
; LO G I N : A pr I L 20 0 9 cO N fe re N ce re p O rt s 89

OSDI ’08: 8th USENIX Symposium on Operating
Systems Design and Implementation

San Diego, CA
December 8–10, 2008

The Jay Lepreau Award for Best Paper was instituted at
OSDI ’08 (see p. 87). Three awards were presented.

cloud computing

Summarized by Dutch Meyer (dmeyer@cs.ubc.ca)

n	 DryadLINQ: A System for General-Purpose Distributed
Data-Parallel Computing Using a High-Level Language
Yuan Yu, Michael Isard, Dennis Fetterly, and Mihai Budiu,
Microsoft Research Silicon Valley; Úlfar Erlingsson, Reykjavík
University, Iceland, and Microsoft Research Silicon Valley;
Pradeep Kumar Gunda and Jon Currey, Microsoft Research
Silicon Valley

Winner of Jay Lepreau Award for one Best Paper

Yuan Yu explained that DryadLINQ comprises Micro-
soft’s cluster computing framework (Dryad) and the .NET
Language INtegrated Query system (LINQ). Together,
these tools allow programmers to write in their famil-
iar .NET languages, with integrated SQL queries. In
the compilation process, DryadLINQ can produce an
executable appropriate for a single core, a multi-core, or
a cluster of machines. The tool chain is incorporated into
Visual Studio as well, allowing programmers to work in a
familiar IDE. The result is an environment for concurrent
programming that transparently works in the much more
difficult field of distributed programming. In summary,
Yuan described the work as a “modest step” toward using
the cluster as one would use a single computer.

As an example, Yuan showed how a simple task (count-
ing word frequency in a set of documents) could be
expressed with the system. The LINQ expression “select
many” is used to transform the set of documents into a
set of words, then “group” is used to collate the words
into groups. Finally, the count can be computed for each
word. At each step, the use of LINQ’s relational algebra
ensures that the task will parallelize well, while Dryad
provides benefits such as data location transparency.

A recurring element of both the presentation and the
question-and-answer period was comparing Dryad-
LINQ to MapReduce, as is used by Google. Yuan offered
Dryad as a more generalized framework for concur-
rent programming, showing how MapReduce could be
implemented with three operations. He also posited that
DryadLINQ provided a clear separation between the ex-
ecution engine and the programming model, whereas in
his view MapReduce conflates the properties of the two.
This places unnecessary restrictions on both the execu-
tion engine and the programming model.

Yuan explained that the project was released internally
and is being used in several projects. He described sev-

conference reports

thANks tO Our summArIzers

8th USENIX Symposium on Operating
Systems Design and Implementation
(OSDI ’08) .89
Periklis Akritidis
Chris Frost
Roxana Geambasu
Olga Irzak
Ann Kilzer
Vivek Lakshmanan
Dutch Meyer
Daniel Peek
Kyle Spaans

Workshop on Supporting Diversity in Systems
Research (Diversity ’08)108
Ann Kilzer

Workshop on Power Aware Computing and
Systems (HotPower ’08) 110
Alva L. Couch
Kishore Kumar

First Workshop on I/O Virtualization (WIOV
’08) . . 114
Mike Foss
Asim Kadav
Jeff Shafer

90 ; LO G I N : VO L . 3 4 , N O. 2

eral lessons drawn from the effort, praising deep language
integration, easy parallelism, and an integrated cross-plat-
form environment. In describing future work, he proposed
exploring the types of programs that could be created with
this approach, asked how he could better generalize the pro-
gramming model, and called for languages providing strong
static typing in the datacenter.

Audience interest was strong for the paper, and session
chair Marvin Theimer was forced to cut off discussion to
keep the session on schedule. Eric Eide of the University
of Utah began by asking what opportunities programmers
have to control the compilation of their programs, for ex-
ample optimizing for failure tolerance versus performance.
In reply Yuan explained that some of these optimizations
would need to be handed to the execution engine as a
policy but that the problem has not yet been tackled directly
by the compiler. Brad Chen from Google wanted to know
whether the programming model facilitated good intuitive
assumptions about performance from programmers. Simi-
larly, Armando Fox wondered whether data mining and/or
machine learning could give performance estimates. Yuan
explained that they were still learning about the system
and that people are actively working on understanding the
performance characteristics. Modeling performance with
machine learning is ongoing work. Yuan was also asked
about support for continuous querying, and he thought that
this would be an interesting area for future work.

n	 Everest: Scaling Down Peak Loads Through I/O
Off-Loading
Dushyanth Narayanan, Austin Donnelly, Eno Thereska, Sameh
Elnikety, and Antony Rowstron, Microsoft Research Cambridge,
United Kingdom

Dushyanth Narayanan presented Everest, which uses I/O
offloading to mitigate peak load conditions on storage
servers. This work follows his paper at FAST earlier in the
year, in which Dushyanth applied a similar mechanism to
the problem of power consumption. He began by show-
ing a trace of a production Exchange server; despite over-
provisioning, an observed I/O load was shown to increases
the server’s response time twentyfold. At the same time,
this load increase was not correlated with the workload on
other disks. This key observation provides hope that spare
resources on these other hosts can be utilized to lessen the
burden on storage systems.

Everest operates within a client/server model. Any machine
that needs protection against peak loads runs an Everest
client, while a set of other machines operate Everest stores.
In practice Everest clients may also be stores. Under normal
operation, requests to an Everest client merely pass through
to the local storage without modification. If the client
detects that a peak load condition may be occurring (ac-
cording to some threshold), it begins write offloading. This
means preserving disk I/O bandwidth by issuing writes to
Everest stores across the network interface. Once the peak
subsides, the client stops offloading and begins reclaiming
previously offloaded writes. Naturally, this solution targets

temporary peaks in load; it will not provide long-term relief
to a cluster that is fundamentally under-provisioned.

To minimize the burden of additional writes to the client’s
disk, the destination of offloaded writes is not written to
local storage. Everest store nodes instead track the source
of writes along with the data, written to a circular log. In
recovering from a failure, clients query relevant stores to
find all outstanding writes. Everest also includes features
beyond this basic operation, such as offloading to multiple
stores and load balancing, although these features were not
discussed in depth.

Questions addressed a variety of motivational and techni-
cal details. Jonathon Duerig of the University of Utah gently
challenged the assumption that there is no correlation be-
tween peak loads and asked whether there was a metric for
how much correlation the system could endure. Dushyanth
had not performed this analysis yet and was not aware of a
synthetic workload that would allow experimenters to vary
peak load correlation. Preston Crow of EMC asked whether
disk caches could be grown to provide the same effect, but
Dushyanth replied that the size of the observed peaks was
in the gigabyte range—simply too large for a reasonably
sized cache. Finally, Armando Fox of UC Berkeley won-
dered whether new failure modes were being introduced by
spreading data across many volumes. Dushyanth thought
that N-way replication, already present in Everest, was likely
necessary to ensure that the system could tolerate failures in
N – 1 Everest stores.

n	 Improving MapReduce Performance in Heterogeneous
Environments
Matei Zaharia, Andy Konwinski, Anthony D. Joseph, Randy
Katz, and Ion Stoica, University of California, Berkeley

Matei Zaharia discussed the MapReduce programming
model and the improvements his team at Berkeley has
brought to Hadoop’s implementation and algorithm. Their
principal findings were based on the observation that
performance heterogeneity breaks task-scheduling assump-
tions. Such heterogeneity is not hard to find in practice; for
example, utility computing services don’t generally provide
strong performance isolation guarantees.

In the process of analyzing Hadoop, Matei used Amazon’s
EC2 service as an academic testbed, a direction he vigor-
ously encouraged others to follow. In their experiments,
they were able to operate at a convincingly large scale, yet
with relatively low cost.

Backup selection in Hadoop occurs as nodes used for
primary tasks become free. In that case, primary tasks that
have not made sufficient progress will be replicated onto
free nodes. The study found four principal problems with
backups in Hadoop. First, too many backups will thrash
network bandwidth and other shared resources. Second,
the wrong tasks can be selected for backup. Third, backups
can be directed to slow nodes, which is suboptimal. Fourth,
if tasks are started at nonuniform times, scheduling deci-
sions can be made incorrectly. In an example, Matei showed

; LO G I N : A pr I L 20 0 9 cO N fe re N ce re p O rt s 91

how 80% of the tasks for an operation could be selected
for backup, with the majority of these tasks losing to the
originals.

To fix these problems, a LATE scheduler was contributed to
the Hadoop project (available at http://hadoop.apache.org/
core/). The new scheduler estimates the completion time
for each task and selects only slow-running tasks that are
believed to complete late. It also caps the number of backup
tasks and places backups on fast nodes. In the evaluation
it was shown that this new scheduler offered a 58% perfor-
mance improvement, on average.

Brad Chen of Google asked how tasks of variable length
would be scheduled. In their work, Matei and his team had
assumed that tasks were of roughly constant length. This
is justified in that Hadoop itself attempts to maintain this
invariant. To tackle this problem, Matei believed that one
would probably need to prioritize according to task size;
however, this problem has yet to be addressed. Marvin
Theimer of Amazon also asked whether the authors had
any advice for utility computing providers. The presenter
encouraged more visibility into machine status, network
topology, and rack locations.

os architecture

Summarized by Dutch Meyer (dmeyer@cs.ubc.ca)

n	 Corey: An Operating System for Many Cores
Silas Boyd-Wickizer, Massachusetts Institute of Technology;
Haibo Chen, Rong Chen, and Yandong Mao, Fudan University;
Frans Kaashoek, Robert Morris, and Aleksey Pesterev, Massa-
chusetts Institute of Technology; Lex Stein and Ming Wu, Micro-
soft Research Asia; Yuehua Dai, Xi’an Jiaotong University; Yang
Zhang, Massachusetts Institute of Technology; Zheng Zhang,
Microsoft Research Asia

Silas Boyd-Wickizer presented a new operating system
interface as part of ongoing work on the Corey operating
system. The work is premised on the observation that for
application performance to scale with an increasing number
of processing units, the time spent accessing kernel data
structures must be made parallelizable. In current practice,
synchronizing access to such data must be done conser-
vatively. Although kernel subsystems can sometimes be
redesigned to avoid or eliminate this locking, the process is
time consuming for programmers. Such an approach, Silas
argued, forces developers into a continuously incremental
evolution of the kernel. As an alternative, Corey seeks to re-
move unnecessary sharing by letting applications explicitly
declare when they intend kernel state to be shared.

Corey provides three new interfaces for creating kernel data
structures: shares, address ranges, and kernel cores. How-
ever, only the first two were discussed in the presentation,
each with an example. To demonstrate the use of shares,
Silas showed how different file descriptors opened by dif-
ferent processes could result in poor performance scaling.
Some access to the global file descriptor table was shown to

be clearly contentious, with an order of magnitude decrease
in performance. However, much of the synchronization
around this table is clearly unnecessary, since processes
may be using unrelated file descriptors. Corey’s support for
shares allows an application to explicitly define a private
file descriptor to avoid the unnecessary locking. To demon-
strate address ranges, Silas showed how shared memory can
result in contention, even when processes are not actively
writing into the shared memory space. The solution was to
build a private memory space but to map in shared memory
when explicitly requested by the application. This allows
updates to private memory to occur without contention.
Both examples were demonstrated with microbenchmarks.
During the question-and-answer session Silas conceded that
the workloads used in the system’s evaluation targeted only
the observed contention behavior, not the overall perfor-
mance. He believed that overall performance would increase
relatively with more cores and would likely be visible on a
32-core system.

The question-and-answer session was very active, and
Silas’s jovial nature drew appreciation from the audience on
several occasions. Marvin Theimer of Amazon wondered
whether any degree of public/private locking would prove to
be scalable in a many-core architecture. He pointed out that
successful grid and cluster architectures eschewed locking
entirely, in favor of message passing. Silas pointed to the
potential for nonglobal sharing in Corey as a possible means
of scaling into a large number of cores. Alex Snoeren of
UCSD pointed out that the architecture extracted the basic
elements of NUMA and asked whether partitioning into
sharing groups might be done automatically. Although this
had been considered and may be a part of future work at
MIT, Silas stressed that sharing explicitly could be a desir-
able quality to programmers.

n	 CuriOS: Improving Reliability through Operating System
Structure
Francis M. David, Ellick M. Chan, Jeffrey C. Carlyle, and Roy
H. Campbell, University of Illinois at Urbana-Champaign

Francis David addressed issues of system failure in his pre-
sentation on CuriOS. The system attempts to make use of
restart-based recovery to deal with errors and uses a novel
separation of client state to ensure that service restart does
not result in additional failures.

