
90	 ; LO G I N : 	VO L . 	33, 	N O. 	4

NSDI ’08: 5th USENIX Symposium on Networked
Systems Design & Implementation

San Francisco, CA
April 16–18, 2008

keynote : xen and the art of
virtualization revisited

Ian Pratt, Senior Lecturer, University of Cambridge Computer
Laboratory, and Fellow, King’s College Cambridge

Summarized by Geoffrey Werner-Allen
(werner@eecs.harvard.edu)

Mr. Pratt presented a talk in three parts. He began by
revisiting the Xen story, presenting lessons concerning
doing relevant research in academia. Next he explored
why virtualization is such a hot topic in research today.
Finally, he explored the changes in Xen since the 2004
SOSP paper and emerging trends in hardware-software
co-design.

Although Xen emerged naturally from the cloud-comput-
ing ethos and the needs of usage-based accounting, Mr.
Pratt pointed out that there was a significant pause in its
early days, primarily because the funding agencies had
nothing to compare their project to. During this period,
Xen was release via the GPL to “friends and family”
and their team began to notice the differences in doing
development not for an academic paper, that is, when
their creations had to run for more than the 30 minutes
required to produce the graphs for the latest paper. They
kept working on the production-level aspects of their
software.

The mission of Xen is to provide the industry-standard
open-source hypervisor. Xen developers are interested
in driving CPU development and showcasing new CPU
features, as well as providing the type of security neces-
sary for enterprise acceptance. As Xen has continued to
develop it has found use in some interesting and per-
haps unforeseen areas, such as cell phones. Mr. Pratt
described plans that one cell-phone vendor has to run
three separate hypervisors on its phone to isolate critical
phone functionality, vendor-supplied software, and user-
installed software from each other.

Why is virtualization hot at this particular moment? One
reason is that it is driven by the “scale out” occurring at
the enterprise level. Running each enterprise applica-
tion on a single server leads to server sprawl, with CPU
utilization of 5%–15% typical. Another reason involves
the things that typical operating systems have failed to
do well, including full configuration isolation, temporal
isolation for performance, spatial isolation for security,
and true backward compatibility. Virtualization has the
potential to solve many of these problems. Moreover,
the maintenance of a narrow interface to the hypervisor
and the ability to hide machine-specific details behind

conference reports

ThaNks	TO	Our	summarIzers

5th USENIX Symposium on Networked
Systems Design & Implementation
(NSDI ’08) . 90
Brendan Cully
Eric Hielscher
Petr Marchenko
Jeff Terrace
Geoffrey Werner-Allen

First USENIX Workshop on Large-Scale
Exploits and Emergent Threats
(LEET ’08) . 105
Rik Farrow
Joshua Mason

BSDCan: The BSD Conference 111
Mathieu Arnold
Constantine A. Murenin
Florent Parent
Bjoern A. Zeeb

BSDCan 2008 FreeBSD
Developer Summit . . .115
Bjoern A. Zeeb and Marshall Kirk McKusick

; LO G I N : 	auGusT	20 0 8	 cO N fe re N ce	re p O rT s	 91

the hypervisor allows easier configuration. Other benefits
of virtualization include reduced downtime during mainte-
nance owing to the ability to migrate slices to other ma-
chines, the ability to rebalance load as workloads change,
and hardware fault tolerance through checkpointing and
replay.

Mr. Pratt discussed the issues concerning hypervisor
security. Although the existence of a hypervisor does add
to the attack surface, its small size should make it easier to
defend. He discussed network control software that their
group has been writing in OCaml, a language that allows
certain guarantees to be made about the program’s execu-
tion. In addition, there is additional complexity involved in
device emulation, so to the degree that this is required this
increases the complexity required in the hypervisor. He also
discussed the possibility of performing a “measured launch”
of the hypervisor to provide guarantees between boots. In
addition, moving some of the OS administrative functional-
ity outside the OS should help operating systems become
more robust and harder to disable. Other tricks that can
be used to improve hypervisor security include the use of
immutable memory and taint tracking techniques (detailed
elsewhere).

The next frontier in virtualization research should be mak-
ing virtualized systems easier to administer. In particular,
breaking the OS/HW bond should simplify the application
certification process. Currently, many software vendors re-
fuse to certify their applications on many hardware configu-
rations or in the presence of other applications. Instead of
certifying an application on top of many different hardware
and operating system combinations, software makers can
certify on a single operating system, which is then certi-
fied on top of Xen, meaning that the application can run
on a variety of different hardware configurations. We are
already starting to see application-specific operating systems
being developed in the presence of virtualization techniques
such as Xen. Virtual hardware also simplifies creating and
modifying operating systems, as well as allowing hardware
vendors to “light up” new features much faster.

In the final part of his talk Mr. Pratt discussed the process
of paravirtualization through several examples, including
MMU and network device virtualization. Interestingly, with
regards to MMU virtualization Xen proved that some of
the support that hardware vendors have added into their
systems, in particular allowing “nested page tables,” have
actually not performed as well as the original direct and
shadow page tables supported by Xen.

Network devices have proved extremely difficult to virtual-
ize, but new NICs are emerging with features that make
the process simpler and more effective. Xen developers
have divided NICs into four levels, 0 through 3, each with
increasing features allowing easier virtualization with better
performance. Level-0 NICs are standard NICs, requiring
significant hypervisor intervention to virtualize. Level-1

NICs have multiple receive queues, allowing these queues
to be assigned to VMs making heavy use of the network.
Level-2 NICs have enabled direct guest access, allowing the
NIC to do traffic shaping, firewalling, filtering, and other
processes. Level-3 NICs actually present to the system as
multiple PCI devices, simplifying device management at the
hypervisor level.

