
; LO G I N : D ecem b e r 20 0 8 cO N fe re N ce re p O rt s 109

verification, a coercer would be able to check that the ballot
with a given fingerprint showed the correct—coerced—votes.

The solution taken to this attack has been to encrypt the
votes in such a way that the tally can be performed without
decrypting. Previous schemes exist that address most coer-
cion attacks on single-race ballots, but the scheme presented
works with multi-race ballots and against stronger coercion
attacks.

Each ballot is first transformed into a square matrix with
a row and column for each candidate. Each cell in the
matrix represents a pairwise preference of the row candi-
date to the column candidate. A value of –1 indicates that
the row candidate is preferred, whereas a 0 indicates the
column candidate is preferred. By summing the column
for a candidate and multiplying by –1, you can recover the
rank from the traditional ballot. Additionally, by adding an
eliminated row to the column sums the votes are automati-
cally redistributed to reflect the new ordering. The final step
is to take this matrix and encrypt it using something such
as exponential ElGamal, which has the property of addi-
tive homomorphism. Tallying then takes place using the
encrypted matrices for each ballot instead of the cleartext
votes. The authors have implemented this scheme and said
that for a 30-candidate election and one million voters it
required 10,000 PC hours to tally the election and produced
a 400 GB audit log of the encrypted ballots.

3rd USENIX Workshop on Hot Topics in Security
(HotSec ’08)

July 29, 2008
San Jose, CA

securing systems

Summarized by Kevin Borders (kevin.borders@gmail.com)

n	 Towards Application Security on Untrusted Operating
Systems
Dan R.K. Ports, MIT CSAIL and VMware, Inc.; Tal Garfinkel,
VMware, Inc.

The first talk of the day was given by Dan Ports. The motive
for his research was the need to run critical applications on
commodity operating systems. These OSes may be quite
complex, leading to a large trusted-computing base and
weaker overall security. Recently, researchers have begun
investigating methods for protecting applications from a ma-
licious underlying operating system with a trusted lowest-
layer module that encrypts application memory and protects
execution state. However, execution state and memory are
only part of the story. This paper explores what can happen
when the operating system attacks an application by provid-
ing unexpected system call behavior. There are a number
of system calls on which applications rely for secure and
correct execution. This includes, but is not limited to, file
system, synchronization, clock, random number generator,
and inter-process communication calls.

The authors propose to fix incorrect system call behavior
from a compromised operating system by having a sepa-
rate trusted module verify system call correctness. For file
system calls, this may mean storing a hash value alongside
each data block. For synchronization calls, the module
could verify the correctness by making sure a lock is only
given to one thread. In general, the amount of work needed
to verify correctness of system calls is significantly less than
reimplementing the calls. For example, the trusted module
would not have to handle scheduling and fairness to verify
synchronization calls.

Various members of the audience asked about the difficulty
of verifying correctness for all system calls in practice.
It may be hard to check results from calls such as ioctl()
which have a wide range of parameters and expected
behaviors. Furthermore, results coming from the OS may
be correct but could compromise the application by return-
ing unexpected values that the application does not handle
properly.

n	 Digital Objects as Passwords
Mohammad Mannan and P.C. van Oorschot, Carleton University

Mohammad Mannan described a new method for creating
passwords, motivated by the inherent inability of people
to select and remember good passwords. The goal of this
research is to create a strong password that is also easy to
remember, similar to the way that a personal question, such
as your mother’s maiden name, is memorable. The solution
that Mannan presented is using an object on your computer
or on the Internet as your password. The system will com-
pute a hash value of the object that, when combined with a
short salt, will yield a secure text password of a predefined
length. The password is both easy to remember, because it
is associated with a logic object, and secure, because it is
derived from the hash of a large object.

Mannan also discussed limitations of the object-as-pass-
word approach. First, looking over someone’s shoulder is
much easier. For network objects in particular, the system
is also vulnerable to snooping. If an attacker can see what
objects you are looking at, then the space for a password
dictionary attack is fairly small. This line of attack is dif-
ficult to prevent in general, but might be mitigated by using
Tor to anonymize traffic. Another limitation of using objects
as passwords is a lack of portability. It is more difficult to
carry objects around when you are in a remote location. The
fail-over solution suggested by the authors is writing down
the long and difficult-to-remember password generated from
the object in this case.

