The first question was what happens if devices run out of
space when copying a file for redundancy. Brandon an-
swered that Perspective will never drop a file. The next
questioner asked about results showing 60% accuracy in
user testing of Perspective and wondered what was difficult.
Brandon said that the interface they designed is overwhelm-
ing at first, and that the notion of hierarchy, as displayed
with click and expand, is difficult for some people. After
the Q&A completed, Brandon continued to be plied with
questions.

n	 BORG: Block-reORGanization for Self-optimizing Storage
Systems
Medha Bhadkamkar, Jorge Guerra, and Luis Useche, Florida In-
ternational University; Sam Burnett, Carnegie Mellon University;
Jason Liptak, Syracuse University; Raju Rangaswami and Vagelis
Hristidis, Florida International University

Medha Bhadkamkar explained that BORG uses a special
partition, called BOPT, as a write cache and for storing fre-
quently accessed blocks. They created heat maps for differ-
ent workloads (office, developer, subversion server, and Web
server) and discovered that unique reads are a small portion
of disk data but are spread out over the entire volume. Also,

; LO G I N : 	 j u N e	20 0 9	 cO N fe re N ce	re p O rT s	 81

non-sequential block accesses repeat on certain workloads,
and there is substantial overlap in the working sets across
days. Thus, past I/O information can be used to reorganize
data and improve performance. BORG identifies block ac-
cess patterns in the workloads and copies them sequentially
to the BOPT partition. The size of the partition is controlled
by an administrator and includes room for a write buffer,
reducing seek latency.

BORG operates in the background, is independent of the
file system, and can be dynamically inserted and removed.
It maintains consistency with a page-level consistency map.
The architecture consists of user space components, the
analyzer and planner, and kernel space components, the
profiler, indirector, and the BOPT-space reconfigurator.
The analyzer operates when needed and creates a weighted,
directed graph representing the frequency of the accesses
between nodes. These graphs become a master graph for the
planner component to create a new layout. The indirector
directs all writes to the BOPT partition as well as read-
ing blocks stored in this partition. This process is iterative
and continuous. If the BORG module is removed, the dirty
blocks are copied back into the file system. Disk-busy times
were reduced by up to 80% with optimal parameters.

Someone wondered that as the workload on the Web server
was 1% busy time, what the effect was on response time.
There was an improvement of up to 46%. Another person
wondered what happens if the BOPT partition is full and a
write occurs. The write buffer was full during the sensitiv-
ity analysis but not for the rest of the experiments. The final
questioner asked Medha to compare this work to the per-
formance of a logging file system (LFS). Medha responded
that this work is based on LFS in that it tries to make writes
sequential, but it also has good read performance, unlike
LFS.

distributed stor age

Summarized by Dutch Meyer (dmeyer@cs.ubc.ca)

n	 HYDRAstor: A Scalable Secondary Storage
Cezary Dubnicki, Leszek Gryz, Lukasz Heldt, Michal
 Kaczmarczyk, Wojciech Kilian, Przemyslaw Strzelczak, and
Jerzy Szczepkowski, 9LivesData, LLC; Cristian Ungureanu, NEC
Laboratories America; Michal Welnicki, 9LivesData, LLC

Michal Welnicki described HYDRAstor as a scalable dedu-
plication system for the enterprise market. Deduplication
systems are faced with huge volumes of data, requiring scal-
ability at a low cost per terabyte. They also must perform
deduplication globally, be able to differentiate between high
and low value data, and provide failure-tolerant restore
performance. HYDRAstor is a system initially from NEC
research but now successfully commercialized as a grid
storage platform at a variety of capacities. Its architecture
consists of front-end nodes that export an NFS or CIFS
interface and can be scaled for performance, and back-end
nodes that can be scaled for capacity.

The basic unit of storage in HYDRAstor is a synchron, a
collection of subsequently written blocks stored linearly
on disk. Metadata for the system is stored separately for
performance reasons. Failure tolerance is provided through
erasure coding with a standard N of M loss model. Data in
HYDRAstor can be located at any of the back-end nodes,
and request routing is performed with a DHT. Scalabil-
ity, load balancing, and data relocation provide dynamic
performance stability, which was said to be challenging to
implement in concert with deduplication. In his evaluation,
Welnicki showed an instance of HYDRAstor operating at a
full throughput of 600MB/sec. Then a node failure is intro-
duced and the system begins reconstruction. This has the
effect of dropping the user’s throughput to 400MB/sec.