In conclusion, Mr. Pratt recommended the use of open
source software to gain early and continuing impact while
doing university research. In the future he sees hypervisors
becoming ubiquitous and spawning a new golden age of
operating system research.

Professor Birman from Cornell was curious about the ten-
sion between adding features, making the hypervisor more
like larger buggier operating systems, and consolidation,
possibly impacting performance but improving security. Mr.
Pratt pointed out that many of the new features he de-
scribed are actually being implemented outside of the core
hypervisor, meaning that they can be isolated from it for
the purposes of security. Greg Minshall from the University
of Washington asked about Xen’s impact on the previous
optimization that had been done at the hardware/software
boundary. Mr. Pratt responded that as machines get faster
this sort of optimization is less important and that Xen
does as little of this as possible. Professor Sirer from Cornell
asked why operating systems are unable to provide “virtual-
ization” at the POSIX level. Mr. Pratt replied that the inter-
face is simply too broad and high level. Tomas Isdal asked
whether Xen developers had a plan to scale to multiple
cores; Mr. Pratt replied that they did.

trust

Summarized by Eric Hielscher (hielscher@cs.nyu.edu)

n	 One Hop Reputations for Peer to Peer File Sharing
 Workloads
Michael Piatek, Tomas Isdal, Arvind Krishnamurthy, and
Thomas Anderson, University of Washington

Michael began by explaining that peer-to-peer scalability
depends on user contributions but that users are often
reluctant to contribute. Current peer-to-peer systems
explicitly include contribution incentives such as tit-for-tat
servicing. Next he presented results of a measurement study
that show that increasing one’s contribution to BitTorrent
swarms has very little effect on one’s download rates. Fur-
ther, there is no fundamental lack of capacity in the swarms
nor a lack of interest. Rather, results from another study
show that the vast majority of bandwidth capacity in BitTor-
rent swarms is held by the top 10% of users (i.e., those with
the least incentive to contribute).

This motivates the main point of the present work: to make
incentives more effective at encouraging contributions. The
typical popularity of a single swarm is shaped like a bell
curve with a long right tail, as most users leave immediately

92	 ; LO G I N : 	VO L . 	33, 	N O. 	4

after downloading. Ideally, we would like users to be able
instead to draw on all previous downloads for service. The
problem with tit-for-tat in BitTorrent is that the incentives
are applied only when users are actively downloading, and
only in the context of a single swarm. The observation made
is that peers should instead be rewarded for all contribu-
tions across all swarms.

A simple fix would be for peers to cache a local history
of their interactions with other peers and to reward peers
with whom they repeatedly interact who have contributed
to them in the past. However, a study of peer interactions
shows that repeat interactions are very rare. The proposed
approach is to implement one-hop reputations with limited
indirection. One hop is enough, since almost all peers are
connected through a very small number of the most popular
peers. The protocol involves key pairs as long-term IDs and
intermediary nodes to maintain accounting information
and provide signed verification receipts. Intermediaries are
discovered by gossiping during connection setup, and in the
default policy they are selected based on popularity. Inter-
mediaries receive priority service, and thus peers have in-
centive to serve as one. In the evaluation of the protocol, it
was shown that 97% of random peers shared an intermedi-
ary; on average 73% of intermediaries selected in a random
interaction are selected again within 100 interactions.

The authors conclude by pointing out that for peer to peer
to reach its full potential, persistent contribution incentives
are necessary, and one-hop reputations leverage the popular
minority of peers for this purpose. One questioner asked
why anyone would ever want to send directly to peers, since
traffic sent to an intermediary is far more valuable in terms
of the reciprocation it will garner. The response was that
peer traffic’s value will be inflated in the induced reciproca-
tion economy.

n	 Ostra: Leveraging Trust to Thwart Unwanted
 Communication
Alan Mislove and Ansley Post, Max Planck Institute for Software
Systems and Rice University; Peter Druschel and Krishna P.
Gummadi, Max Planck Institute for Software Systems

Alan motivated his talk and work by pointing out that since
digital communication such as VoIP, email, and IM is so
low-cost, it can easily be abused to send unwanted com-
munications. This manifests itself in various forms includ-
ing spam and mislabeled content on YouTube, and users
are not easily held accountable for their actions since new
IDs can be created for free. Previous approaches to solving
this problem—such as filtering content, charging money
for sending messages, or introducing strong IDs—all have
shortcomings.

The authors present a solution to this problem called Ostra,
based on an ancient system for transferring money in India
called Hawala. The basic idea is to leverage existing offline
social trust relationships, since these are expensive to create
and maintain. Most communication systems have some sort
of implicit or explicit social network, and Ostra assumes

that links in this network are maintained by some trusted
site. Recipients of messages classify messages (e.g., perhaps
implicitly via deletion) as wanted or not. Messages between
peers are sent directly, but a link to a peer is broken over
time if that peer is on a path to a destination that is receiv-
ing unwanted messages. Each link has a credit balance, and
the balance is adjusted in favor of a message recipient if the
message was unwanted and vice versa otherwise. The credit
balance is bounded with a certain range, and the process
is iterated over intermediate peers in the event of no direct
link between the sender and the recipient.