The audience raised concerns about whether users would
gravitate toward the same types of objects as passwords,
especially if selecting them from the Web, and thus reduce
security by still choosing bad passwords. A usability study
would be necessary to test the true security of an object-as-
password approach.

110 ; LO G I N : VO L . 33, N O. 6

A Firefox plug-in implementing the presented research can
be found at http://www.ccsl.carleton.ca/~mmannan/obpwd.

n	 Security Benchmarking using Partial Verification
Thomas E. Hart, Marsha Chechik, and David Lie, University of
Toronto

David Lie began by pointing out that software has a lot of
vulnerabilities. There is no current way to measure them
other than waiting for vulnerability disclosures. It would
be nice to have a system for preemptively estimating the
potential number of vulnerabilities based on code analysis.
In this paper, the authors present a metric for classifying a
particular piece of code’s susceptibility to so-called mechan-
ical vulnerabilities—those that are independent of pro-
gram logic, such as buffer overflow or SQL injection. The
long-term goal of this research is software security through
quantitative measurement.

The security benchmarking system in this paper involves
automatically pre-pending all potentially insecure opera-
tions with assert statements that check program state to see
whether an exploit is possible. For a buffer overflow, this
would be a check of the buffer length. The next step is to
use a theorem prover to see which of these assertions are
always true, and which cannot be verified. Finally, a pro-
gram would be scored based on the quantity of unverifiable
assertions.

A member of the audience pointed out that it is important
to have a good theorem prover; otherwise, programs may
be deducted for code that is safe. Another person asked
whether coding style has an effect on the count of unverifi-
able asserts and thus the count might be unfairly prejudiced
against certain styles, even if they are not less secure. How-
ever, in the experience of the authors, code that is easier
to verify is also easier to read, and thus it is probably more
secure by nature.

exploring new directions

Summarized by Kevin Borders (kevin.borders@gmail.com)

n	 Securing Provenance
Uri Braun, Avraham Shinnar, and Margo Seltzer, Harvard School
of Engineering and Applied Sciences

Uri Braun from Harvard University gave this presentation
about securing provenance. Provenance is metadata that
represent the history of an object—the “when” of knowl-
edge. Examples can be found in financial transactions, a lab
notebook, etc. Provenance has some important properties:
(1) It is append-only (i.e., you cannot change history); (2)
it can be represented by a directed acyclic graph (i.e., you
cannot have a circular dependency in time); and (3) you can
add attributes to old nodes. The guiding principle behind
this research is that provenance has different security prop-
erties from normal data, and it thus needs different control
mechanisms.

The primary example used in the presentation is construc-
tion of a performance evaluation for an employee that has
multiple anonymous contributors. It is important to be able
to verify that the report was generated by multiple sources,
but the employee should not be able to tell who they are.
A variant on this is a graduate school application, where
the student should be able to control who writes recom-
mendations but should not be able to read the results of the
recommendations. Security policies for these situations are
complicated and not easily satisfied by current approaches,
such as access control.

Audience members asked whether provenance wasn’t just a
special case of the general metadata handling problem. Cau-
sality and history are just some metadata that needs to be
addressed by security policies. The database community has
done some work in this area in the form of mechanisms for
handling complex conditions but has not directly addressed
securely handling provenance, but existing work may be
applicable to solving these problems.

n	 Absence Makes the Heart Grow Fonder: New Directions for
Implantable Medical Device Security
Tamara Denning, University of Washington; Kevin Fu, Univer-
sity of Massachusetts, Amherst; Tadayoshi Kohno, University of
Washington

Tamara Denning presented some follow-on research to re-
cent work on attacking implanted medical devices (IMDs). A
variety of such devices exist, and securing them from attack
is essential for maintaining the wearer’s safety. Implantable
medical devices are particularly challenging from a security
perspective, because of their limited capabilities. They have
little power with which to perform cryptography or resist a
battery-draining attack. An even more significant limitation
is that any security system for IMDs must allow emergency
personnel to override protection. For this reason, today’s
IMDs are fairly open, leaving wearers susceptible to serious
attacks.