Niraj Tolia of HP Labs asked Welnicki if hashes were
evaluated when data is written out to avoid hash collision.
Welnicki clarified that they weren’t, but they agreed that
they themselves didn’t believe that such precautions were
necessary, given the unlikelihood of such an event.

n	 Smoke and Mirrors: Reflecting Files at a Geographically
Remote Location Without Loss of Performance
Hakim Weatherspoon, Lakshmi Ganesh, and Tudor Marian,
Cornell University; Mahesh Balakrishnan, Microsoft Research,
Silicon Valley; Ken Birman, Cornell University

Hakim Weatherspoon presented Smoke and Mirrors, which
attempts to provide a higher-performance solution to safely
mirroring data on geographically remote servers, specifi-
cally targeting industrial applications. Data stored in a
single cluster is vulnerable to loss if the cluster experiences
a catastrophic error. Since such a data-loss event could be
disastrous, geographically remote shadowing of data is a
very attractive option. However, designers of such a system
are faced with a key decision with respect to performance
and consistency: when can data be reported as safely reach-
ing persistent storage? The performant option is to send a
confirmation when the data reaches nonvolatile RAM on the
local cluster; however, this is not the most reliable option. A
safer but slower approach is to wait for data to be confirmed
at the remote location, a process that is fundamentally lim-
ited by the speed of light.

Smoke considers a middle-ground position where confir-
mations can be sent once the border router transmits data
towards the remote site. Since datacenters operate over
low error-rate fiber, error rates nearing those of disks can
be achieved by sending multiple copies of each packet to
the network. Forward error correction is used to send the
redundant packets and works as an efficient way to miti-
gate network error conditions. The result is a system that is
safer than the local synchronization case and faster than the
remote synchronization case. Weatherspoon was very clear
in stating that the position was a compromise in which data
could still be lost.

The system was evaluated with Emulab over 1GB links.
Congestion and latency were introduced to simulate a geo-

82	 ; LO G I N : 	VO L . 	3 4 , 	N O. 	3

graphically remote fiber connection. Weatherspoon showed
how in this scenario Smoke was able to operate without
data loss, at the cost of 3 extra network packets per 8 pack-
ets of goodput, and with very low overhead. Weatherspoon
pointed to moving the experiments onto large private ring
networks as the next step towards wider adoption.

The audience’s response included concern from two at-
tendees about the assumption that each packet would
experience error in a probabilistically independent manner.
Weatherspoon pointed to the forward error correction as
handling some of the errors associated with, for example,
transient network congestion that could result in a batch of
dropped packets. David Rosenthal of Stanford admonished
everyone present to monitor the loss rate on their networks
(as was done in Smoke), and Stephen Spackman at Quan-
tum praised Weatherspoon for “standing up to the tyranny
of TCP.”

n	 Cumulus: File System Backup to the Cloud
Michael Vrable, Stefan Savage, and Geoffrey M. Voelker, Univer-
sity of California, San Diego

Michael Vrable presented his work on Cumulus, which is a
backup system designed for use with cloud-based storage
systems. Cloud storage services are an emerging area of in-
terest. The very high reliability that can be offered promises
to greatly simplify backup, which continues to be a difficult
problem. However, there is no clear solution to integrating
with such a system.

Vrable began by classifying cloud storage systems along a
spectrum from thick to thin. At the thick end, every aspect
of storage is integrated, providing better efficiency and
easier use. At the thin end, the user is provided with basic
building blocks, but must develop their storage application
independently; Amazon’s S3 is an example.

Cumulus addresses the question of how effectively one can
develop a backup service with the simple interface provided
by thin cloud services. It operates over a simple get/put
object API, with other operations being developed to run on
the client. The goal of the system is to minimize resources
and costs. Internally, a backup is structured as a directed
acyclic graph that mirrors the file system hierarchy. Over
time, new backups are created by duplicating the previous
root node and using copy-on-write. The backup model is
therefore incremental after the initial backup. Complicating
this design is the fact that some storage providers may have
per-file costs. To optimize for this, files can be collected into
larger segments, but at the cost of potential segment frag-
mentation. Such a segment would increase costs by adding
storage overhead. Cumulus implements a defragmentation
utility to mitigate this problem.

In evaluating the system, Vrable showed the result of a
seven-month trace of user data consisting of small data
updates on the order of 10MB/day of new content and
30MB/day of modified content. Cumulus was compared in

simulation against an optimal backup strategy. The assess-
ment concluded that cleaning is necessary, as it maintains
95% segment utilization versus 50% without cleaning. It
also established optimal values for segment size and clean-
ing threshold given a particular pricing structure. Two
existing tools for S3 were found to operate at storage costs
19%–200% higher than Cumulus. Cumulus was also said
to be competitive with Mozy, a thick cloud service that pro-
vides unlimited storage at $5 per month for noncommercial
users.