The system guarantees that no user can send more spam
than the amount of spam he or she has received plus the
lower bound on link credit times the number of in-links
he or she has. Further, this holds for any subgraph, show-
ing that collusion doesn’t help attackers and neither does
the creation of many Sybil identities. Credit is decayed by
a fixed percentage daily to prevent a user from unfairly
being blocked. The authors simulated Ostra using a social
network taken from YouTube, as well as an email trace from
the MPI, and found that even with 20% of users being at-
tackers, only four spam messages were received by any good
user per day. Further, very few messages were delayed from
links reaching their credit limits. One person raised the
point that the classifications may not always be black and
white; for example, a message might be unimportant now
but important later on. The response was that the system
can work alongside other systems such as whitelisting and
that finding the proper classification notions is a difficult
issue.

n	 Detecting In-Flight Page Changes with Web Tripwires
Charles Reis, Steven D. Gribble, and Tadayoshi Kohno, Univer-
sity of Washington; Nicholas C. Weaver, International Computer
Science Institute

Charles began his talk by discussing the recent phe-
nomenon of ISPs injecting ads into the Web pages their
users visit. The work discussed attempts to detect such
in-flight changes to pages and measure them. The system
is implemented as JavaScript code, which runs in the cli-
ent’s browser, finds changes in the HTML of the page, and
reports them to the user and a central server. It works by
fetching and rendering the original page while fetching the
JavaScript code in the background from the page’s server as
well. This code contains a compressed version of the page’s
expected source code, and the JavaScript compares the two
versions. In a study involving 50,000 unique IP addresses,
657 clients saw changes from client software, ISPs, firewalls,
and malware.

Some of these changes inadvertently broke some pages by
causing JavaScript errors or interfering with forum posting,
and others introduced security vulnerabilities such as cross-
site scripting vulnerabilities. A major concern with this
problem is that it affects all Web pages—similar to a UNIX
root exploit—and that the Web developers are powerless
to fix the problem. Thus the authors caution users about

; LO G I N : 	auGusT	20 0 8	 cO N fe re N ce	re p O rT s	 93

software such as client proxies, since they wield root-like
power. Further, the Web Tripwires tool helped find vulner-
abilities in such software, which have since been fixed.

A publisher of Web content could react in various ways to
its pages being altered. First, it could simply use HTTPS to
encrypt its pages. However, this is both costly and rigid in
that it can’t allow security checks or caching. Web Tripwires
offers an alternative that allows publishers to easily and
cheaply detect most changes, at the cost of somewhat lesser
robustness to attacks. The performance of Web Tripwires
is also much better than HTTPS, both in terms of latency
and throughput. More information on Web Tripwires can be
found at http://vancouver.cs.washington.edu.

n	 Phalanx: Withstanding Multimillion-Node Botnets
Colin Dixon, Thomas Anderson, and Arvind Krishnamurthy,
University of Washington

Colin began with a list of major botnet attacks that have oc-
curred in recent years, including the government of Estonia
being shut down by an attack for three to four weeks. He
then posed the question, “Why isn’t the problem with bot-
nets solved?” In one sense, it is solved for static content, in
that we can simply replicate content and use large CDNs. A
potential solution for dynamic content might involve replac-
ing all routers in the Internet, but this is not feasible. The
key ideas in the current work’s solution involve tieing the
fate of a server to a large part of the Internet in a way that is
scalable and deployable in the current Internet.

The mechanisms in the solution include numerous hosts
used as proxies to make packet filtering decisions, forward-
ing the unfiltered traffic to the server we wish to protect.
The nodes are used as mailboxes and hold each packet
while waiting for an explicit request from the server. Secure
random multipathing is used to protect communication.
Traffic is sent randomly among the mailboxes according to
a shared secret, and thus the botnet can only take one link
down while communication still continues. The mailboxes
negotiate a secret at connection setup time and use a light-
weight authenticator. This scheme necessitates a multipath
congestion control algorithm.

The problem still remains that if attackers sent traffic to
the server directly they could still bring it down. Thus a
filtering ring is used to drop unrequested Web traffic and to
allow only requested traffic to reach the server exactly once.
This is implemented by installing blacklists and whitelists
on the server’s routers. The scheme so far still only protects
established connections between a client and server. To ini-
tiate connections, the server sends the first packet requests.
Access to these requests is mediated by computational
puzzles or authentication tokens. The authors evaluated
their system by simulating attacks on PlanetLab, with favor-
able results.

An article about Phalanx begins on page 22 of this issue.

wireless

Summarized by Geoffrey Werner-Allen
(werner@eecs.harvard.edu)

n	 Harnessing Exposed Terminals in Wireless Networks
Mythili Vutukuru, Kyle Jamieson, and Hari Balakrishnan, MIT
Computer Science and Artificial Intelligence Laboratory

The high-level goal of a MAC protocol is to transmit as
many packets as possible. Today, the dominant approach
to MAC protocols is CSMA (Carrier-Sense Multiple Ac-
cess). However, the problem with CSMA is that it prohibits
many transmissions that would have succeeded, owing to
its failure to address the exposed terminal problem. This is
the case where, although transmissions might seem to the
senders to conflict, the recipients are sufficiently separated
that they would have been able to receive the packet cor-
rectly. Instead of simple heuristic approaches that attempt
to generalize rules to each node in the face of fluctuating
bandwidth and channel properties, this work attempts to
use empirical evidence to determine when overlapping
transmissions can proceed.