This research explores a number of potential solutions for
securing IMDs. First, the presenter discussed approaches
that are insufficient either because they would be too closed
in the case of an emergency or would offer only weak
protection. Case-by-case access controls would be safe, but
would be too closed for emergencies. A user alert when
communication with the IMD is taking place would be
too open, because the wearer may not be able to respond
adequately to an attack. Requiring very close proximity for
communication would also be too open, because an attack
could take place at close range. A member of the audience
asked about combining these approaches to come up with
the right solution, but a combination including case-by-case
access would still be too closed. Another possible approach
that would be too closed is carrying a password card for
access to the IMD.

; LO G I N : D ecem b e r 20 0 8 cO N fe re N ce re p O rt s 111

Consideration of other alternative design options led the
authors to their proposed solution: have a device known as
a cloaker that suppresses access when worn by the patient.
The cloaker could have a wristwatch form factor that would
allow emergency crews to remove it. Interesting research
problems remain for the proposed solution. What is the best
way for the cloaker and IMD to communicate? The pre-
senter and audience also briefly discussed usability and psy-
chological factors associated with wearing a cloaker. Such a
device may serve as a reminder of the IMD’s presence and
be undesirable for some wearers. There also may be cases
where emergency staff cannot reach the cloaker (e.g., if the
person’s hand is trapped in a car). Overall, a cloaker-based
approach to securing medical devices gives desirable open-
ness and safety properties, but there is significant research
left to be done on the effects of IMD cloaking devices.

n	 Research Challenges for the Security of Control Systems
Alvaro A. Cárdenas, Saurabh Amin, and Shankar Sastry, Uni-
versity of California, Berkeley

Alvaro Cardenas presented research on securing control
systems for physical processes. These systems are respon-
sible for keeping our critical infrastructure—the power
grid, sewage treatment plants, and others—up and running.
Security is essential for physical control systems because
a compromise can lead to physical damage and danger.
However, there have not been any recorded attacks, so why
should we care? The reason is that everything is increas-
ingly connected and complex, exposing new vulnerabilities.
Another motivation is cybercrime. Reports from the CIA
have alluded to the occurrence of extortion based on attacks
on physical control.

An important question to consider is whether the prob-
lem of securing physical control systems is any different,
fundamentally, from securing conventional computers. One
notable dissimilarity is that physical control systems can be
designed with algorithms that are resilient to attack by soft-
ware. However, a sustained denial-of-service attack, which,
as a member of the audience mentioned, is probably easy,
can also lead to unsafe conditions. Research on physical
control systems is needed to characterize vulnerabilities and
come up with realistic active attack models.

adversarial securit y

Summarized by Alexei Czeskis (aczeskis@cs.washington.edu)

n	 Defeating Encrypted and Deniable File Systems: TrueCrypt
v5.1a and the Case of the Tattling OS and Applications
Alexei Czeskis, David J. St. Hilaire, Karl Koscher, Steven D.
Gribble, and Tadayoshi Kohno, University of Washington; Bruce
Schneier, BT

Alexei began his presentation by showing that the state of
the art in file privacy—whole-disk encryption—was no lon-
ger sufficient, because of recent legislation that requires in-
dividuals to give up their laptops and any electronic media

to customs agents without cause. Furthermore, he said that
passwords could be extracted from the user via such coer-
cive means as fines, jail time, or even physical torture. Next
he told us that privacy advocates are suggesting the use of
a software package called TrueCrypt that offers a deniable
file system feature (also called a steganographic file system),
which hides the existence of data from an attacker. Alexei
then explained that TrueCrypt provides a deniable file sys-
tem by allowing the user to undetectably create an arbitrary
number of nested, encrypted, and hidden containers within
an encrypted container. Each nested container could only
be read if the appropriate password was provided. The ex-
istence (or nonexistence) of a nested container could not be
proved by looking at the properties of memory, allowing the
user to claim that no data existed. Alexei said that although
this may be true if one solely looks at the bottom layer of a
system, it does not hold if one considers the large ecosystem
of operating system and applications in which a user inter-
acts with the files in a hidden container.