Francis began by showing how faults in Minix 3, L4,
Chorus, and Eros could each result in lingering failures
even after a successful service restart. The problem is that a
service stores state on behalf of its clients. When the service
fails, its state is restarted along with the service, which puts
clients in an inconsistent state. More broadly, the authors
identified four requirements for transparent restart: address
transparency, suspension of the client for recovery, and
persistence and isolation of client state.

To provide these properties, Server State Regions (SSRs)
were introduced. Each SSR represents the current state of

92 ; LO G I N : VO L . 3 4, N O. 2

a client and exists in an isolated address space. When a re-
quest is received by a server, the SSR is temporarily mapped
into the server’s address space and is correspondingly un-
mapped for the response. In the event of a fault, the server
will only have access to the process it was directly servicing.
On recovery, the client data can be checked for consistency.
To test the techniques, a working timer and network service
were created. These were validated with fault injection on
an embedded platform. Faults, in this case, are memory
aborts or bit flips that result in a system crash. With SSRs,
CuriOS was able to recover from more than 87% of these
failures and was usually able to restart the failed service.
Francis evaluated the system with microbenchmarks, show-
ing that the overhead consisted mainly of flushing the TLB
and was therefore similar to a context switch.

Francis then fielded questions from the audience. Emin Gün
Sirer from Cornell took a moment to disagree with an ear-
lier claim that type safety would fix many faults in system
operation, effectively strengthening the motivation for the
work. He then asked whether the fault detection relied on
a component detecting its own fault. When Francis replied
that the fault detection had been ported from the existing
code base, Gün asked whether fault detection needed to be
protected in general. To this, Francis agreed and pointed to
techniques for checking in-line, but he made it clear that
their focus was exclusively on recovery, not detection. Fran-
cis was also asked about developing user-mode recovery
services and recovering from faults in the SRR management
service itself. Both were identified as areas for future work.
He also clarified a few additional points from his presenta-
tion before session chair Remzi Arpaci-Dusseau was forced
to cut off the discussion in the interests of time.

n	 Redline: First Class Support for Interactivity in Commodity
Operating Systems
Ting Yang, Tongping Liu, and Emery D. Berger, University of
Massachusetts Amherst; Scott F. Kaplan, Amherst College; J.
Eliot B. Moss, University of Massachusetts Amherst

Ting Yang presented Redline, an operating system that
provides first-class support for interactive applications. The
commonly used schedulers in popular operating systems
strive for a state of fairness. This ideal is one in which
each process shares resources equally at fine granularity.
The best-known alternative to this is real-time scheduling,
in which processes receive dedicated resources to ensure
timely responses. Interactive applications sit between these
two ideals. They may often be idle for long periods of time
followed by bursts of activity, as driven by an external
event. Arguably, this can be a more important metric than
fairness, since it is capable of capturing the user’s percep-
tion of responsiveness.

To illustrate the challenge of scheduling for interactive ap-
plications Ting showed how simultaneous video playback
and kernel compilation results in jumpy and unresponsive

video playback. The problem is one of resource manage-
ment. For example, both applications rely on getting data
from disk, but the queues and caches in the storage stack
are not necessarily fair.

The goal of Redline is to maintain responsiveness in ap-
plications that need it. It operates by coordinating resource
management to devices as well as CPU and memory. Users
identify interactive applications and reserve the desired
CPU, memory, and IO priority. In the case of memory man-
agement, interactive applications are vulnerable to LRU evic-
tion because they scan memory less frequently. Worse, as
their working set shrinks, they fault more frequently, mak-
ing the problem a potentially degenerative case. To correct
this, Redline preserves working set size by protecting the
pages of interactive applications for 30 minutes. If the sys-
tem has insufficient memory for this assurance, processes
will be degraded to best effort. At the same time, memory
access by best-effort applications are “speed-bumped” to
keep them from touching memory too frequently.

To evaluate Redline, Ting showed the result of video play-
back under the pressure of a fork bomb, a malloc bomb,
and an IO intensive workload. In each, Redline was shown
to outperform Linux (measured in frames per second) by a
significant margin.

Ashvin Goel, from the University of Toronto, noted that the
resource specification is described differently for each type
of resource and wondered why a more unified approach
wasn’t used. Ting acknowledged that uniformity is desirable
but explained that this approach was difficult in practice.
They ultimately found that different descriptions were ap-
propriate for each resource. To simplify the specifications,
default rules and inference take some of the burden off the
user. Ting also addressed concerns of starvation, stating
that it might be necessary given that the goal was to provide
isolation for interactive applications.

monitoring

Summarized by Olga Irzak (oirzak@cs.utoronto.ca)

n	 Network Imprecision: A New Consistency Metric for
 Scalable Monitoring
Navendu Jain, Microsoft Research; Prince Mahajan and Dmitry
Kit, University of Texas at Austin; Praveen Yalagandula, HP
Labs; Mike Dahlin and Yin Zhang, University of Texas at Austin

Navendu Jain began by pointing out the importance of
monitoring large-scale distributed systems. A motivating
example showed that best effort is not always sufficient.
For an application monitoring PlanetLab, half of the nodes’
reports deviated by more than 30% from the true value, and
20% of the nodes by more than 65%. These inaccuracies are
due to slow nodes, slow paths, and system reconfiguration.
Hence, a central challenge in monitoring large-scale systems

; LO G I N : A pr I L 20 0 9 cO N fe re N ce re p O rt s 93

is safeguarding accuracy despite node and network failures.
Network imprecision exposes the state of the network so
that applications can decide whether or not to trust the ac-
curacy of the result. Current techniques used for scalability
in monitoring systems are aggregation, arithmetic filtering,
and temporal batching. However, during network or node
failure, these techniques can cause failure amplification,
silent failure, and blockage of many updates even for a short
disruption. As a result, the authors suggest accepting that
the system is unreliable and quantify system stability using
the “Network Imprecision” metric.

Instability manifests itself in either missed/delayed up-
dates or double-counted updates. To quantify the former, a
lower bound on the number of nodes whose recent inputs
are guaranteed to be in the result (Nreachable) versus the
number of total nodes in the system (Nall) is reported. The
Ndupmetric is an upper bound on the number of nodes that
are double-counted. Together, these metrics are useful to
expose the impact of disruptions on monitoring accuracy.
Network imprecision is application-independent, inexpen-
sive, and flexible. Applications can set a policy to improve
accuracy by applying the right techniques, such as filtering
inconsistent results or performing redundant or on-demand
reaggregation. Filtering with network imprecision results in
80% of the reports having less than 15% error, in contrast
to best effort, in which there is 65% error. Network impreci-
sion is simple to implement but difficult to implement ef-
ficiently. Using DHT trees, which form a butterfly network,
intermediate results can be reused across different trees.
This reduces the load from O(Nd) to O(dlogN) messages per
node.

Discussion began with an observation and a challenge.
Observation: Presented was a very nice subset of what DB
people call observation quality—add metrics that are avail-
able where things such as freshness come into account.
This gives more metrics to make decisions with. Challenge:
Wouldn’t it be nice if I could ask a monitoring system for
a particular level of accuracy or network imprecision or
whatever, and could you construct me a system that gives
me that level of accuracy? The approach has been to sepa-
rate the measurement mechanism from the policy that sets
the accuracy bounds. Applications can accept results with a
given accuracy bound and throw away others. But you can’t
guarantee an accuracy bound because of the CAP problem.
Since the problem is closely related to aggregation tech-
niques from sensor networks, the next questioner wondered
whether looking at order- and duplicate-insensitive aggrega-
tion functions would be in order. These are complementary
because in principle these try to minimize the impact of
disruptions on accuracy, whereas network imprecision ex-
poses disruptions. The SM techniques provide a policy that
can be applied in this framework.

n	 Lightweight, High-Resolution Monitoring for Troubleshoot-
ing Production Systems
Sapan Bhatia, Princeton University; Abhishek Kumar, Google
Inc.; Marc E. Fiuczynski and Larry Peterson, Princeton Univer-
sity

Sapan Bhatia made the observation that there will always
be bugs in production systems despite analysis and testing
frameworks. The problem is aggravated as system complex-
ity increases. There are easy and hard bugs in systems.
Easy bugs come with an exact description and are easy
to reproduce. Hard bugs are hard to characterize, hard
to reproduce, hard to trace to a root cause, spatially am-
biguous, temporally removed from root cause, and can be
intermittent and unpredictable. The authors experienced
many hard bugs in their dealings with PlanetLab, such as
intermittent kernel crashes with an out-of-memory bug,
unusual ping latencies, and a kernel crash every 1–7 days
(or not). A medical analogy is that easy problems are single,
localized injuries such as a broken foot, whereas a hard one
might be a vague sense of malaise. To facilitate handling
such bugs, the authors present Chopstix. Chopstix moni-
tors low-level events (vital signs) such as scheduling, I/O,
system calls, memory allocation, and cache misses. It then
captures abnormal deviations in the system’s behavior;
these are referred to as symptoms. As logging all events
is too expensive, sampling is used. Uniform sampling is
biased toward high-frequency events. Instead, Chopstix
uses frequency-dependent sampling from the measurement
community, which uses a sketch—an approximation of the
frequency distribution of a set of events. On an event trig-
ger, one extracts a signature of the event, hashes it, and up-
dates the sketch. If a sampling decision is made, one collects
the sample and performs logging. Collecting the sample is
heavyweight but is more efficient because of the principle of
locality. At the end of every data-collecting epoch (60 s in
Chopstix), the collected data is transferred to user space and
stored as a series of summaries. This results in a rich, fine-
grained data set for an overhead of 1% CPU utilization and
around 50 MB per day of disk consumption on each node.

The Chopstix GUI was also presented. The GUI polls events
from different nodes for the requested vital signs. These are
displayed on a graph that can be drilled into to see more
detail. The GUI allows the use of intuition for certain bugs
(e.g., high CPU usage means a busy loop). Alternatively,
use of a library of diagnosis rules to detect less obvious
conditions such as low process CPU utilization with high
scheduling delay and high CPU utilization per system likely
means a kernel bottleneck. An example of using Chopstix
to solve an elusive PlanetLab bug was then presented. The
observed behavior was that some nodes would freeze every
few days (or not), there was no info on console, the SSH
session would stall prior to hangs, and vmstat reported high
IO utilization. Chopstix showed abnormal blocking and I/O
vital signs from the journaling daemon, which turned out
not to be responsible for the freezes. It also showed spikes

94 ; LO G I N : VO L . 3 4 , N O. 2

in the scheduling delay coincident with spikes in kernel
CPU utilization, which pointed to the critical bug in a
loop in the scheduler. They evaluated performance over-
head using the lmbench microbenchmark. The slowdown
is between 0% and 2.6% for getpid. Kernel compile and
Apache macrobenchmarks showed almost no overhead in
the benchmarks.

The probability of an error is a function of the distribution
of counters in a sketch. By varying the size of the sketch,
the probability of error is between 0.0001% and 0.00001%.
Future work includes automating bug detection by data-
mining Chopstix data and combining NetFlow and Chop-
stix data to diagnose network-wide behavior.