Identifying simultaneous transmissions that can proceed
safely requires that each node maintain a conflict map that
describes whether or not it can transmit safely to node X if
it overhears node Y transmitting. The conflict map is built
based on observation of the loss rates associated with trans-
fers. Once they reach 50%, throughput would be higher
if the transmissions were scheduled sequentially rather
than in parallel, so this is the threshold for inclusion in the
conflict map. ACKs and the backoff policy must also be ad-
justed in the face of concurrent transmissions. To allow the
node to observe when transmissions conflict, the MAC layer
must both be able to recover the node address from unsuc-
cessful receptions, which is facilitated by its inclusion in
both the packet header and trailer, and pass up the header
before the rest of the packet, so that it can be accurately
time-stamped.

A prototype implementation is tested to see whether it can
produce no-CSMA behavior when the terminals are ex-
posed and CSMA-like behavior when the terminals conflict.
Indeed, experiments on a multi-node 802.11 testbed show
that their prototype is able to improve performance overall
by essentially acting like CSMA only when CSMA is actu-
ally needed.

Questions for the presenter included the choice of 50% as
the cutoff point for inclusion in the conflict map, whether
or not weighing the signal-to-noise ratio against the noise
floor might allow a simpler approximation of this algorithm,
and whether or not experiments in noisier environments
had been performed. Ms. Vutukuru responded that perfor-
mance is similar across a wide range of cutoff points near
the middle (30% to 60%), and that more tests were needed
in different environments to evaluate the impact of varying
parameters not yet experimented with.

94	 ; LO G I N : 	VO L . 	33, 	N O. 	4

n	 Designing High Performance Enterprise Wi-Fi Networks
Rohan Murty, Harvard University; Jitendra Padhye, Ranveer
Chandra, Alec Wolman, and Brian Zill, Microsoft Research

Murty began by stating that more and more wireless is
being deployed in the enterprise and users are beginning
to develop the same high-capacity expectations for wireless
performance as they have for wired. However, currently de-
ployed enterprise wireless networks have many limitations.
Because of a phenomenon known as “rate anomaly,” the
performance of deployed access points is limited by their
slowest client. DenseAP seeks to revisit some of the original
assumptions surrounding enterprise wireless networks, spe-
cifically that the number of access points should be much
lower than the number of clients. By deploying a large num-
ber of access points and carefully controlling client associa-
tions, load balancing, and channel usage, DenseAP seeks to
deliver wired-like performance over wireless links.

The challenges this work faces are threefold. First, decid-
ing which wireless access points a client should associate
with (controlling association). Second, determining which
channel each access point should be operating on (channel
assignment). Finally, as clients enter and leave the network
and their bandwidth demands change, it is likely that as-
sociations will need to be revisited to balance load among
access points.

DenseAP controls client associations through a central
server, which, when a client begins sending out probe re-
quests, decides which access point is the best match for that
client and only allows that access point to respond to the
probe request. Association policy is dictated by the quality
of the connection and the demand present on each access
point. In general, available capacity is equal to the expected
transmission rate times the free air time at that access point.
To estimate the available capacity the authors use a mapping
between RSSI and throughput driven by empirical observa-
tions. To estimate free air time they observe the queuing
delay at each access point. Channel assignment between
access points is done by simply assigning each new access
point to the least-loaded channel. As clients move and their
behavior changes, associations may need to be reevaluated.
To do this, the central controller actively shifts load away
from access points that are incurring high stress.

The testbed used for the experiments in the paper is a
portion of a floor of a corporate office building. While this
area was normally served by only one corporate wireless
access point, during experiments up to 24 DenseAP nodes
(or DAPs) were used to service up to 24 clients. The authors
present results showing improvements in overall perfor-
mance, as well as attempting to isolate the effects of channel
assignment, DAP density, and their intelligent association
policy.

During questions, one person wondered whether it would
be possible to also allow clients to use multiple access
points. Mr. Murty replied that although this would require

changes to the client, which DenseAP avoids, it would
be interesting if possible. Professor Birman from Cornell
asked about what happens if the client associated with the
particular DAP selected by the central controller fails. Mr.
Murty replied that when the central controller observes
such a failure it will choose a new DAP for the client to as-
sociate with.

An article about DenseAP begins on page 41 of this issue.

n	 FatVAP: Aggregating AP Backhaul Capacity to Maximize
Throughput
Srikanth Kandula, Massachusetts Institute of Technology; Kate
Ching-Ju Lin, National Taiwan University and Massachusetts
Institute of Technology; Tural Badirkhanli and Dina Katabi,
Massachusetts Institute of Technology

Mr. Kandula described FatVAP, which is designed to address
several problems in current wireless 802.11 networks. The
first is that the backhaul bandwidth capacity of a particular
access point may be bottleneck limiting flows, meaning that
there is spare bandwidth at the sender that could be used
to send data through other access points. The second is that
choosing access points based on proximity combined with
a high density of clients leads to hotspots—overutilization
of certain access points, leaving spare capacity at others
that competing clients could be utilizing. Ideal performance
can be obtained by aggregating all access points usable by
a particular client or set of clients into one virtual access
point, with wireless and backhaul bandwidth equal to the
sum of its parts. However, this requires clients to be able to
multiplex their connections across multiple access points,
which is currently not possible. That said, their solution,
once implemented on one or a set of clients, requires no
changes to the access points themselves to increase client
performance.

To determine how to divide time among APs, FatVAP must
solve a scheduling problem. In general, if we have a set of
access points, each with a different drain capacity e and
available bandwidth w, then a client need not connect to
that access point for more than e/w of its time, referred to
as the useful fraction. This quantity subsumes link qual-
ity, contention, and backhaul capacity. As several examples
given showed, no greedy solution for this scheduling prob-
lem exists, as the problem is equivalent to a bin-packing
problem, with the bandwidth being the value and the time
spent at each access point being the cost, bounded by the
total time available.