Alexei said that his team analyzed TrueCrypt v5.1a and
found that the system leaked enough information for an
attacker to determine that the system had a hidden volume
installed on it. Information leaks could be grouped into the
following categories: (1) operating system; (2) primary appli-
cations; (3) nonprimary applications. Primary applications
are ones the user interacts with daily; nonprimary applica-
tions may run in the background and be supplemental to
the user’s overall goals while using the system. The analysis
only considered an attacker that has one-time access to the
system. Although stronger attackers could have more fre-
quent access to the user’s system, Alexei explained that this
work tries to show that the state-of-the-art methods for hid-
ing data do not protect against even the weakest attacker.

The operating system (Microsoft Vista) leaked information
via the recently used shortcuts list, revealing the real file’s
name, location, creation time, modification times, access
time, volume type, and serial number. The primary applica-
tion (Microsoft Word) leaked information via automatically
generated auto-recover files that were not securely deleted
and were recoverable even after a power cycle. The nonpri-
mary application (Google Desktop) leaked information by
caching and indexing files from the hidden container.

Alexei concluded by stating that this problem was not spe-
cific to TrueCrypt’s implementation. Rather, he mentioned
that it is very difficult to hide the existence of data on a
system while at the same time providing a usable system in
which there is a balance between isolation of components
that must stay separate and sharing of components that
must coexist for usability. Finally, he gave several examples
of other methods a DFS may implement: using tainted data
flow in the OS, a selective bootloader (implemented by
TrueCrypt 6.0), and hard-drive firmware that will fake cor-
rupted sectors until a particular sequence of reads permits
them to be unlocked.

112 ; LO G I N : VO L . 33, N O. 6

n	 Panic Passwords: Authenticating under Duress
Jeremy Clark and Urs Hengartner, University of Waterloo

Jeremy first showed a clip from a Hollywood film in which a
secret agent is forced, under gunpoint, to call her superiors
in order to obtain confidential information. As the agent’s
superiors ask her for a password, the audience is shown
that she has two possible answers: one to indicate a legiti-
mate authentication and the second (called a panic pass-
word) to indicate that she is authenticating under duress.
Next, Jeremy formally defined panic passwords (or distress
password/duress codes) as schemes that allow a person to
indicate that the authentication attempt is made as a result
of some coercive action. Although commonly used as a part
of larger systems (e.g., home alarm systems), panic password
schemes are rarely discussed in patents and in academia.
Jeremy then presented a threat model, examined a common
panic password scheme, and explained why it failed to fully
succeed in its objective. He proposed three new schemes
and described their associated analyses.

Jeremy’s analyses were based on the assumptions that an
attacker: (1) knows how the system works; (2) is able to
observe the communications; (3) can force the user to iterate
the process some finite number of times; (4) can force the
user to disclose passwords in any particular order. Further-
more, each analysis was characterized based on the fol-
lowing parameters: (1) attacker’s persistence (i.e., how long
an attacker can interact with the user); (2) communicating
parties’ responses (i.e., whether it may be indicative of the
legitimacy of a given password); (3) the attacker’s goal (i.e.,
whether to know that a panic password was given or to
force the user at some point to reveal the real password); (4)
screening versus signaling (i.e., how well the user can trick
the attacker into thinking that he or she entered a legitimate
password and vice versa).

These parameters were then used to examine several panic
password schemes. The most ubiquitous scheme, called 2P,
involves the existence of two passwords: one good and one
bad. However, this scheme is defeated by forced randomiza-
tion: asking the user to enumerate the known passwords
and then choosing one of them for the user to enter, thus
giving an attacker a 50% success ratio, which means that
the user loses since the threat model permits the attacker to
iterate any number of times. If the attacker is nonpersistent,
then a possible solution to this problem is the 2P-Lock,
in which an alarm is triggered if two different passwords
are used within a short period of time. Another scheme,
called P-Complement, assumes one legitimate password
and all other responses result in an alarm. This approach
suffers from a high false-negative rate. The last approaches,
called 5-Dictionary and 5-Click, involve the user entering
five words and clicking five images in a particular order,
respectively. All other entries far enough from the legitimate

password (using some distance metric) are defined as panic
passwords. That is, a password with one typo does not re-
sult in a panic; rather, it is just deemed an invalid password.