Irfan Ahmad from VMware asked if Cumulus could provide
deduplication or data scrubbing services. Vrable answered
that Cumulus relies on the provider to provide reliability,
although there is related work on auditing a service pro-
vider. As a client-oriented service, deduplication could be
provided on the client side but could not capture duplica-
tion across clients.

data integrit y

Summarized by Brandon Salmon (bsalmon@ece.cmu.edu)

n	 WorkOut: I/O Workload Outsourcing for Boosting RAID
Reconstruction Performance
Suzhen Wu, Huazhong University of Science and Technol-
ogy; Hong Jiang, University of NebraskaóLincoln; Dan Feng,
Huazhong University of Science and Technology; Lei Tian,
Huazhong University of Science and Technology and University
of Nebraska—Lincoln; Bo Mao, Huazhong University of Science
and Technology

As systems increase in scale, online RAID reconstruction
is likely to become a common mode of operation. To ad-
dress this problem, WorkOut uses a “surrogate array” made
of spare resources, such as spare RAID disks, to provide
improved performance for arrays currently performing
reconstruction.

Writes to new data, or writes that hit in cache sent to the
reconstructing array, will be redirected to the surrogate
array, and subsequent reads to this data can also be sent
to the surrogate array. To route requests, the array keeps
a mapping table in NVRAM. Once the array has finished
reconstructing, the data on the surrogate array is recopied
onto the original array, although overwrites may help speed
this process as well.

Evaluation shows that the use of a surrogate array can
decrease reconstruction time by up to 5x and also improves
the latency of the foreground workload.

; LO G I N : 	 j u N e	20 0 9	 cO N fe re N ce	re p O rT s	 83

n	 A Performance Evaluation and Examination of
 Open-Source Erasure Coding Libraries for Storage
James S. Plank, University of Tennessee; Jianqiang Luo, Wayne
State University; Catherine D. Schuman, University of Tennes-
see; Lihao Xu, Wayne State University; Zooko Wilcox-O’Hearn,
AllMyData, Inc.

James Plank summarized and evaluated a variety of erasure
coding schemes and libraries in order to give system design-
ers without deep erasure coding expertise the ability to
evaluate libraries for use in their systems.

The evaluations had several key results. First, the open-
source erasure coding libraries can keep up with disks,
even on slow processors. Within the codes, special-purpose
RAID-6 codes were more efficient than general-purpose
Reed-Solomon codes. Cauchy Reed-Solomon codes were
also more efficient than Reed-Solomon codes. For Cauchy
Reed-Solomon codes, the matrix choice was important to
performance.

On the Mac machine they tested, the number of XORs was
a good measure of performance, but caching behavior was
also important on the Dell machine tested.

n	 Tiered Fault Tolerance for Long-Term Integrity
Byung-Gon Chun and Petros Maniatis, Intel Research Berkeley;
Scott Shenker and John Kubiatowicz, University of California,
Berkeley

This paper describes Bonafide, a key/value pair store de-
signed to maintain fault tolerance over a long period in the
face of Byzantine faults. To attack the problem, Bonafide
divides the service into two tiers: a trusted tier, which must
not fail, and an untrusted tier, which can fail frequently
without compromising the service.

The trusted tier is able to make changes to state, while the
untrusted tier is able to respond to read requests but not
change the actual state of the system. This division allows
Bonafide to leverage a large number of untrusted devices to
prolong the life of the service while still maintaining appro-
priate fault-tolerance.

controllers and c aching

Summarized by Chris Frost (frost@cs.ucla.edu)

n	 A Systematic Approach to System State Restoration during
Storage Controller Micro-Recovery
Sangeetha Seshadri, Georgia Institute of Technology; Lawrence
Chiu, IBM Almaden Research Center; Ling Liu, Georgia Institute
of Technology

Disk controller firmware contains many interacting com-
ponents (e.g., RAID, I/O routing, and error detection) and
completes many asynchronous (concurrent) and short-
running tasks per second. Current firmware recovers from
transient errors by rebooting, halting all drive progress
for around four seconds. Seshadri et al. want to increase
the availability of drives without rewriting the large soft-

ware base of existing controllers while supporting high
performance and dealing with dynamic dependencies and
complex recovery semantics. Their approach is to enable
per-task recovery when possible, falling back to a system
restart only very rarely.