This approach is difficult and presents many implemen-
tation challenges. First, to estimate wireless bandwidth,
synchronous acks can be used to measure the queue drain
rate on each access point; estimating backhaul bandwidth
can be accomplished through observing back-to-back large
packets. To allow reception from multiple hosts, FatVAP
uses 802.11 power save mode to compel access points to
cache packets for it while it rotates through others it is
using. A large set of client-side changes are needed, includ-

; LO G I N : 	auGusT	20 0 8	 cO N fe re N ce	re p O rT s	 95

ing allowing the kernel to rotate through multiple APs by
spreading traffic through a number of different interfaces
above the kernel level. “Soft-switch” between access points
allows them to enable high-rate TCP through multiple ac-
cess points on top of FatVAP.

In conclusion, the authors have shown that FatVAP can
aggregate throughput, balance load, and adapt to changing
network conditions. In questioning, one person was curious
about why the authors focused on bandwidth while neglect-
ing latency. Mr. Kandula replied that further experiments
were necessary to assess the impact of FatVAP on latency.

n	 Efficiency Through Eavesdropping: Link-layer Packet
 Caching
Mikhail Afanasyev, University of California, San Diego; David G.
Andersen, Carnegie Mellon University; Alex C. Snoeren, Univer-
sity of California, San Diego

In real networks, overhearing happens, meaning that even
if a route from A to C normally passes through B, some
of the time C may overhear the packet being transmitted
from A to B directly. In this case, it is advantageous to avoid
retransmitting the packet that C already has from B to C.
This scenario can also lead to unnecessary acknowledgment
messages. Earlier solutions to the overhearing and multiple
transmission problem have used caching, which introduces
an unacceptable amount of delay at each client between
transmissions.

To reduce retransmissions without introducing latency,
RTS-id embeds a packet identifier in the RTS/CTS 802.11
exchange. The packet IDs are based on a hash of the packet
contents, although RTS-id is careful not to include portions
of the packet that may change as it traverses multiple hops.

RTS-id was implemented on top of Cal Radio, using packet
modifications designed to look normal on nonparticipat-
ing nodes. The testbed consisted of three Cal Radio nodes,
although simulations were also performed on data gathered
from the RoofNet outdoor testbed. A state machine was
used to model packet forwarding behavior during the simu-
lations. Results show that RTS-id reduces retransmissions in
the face of overhearing, with savings naturally scaling with
the number of hops that the packet traverses. Because of the
way that RTS-id was implemented it can also work seam-
lessly alongside nodes not implementing the protocol.

Professor Levis from Stanford was curious about whether
the authors had investigated possibilities for spatial use as
a result of their work. Mr. Afanasyev replied that they were
considering this. Professor Karp from CMU asked whether
or not this could be combined with other forms of network
coding. Mr. Afanasyev wasn’t sure.

l arge sc ale systems

Summarized by Jeff Terrace (jterrace@cs.princeton.edu)

n	 Beyond Pilots: Keeping Rural Wireless Networks Alive
Sonesh Surana, Rabin Patra, and Sergiu Nedevschi, University of
California, Berkeley; Manuel Ramos, University of the Philip-
pines; Lakshminarayanan Subramanian, New York University;
Yahel Ben-David, AirJaldi, Dharamsala, India; Eric Brewer,
University of California, Berkeley, and Intel Research, Berkeley

There has been considerable research done on deploying
network infrastructure into developing, rural areas around
the world, but the problem that Sonesh Surana et al. were
trying to solve is that, once an infrastructure is in place,
it’s very difficult to keep it maintained and sustainable over
long periods of time. Two existing wireless networks were
studied: the Aravind Eye Hospital’s video-conferencing net-
work in southern India and the AirJaldi network in north-
ern India, which provides Internet access to rural users. The
largest problems facing sustainability are poor-quality grid
power, limited local expertise for maintenance and diag-
nosis, lack of full connectivity in the network for remote
management, and the physical location of networks residing
in remote locations that are difficult to reach.

Hardware faults in these two networks were dominated by
power-related faults. The problem in developing countries
is that instead of a steady, reliable voltage rating, grid power
can result in a large range of voltages, which ends up dam-
aging electronic equipment. A UPS does not help, because
although it provides reliable power during an outage, it
passes power directly to the device during normal opera-
tion, which still results in bad voltages. Because commercial
products were too expensive and sensitive, one solution
was a custom-built low-voltage disconnect circuit to guard
against low-voltage situations combined with solar power to
handle peaks and swells in the power grid. A push-based
PhoneHome system was also implemented that uses the cell
phone network to report node, link, and network properties
every 3 hours to a central server. Satellite links were also
used to provide additional entry points into the network to
address software and link failures causing some nodes to be
unreachable. A cheap hardware watchdog device was also
used to reboot routers that fail.

The additional devices and methods used here eliminated
the need for weekly reboots, reduced power failures, and
 reduced prolonged downtime in the two networks; as a
result, both networks are now financially stable.

n	 UsenetDHT: A Low-Overhead Design for Usenet
Emil Sit, Robert Morris, and M. Frans Kaashoek, MIT CSAIL

Emil Sit began by stating that there are over 2 million
articles and files that arrive on Usenet every day, which
translates to 30 MB/s. Usenet was one of the first P2P sys-
tems created. Servers that store Usenet articles are distrib-
uted geographically and as an article is posted to a server,
the article is passed to the server’s peers until eventually

96	 ; LO G I N : 	VO L . 	33, 	N O. 	4

the article is held on all Usenet servers. This system makes
it difficult to create a Usenet server because of the large
volume of data that the server must be able to store. Usenet-
DHT is a shared Usenet server that allows multiple servers
to cooperatively share Usenet articles in a DHT.