Jeremy concluded by pointing out that all of these scenarios
seem like Hollywood stories, but they do have applicabil-
ity to home security systems, intelligence agencies, and
electronic/on-line voting. One questioner mentioned that
human reactions play a larger role, indicating that he reacts
differently when he lies. Jeremy agreed, but said that most
likely no one will be holding a gun to his head for his vote.

n	 Bootstrapping Trust in a “Trusted” Platform
Bryan Parno, Carnegie Mellon University

Bryan began his presentation by telling the audience that he
saw a pop-up notice for an update for a trial version of a key
logger on the screen of a computer he was about to use in
an Internet café. The rest of his presentation dealt with the
question, “How can you trust any given computer?” Bryan
made the following assumptions: (1) we have a trusted
mobile device; (2) someone will be able to vouch for the
physical safety of the system in question (i.e., the hardware
will do what it’s supposed to do). Bryan’s proposed solu-
tion to how we might bootstrap trust in a system revolves
around the use of a Trusted Platform Module (TPM)—a
security chip equipped with a public/private key pair that
can be used in conjunction with hashes (stored in the TPM)
of installed software on the system to attest to the software
state of the system.

Trust in a system can be bootstrapped iteratively, with the
user’s mobile device checking the computer’s bios, the bios
checking the bootloader, and the bootloader checking the
kernel, which then checks all applications. However, this
approach falls prey to the cuckoo attack, in which malware
can reroute communication between the local machine and
its TPM to a different machine, which the attacker controls
and in which the attacker can modify hardware. The logic
framework for analyzing this boot process is presented in
the paper and was not presented by Bryan. One solution
may be to cut network traffic during the trust bootstrapping
procedure. However, this is also problematic, because mal-
ware may act as a fake TPM with a legitimate private key
obtained from a different TPM that an attacker possesses.

The root of the problem seems that the user has no secure
channel to the TPM. Bryan presented two methods for solv-
ing this. The first revolves around the “seeing is believing”
principle, in which the public key of the TPM could be con-
tained on a sticker affixed to the exterior of the computer. A
second approach is more blunt: requiring a special-purpose
interface to communicate directly with the TPM. Bryan sug-
gested that the first be used in the short term but that the
latter be adopted as a more solid solution.

; LO G I N : D ecem b e r 20 0 8 cO N fe re N ce re p O rt s 113

net work forensics

Summarized by Dan Ports (drkp@mit.edu)

n	 Towards Quantification of Network-Based Information
Leaks via HTTP
Kevin Borders, Web Tap Security, Inc.; Atul Prakash, University
of Michigan

Kevin Borders discussed the problem of detecting unauthor-
ized disclosure of confidential information via the network.
Current data-loss prevention systems scan outgoing network
traffic for known patterns of sensitive data, and so are easily
foiled by encryption or obfuscation. Instead, he proposed
detecting suspicious behavior by quantitatively measuring
the amount of outbound information flow and comparing it
to a baseline value.

Kevin observed that, although the raw outgoing byte counts
for HTTP traffic are large, the actual information content
is much smaller. For example, a form submission contains
many lines of header information in addition to the submit-
ted form values, and even the values themselves may simply
be default values.

Formally, the problem is to compute an upper bound on
the amount of outgoing user-originated information, using
network measurements and protocol knowledge. This
involves measuring the size of the outgoing request but
discounting expected values, such as HTTP headers that
remain unchanged from the previous request or Referer
headers containing the URL of a previous request. For GET
requests, the address being fetched may leak information.
The full length of the URL is counted if it was previously
unseen; the information content of links followed from a
previously accessed page is proportional to the logarithm
of the number of links on that page, unless the accesses are
for mandatory links (e.g., images) in the proper order. For
form submissions, the edit distance between the submitted
and default values is measured. Active JavaScript applica-
tions may send custom HTTP requests, which are currently
counted by measuring the edit distance from frequent
requests; analyzing the JavaScript to better understand its
network behavior will be a goal of future work.