The first questioner asked whether Bhatia could compare
work with DCPI from SOSP 1997. They were also monitor-
ing with 1.2% overhead. Bhatia replied that they had a sim-
pler notion of sampling. Their work is similar to oprofile,
which this beats. Another person wondered about diagnosis
rules. Is it possible (looking into the future) to capture
the thinking of a systems guru looking at this output by
data-mining? There are various knowledge-base systems
that analyze code for bugs, but they are imperfect, so you
really need human expertise to analyze rich data. Someone
else pointed out that this is useful for the developer who is
a kernel hacker and knows the system inside out, but how
could it be extended to abstract the vital signs to a higher
level and give signals of more abstract health, so that a
system could say, “I’m sick, I need to see a doctor”? A lot of
intelligence could be coded into rules, and the rule database
could grow over time (comparable with WebMD), allowing
diagnosis by less experienced people. How scalable can this
be made if you want hundreds or thousands of metrics?
Bhatia said that they haven’t carried out these experiments.
The <1% utilization is between 0.1% and 1%, so there
should be more room to squeeze in other metrics. Finally,
someone pointed out an issue: In the 1970s and 1980s
medical diagnosis with AI was prevalent, but there was an
explosion after 20 or so rules, so there was a move to other
systems such as Bayesian filtering. One of the reviewers was
excited about rule-based systems and wanted it cited, but it
was hard to find. Maybe that should tell us something.

n	 Automating Network Application Dependency Discovery:
Experiences, Limitations, and New Solutions
Xu Chen, University of Michigan; Ming Zhang, Microsoft Re-
search; Z. Morley Mao, University of Michigan; Paramvir Bahl,
Microsoft Research

Xu Chen highlighted the fact that enterprise networks sup-
port various business-critical applications such as VoIP and
email. In a large network, there are usually thousands of ap-
plications running simultaneously, thousands of people are
doing IT support, and lots of money is spent thereon. Net-
work management is complicated since applications are very
complicated and distributed across multiple components
(e.g., MS Office Communicator, a VoIP/messenger app, uses
DNS, Kerberos, VoIP, Director, and many back-end servers

such as file and SQL). Extracting dependency information is
hard. Applications are heterogeneous, in terms of function-
ality and deployment. The knowledge of these dependencies
is distributed across layers and locations. Also, applications
continuously evolve, adding new services periodically and
reconfiguring/consolidating others. Currently, when there
is a service outage, human knowledge and understanding
of the system and its dependencies is used to troubleshoot
the problem. This is expensive, error-prone, and difficult to
keep up-to-date. This provides the motivation for automati-
cally discovering dependencies for network applications.

This work introduces a new technique to discover service
dependencies based on delay distributions, identifies the
limitations of dependency discovery based on temporal
analysis, and evaluates the technique on five dominant ap-
plications in the Microsoft enterprise. The goal is to design a
generic solution for various applications using nonintrusive
packet sniffing and TCP/IP header parsing. The proposed
system, called Orion, identifies the time delay between de-
pendent services, which reflects the typical processing and
network delay. Orion identifies service based on IP address,
port, and protocol. To make this scalable, ephemeral ports
are ignored. Another problem is that dependencies exist be-
tween application messages. To address this Orion analyzes
only TCP/IP headers and aggregates packets into flows. This
reduces bias introduced by long flows and reduces the num-
ber of pairs. Orion needs a fair number of samples to infer
dependencies. That can be overcome by aggregating across
clients, servers and ports.

Orion was deployed in an MS enterprise network. It focused
on extracting dependencies from MS Exchange, Office
Communicator, Source Depot (such as CVS), Distributed
File System, and intranet sites. Orion has no false nega-
tives and a smaller footprint than previous work. As we see
more flows, the false positives increase, but false negatives
decrease. True positives eventually converge to the correct
value. Orion’s drawback is that it requires training, isn’t ap-
plicable to P2P applications, and may miss certain kinds of
interactions (e.g., periodic ones). It may include false posi-
tives. Lessons learned are that temporal analysis is limited,
as it has no app-specific knowledge. Regardless, false posi-
tive can be reduced to a manageable level.

Why did filtering induce a small peak in the delay distri-
bution in the rightmost bins? Chen said that this was an
artifact of the filtering, but it doesn’t affect the result. It may
need more sophisticated FFT. Someone else pointed out
that in a datacenter, you may have services dependent on
services and so on, so a client action may go through lots
of servers indirectly, so is the resolution enough to identify
this without deep packet inspection? Chen said you could
definitely do deep packet inspection, but temporal analysis
can be made usable.

Finally, someone asked, given the prevalence of virtu-
alization technology, services could be migrated among

; LO G I N : A pr I L 20 0 9 cO N fe re N ce re p O rt s 95

machines, so does the technique take that into account?
Service migration is a potential application of this informa-
tion, allowing dependent servers to migrate together.

work-in-progress reports (wips)

Summarized by Daniel Peek (dpeek@eecs.umich.edu)

n	 Multikernel: An Architecture for Scalable Multi-core Oper-
ating Systems
Simon Peter, Adrian Schupbach, Akhilesh Singhania, Andrew
Baumann, and Timothy Roscoe, ETH Zurich; Paul Barham and
Rebecca Isaacs, Microsoft Research, Cambridge

Locking and shared data limit scalability, so we should treat
multiple cores in a computer as if they are on a network and
use distributed systems ideas to get them to work together.
These include partitioning, replication, and agreement pro-
tocols. For more information see www.barrelfish.org.

n	 Transcendent Memory: Re-inventing Physical Memory
Management in a Virtualized Environment
Dan Magenheimer, Chris Mason, David McCracken, and Kurt
Hackel, Oracle Corporation

Efficient memory utilization in the presence of virtual
machines (VMs) was addressed. As an improvement on
ballooning techniques, idle memory held by VMs can be
reclaimed. VMs can access the resulting pool of memory
through paravirtualized APIs.

n	 Towards Less Downtime of Commodity Operating Systems:
Reboots with Virtualization Technology
Hiroshi Yamada and Kenji Kono, Keio University

This project explores the use of virtual machines to improve
the speed of reboots caused by patching. To patch a system,
first a VM clone of the currently running system is created.
The clone is patched and rebooted. Then, the clone replaces
the currently running system. This avoids disruption of the
currently running system until the clone system is patched
and rebooted.

n	 TeXen: Virtualization for HTM-aware Guest OSes
Christopher Rossbach, UT Austin

TeXen is the first virtual machine monitor to use hardware
transactional memory to virtualize HTM-aware OSes. This
combination has difficulties, such as preserving the guaran-
tees provided by HTM hardware, and opportunities, such
as moving the complexity of input and output out of the
kernel.

n	 SnowFlock: Cloning VMs in the Cloud
H. Andres Lagar-Cavilla, University of Toronto

VMs in cloud computing need to be improved. They can
take minutes to start up and require application-specific
state to be transferred to them. Instead, we should be able
to use a fork-like interface to quickly create many stateful
VMs.

n	 CPU Scheduling for Flexible Differentiated Services in
Cloud Computing
Gunho Leo, UC Berkeley; Byung-Gon Chun, Intel Research
Berkeley; Randy H. Katz, UC Berkeley

No summary available.

n	 Toward Differentiated Services for Data Centers
Tung Nguyen, Anthony Cutway, and Weisong Shi, Wayne State
University

Because application demands differ, developers should be
able to choose VMs with varying properties, such as the
number of replicas and network topology. Instead of of-
fering generic VMs, cloud computing providers can offer
several kinds of VMs, each with varying properties.

n	 TCP Incast Throughput Collapse in Internet Datacenters
Yanpei Chen, Junda Liu, Bin Dai, Rean Griffith, Randy H. Katz,
and Scott Shenker, University of California, Berkeley

In a situation with N clients connected to a server through
a switch, application throughput drops dramatically when
all of the clients attempt to communicate simultaneously.
This work explores the interaction of this communication
pattern and TCP and proposes changes to TCP to improve
this situation. Although simply adding more buffer space on
the switch would mitigate this problem, the underlying TCP
issues should really be solved by a fix to TCP.

n	 Gridmix: A Tool for Hadoop Performance Benchmarking
Runping Qi, Owen O’Malley, Chris Douglas, Eric Baldeschwieler,
Mac Yang, and Arun C. Murthy, Yahoo! Inc.

Gridmix is a set of Hadoop benchmarks that addresses the
needs of several audiences, including Hadoop developers,
application developers, and cluster builders.

n	 CrystalBall: Predicting and Preventing Inconsistencies in
Deployed Distributed Systems
Masyam Yabandeh, Niola Knezevic, Dejan Kostic, and Victor
Kuncak, EPFL

Many errors in distributed systems are a result of violations
of safety properties. To avoid these situations, members of
a distributed system can gather snapshots of neighboring
participants and do state space exploration to understand
the results of actions and steer execution away from incon-
sistent states.

n	 Coscheduling of I/O and Computation in Active Storage
Clusters
Saba Sehrish, Grant Mackey, and Jun Wang, University of Cen-
tral Florida

This work deals with Hadoop map tasks that work with
several data objects that may not be co-located. The authors
are making a scheduler for map tasks that takes into ac-
count the performance difference between local and remote
I/O operations.

96 ; LO G I N : VO L . 3 4 , N O. 2

n	 Honor: A Serializing On-Disk Writeback Buffer
Rick Spillane, Chaitanya Yalamanchili, Sachin Gaikwad, Manju-
nath Chinni, and Erez Zadok, Stony Brook University

Random writes are becoming a larger component of many
I/O workloads, but for performance reasons sequential
writes are preferable. This project redirects writes to a sepa-
rate disk, called the sorting disk, to sequentially log writes.
These logged writes can later be applied to a general file
system.

n	 Zeno: Eventually Consistent Byzantine Fault Tolerance
Atul Singh, MPI-SWS/Rice University; Pedro Fonseca, MPI-SWS;
Petr Kuznetsov, TU-Berlin/T-Labs; Rodrigo Rodrigues, MPI-
SWS; Petros Maniatis, Intel Research Berkeley

Storage backends generally favor availability over con-
sistency. This project proposes an eventually consistent
byzantine-fault-tolerance algorithm to improve consistency
in such storage systems.

n	 Scalable Fault Tolerance through Byzantine Locking
James Hendricks and Gregory R. Ganger, Carnegie Mellon
University; Michael K. Reiter, University of North Carolina at
Chapel Hill

To improve throughput and latency of byzantine-fault-tolerant
systems, this project allows clients to use a byzantine-fault-
tolerance algorithm to acquire a byzantine lock on a part of
the system state and specify the order of operations.

n	 Fault Tolerance for Free
Taylor L. Riche and Allen Clement, The University of Texas at
Austin

Multicore machines are now widely available; the difficulty
is in programming fault tolerance for these systems. This
project takes programs that are already constructed in a
language that maps applications to multicore machines and
reuses those interfaces to provide redundant execution for
fault tolerance.

n	 Writing Device Drivers Considered Harmful
Leonid Ryzhyk and Ihor Kuz, University of New South Wales

The information needed to make device drivers is in the
specification of the OS interface and the device interface.
This work automatically creates drivers by composing state
machines representing both specifications.

n	 CitySense: An Urban-Scale Open Wireless Sensor Testbed
Ian Rose, Matthew Tierney, Geoffrey Mainland, Rohan Murty,
and Matt Welsh, Harvard University

This project aims to build a 100-node city-wide sensor
network testbed aimed at public health studies, security,
and novel distributed applications. Researchers can get an
account to run experiments. See www.citysense.net for
further details.

n	 WiFi-Reports: Improving Wireless Network Selection with
Collaboration
Jeffrey Pang and Srinivasan Seshan, Carnegie Mellon University;
Ben Greenstein, Intel Research Seattle; Michael Kaminsky, Intel
Research Pittsburgh; Damon McCoy, University of Colorado

WiFi-Reports aggregates user-contributed information about
the quality of pay-to-access wireless access points. Chal-
lenges include privacy, fraud, and estimation of packet loss
regimes with distributed measurements.

n	 S3: Securing Sensitive Stuff
Sachin Katti and Andrey Ermolinskiy, University of California,
Berkeley; Martin Casado, Stanford University; Scott Shenker,
University of California, Berkeley; Hari Balakrishnan, Massa-
chusetts Institute of Technology

This project aims to prevent high-bandwidth data theft by
external attackers by enforcing policies at data egress points
such as the network and USB keys. A network of hypervi-
sors is used to track information flow at the word level. This
uses hardware support for virtualization and speculation for
performance.

n	 Communities as a First-class Abstraction for Information
Sharing
Alan Mislove, MPI-SWS/Rice University; James Stewart, Krishna
Gummadi, and Peter Druschel, MPI-SWS

A community is a densely connected subgraph of users in
an online service (e.g., Facebook, MySpace). These com-
munities can be leveraged to infer trust, control access to
communities, and discover more relevant search results.

file systems

Summarized by Vivek Lakshmanan (vivekl@cs.toronto.edu)

n	 SQCK: A Declarative File System Checker
Haryadi S. Gunawi, Abhishek Rajimwale, Andrea C. Arpaci-
Dusseau, and Remzi H. Arpaci-Dusseau, University of Wiscon-
sin, Madison

Since filesystem corruption can lead to data loss, it is im-
portant to keep filesystems consistent at all times. None-
theless, filesystems continue to be corrupted. Although
techniques such as journaling have proved to be effective
against the most common cause for filesystem inconsis-
tency, system failure during metadata updates—it is not
sufficient to repair filesystem corruption. Offline filesystem
consistency checkers such as fsck are therefore seen as the
last line of defense against data loss. However, commodity
filesystem consistency checkers (e.g., e2fsck for ext2) can
themselves corrupt the file system. The authors suggest that
the implementation complexity of consistency checks—
normally written in C—is a major contributor to the limited
reliability of such tools. SQCK improves filesystem reliabil-
ity by providing a SQL-based declarative language to filesys-
tem developers to succinctly define consistency checks and
repairs. The result is the ability to encode the functionality
of 16 KLOC from e2fsck in 150 SQL queries.