UsenetDHT combines the storage space of multiple serv-
ers by distributing a single copy of a Usenet article among
them. It separates article headers from article contents, and
it stores only a single copy of an article’s contents in the
DHT. All servers keep a copy of the article headers (which
makes up less than one percent of the storage cost) to allow
clients to see headers immediately. By leveraging Usenet-
DHT, several small sites can benefit from the resources of
its peers and can cooperatively run a Usenet server. Usenet-
DHT requires high throughput and data durability, but cur-
rent algorithms for DHTs are synchronization heavy. Each
node in the network must sync with several other nodes to
provide durability and replication, which is a slow process
over a WAN. To solve these problems, UsenetDHT uses
Passing Tone, an algorithm on top of DHash that balances
minimizing the bandwidth used between nodes and mini-
mizing the amount of state that needs to be stored on each
server. Passing Tone only keeps local synchronization data,
shares the responsibility of ensuring proper replication with
its neighbors, and can make decisions about replicas by
only communicating with its immediate neighbors. Passing
Tone is a simple algorithm that minimizes overhead but still
performs almost as well as previous algorithms.

A question was asked about what UsenetDHT provides
for censorship resilience. In reply, the speaker stated that
there is an advantage in replicas being distributed, but that
he doesn’t envision UsenetDHT replacing Usenet because
the latency might be too high across servers. UsenetDHT
does not affect censorship. In reply to another question,
the speaker stated that there is no public information about
how much of Usenet is spam.

n	 San Fermin: Aggregating Large Data Sets Using a Binomial
Swap Forest
Justin Cappos and John H. Hartman, University of Arizona

Justin Cappos said that computing results of a computation
over a large, distributed data set can be difficult. When the
amount of data you need to process is large, aggregating
the data at a single location can take too long to process,
so distributed aggregation algorithms have been devised.
An example when this type of algorithm is needed is when
a programmer is trying to analyze end-user traces of a
program’s execution. The programmer is only interested
in a total sum, not individual values, but trace files can be
too large to transfer to a single point. Instead, the traces
can be processed locally and just the aggregated sums can
be transferred as the result. The goals of an algorithm for
aggregating large data sets are to have complete coverage,
have no duplicates in the answer, have no partial data,
tolerate node failures, not overload any individual node, and
produce a result fast.

San Fermin is an algorithm for large data aggregation that
uses a binomial swap forest to calculate results. Each node
is assigned a unique identifier to prevent duplicate and
missed nodes. Each node then starts swapping data with
other nodes by considering each bit in its ID value from
right to left and choosing another node that has a different
target bit and has the same prefix. Each node has its own
view of the network, that is, as a binomial swap tree, and
by aggregating data with the nodes it chooses to swap with,
it will eventually have the aggregated result that is desired.
Since every node runs the algorithm, the first node to com-
plete the aggregation reports its result and all other nodes
can stop. This method allows the aggregation to be robust
to node failures since a node will usually swap its data with
multiple other nodes before failing, so its information is
already in the binomial swap tree of others. The prototype
of San Fermin is built on top of Pastry, which provides IDs,
failure detection, and routing. To evaluate San Fermin, the
prototype was tested on 100 PlanetLab nodes and compared
to SDIMS, which is also built on top of Pastry.

The evaluation showed that both algorithms perform well
with small amounts of data, but SDIMS starts to fall apart
with a large amount of data. San Fermin has a much lower
variance of completion time than SDIMS, and it scales much
better. Increasing the number of nodes from 32 to 1024
or the data size from 256 kB to 1 MB only increases the
completion time by a factor of 4. When 50 failures occurred
during aggregation, the final results were only missing 5–11
nodes. If there is a large variance in bandwidth capacity
across nodes, the faster nodes tend to finish first, which is a
desirable property.

The conclusion was that San Fermin performs aggregation
better than previous algorithms for large data sets, scales
well, and is robust to failures. In reply to questions, Cappos
stated that San Fermin applies only when exact results are
needed instead of trying to approximate, and that San Fer-
min differs from MapReduce because MapReduce focuses
on distributed computation, whereas San Fermin may only
be computing a very simple operation but wants to avoid
centralizing the data.

fault toler ance

Summarized by Petr Marchenko (p.marchenko@ucl.ac.uk)

Awarded Best Paper!

n	 Remus: High Availability via Asynchronous Virtual Ma-
chine Replication
Brendan Cully, Geoffrey Lefebvre, Dutch Meyer, Mike Feeley,
and Norm Hutchinson, University of British Columbia; Andrew
Warfield, University of British Columbia and Citrix Systems, Inc.

Brendan Cully presented Remus, a system that allows un-
modified software to be protected from the failures of the
physical machine on which it runs. In case of a failure, a
running system can continue its execution on an alternative
physical host with only seconds of downtime while com-

; LO G I N : 	auGusT	20 0 8	 cO N fe re N ce	re p O rT s	 97

pletely preserving its internal state. Remus uses virtualiza-
tion, whereby protected software is encapsulated in a virtual
machine, and its runtime state is propagated to a backup
host at a high frequency, e.g., 40 times per second.