When an error occurs within a task, the task may continue
(ignore/correct for error) or retry (rollback), but only if no
other tasks have been affected by state changes made by the
failed task. The basis of Log(Lock) follows from all global
state modifications being protected by locks (or similar
primitives). These locks guide recovery. Log(Lock) tracks
recovery points, starting points for recovery upon error, and
whether each recovery point is safe to use given the current
system state. Log housekeeping is split between the system
and code the developer has added. The developer adds
start-and-stop tracking calls associated with locks. With
Log(Lock), a typical error causes a 35% throughput decrease
for six seconds. A reboot would take four seconds and have
zero throughput. In their experiments, task-level recovery
is applicable for 99% of errors, and runtime overhead is less
than 10%.

A student asked how interdependent the threads of context
are or how often dirty reads exist. Seshadri answered that
although dirty reads are present most of the time in many
types of systems, they have seen that in disk controllers
they rarely exist, because the time scales are so small. For
example, a typical task completes in five milliseconds.

n	 CLIC: CLient-Informed Caching for Storage Servers
Xin Liu, Ashraf Aboulnaga, Kenneth Salem, and Xuhui Li,
 University of Waterloo

Kenneth Salem presented CLIC, an approach to implement-
ing a hinted two-tier caching system. CLIC learns how to
respond to hints rather than using prebuilt, ad hoc rules.
Multiple levels of caching introduce two issues: caching an
item at multiple levels can waste cache space, and caches
farther from the client do not see all requests and so their
temporal locality is poor. Cache hints—for example, a client
writing a page with the intent to replace another page—
allow caches to behave appropriately. However, existing hint
implementations use manual rules, which do not support
new hints without changes, may have poor responses to
hints, and can be difficult to implement when multiple cli-
ents use the cache. CLIC is a hint-aware cache replacement
policy for second-tier caches that learns appropriate hint
responses rather than relying on manually specified rules.
CLIC separates the generation of hints (generated by clients)
from the interpretation of hints (the storage server).

In CLIC, each page in the cache is associated with the hint
set with which it was most recently read or written. CLIC
orders the hint sets by their learned priority and evicts
pages associated with the lowest-priority hint set. Priorities
are determined using the results of previous requests for the
given hint set. CLIC takes steps to reduce the space needed

84	 ; LO G I N : 	VO L . 	3 4, 	N O. 	3

to track these statistics; in their measurements, CLIC
needed less than 1% of the cache space for this tracking.

Kenneth compared the TPC-C and TPC-H hit ratios
achieved by CLIC, an ad hoc hint policy (TQ), two poli-
cies that do not use hints (LRU and ARC), and the optimal
policy (knowledge of the future) for varying cache sizes.
CLIC and TQ usually dominated LRU and ARC, CLIC often
dominated TQ, and OPT typically dominated all.

One audience member asked how CLIC performs with
a large number of clients and with a varying dynamic
workload. Kenneth answered that they have not tested
with a large number of clients or time-varying workloads.
However, at present, CLIC occasionally throws out all
logs, using exponential decay. Another person asked how
CLIC responds to clients that use hints to try to hurt other
clients. Kenneth responded that CLIC helps the clients that
benefit the most from the cache. Finally, someone asked
whether the authors had thought of CLIC giving feedback
to the client about which hints are the most useful. Kenneth
said they had not and that this might be interesting.

n	 Minuet: Rethinking Concurrency Control in Storage Area
Networks
Andrey Ermolinskiy and Daekyeong Moon, University of Califor-
nia, Berkeley; Byung-Gon Chun, Intel Research, Berkeley; Scott
Shenker, University of California, Berkeley, and ICSI

Andrey Ermolinskiy discussed two limitations of using
distributed locking to coordinate reads and writes among
clients of a Storage Area Network (SAN), and he presented a
new coordination approach that addresses these two limita-
tions through optimistic, instead of strict, concurrency by
adding logic to storage system nodes.

Using distributed locking to coordinate access to shared
state has two issues: (1) it does not guarantee correct seri-
alization of requests, and (2) it requires a majority of the
locking server nodes to be available. Minuet guarantees the
correct serialization of disk requests and removes the need
to contact any locking server. Instead, the storage nodes
themselves, via a guard, mediate requests and can reject
incorrectly ordered requests. In Minuet, requests are aug-
mented with session annotations that are used to order the
requests. Distributed transactions can be constructed atop
Minuet using logging and recovery.

Remaining challenges to Minuet-like systems include the
adoption of guard logic into storage arrays, storage and
bandwidth overheads of session metadata, and the program-
ming model change of request rejection and forced lock
revocations.

One audience member asked why an equivalent system
cannot be built on top of SCSI-3 reservations. Andrey
responded that he had not considered this. Another person
asked about the efficacy of caching version numbers for
concurrency control. Andrey answered that their implemen-
tation does scale; version numbers are stored in NVRAM on

storage devices and perhaps could be stored on disk with
some also in RAM.