; LO G I N : A pr I L 20 0 9 cO N fe re N ce re p O rt s 97

Type-aware fault injection was used to expose a number of
flaws in e2fsck. For instance, corrupting an inode’s indirect
pointer to point to the superblock results in an unmount-
able filesystem when processed by e2fsck. In addition,
 e2fsck does not take advantage of all the information avail-
able to it during repairs, making consistent but incorrect
repairs. SQCK decouples specification of consistency checks
and repair policies from the interpretation of filesystem
structure, making it easy to specify intent. SQCK takes an
FS image and loads all of its metadata into database tables.
The specified SQL queries are run on these tables and any
modifications are then serialized back to the filesystem
image. Several examples of existing fsck checks and their
equivalent in SQCK to illustrate the improvement were
presented. When specifying filesystem repairs declaratively
in SQL is not possible, a library of SQL queries can be
composed together through bits of C code to produce the
desired effect.

The current prototype uses a MySQL database that holds
the tables in a RAM disk. The 150 queries representing
e2fsck were implemented in 1100 lines of SQL. It is also
easy to add new checks or repairs. Through the use of some
performance optimizations, the runtime overhead on their
current prototype was brought within 50% of the existing
e2fsck.

A questioner asked about the size of the RAM disk for
e2fsck. Gunawi explained that the database only concerns
itself with metadata. For a half-full 1-TB filesystem, roughly
500 MB of storage is required for metadata. Another at-
tendee wondered whether the comparison of the number of
lines of code between e2fsck and SQCK took the complexity
of the scanner-loader that interprets the filesystem image.
Gunawi said that e2fsck includes 14 KLOC of scanning
code, which was ignored in the comparison. When asked
whether reordering SQL statements can affect correctness,
the presenter said that an automated reordering of the SQL
statements has not been implemented, but he found that
ensuring the ordering manually was easier in SQCK. An
attendee wondered whether flushing back to disk could
introduce errors. Gunawi said that e2fsck itself does not
atomically repair the filesystem; thus a crash during e2fsck
could cause another inconsistent state. However, imple-
menting transactional updates in SQCK would be simpler,
although the current implementation does not have such
support. The final issue raised was whether it wouldn’t be
easier to specify what the filesystem should look like than
to specify checks. Gunawi explained that this was indeed
the original intent and led them to explore developing their
own declarative language. However, they found that SQL
was a close fit and already had traction in the technical
community.

n	 Transactional Flash
Vijayan Prabhakaran, Thomas L. Rodeheffer, and Lidong Zhou,
Microsoft Research, Silicon Valley

Solid state disks (SSDs) are a significant departure from tra-
ditional magnetic disks. Currently, these disks have adopted
the existing thin interface with which existing magnetic
disks comply. Although this allows backward compatibility,
Vijayan states that this choice represents a lost opportunity
in proliferating new abstractions to truly take advantage of
this shift in storage technology. TxFlash is a new abstrac-
tion that allows SSDs to provide transactional semantics.
TxFlash proposes transactional support in SSDs, reduc-
ing file system complexity while providing performance
improvements. The existing logic in SSDs to handle write-
leveling and cleaning makes them particularly well suited
for transactional support.

A commit protocol is essential to provide transactional se-
mantics. The traditional log-based commit protocol is heav-
ily used for its relative simplicity: A separate log is main-
tained where data is written, following which an explicit
commit record is written. Once committed, write-back can
occur asynchronously. This adds a space overhead for the
explicit commit record, as well as a performance penalty
owing to the strict ordering required between the data and
commit records. These can have a significant impact on
workloads that require short and frequent transactions.
TxFlash’s new WriteAtomic and Abort abstractions could
eliminate these problems. The WriteAtomic abstraction can
inform the TxFlash device what pages need to be updated
atomically. The TxFlash device links pages committed
within the same transaction to form a closed loop, which
can then be written in parallel. A commit is said to be suc-
cessful if the updates cause a cycle. However, broken cycles
are not a sufficient condition for detecting aborted transac-
tions. To solve this ambiguity, the Simple Cyclic Commit
(SCC) protocol is proposed by the authors. It ensures that
if a version of a page exists, any previous version of the
same page on disk must be committed, and if a transaction
aborts, the affected pages and their references are erased
before a newer version is retried.

TxFlash was evaluated through a simulator as well as an
emulator implemented as a pseudo block device. The au-
thors also implemented a modified version of the ext3 file
system, TxExt3, which exercises the WriteAtomic interface.
This approach allowed the authors to strip out roughly 50%
of the ext3’s journaling implementation. Benchmarks sug-
gest that TxFlash improves performance by roughly 65%
for IO-bound workloads, particularly for those with small
transactions, while having a negligible impact on perfor-
mance for large transactions.

An audience member asked what deployment scenarios the
authors envisioned that would proliferate the use of ab-
stractions like those proposed in TxFlash. Vijayan said that
reduced complexity of the software stack makes TxFlash
particularly interesting for embedded devices and special-

98 ; LO G I N : VO L . 3 4, N O. 2

ized operating systems such as those in game consoles. An-
other attendee asked whether there was a way to implement
transactions on existing interfaces. How about exposing a
fuller view of flash including metadata to software? Vijayan
believes that it is not sufficient to expose the metadata. One
would either have to export all the functionality to the soft-
ware or implement it in the disk. The latter seems preferable
to hide the complexity from software.

n	 Avoiding File System Micromanagement with Range Writes
Ashok Anand and Sayandeep Sen, University of Wisconsin,
Madison; Andrew Krioukov, University of California, Berkeley;
Florentina Popovici, Google; Aditya Akella, Andrea Arpaci-

Dusseau, Remzi Arpaci-Dusseau, and Suman Banerjee, Univer-
sity of Wisconsin, Madison

The modern disk interface is represented by a linear address
space; this aids usability but limits the opportunity for the
software stack to make performance improvements. File
systems try to improve disk I/O by ensuring spatial locality
of related blocks; however, the interface only allows them
a low-level command to write a block to a specific logical
address—a classic example of micromanagement. The infor-
mation gap between the file system and the disk results in
I/O operations incurring unnecessary positioning overhead.
This work proposes a new interface where the file system
can specify a range of candidate blocks to the disk and al-
lows it to choose the most appropriate block.

The interface allows the file system to specify a list of ranges
to the disk, which, in return, specifies the result of the
request as well as the chosen target block for the write re-
quest. One possible problem is that file systems might spec-
ify multiple write requests that have overlapping ranges. If
the disk selects a block from the overlapping range, then it
must make sure it masks it out of the range that it considers
for the subsequent write request. This additional metadata
must eventually be cleared. An ideal opportunity to do so is
during write barriers.

This change in interface would require the in-disk scheduler
to consider all options from among the list of ranges passed
to it by the OS but select only one. A simple modification is
the expand-and-cancel (ECS) approach. It expands a range
write into a number of write requests. Once a candidate
is selected, all other ranges are canceled from the request
queue. This, however, is computationally expensive, since
extensive queue reshuffling may be required. The authors
present an alternative called Hierarchical Range Scheduling
(HRS) in their paper.

Integration into existing file systems also poses a challenge.
For instance, file systems try to improve sequentiality of
writes. However, with range writes, related blocks could
be spread farther apart. Moreover, there are complications
because the file system is informed of the chosen destina-
tion later than normal. However, the presenter suggested
that these were not significant impediments to using range
writes, at least for a subset of block types. Simulation runs

of range writes on write-heavy workloads such as Post-
mark and untar showed that the performance improved by
16%–35%.

An audience member wondered whether it was sufficient
to create a faster write cache without modifying the filesys-
tem, disk, and interface to improve write performance. The
presenter replied that existing disks could benefit from their
approach. Moreover, cooperative storage between the cache
device and the backing store was also possible. Another au-
dience member commented that if a high-speed write cache
(e.g., a flash drive) was used, it is likely that the backing
disks would be slow and inexpensive; therefore cooperation
between the cache and backing disks through range writes
might not be possible. Lastly, a few people wondered how
range-writes would handle overwrites and if this approach
wouldn’t result in greater fragmentation. The presenter sug-
gested that read and rewrite performance might suffer from
fragmentation. He mentioned that they had not sufficiently
evaluated this and that it was an area for future work.

progr a mming l anguage techniques

Summarized by Vivek Lakshmanan (vivekl@cs.toronto.edu)

n	 Binary Translation Using Peephole Superoptimizers
Sorav Bansal and Alex Aiken, Stanford University

Sorav Bansal explained that binary translators are used
to run applications compiled for one ISA (Instruction
Set Architecture) on another. Major challenges in binary
translation are performance, ISA coverage, retargetability,
and compatibility with the OS. This work explores using
superoptimization to address the first three of these chal-
lenges associated with binary translators. Superoptimization
is an approach in which the code generator does a brute-
force search for optimal code. The peephole superoptimi-
zation approach presented here utilizes three modules: a
harvester, which extracts canonicalized target instruction
sequences from a set of training programs; an enumerator,
which enumerates all possible instructions up to a certain
length, which are checked for equivalence against the target
sequences produced by the harvester; and, finally, a rule
generator, which creates a mapping of target sequences to
their equivalent optimal translations.

Using peephole superoptimization for binary translation
complicates matters. First a register mapping is required
between the source and destination architectures before
equivalence can be verified. The register mapping may
need to be changed from one code point to another and
the choice of the register mapping can have a direct impact
on the quality of translation. The authors used dynamic
programming to attempt to reach a near-optimal solution.
Their mapping accounts for translations spanning multiple
instructions and simultaneously performs instruction selec-
tion and register mapping.

; LO G I N : A pr I L 20 0 9 cO N fe re N ce re p O rt s 99

A static user-level translator from ELF 32-bit PPC/Linux to
ELF 32-bit x86/Linux binaries was implemented. The pro-
totype was evaluated using microbenchmarks and SPECINT
2000 against natively compiled equivalents, as well as other
binary translators such as Rosetta and QEMU. The mini-
mum performance of the prototype was 61% of native, but it
exceeded native on three microbenchmarks. It is up to 12%
faster than Rosetta and 1.3 to 4 times better than QEMU.
Note, however, that both Rosetta and QEMU are dynamic
translators, so the cost of translation is embedded in their
runtimes while their current prototype is static.