This state propagation is possible because of virtualization,
which allows running VMs to migrate between physical
hosts. Remus applies asynchronous whole-system replica-
tion at particular checkpoints, and the primary server
remains productive between the checkpoints. Remus buffers
output until a more convenient later time in order to delay
the synchronization and perform payload computation. This
technique is called speculative execution. It yields substan-
tial performance benefits and allows checkpointing intervals
on the order of tens of milliseconds. To keep the primary
system and backup hosts consistent, Remus does check-
pointing, which has to deal with CPU and memory replica-
tion, network buffering, and disk buffering. Memory and
CPU replication are based on Xen’s existing live migration
mechanism. Network input and disk reads are applied to
the system immediately; however, the network output and
disk writes are buffered until a checkpoint is performed.
Remus’s protection overhead mainly exists from checkpoint-
ing and network delays introduced by network buffering.

Fred Douglis asked about the effects of network activity
on high-throughput applications. Brendan said that the
network-sensitive applications incur higher performance
overhead. He added that the results of the SPECweb bench-
mark are presented in the paper and that Remus provides
one-quarter of applications’ native performance. Amin Bada
questioned the large amount of data that was transmitted
across the network, not all of which was strictly necessary
for Remus’s operation. Brendan acknowledged that they did
not evaluate this in the work, but using more focused data
might offer a significant performance improvement. Some-
one from the audience was interested in whether Brendan
and his co-workers tried to experiment with hardware
virtualization for their system. The speaker said that these
sorts of experiments were not done because of the absence
of appropriate equipment, but it would be an interesting
direction for their future work.

n	 Nysiad: Practical Protocol Transformation to Tolerate
 Byzantine Failures
Chi Ho and Robbert van Renesse, Cornell University; Mark Bick-
ford, ATC-NY; Danny Dolev, Hebrew University of Jerusalem

Distributed systems and protocols such as DNS, BGP, and
OSPF are designed to tolerate only crash failures; how-
ever, it is crucial to have the ability to deal with Byzantine
failures. Chi Ho discussed Nysiad, a technique for trans-
forming a scalable distributed system or a network protocol
designed to tolerate only crash failures to one that tolerates
arbitrary failures. It uses a variant of Replicated State Ma-
chine (RSM) to translate Byzantine faults into crash faults.

The state machine of a host is replicated onto the guards
of the host, together constituting an RSM. Nysiad’s replica-
tion protocol, OARcast, ensures that the guards of the host

remain synchronized. OARcast provides the following prop-
erties: All correct guards deliver a message if one correct
guard does; the messages from a single origin are delivered
in the same order; and a compromised host cannot forge a
message of a correct host. When the communication graph
is unknown, the common case, Nysiad has no good way of
determining which hosts will be communicating with other
hosts. In this case, the replication protocol will not work,
as it relies on the trustworthiness of the sender’s guards.
The same problem arises when a host changes its guards or
when reconfiguration takes place. To handle this problem,
Nysiad introduces a logically centralized trusted certifica-
tion service, Olympus. It is involved only when changing
the communication and guard graphs. It produces signed
certificates for hosts containing information that is sufficient
for a receiver of a message to check its validity. Owing to
the increased number of control messages sent per single
end-to-end message, Nysiad’s message latency is three times
higher than the latency in the nonconverted system.

An attendee from Microsoft Research was curious how the
system behaves when a host lies consistently. In response,
Chi said that Nysiad includes additional protocols, which
were not mentioned in the talk, that deal with this problem.
An attestation protocol guarantees that messages delivered
to the guards are a valid execution of the protocol and a
credit protocol forces a host to either process all its input
fairly or to ignore all input.

n	 BFT Protocols Under Fire
Atul Singh, Max Planck Institute for Software Systems and Rice
University; Tathagata Das, IIT Kharagpur; Petros Maniatis,
Intel Research Berkeley; Peter Druschel, Max Planck Institute for
Software Systems; Timothy Roscoe, ETH Zürich

Byzantine Fault Tolerant (BFT) protocols for replicated
systems have received considerable attention in the systems
research community. However, it is hard to evaluate these
protocols and distinguish the best one under certain condi-
tions. This is because the BFT protocols are implemented
in different languages, may require nontrivial libraries,
and depend on particular systems. Thus, the implementa-
tion-based approach for comparison of BFT protocols is not
always possible. Atul Singh presented BFTSim, a simulation
environment for performance-modeling-based comparison
of BFT protocols. The system includes a high-level protocol
specification language, an execution environment, and a
network simulator.

The protocol specification language allows one to capture
the salient points of protocols without drowning in the
implementation details (e.g., threads and cryptographic
primitives). The network simulator provides the ability to
explore protocols under different network conditions. The
execution system runs the protocols and it emulates the
execution overhead by introducing delays. Thus, a program-
mer has to specify the cost of a protocol’s primitives, such
as cryptographic operations.

98	 ; LO G I N : 	VO L . 	33, 	N O. 	4

Atul and his co-workers verified the correctness of BFTSim
by comparing the evaluation of Zyzzyva, PBFT, and Q/U
protocols under their simulator and the real evaluation
presented in the literature. BFTSim was able to match the
performance graph for the real protocols with an error less
than 10%. BFTSim makes BFT protocols more accessible, as
it offers a unified system for protocol performance compari-
son under certain network conditions.

There was a question about whether the protocol specifi-
cation language captures the complexity of the protocol
implementation such as lines of code. Atul explained that
it does, as the amount of code in the specification language
is proportional to the amount of code in the protocol’s
 implementation.

monitoring and measurement

Summarized by Eric Hielscher (hielscher@cs.nyu.edu)

n	 Uncovering Performance Differences Among Backbone
ISPs with Netdiff
Ratul Mahajan and Ming Zhang, Microsoft Research; Lindsey
Poole and Vivek Pai, Princeton University

Ming began by pointing out that there have been numerous
studies done on evaluating and comparing systems such as
file systems, databases, and Web servers but there has been
little such work done on evaluating and comparing differ-
ent ISPs. Thus customers don’t have enough information to
make a good decision as to which ISP is the best for their
needs. The current state of the art involves service level
agreements between customers and their ISPs in which the
ISP guarantees some aggregate performance, something that
doesn’t easily translate into an assessment of perceived end-
user experience.