Kevin showed that these techniques substantially reduce
the amount of measured information flow. On several
typical Web browsing sessions, the new techniques gave a
94%–99% reduction in byte count relative to simply mea-
suring raw traffic volume and a 75%–99% reduction relative
to the simpler techniques from Kevin’s earlier work on Web
Taps (in CCS ’04). The best results came from pages with
minimal JavaScript usage.

In response to a question about whether this technique
could be applied to other protocols, Kevin responded that it
would work well for other protocols where most of the data
is predetermined, such as instant-messaging protocols. It
would not be as helpful for protocols such as SMTP, where
most content is actually user-generated.

n	 Principles for Developing Comprehensive Network
 Visibility
Mark Allman, Christian Kreibich, Vern Paxson, Robin Sommer,
and Nicholas Weaver, ICSI

Vern Paxson proposed a design for a network monitoring
system based on the principle of unifying the analysis pro-
cess across time—combining analysis of past history with
real-time monitoring—and space—integrating informa-
tion from many different sources. The monitoring system
would operate primarily at the scope of an administrative
domain, such as an enterprise or department. This scope is
broad enough to provide interesting information but narrow
enough to make collecting and understanding data practi-
cal.

The key to unifying analysis across space is combining
events recorded from many different sources into a common
data model. This information would span different abstrac-
tion levels: An event might represent a packet being seen, a
TCP connection being established, or a URL being fetched.
The data should be policy-neutral, such as recording pack-
ets rather than IDS alerts, in order to provide more flexible
analysis. Because many attacks take place over long time in-
tervals, the monitor needs to keep extensive history. Making
this feasible requires discarding some data; Vern proposed
discarding most of the bytes from the relatively few large
connections that consume most traffic (i.e., keeping only the
first 20 kB of each connection), then gracefully degrading
history over time, making it more coarse-grained.

With this data aggregated and stored in a common data
model, operators can then develop queries to analyze the
data. Vern advocated using a common framework to develop
queries that can be used both to perform retrospective
analyses and to analyze a stream of events as they arrive.
Besides eliminating the need for parallel development of two
different programs, this enables “what-if” analysis to better
understand the effectiveness of newly developed rules.

Vern also discussed extending this approach to perform
analysis beyond a single site. Most proposals assume a
global scale, which brings with it many trust issues (e.g.,
one site might not trust another with its network logs or
might worry about the other site providing false data).
Instead, he proposed limiting the scope to sites with co-
aligned threat models and administrative ties, which may
already work together informally today. One site would be
able to send a query to another site, which could return
the results of past analysis or install it as a trigger to detect
future activity. Many attendees were concerned that this
might cause sensitive data to be leaked to another site, but
Vern explained that data itself is never shared, and each
site’s operators can decide on a per-query basis whether to
allow another site’s query. Essentially, this is a more struc-
tured version of the ad hoc coordination that often occurs
between sites via telephone and email.

114 ; LO G I N : VO L . 33, N O. 6

n	 Challenges and Directions for Monitoring P2P File Sharing
Networks—or—Why My Printer Received a DMCA Take-
down Notice
Michael Piatek, Tadayoshi Kohno, and Arvind Krishnamurthy,
University of Washington

Michael Piatek began by observing that availability of
copyrighted data on peer-to-peer networks has not gone
unnoticed by the media industry, which crawls peer-to-peer
networks to identify infringing users and take legal action
against them. However, most current monitoring techniques
are inconclusive and can be manipulated.