One attendee asked about the pattern-matching algorithm
used and whether optimizing this would improve perfor-
mance. The response was that the current implementa-
tion used a very simple approach and a pattern-matching
algorithm could help. There were questions raised about
whether the translator could work on multithreaded appli-
cations and whether the use of synchronization constructs
was tested. The presenter didn’t know of any reason why
their approach wouldn’t work for multithreaded applica-
tions. Correctness on synchronization constructs had not
been tested. Another asked how well their approach would
translate to a dynamic translator. Sorav explained that the
choice of a static translator was for simplicity. However,
he wasn’t aware of any reason why the approach couldn’t
work in a dynamic setting. The final query concerned how
well the equivalence test handled aliased instructions. Soral
claimed that the Boolean filter used by the satisfiability
solver was resilient to aliasing. Details of this can be seen in
their previous publication in ASPLOS.

n	 R2: An Application-Level Kernel for Record and Replay
Zhenyu Guo, Microsoft Research Asia; Xi Wang, Tsinghua Uni-
versity; Jian Tang and Xuezheng Liu, Microsoft Research Asia;
Zhilei Xu, Tsinghua University; Ming Wu, Microsoft Research
Asia; M. Frans Kaashoek, MIT CSAIL; Zheng Zhang, Microsoft
Research Asia

Zhenyu Guo described R2 as a record and replay tool for
debugging. Some bugs are hard to reproduce by simply
reexecuting the program, whereas others make it hard to
do comprehensive analysis without significant perturbation
to the system at runtime. Previous approaches have used
virtual machines to replay the application and the OS, but
this is difficult to deploy. Other attempts that use a library-
based approach do not support multithreading or asynchro-
nous I/O. Instead, R2 allows developers to determine the
interface at which record and replay will occur and tries to
address these shortcomings.

Selecting a replayable set of functions with the goal of
capturing nondeterminism requires the developer to make
a cut through the call graph. Calls to functions above the
cut are replayed but functions below the cut are not. R2
also establishes an additional isolation environment: The
items above the call graph cut are termed to be in replay
space, whereas the R2 library and the rest of the system are
in system space. Since it is possible to choose cuts poorly,

the authors propose two rules developers can follow: Rule
1 (isolation)—all instances of unrecorded reads and writes
to a variable should be either all below or all above the
interface; Rule 2 (nondeterminism)—any nondeterminism
should be below the interposed interface.

A major challenge is to keep a deterministic memory foot-
print between record and replay. It is important to get the
same memory addresses in both record and replay to ensure
that different control flow isn’t followed. R2 uses separate
memory allocators for system and replay space. Allocation
in replay space will get similar addresses, whereas alloca-
tions in system space are hidden from the application and
don’t need to get a deterministic address. Another issue is
ensuring deterministic execution order in multithreaded
applications. It is important to make sure that the ordering
of execution of multithreaded applications is not changed
between the original and replayed runs. To do this, R2 cap-
tures happens-before relationships through causality events
that have designated annotations.

There are three categories of annotations in R2: data
transfer, execution order, and optimization. The authors
have annotated large parts of the Win32 API, in addition
to all of MPI and SQLite APIs. R2 has been used to debug
several large applications with moderate annotation effort.
A recording overhead of 9% was measured on ApacheBench
when run on a standard Apache Web server configuration.

One audience member asked whether there were plans for
any static checking or automatic verification for choosing
the interface cut to prevent developers from making mis-
takes. The presenter stated that cutting at library bound-
aries was a good rule of thumb. However, work on using
compiler techniques to select this boundary is planned.
Another attendee wondered whether the tool could be used
in production for more complex workloads, since the over-
head for microbenchmarks is helped by caching. The pre-
senter claimed that they saw 10%–20% overhead for larger
benchmarks. He also said that one problem with larger
applications is that the log may become unmanageable; as
a result, a form of checkpointing is being considered. A
query regarding R2’s ability to cope with data races was
posed. The presenter admitted that R2 would not be able to
handle such issues currently. Finally, an audience member
asked whether developers had to reannotate new versions of
libraries. The presenter said that API-level annotation was
sufficient.

n	 KLEE: Unassisted and Automatic Generation of High-
 Coverage Tests for Complex Systems Programs
Cristian Cadar, Daniel Dunbar, and Dawson Engler, Stanford
University

Winner of Jay Lepreau Award for one Best Paper

Cristian Cadar began by saying that systems program-
ming is notorious for its complex dependencies, convoluted
control flow, and liberal unsafe pointer operations. The
ever-present threat of malicious users does not make mat-

100 ; LO G I N : VO L . 3 4, N O. 2

ters easier. Testing such complex code is not trivial. Certain
bugs are only tripped in obscure edge conditions, which
may be missed even when comprehensive test cases are
available. KLEE is designed to check such complex systems
code. KLEE is a fully automatic symbolic execution tool that
explores a large number of paths in a program and auto-
matically generates test cases.

KLEE runs C programs on unconstrained symbolic input.
As the program runs, constraints on the symbolic values
are generated; these are then fed to a constraint solver that
generates test cases. Though this seems conceptually simple,
there are a few major challenges KLEE overcomes. First,
most programs have an exponential number of execution
paths they may take. As a result, smart search heuristics
are essential. KLEE uses either random path selection or
coverage-optimized search at any given point (chosen in
round-robin fashion): The former prevents starvation of cer-
tain paths, whereas the latter tries to choose the path closest
to an uncovered instruction. The second challenge relates
to constraint solving. Since KLEE needs to invoke a con-
straint solver at every branch, the costs can easily become
prohibitive. As a result, KLEE tries to eliminate irrelevant
constraints before sending them to the constraint solver.
In addition, results from the constraint solver for previous
branches are cached and reused where possible. Finally,
when a program being executed by KLEE reads from the
environment (filesystem, network, etc.), all possible values
for the operation should be ideally available for KLEE to
explore. Similarly, when the program writes to the environ-
ment, subsequent reads should reflect that write. To handle
this in the case of symbolic input to a system call, KLEE
provides the ability to redirect environmental accesses to
models that generate the necessary constraints based on the
semantics of the system call invoked.

KLEE was run on each of the 89 standalone applications,
combining to form Coreutils for 1 hour. The test cases
generated were then run on the unmodified tools under a
replay driver that recreates the environment for the tests to
proceed. Overall, KLEE’s tests produced high line coverage,
with an overall average of 84%. In comparison, manual test-
ing achieves an average of 68% coverage. KLEE was able to
find 10 unique crash bugs in Coreutils, each accompanied
by commands that could reproduce crashes. It has been run
on hundreds of applications as well as Minix and HiStar,
and it has found 56 serious bugs in total.

An audience member wondered how KLEE would work
against large systems such as database servers. The pre-
senter replied that their previous work used symbolic file
systems. Something similar could be done for databases.
Another question involved the location of the bottleneck for
KLEE when scaling the complexity of the checked system.
The authors believe the number of states is a major prob-
lem. KLEE uses COW to minimize memory footprint. An
audience member noticed that bullet-proof code could be a
problem (last-minute checks in the code that return incor-

rect values but don’t let the program crash). The presenter
believed that the assert framework could be of help in such
situations. in response to a question about the path lengths
for some of the 56 bugs found, Cristian explained that
the depth varied, but in some cases hundreds of branches
needed to be hit. Another audience member asked whether
they had attempted to use some of the tools from the related
work to see if they could catch any of the bugs as well. Cris-
tian replied that since many of the tools were not available
or not comparable to their approach, they did not perform
a comparison. The last question was regarding the name
KLEE and what it meant. Cristian credited Daniel Dunbar
with the name and believed that perhaps it was a Dutch
word, a theory swiftly put to rest by a Dutch member of the
audience.

securit y

Summarized by Periklis Akritidis (pa280@cl.cam.ac.uk)

n	 Hardware Enforcement of Application Security Policies
Using Tagged Memory
Nickolai Zeldovich, Massachusetts Institute of Technology; Hari
Kannan, Michael Dalton, and Christos Kozyrakis, Stanford
University

Hari Kannan started by observing that traditional operating
systems’ lack of good security abstractions forces applica-
tions to build and manage their own security mechanisms.
This bloats the TCB and makes it hard to eliminate bugs.
But recent work has shown that application policies can
be expressed in terms of information flow restrictions and
enforced in an OS kernel, and this work explored how
hardware support can further facilitate this.

Unfortunately, current hardware mechanisms are too
coarse-grained to protect individual kernel data structure
fields, so Hari proposed using tagged memory, where each
physical memory word maps to a tag and tags map to access
permissions. A trusted monitor below the OS is responsible
for mapping labels expressing application security policies
to tags that are enforced by the hardware, so less software
needs to be trusted and some level of security is maintained
even with a compromised OS.

Hari presented LoStar, a prototype system based on HiStar
OS and a tagged memory hardware architecture called Loki.
He discussed the operation and implementation of LoStar,
including optimizations such as a multi-granular tag storage
scheme to reduce memory overhead and a permission cache
within the processor. The prototype had a 19% logic over-
head (which would be much less for a modern CPU), had
negligible performance overhead, and reduced the (already
small) TCB of HiStar by a factor of 2. Hari concluded his
presentation with pointers to the Loki port to a Xilinx XUP
that costs $300 for academics and $1500 for industry, add-
ing that the full RTL and the ported HiStar distribution are
available.

; LO G I N : A pr I L 20 0 9 cO N fe re N ce re p O rt s 101

A member of the audience asked Hari to contrast Loki with
Mondrian memory protection, which also offers fine granu-
larity. In particular, could LoStar be implemented on top of
Mondrian memory protection or is there some fundamental
functional difference? Hari acknowledged that Loki builds
on Mondrian memory protection but argued that Loki
provides more functionality and that the whole system is a
carefully designed ecosystem. LoStar extends application se-
curity policies all the way to the hardware, and Loki keeps
the MMU outside the TCB. Mondrian memory protection,
in contrast, only extends traditional access control to offer
word granularity and, furthermore, depends on the correct-
ness of the MMU. Finally, in response to another question,
he clarified that a dedicated garbage collection domain
described in his presentation does not have unconditional
access to kernel objects.

n	 Device Driver Safety through a Reference Validation
Mechanism
Dan Williams, Patrick Reynolds, Kevin Walsh, Emin Gün Sirer,
and Fred B. Schneider, Cornell University

Patrick Reynolds argued that device drivers should not be
trusted, because they have a high fault rate and are written
by third parties. These issues, in combination with running
in the kernel and having hardware privileges, can lead to
Trojan horses, insider attacks, and faults that take down
the system. He said that Cornell University is building a
new operating system, the Nexus, that is based on a trusted
microkernel that leverages trusted hardware to enable trust-
worthy applications. Nexus aims for a small and auditable
TCB, but device drivers presented a great challenge because
they are so untrustworthy and keep changing.

Nexus moves drivers to user space as a first step to prevent
direct attacks on the kernel, but devices can also compro-
mise the kernel integrity in many ways, such as overwhelm-
ing the kernel with interrupts or using direct memory
access. Nexus addresses this by placing a filter between the
driver and the device. This filter is written once for each
device, is small to audit, and, given proper specifications,
can defend against broader attacks.

Direct hardware operations in drivers ported to Nexus are
replaced with Nexus system calls and the sequence of op-
erations is constrained using a specification language built
around state machines. Illegal transitions kill the driver and
invoke a trusted reset routine that is part of the specifica-
tion. Several mechanisms, including IO ports, MMIO, inter-
rupts, and DMA, are captured in the specification language.
Finally, drivers are not trusted with disabling interrupts.
Instead the driver can defer its own interrupts and pause
execution of its own threads. This was sufficient in prac-
tice and has the advantage of lowering interrupt latency for
other unrelated drivers.

Five drivers were ported for evaluating the system. The
metrics used for the evaluation were complexity-measured
by driver and specification size and performance-measured

by throughput and latency and by robustness to random
and targeted attacks. About 1% of the lines of code changed
in each driver, and the specifications were between 100
and 150 lines of code—an order of magnitude smaller than
the drivers themselves. The network throughput at 1 Gbps
for user-space drivers degraded slightly for sending small
packets, but no penalty was measured for sending large
packets or receiving packets. The interrupt latency degraded
significantly (from 5 to 50 microseconds), but that did not
affect usability in day-to-day use. The CPU overhead for
a benchmark streaming video at 1 Mbps increased from
1% to 2%. Finally, the resistance to attacks was evaluated
by probabilistically modifying driver operations as well as
using a malicious driver suite. Having the drivers in user
space only caught direct reads/writes, but the security poli-
cies blocked all further attacks. Patrick concluded that the
system is efficient, general, and robust against attacks.

A member of the audience objected to the use of throughput
as a metric for the evaluation and highlighted that CPU load
was roughly doubled. Another member wondered how this
system would affect more demanding devices using Firewire
or USB2.0. Patrick replied that latency and correctness were
not affected for USB1.1 and USB 2.0 high-speed drives,
although with USB 2.0 the CPU overhead is significant,
as USB 2.0 drivers require many context switches. Patrick
specifically clarified that they have not observed dropped
frames with their USB disk experiments, but they have not
tried Firewire. Somebody asked who would write the speci-
fications. Patrick suggested that the device driver manufac-
turers or a trusted third party could write these, but it is an
orthogonal problem. Asked whether performance was the
reason for having the reference monitor inside the kernel,
Patrick argued that it has to be part of the TCB, so it might
as well be in the kernel, but he believes that the overhead
of having it in user space would be small. Someone else
observed that the specification can be extracted either from
the driver’s normal behavior or from the device’s specifica-
tion. Patrick said that they looked at both and considered
it a shortcut to allow only observed behavior, but he agreed
that for implementing a security policy normal behavior is
more interesting than the device’s full capabilities.

People were intrigued by the possibility of permanent dam-
age to the hardware and solicited realistic examples. Patrick
described a driver asking a device to overclock itself and
turn off its fans or overwrite flash memory, rendering the
device unbootable. Having observed that a generic USB
policy was used for USB drivers, somebody asked for a com-
parison with the Windows driver model that also allows
user-space drivers. Patrick acknowledged that they are very
similar but argued that Windows allows only user-space de-
vices that do not perform direct IO, whereas Nexus extends
this to all kinds of devices. Asked whether an IOMMU
would be useful for doing lazy trapping and batching things
up, much as shadow page tables are used, Patrick observed

102 ; LO G I N : VO L . 3 4 , N O. 2

that many memory accesses are individual commands that
cannot be batched like that.

The final question was about similar description languages
such as Devil IDL and Sing\#, the Singularity driver con-
straint language. Patrick said that they drew inspiration
from the languages but did not reuse them or reuse any of
the specifications that were written for them. He further
argued that Devil was intended for the construction of
drivers rather than constraining them, and helater added
that Sing\# applies only to properties that can be checked
statically.

n	 Digging for Data Structures
Anthony Cozzie, Frank Stratton, Hui Xue, and Samuel T. King,
University of Illinois at Urbana-Champaign

Anthony Cozzie summarized the state of the art in the anti-
virus industry and the challenges faced by signature check-
ers against code obfuscation. He argued that all programs
use data structures and targeting these could defeat code
obfuscation. To this end, he presented Laika, a system that
can detect programs based on their data structures.

Laika works by classifying words in memory into types
such as heap pointers, zero, integers, or ASCII strings,
and from these it tries to find objects in memory and their
classes. Importantly, in addition to field types, it can clas-
sify objects by considering what other objects their fields
point to.

Anthony presented an evaluation of Laika’s accuracy using
seven test programs that averaged 4000 objects and 50
classes: Laika detected object classes with 75%–85% accu-
racy. It was straightforward to turn Laika into an anti-virus
program by checking how many structures a tested program
shares with a known malware sample. They tried this with
three botnets, which Laika classified with 100% accuracy,
whereas ClamAV, an anti-virus program, had about 80%
accuracy. Anthony observed that virus detection is an arms
race, and he discussed some possible attacks on the sys-
tem and countermeasures. Obfuscating reads and writes
would not help the virus, as it would result in no visible
data structures, which is suspicious on its own. A compiler
attack could shuffle the order of fields, but that would pre-
serve sufficient information to recover the classes. A mim-
icry attack could use structures from a legitimate program,
such as Firefox, but a successor to Laika could try to detect
unused fields, or it could detect the mismatch between the
program (not Firefox) and its data structures (Firefox). The
approach does not work for very simple programs, but mal-
ware with some functionality would expose some structure.
Finally, being a dynamic approach, it is computationally
expensive.

Stefan Savage highlighted the challenges of getting a con-
sistent memory snapshot, with malware being careful not
to expose completely at once, or waiting until a particular
time of day. Anthony said that they just run the malware for
five minutes and that was sufficient, but he acknowledged

the problem. Another attendee observed that the attacker
code might try to detect whether it is in a sandbox or a
VM, to which Anthony replied that the approach relies on a
working sandbox. Another point raised involved the whole
class of nonmalicious applications such as DRM that use
obfuscation. Anthony argued that although they could not
be classified by Laika, they could be signed, thus solving
this problem.

Another attendee asked whether they have tried running
Laika on programs written in other languages or using
more exotic compilers. Anthony said that the results would
depend on the language. For example, it would not work
with LISP, where everything is a list, but with some other
high-level languages such as Java, the classes are readily
available. Somebody observed that many programs share
data structures because of libraries and runtime environ-
ments, such as the C library and the JVM, and wondered
how the technique would deal with such programs. An-
thony argued that the approach can still separate such
programs. Somebody proposed to break Laika by encrypt-
ing data structures on the heap and decrypting them on
the stack before use, but Anthony classified this as another
case of an encrypted memory attack where no structure
would be visible and used a graphic analogy of cutting one’s
fingers to avoid matching a fingerprint scan, reiterating that
lack of structure is suspicious by itself. Finally, somebody
was concerned with having to run Laika for five minutes
and wondered whether matching against several candidate
viruses would take five minutes per virus signature, but
Anthony clarified that one run of the scanned program and
a snapshot are sufficient for checking multiple signatures.

dealing with concurrenc y bugs

Summarized by Chris Frost (frost@cs.ucla.edu)

n	 Finding and Reproducing Heisenbugs in Concurrent Programs
Madanlal Musuvathi, Shaz Qadeer, and Thomas Ball, Microsoft
Research; Gerard Basler, ETH Zurich; Piramanayagam Arumuga
Nainar, University of Wisconsin, Madison; Iulian Neamtiu, Uni-
versity of California, Riverside

Madanlal Musuvathi presented their work on making it
easier to find concurrency bugs. Concurrent applications
are infamously difficult to debug: Executions are highly
nondeterministic, rare thread interleavings can trigger bugs,
and slight program changes can radically change execution
interleavings. For these reasons, concurrency bugs can cost
significant developer time to find and reproduce. Madanlal
et al.’s user-mode scheduler, CHESS, controls and explores
nondeterminism to trigger concurrency bug magnitudes
more quickly than through stress testing.

Madanlal showed the utility of CHESS through a well-
received concurrency bug demo. He first ran a bank account
application test suite hundreds of times; no execution trig-
gered a concurrency bug. Importantly, over the hundreds
of runs only two unique execution paths happened to be

; LO G I N : A pr I L 20 0 9 cO N fe re N ce re p O rt s 103

explored. He then ran the test suite in CHESS; the bug was
triggered on the fourth run. Each run in CHESS explored a
unique execution path.

The high-level goals of CHESS are to find only real errors
and to allow all errors to be found. This latter suite goal is
difficult because of the state explosion that results from all
the sources of nondeterminism; practically, Madanlal et al.
wanted CHESS to be able to beat stress checking.

CHESS is a user-mode scheduler; it explores execution
paths in a test (1) to trigger test suite asserts and (2) for
CHESS to detect deadlocks and livelocks. CHESS inserts
scheduler calls at potential semantic preemption points.
Several techniques are used to reduce the number of these
scheduler calls to help minimize state explosion; some of
these techniques can be adjusted to trade off speed with
coverage. CHESS has found bugs in Microsoft’s Concur-
rency Coordination Runtime, IE, and Windows Explorer,
among others. It is available for Win32 and .NET now and
will be available later for the NT kernel. They also plan to
ship it as an add-on with Visual Studio. Finally, Madanlal
made a plea for abstraction designers: Specify and minimize
exposed nondeterminism.

One person asked whether CHESS controls random number
generators and time. Madanlal responded that CHESS
guarantees reproducibility for random number generation,
timeouts, and the time of day, but it will not find errors that
only show up on particular return values (i.e., it captures
but does not explore the nondeterminism). CHESS leaves
file and network inputs to the test suite.

n	 Gadara: Dynamic Deadlock Avoidance for Multithreaded
Programs
Yin Wang, University of Michigan and Hewlett-Packard Labora-
tories; Terence Kelly, Hewlett-Packard Laboratories; Manjunath
Kudlur, Stéphane Lafortune, and Scott Mahlke, University of
Michigan

Yin Wang presented Gadara, a principled system that prov-
ably ensures that a multithreaded C program is deadlock-
free, while requiring only a modest runtime overhead (e.g.,
11% for OpenLDAP). Gadara avoids circular-mutex-wait
deadlocks by postponing lock acquisitions, using a program
binary instrumented with control logic automatically de-
rived from the source program using discrete control theory.
Gadara transforms a C program into a control flow graph,
then into a Petri net (a discrete control theory model used to
describe lock availability, lock operations, basic blocks, and
threads), from which Gadara derives control logic that it
adds to the original source. The control logic observes and
controls thread interactions. Most lock operation sites can
be ruled safe and thus need not be instrumented.

Yin et al. evaluated Gadara for the OpenLDAP server, BIND,
and a PUBSUB benchmark. Gadara can require source func-
tion and lock annotations; the OpenLDAP server was mostly
annotated in one hour (with 28 of 1,800 functions being
ambiguous). Gadara found four possible sources of dead-

lock: two new, one known, and one false positive (result-
ing from Gadara not using data flow analysis). The known
bug was fixed in the OpenLDAP repository, but it was later
reintroduced, and then fixed again through a code redesign.
With Gadara’s runtime instrumentation no fix is neces-
sary, avoiding this frequent deadlock bug fix difficulty. This
makes Gadara useful for rapid development, corner cases in
mature code, and end-user bug fixes.

One person asked why one would use Gadara’s instrumen-
tation instead of fixing the bug. Yin responded that devel-
opers are not always available, that fixes can be difficult to
design, and that Gadara can generate false positives, neces-
sitating code study to determine whether the bug is real.
Another person asked why adding a simple lock around the
instrumentation points is insufficient; this solution works
in some cases, but not all (e.g., the five dining philosophers
problem). In response to why the PUBSUB experiment used
only two cores. Yin answered that they found, in the BIND
experiments, that 2- and 16-core experiments had similar
overheads. For both PUBSUB and BIND, only workloads
that saturated the CPU showed any performance overhead.

n	 Deadlock Immunity: Enabling Systems to Defend Against
Deadlocks
Horatiu Jula, Daniel Tralamazza, Cristian Zamfir, and George
Candea, École Polytechnique Fédérale de Lausanne (EPFL),
Switzerland

George Candea presented the Dimmunix deadlock avoid-
ance system. When a system deadlocks, Dimmunix remem-
bers the control flow that has brought the program into the
current state and, through lock operation instrumentation,
prevents the program from reentering that state in future
program runs. George had fun describing their work in
terms of antibodies (Dimmunix signatures) for pathogens
(deadlock bugs): You get sick from the first infection, but
you are immune from then on.

When a program deadlocks, Dimmunix saves the values for
each frame in the deadlocked threads’ call stacks. After the
program is then restarted, if a lock operation is performed
with the same callstacks Dimmunix changes the lock opera-
tion ordering to avoid the deadlock. Dimmunix is imple-
mented for C/C++, as a modified POSIX thread library, and
for Java, by rewriting Java bytecode. The talk and the paper
detail the performance challenges they faced and overcame.
Dimmunix avoids inducing thread starvation when reorder-
ing a program’s lock operations using Dimmunix’s deadlock
avoidance algorithm with yield edges.

George sees Dimmunix as complementary to existing
deadlock reduction techniques. For example, although a
browser may have no deadlocks itself, a third-party plug-in
may introduce deadlocks. An end user can use Dimmunix
to avoid these, without source code access and without
understanding the program’s internals. George stated that
Dimmunix has four important properties: (1) Someone must
experience the first deadlock occurrence; (2) Dimmunix

104 ; LO G I N : VO L . 3 4 , N O. 2

cannot affect deadlock-free programs; (3) Dimmunix cannot
induce nontiming execution differences; and (4) Dimmunix
must be aware of all synchronization mechanisms.

They evaluated Dimmunix by reproducing user-reported
deadlock bugs for a number of large systems, including
MySQL, SQLite, and Limewire, among others. For each
reproducible deadlock they were able to induce deadlock,
when not using Dimmunix, one hundred times in a row.
With Dimmunix, each bug was triggered only the first of
the hundred runs.