In the BitTorrent protocol, all clients interested in down-
loading a particular file contact a tracker to obtain a list of
other peers and add themselves to the list. They then com-
municate directly with the other peers to download the file
data. Monitoring agencies working for the media industry
have two main approaches for identifying the IP addresses
of offenders: direct identification, where they actually
contact peers and download data from them, and indirect
identification, where they rely on the tracker’s word that a
particular peer is sharing the file. Indirect identification is
most common because it is substantially less expensive, but
it may lead to false positives.

Michael and his colleagues at the University of Washington
experienced this firsthand while conducting a measurement
study of BitTorrent traffic. Their measurement involved
a crawler that connected to many BitTorrent trackers to
obtain membership lists, but it did not actually upload or
download any traffic. Nevertheless, they received a num-
ber of DMCA takedown notices. Following this result,
they conducted a second study to determine whether they
could falsely implicate a different IP address in file-sharing
and cause it to receive DMCA takedown notices. This was
sometimes possible, because some trackers allow a joining
client to register under a different IP address from that of
their network source address, to aid in NAT traversal. Using
this technique, they were able to attract 18 complaints for IP
addresses associated with hosts that were not running Bit-
Torrent, including printers and wireless access points. How-
ever, they also received many more complaints for the ma-
chines being used to launch the attack, indicating that most
trackers do not support this protocol extension. Someone
asked whether network-level spoofed source addresses could
be used to frame a different IP, but Michael responded that
this was not possible, because tracker connections either
use TCP or a two-way handshake protocol with UDP.

Michael concluded by likening the world of peer-to-peer
monitoring and enforcement to the Wild West. Enforcement
agencies detect copyright violators using arbitrary tech-
niques and report them to ISPs, who respond with arbitrary
penalties. More accurate techniques are available, but they
are costly. Monitoring organizations should use direct iden-
tification, but this increases the bandwidth costs by a factor
of 10 to 100. ISPs should involve more human intervention
and sanity-checking in the enforcement process, but instead

the current trend has been to increase automation to reduce
costs. Finally, this work considered the problem of identify-
ing infringing IP addresses, but even if this is accomplished
perfectly, it remains challenging to reliably associate an IP
address with a user.

Metricon 3.0
July 29, 2008
San Jose, California, USA

Summarized by Daniel Conway

MetriCon 3.0 was held on July 29, 2008, as a single-day,
limited-attendance workshop in conjunction with the 17th
USENIX Security Symposium in San Jose, California. The
name MetriCon 3.0 reflects that this was the third meet-
ing with this name and topic, the first having been held in
Vancouver in 2006 and the second in Boston in 2007. The
organizing committee was self-selected and was chaired
by Dan Geer (In-Q-Tel). Also on that committee were Fred
Cohen, Dan Conway, Elizabeth Nichols, Bob Blakeley, Lloyd
Ellam, Andrew Jaquith, Gunnar Peterson, Bryan Ware, and
Christine Whalley. Dan Conway is the principal author of
these notes.

Fifty people attended, predominantly representing industry.
The meeting lasted from 8:45 a.m. until 6:00 p.m., with
meals taken in-room.

Opening remarks, as well as housekeeping notes, were of-
fered by Dan Geer. Dan thanked USENIX for its logistical
support. Formal presentations began at 9:00 a.m.

models proposed and derived

n	 Using Model Checkers to Elicit Security Metrics
Thomas Heyman and Christophe Huygens

Heyman began by describing his contributions from Met-
riCon 1.0 and MetriCon 2.0, which laid the foundation for
his secure model framework. In MetriCon 1.0, Heyman
presented research on reusable metrics assigned to secu-
rity patterns. In MetriCon 2.0, Heyman presented research
related to combining low-level and high-level indicators. In
this presentation he distinguished between measuring ap-
plication security and business-level metrics, focusing only
on the former.

The goal of this contribution to the framework was to show
how, using formal modeling techniques, it is possible to
enumerate all model pattern preconditions or assumptions
that are required for the pattern to operate as expected. The
pattern would then allow the production of post conditions
or guarantees, which would imply security requirements
and thus be a natural place for security measurements to be
gathered. This process would be optimized with the use of
model checkers.

Modeling as a process involves isolating assumptions, as-
sessing risk, and accepting, monitoring, and refining the