One person asked about extending Dimmunix to provide
the stack traces to the programmer for debugging; George
said one of his students is working on this for very large
programs. Another asked what happens when Dimmunix
misbehaves, for example, preventing a valid path from ex-
ecuting. George responded that Dimmunix protects against
this using an upper bound on yielding. Another person
asked whether Dimmunix could be generalized to segmen-
tation faults or other symptoms; George said that another
student is looking at applying their techniques to resource
leaks.

poster session

Part 1 summarized by Kyle Spaans
(kspaans@student.math.uwaterloo.ca)

n	 Automatic Storage Management for Personal Devices with
PodBase
Ansley Post, Rice University/MPI-SWS; Petr Kuznetsov, Juan
Navarro, and Peter Druschel, MPI-SWS

Users don’t like having to do work. PodBase is a system that
tries to avoid involving the users in any way with their files.
It is a system for synchronizing and replicating user data on
personal devices, under the covers, for durability and avail-
ability. For example, it can use the freely available storage
on the various devices in a user’s household to back up files
in case the original is lost.

n	 Entropy: A Consolidation Manager for Clusters
Fabien Hermenier, Xavier Lorca, Jean-Marc Menaud, and Gilles
Muller, Ecole des Mines de Nantes; Julia Lawall, DIKU

Hermenier described Entropy, a system to optimize con-
figuration in cluster environments for VMs. It packs and
migrates VMs to reduce overhead and make best use of
resources. For example, it can reduce the number of migra-
tions needed, take advantage of parallelism, and minimize
the number of nodes required.

n	 Writing Device Drivers Considered Harmful
Leonid Ryzhyk and Ihor Kuz, NICTA, University of New South
Wales

Ryshyk said that device drivers are hard to write correctly
and can compromise an entire system. This research aims to
automate the process by taking a formal device driver speci-

fication along with the OS API and composing them into a
driver program. The only effort necessary is to translate the
device specification into a formalized finite-state machine.
Ideally, this could be generated from the VHDL code of the
device itself. To avoid state explosion in more complex driv-
ers, symbolic interpretation is used.

n	 NOVA OS Virtualization Architecture
Udo Steinberg and Bernhard Kauer, TU Dresden

A very small microhypervisor that can run legacy OSes,
NOVA, focuses on being the small trusted base (~30 KLOC)
that runs in privileged mode on the hardware. It runs the
maximum possible number of services in user space, monitors
included, so that compromises cannot spread among VMs.

n	 CrystalBall: Predicting and Preventing Inconsistencies in
Deployed Distributed Systems
Maysam Yabandeh, Nikola Knezevic, Dejan Kostic , and Viktor
Kuncak, EPFL

CrystalBall makes it easier to find errors in distributed sys-
tems and increases their resilience. It will predict inconsis-
tencies in live systems and then steer execution to avoid the
predicted errors. It’s a form of model checking and allows
live distributed debugging with low overhead.

n	 Operating System Transactions
Donald E. Porter, Indrajit Roy, and Emmett Witchel, The Univer-
sity of Texas at Austin

Secure sandboxing is hard. Sandboxed systems can still be
vulnerable to timing attacks. OST’s approach is to atomicize
and isolate access to system calls using a simple API to give
more transactional behavior. It is implemented with lazy
version management and eager conflict resolution.

n	 The Network Early Warning System: Crowd Sourcing Net-
work Anomaly Detection
David Choffnes and Fabian E. Bustamante, Northwestern Uni-
versity

NEWS uses distributed clients to detect anomalies in
network performance and can be useful as another tool in
a network administrator’s toolbox. As usual, it is a tradeoff
between coverage and overhead, but network overhead is
kept minimal by taking advantage of the fact that most P2P
applications already implicitly monitor the network anyway.
NEWS is implemented as a Vuze (BitTorrent client) plug-in,
with a central reporting Web interface useful for adminis-
trators.

Part 2 summarized by Kathryn McBride
(katymcbride@yahoo.com)

n	 File System Virtual Appliances: Third-party File System
Implementations without the Pain
Michael Abd-El-Malek, Matthew Wachs, James Cipar, Elie Kre-
vat, and Gregory R. Ganger, Carnegie Mellon University; Garth
A. Gibson, Carnegie Mellon University/Panasas, Inc.; Michael K.
Reiterz, University of North Carolina at Chapel Hill

No summary available.

; LO G I N : A pr I L 20 0 9 cO N fe re N ce re p O rt s 105

n	 The Barrelfish Multikernel Operating System
Andrew Baumanny, Simon Peter, Jan Rellermeyer, Adrian Schüp-
bach, Akhilesh Singhania, and Timothy Roscoe, ETH Zurich;
Paul Barham and Rebecca Isaacs, Microsoft Research, Cambridge

Barrelfish is a new operating system that is being built from
scratch. Barrelfish uses a rapidly growing number of cores,
which leads to a scalability challenge. Barrelfish gives the
user the ability to manage and exploit heterogeneous hard-
ware and run a dynamic set of general-purpose applications
all at the same time. The researchers at ETH Zurich and
Microsoft Research, Cambridge, are exploring how to struc-
ture an operating system for future multi- and many-core
systems with Barrelfish.

n	 Dumbo: Realistically Simulating MapReduce for Perfor-
mance Analysis
Guanying Wang and Ali R. Butt, Virginia Tech; Prashant Pandey
and Karan Gupta, IBM Almaden Research

Dumbo provides a good model for capturing complex
MapReduce interactions and predicts the performance of
test clusters. Dumbo aids in designing emerging clusters
for supporting MapReduce. Dumbo takes metadata, job
descriptions, and cluster topology to the ns-2 server, where
it is traced.

n	 Aggressive Server Consolidation through Pageable Virtual
Machines
Anton Burtsev, Mike Hibler, and Jay Lepreau, University of Utah

No summary available.

n	 Scalable Fault Tolerance through Byzantine Locking
James Hendricks and Gregory R. Ganger, Carnegie Mellon
University; Michael K. Reiter, University of North Carolina at
Chapel Hill

No summary available.

n	 Eyo: An Application-Oriented Personal Data Synchronizer
Jacob Strauss and Chris Lesniewski-Laas, MIT; Bryan Ford,
MPI-SWS; Robert Morris and Frans Kaashoek, MIT

Eyo was developed out of the interference challenges on
handheld devices. All types of media are produced and
consumed everywhere on laptops, phones, and MP3 players.
Eyo is used to transfer files seamlessly to the right place at
all times. Central servers can limit usability. There is cur-
rently no offline client synchronization. Partial replicas have
vast differences in storage capacity (e.g., a phone versus a
laptop). There are also bandwidth limitations. Eyo is an
attempt to synchronize personal data using an application-
orientated approach.

n	 ProtoGENI: A Network for Next-Generation Internet
Research
Robert Ricci, Jay Lepreau, Leigh Stoller, Mike Hibler, and David
Johnson, University of Utah

No summary available.

Part 3 summarized by John McCullough
(jmccullo@cs.ucsd.edu)

n	 NetQuery: A Universal Channel for Reasoning about Net-
work Properties
Alan Shieh, Oliver Kennedy, and Emin Gün Sirer, Cornell Uni-
versity

Information about networks and their endpoints is scarce. If
a service wanted to restrict access to protected networks or
if a client wanted to connect to an ISP with better provision-
ing or DDoS protection, they would be hard pressed to find
the information on their own. NetQuery uses tuplespaces
to store such useful information. The tuplespace abstraction
provides for filtering and modification triggers, enabling the
rapid dissemination of reputable network information.

n	 Trapper Keeper: Using Virtualization to Add Type-
Awareness to File Systems
Daniel Peek and Jason Flinn, University of Michigan

Collecting file metadata requires intimate knowledge of
the file formats. It is straightforward to read metadata from
common file formats with well-known parsers. However,
there are thousands of obscure file formats that don’t have
readily accessible parsers; it is impractical to program pars-
ers for all of them. Trapper Keeper leverages the parsers in
applications by loading the files and extracting the informa-
tion from the accessibility metadata in the GUI. Manipu-
lating a GUI for each individual file in the file system is
problematic. However, using virtualization, the application
can be trapped and snapshotted when it is about to open a
file. Thus, the snapshot can be invoked with a file of inter-
est. Trapper Keeper can then use this technique to extract
metadata from all of the files in your file system.

n	 Gridmix: A Tool for Hadoop Performance Benchmarking
Runping Qi, Owen O’Malley, Chris Douglas, Eric Baldeschwieler,
Mac Yang, and Arun C. Murthy, Yahoo! Inc.

As Hadoop is developed, it is important to have a set of ap-
plications that exercise the code base. Gridmix is an open
set of applications useful for benchmarking, performance
engineering, regression testing, cluster validation, and con-
figuration evaluation. The current application set has been
critical in the recent performance enhancements in Hadoop.
Gridmix is publicly available in the Hadoop source reposi-
tory.

n	 Performance Evaluation of an Updatable Authenticated
Dictionary for P2P
Arthur Walton and Eric Freudenthal, University of Texas at El
Paso

An authenticated dictionary provides key-value pairs that
are certified by an authority. Such a dictionary could be
used to maintain blacklists for DHT membership on end-
user machines. Fern is a scalable dictionary built on Chard
that uses a tree to hierarchically distribute the potentially
rapidly changing data such that the data is cacheable. The
values can be validated by tracing a path to the root author-

106 ; LO G I N : VO L . 3 4 , N O. 2

ity. Because the validation step has latency proportional to
the height of the tree, it is desirable to keep the tree as short
as possible. This work explores how the branching factor
of the tree can reduce the height and how per-node load is
affected as a result.

n	 Miser: A Workload Decomposition Based Disk Scheduler
Lanyue Lu and Peter Varman, Rice University

Ensuring high-level quality of service for all disk requests
necessitates a significant degree of overprovisioning. How-
ever, the portion of the requests that necessitate this over-
provisioning can be less than 1% of a financial transaction
workload. Relaxing the low-latency QoS requirements for
a fraction of the requests greatly reduces the provision-
ing requirements. The differentiated service is provided by
multiple queues. The priority requests are serviced from one
queue and the other requests are serviced in a best-effort
manner using the slack of the priority queue.

various good things

Summarized by Ann Kilzer (akilzer@gmail.com)

n	 Difference Engine: Harnessing Memory Redundancy in
Virtual Machines
Diwaker Gupta, University of California, San Diego; Sangmin
Lee, University of Texas at Austin; Michael Vrable, Stefan
 Savage, Alex C. Snoeren, George Varghese, Geoffrey M. Voelker,
and Amin Vahdat, University of California, San Diego

Winner of Jay Lepreau Award for one Best Paper

Amin Vahdat presented Difference Engine, which was
awarded Jay Lepreau Best Paper. The motivation for the
work is the increasing trend toward server virtualization
in the data center to support consolidation and, ultimately,
cost reduction. Some hurdles to consolidation include mem-
ory limits on virtual machines and bursty CPU utilization.
The work is based on two concepts: first, memory-saving
opportunities extend beyond full-page sharing and, second,
page faults to memory cost less than page faults to disk.

Contributions of the Difference Engine include compre-
hensive memory management for Xen, efficient memory
management policies, and detailed performance evaluation.
Difference Engine finds opportunities for memory savings
through identical page sharing, page patching, and com-
pression of pages unlikely to be accessed in the near future.
Three challenges here are (1) choosing appropriate pages for
sharing, patching, and compression, (2) identifying similar
pages, and (3) memory overcommitment. To combat the
first challenge, the system uses a global clock to see which
pages have been recently modified or accessed. For the sec-
ond, Difference Engine operates by keeping two hash tables,
one for sharing and one for similarity. On identical hashes
into the sharing table, Difference Engine verifies byte-by-
byte equality before enabling page sharing. To identify
similar pages with low overhead, the system hashes over
subpage chunks. To deal with memory overcommitment,
the system implements demand paging in the VMM.

The Difference Engine is built on top of Xen 3.0.4, and the
source code is publicly available at http://resolute.ucsd.edu/
hg/difference-engine. For evaluation, the authors used mi-
cro-benchmarks of the cost of individual operations. They
measure memory savings and performance over 10-minute
intervals after stabilization on homogenous and heteroge-
neous workloads. The results show a memory savings of up
to 90% in homogenous workloads, gained primarily from
page sharing. Heterogeneous workloads saw a memory sav-
ings of up to 65%. Performance overhead was less than 7%
compared to the baseline with no Difference Engine.

One audience member inquired whether the complexity
of compression outweighed the 5% benefit. Vahdat noted
that compression was run after page sharing and patch-
ing and has limited complexity. Switching the order of
memory saving techniques could contribute greater savings
to compression. Another audience member asked about the
size of the reserve of free pages kept to resolve page faults.
Although Difference Engine’s current implementation uses
a fixed number, Vahdat noted that it would be straightfor-
ward to make this value a percentage. There was a follow-up
question regarding server node paging. Vahdat explained
that some amount of paging occurred during startup, but
there was very little paging during the performance evalu-
ations. One questioner asked about the benefits of only
using demand paging in the hypervisor and identical page
sharing, to which Vahdat answered that memory could be
reduced by an additional factor of 1.6 to 2.6 when addition-
ally employing patching and compression for heterogeneous
workloads.

[See p. 24 for an article on Difference Engine by the authors
of this paper.—Ed.]

n	 Quanto: Tracking Energy in Networked Embedded Systems
Rodrigo Fonseca, University of California, Berkeley, and Yahoo!
Research; Prabal Dutta, University of California, Berkeley; Philip
Levis, Stanford University; Ion Stoica, University of California,
Berkeley

Prabal Dutta presented Quanto, a system for tracking en-
ergy in sensor networks, where it is the defining constraint.
Sensor nodes (“motes”) spend most of their time sleeping
and often run on limited energy supplies, such as AA bat-
teries. These nodes consume energy in very short bursts
and they display orders of magnitude difference in current
draw between active and sleep states. Three basic challenges
in energy tracking include metering energy usage, breaking
down energy usage by device, and tracking causally con-
nected activities both within a node and across the network.

To measure energy usage, Quanto uses the iCount energy
meter. To break down energy usage, device drivers are
instrumented to expose power states, and Quanto uses
this information, along with knowledge of the aggregate
system energy usage, to estimate power breakdowns by
device using regression. For activity tracking, Quanto labels
executions, and these labels are propagated throughout the

; LO G I N : A pr I L 20 0 9 cO N fe re N ce re p O rt s 107

system and its device drivers, and even onto other motes.
The labels help identify the origin and execution path as
belonging to a particular activity.

Quanto is built on top of TinyOS, and it only needs 12
bytes per activity or energy sample. In their RAM-based
logger, Quanto keeps a buffer of 800 samples. The authors
evaluate Quanto regression by testing 48 seconds of the
Blink application and comparing the results with ground
truth obtained using an oscilloscope. The results show that,
although Quanto takes a large portion of active CPU time
(71%), the denominator is very small, since actual CPU ac-
tive time is 0.12%, and most of the time the sensor is sleep-
ing. Additionally, Quanto is able to monitor itself.

Quanto is very useful for measuring energy use and CPU
time for sensor network applications. Dutta provided a
monitoring example where Quanto was used to evaluate the
cost of false alarms in low-power listening. Additionally, the
application Bounce, which plays ping-pong with network
packets, demonstrates Quanto’s ability to track an activ-
ity propagating from node to node. Some ideas for future
work include scaling Quanto from initial tests with just two
nodes to a large-scale testbed of 1000 nodes, examining the
energy cost of various network protocols, and developing
systems for energy management.

After the presentation, an audience member observed that
Blink and Bounce were simple applications and asked how
Quanto scaled to larger programs. Dutta noted that the full
profile logging generated quite a bit of data, even for these
small programs, and complex problems were difficult to
measure in the current version of Quanto, but that these
issues had been addressed in subsequent work. Another
person asked about analyzing energy online rather than
offline. Dutta suggested keeping counters instead of profile
data and calculating periodic regressions to allow online
usage of Quanto. Noting the challenge of getting device
drivers to model device state, one audience member asked
Dutta what sorts of hardware modifications would be useful
to directly extract state information. Dutta replied that it
would be great to get power state information directly from
the hardware, but this might be infeasible in some complex
subsystems (e.g., hard disks).

n	 Leveraging Legacy Code to Deploy Desktop Applications
on the Web
John R. Douceur, Jeremy Elson, Jon Howell, and Jacob R. Lorch,
Microsoft Research

Jon Howell presented Xax, a system for running legacy code
securely within Web browsers. He began by observing the
popularity of Web 2.0 applications, which allow location
independence, OS independence, and isolation to browser
windows. Howell also observed that decades of knowledge
and hard work remained in legacy C/C++ code. It would be
nice to still use this code, but rewriting it or maintaining
multiple code bases is often a significant obstacle. Running
the code on a remote server is not a viable solution, because

it would take too long. Running the code in a client is not
OS independent and presents security concerns.

Xax solves the problem of running legacy code on a client
by creating a Xax container. The container, called the “pico-
process,” is an OS process, which provides MMU isolation,
and the system call interface is filtered through a Xax moni-
tor. Services are provided through the browser. Additionally,
Xax has a platform abstraction layer to allow OS inde-
pendence. It requires light code modification. Benefits of
Xax include native CPU performance, legacy support, and
security via isolation.

To show that Xax will work, the authors built many demos.
Howell demonstrated a clock, an openGL example, and
an implementation of Ghostscript. The “lightweight code
modification” involved changes such as removing static
dependencies, rejecting unnecessary system calls, and mak-
ing I/O operate through the browser. The authors evaluated
Xax by using it to support 21 libraries and 3.7 million lines
of code. In conclusion, Howell summarized Xax as a secure,
fast, and portable interface for running legacy code in a
Web browser.

The first question regarded limitations on Xax. Howell said
that the openGL example was limited because it relied on
compressed PNGs for display. If Xax could get a low-level
interface to the browser, it could contain its own render-
ing engine. Howell noted that Xax just needed the right
low-level interface to provide greater functionality. Another
audience member asked about the 3.7 million lines of code,
and how much of it was actually being run by Xax. How-
ell noted that most of this code was being used, and that
“shims” (parts specific to the X server or OS) were cut out.

One person asked about security and limiting resource
usage. Howell noted that resource constraints would be easy
to add to Xax. Another attendee asked about performance
and the amount of data transferred over the Web. He also
inquired whether dial-up users would be able to run Xax.
Howell noted that they didn’t worry about these issues
when building the first version of Xax, because Web cach-
ing and other software engineering tools could be added
later to make Xax more efficient.

[See p. 32 for an article on Xax by the authors of this paper.]

wide-area distributed systems

Summarized by Roxana Geambasu
(roxana@cs.washington.edu)

n	 FlightPath: Obedience vs. Choice in Cooperative Services
Harry C. Li and Allen Clement, University of Texas at Austin;
Mirco Marchetti, University of Modena and Reggio Emilia;
Manos Kapritsos, Luke Robison, Lorenzo Alvisi, and Mike Dah-
lin, University of Texas at Austin

Harry Li presented FlightPath, a peer-to-peer system for
media streaming applications that is able to maintain low

108 ; LO G I N : VO L . 3 4, N O. 2

jitter in spite of Byzantine or selfish peers. This work is
motivated by the observation that most of today’s coop-
erative systems lack rigorously defined incentives, which
leaves room for exploits and free-riders. The author made
reference to their previous work, which used Nash equilib-
ria from gaming theory to provide provable incentives for
rational users not to deviate from the protocol. That work,
as well as other related works, however, sacrificed flexibility
and performance for correctness. In this work, Harry and
his co-authors aimed at approximating Nash equilibria to
achieve both formal incentives and efficiency.

More specifically, they propose an epsilon-Nash equilibrium
scheme, in which rational peers may only gain a limited
advantage (< an epsilon) from deviating from the protocol.
This provides nodes with some freedom in choosing peers,
which in turn allows them to steer away from overloaded
peers and avoid departed peers. The author stressed that
it is this flexibility that enables some of the properties of
FlightPath: churn resilience, byzantine and rational peer
tolerance, and high-quality streaming.

A member of the audience asked about FlightPath’s resil-
ience to collusion attacks. The author answered that they
had considered collusion for all of the results reported for
malicious attacks. Another member of the audience pointed
out that a previous study had shown that most free-riders
accounted for little bandwidth in a collaborative system. He
wondered to what degree eliminating those small-resource
free-riders would improve overall performance in a real col-
laborative system.

n	 Mencius: Building Efficient Replicated State Machines for
WANs
Yanhua Mao, University of California, San Diego; Flavio P.
 Junqueira, Yahoo! Research Barcelona; Keith Marzullo, Univer-
sity of California, San Diego

Yanhua Mao presented a Paxos-based replication proto-
col specifically designed for WAN operation. The author
envisions this protocol to be useful in cross-datacenter
geographical replication. The author explained why cur-
rent Paxos protocols (Paxos and Fast Paxos) perform poorly
on WANs. On one hand, Paxos maintains a single leader
and thus achieves poor latency for operations issued at
nonleader replicas. On the other hand, Fast Paxos achieves
good latency by allowing all replicas to behave as leaders,
but it suffers from collisions, which lead to poor throughput.

The proposed system, Mencius, aims to take the best of
both worlds. Very briefly, their approach consists of two
mechanisms: rotating leader and simple consensus. The for-
mer allows the leader function to be assumed by the servers
in a round-robin fashion, which means equal latencies and
high throughput. The latter mechanism allows servers with
low client load to skip their turn in Paxos rounds efficiently.

The authors evaluated the system by comparing Mencius’s
throughput and latency against Paxos’s. A member of the
audience asked the speaker to clarify a discrepancy in one

of the graphs, which showed Mencius’s throughput degrade
gracefully after a crash, whereas Paxos’s throughput was at
an all-time low value before and after recovery. The author
responded that this effect was due to Mencius’s ability to
use all of the servers’ bandwidth, whereas Paxos was bottle-
necked by the single leader’s bandwidth.

Workshop on Supporting Diversity in Systems
Research (Diversity ’08)

December 7, 2008
San Diego, CA

Summarized by Ann Kilzer (akilzer@cs.utexas.edu)

n	 Succeeding in Grad School and Beyond
Alexandra (Sasha) Fedorova, Simon Fraser University; Claris
Castillo, IBM Research; James Mickens, Microsoft Research;
Hakim Weatherspoon, Cornell University

Alexandra Fedorova advised students to work towards an
ideal CV, looking at CVs of recently hired professors for
ideas. A good CV has publications in top conferences or
journals, and quality and impact outweigh quantity. Fedo-
rova also encouraged students to imagine the final product
of research and to write as much of the paper as possible
before building anything. Writing helps thinking, and this
approach helps researchers develop methodology, review
background material, and find gaps in their approach. Her
final advice was to be ready for adjustment—research can
be risky and may not turn out the way one intends.

Hakim Weatherspoon explained that his path had been
filled with sharp turns, playing football as an undergrad,
getting married in graduate school, and raising children. A
postdoctorate inspired him to pursue an academic career.
Hakim noted that being in graduate school is very differ-
ent from being an undergrad. Grades matter less, but one is
expected to become an expert in his or her field and learn
from a variety of sources. He emphasized the importance of
collaborations, noting this could be a challenge for under-
represented students. Hakim observed that “everyone has
an agenda.” Finally, he told students to “own their own
career”—we are each responsible for our own success.

The section ended with James Mickens’ presentation, in
which he stressed that students should not fear adversarial
growth—a lot can be learned from bad reviews. He en-
couraged students to network at conferences and not just
associate with underrepresented colleagues. Networking can
help lead to internships, teaching, or collaborative research.
Regarding the thesis, Mickens noted that grad school was
about producing science, and that students shouldn’t let the
thesis trip them up. Mickens ended with an assortment of
random systems advice, which included learning a scripting
language, not fearing math, looking for interesting problems
outside of computer science, and interning in industry.

In the Q&A session, a student observed that international
students have different views on authority and asked how
to reconcile this when working with an advisor. Hakim