The requirements the authors outlined to structure their
study include that the ISP comparisons be both relevant to
customers (by measuring end-to-end paths target destina-
tions of interest and making comparisons based on work-
loads similar to their own) and useful to ISPs (by helping
them to account for geographic presence and to identify
bad Points of Presence [PoPs] or destinations). The ideal
architecture of the comparison framework would involve
deploying probes inside every PoP of the ISPs, and taking a
probe from every PoP to every destination on the Internet.
However, the overhead would be too high. In the Netdiff,
probers are deployed at the edge of the network, and probes
are sent from ends to various destinations on the Internet—
for example, from an ingress PoP to an egress PoP of an ISP.
A single centralized controller sends probe lists to all prob-
ers, which then send back their results.

The system is able to generate a complete snapshot of each
of 18 backbone ISPs using between 5,000 and 23,000
probes in under 20 minutes, a significant improvement
over another similar system called Keynote. The system
is deployed on PlanetLab and has been generating such

snapshots every 20 minutes for the past year. The compari-
son methodology involved using path stretch and grouping
paths based on length and differentiating between paths
to the destination on the Internet as well as internal paths,
with ISPs ranking very differently on the various metrics.
Detailed information on the data as well as the ability to
generate individualized comparisons is available at http://
netdiff.org.

n	 Effective Diagnosis of Routing Disruptions from End
 Systems
Ying Zhang and Z. Morley Mao, University of Michigan; Ming
Zhang, Microsoft Research

Ying began by stating that the goal of his work is to diag-
nose routing disruptions purely by using end systems, a
departure from existing approaches, since they are con-
trolled by end users and needn’t use ISPs’ proprietary data.
The desire for such diagnosis comes from the fact that
such disruptions impact application performance as well as
causing high loss and long delays. The approach taken only
requires probing from end hosts with traceroute and can
cover all PoPs of a target ISP as well as most destinations on
the Internet. Disruptions are identified by comparing paths
that are consecutively measured. Some challenges involved
in this approach include limited probing resources, lim-
ited coverage of probed paths, and issues related to timing
granularity and measurement noise.

The system’s architecture involves collaborative probing by
a set of distributed hosts, each of which sends traceroutes to
different destinations on the Internet to learn routing state,
improve coverage, and reduce overhead. Events are then
classified according to ingress/egress changes into three
types: the ingress PoP changes, the egress PoP changes, or
neither does. Events are then correlated both spatially and
temporally, since events happening close together in space
or time are likely due to a few root causes. They employ an
inference methodology by compiling pieces of evidence that
support various causes such as an egress link being down.
They then list all likely causes of each event of interest and
build an evidence graph that maps evidence nodes to cause
nodes close together in time. A conflict graph is also gener-
ated, with nodes that represent evidence that conflicts with
a given event, to reduce cause candidate sets, and a greedy
algorithm is used to search for a minimum set of causes
while covering all evidence and having minimal conflicts.

Five large ISPs were monitored via a deployment on Planet-
Lab, covering all of the ISPs’ PoPs, with refreshes occurring
every 18 minutes. The results show that many events dis-
covered were internal changes, something that BGP-based
methods wouldn’t find. The system was validated against
existing BGP-based approaches as well, with somewhat high
error rates owing to limited coverage, coarse-grained prob-
ing, and measurement noise. The system performed well
enough to be usable for real-time diagnosis.

; LO G I N : 	auGusT	20 0 8	 cO N fe re N ce	re p O rT s	 99

n	 Csamp: A System for Network-Wide Flow Monitoring
Vyas Sekar, Carnegie Mellon University; Michael K. Reiter,
University of North Carolina, Chapel Hill; Walter Willinger,
AT&T Labs—Research; Hui Zhang, Carnegie Mellon University;
Ramana Rao Kompella, Purdue University; David G. Anderson,
Carnegie Mellon University

Vyas began his talk by pointing out that the needs for net-
work monitoring stem from things such as traffic monitor-
ing, analysis of new user applications, and network foren-
sics. In particular, good traffic measurements, including
measurements of fine-grained traffic structure, are needed.
Some design goals include limited resource consumption on
routers, high flow coverage, ability to specify network-wide
goals, and low data management overhead. Current systems
for network monitoring employ uniform packet sampling on
routers, with aggregation of individual router data into flow
reports. This results in a bias toward large flows, coarse
goal specifications, and redundant measurements.

The proposed system, cSAMP, randomly samples flows
rather than packets to solve these issues. Each router
hashes a tuple consisting of the network protocol and the
source and destination IP addresses and ports to compute
a FlowID. Each router in the network is configured to store
a different subset of the hash function’s range. This allows
for global configuration (i.e., routers are not required to
communicate during sampling). To allow for network-wide
configuration, different hash ranges are configured per
origin-destination pair in the network (e.g., NYC/PIT). A
framework is provided for generating sampling manifests
(the configuration files for the routers). This involves a
linear programming problem, which takes as inputs origin-
destination pair information and router resource constraints
and outputs the optimal sampling strategy that maximizes
traffic and coverage.

cSAMP was evaluated against fixed rate and maximal flow
sampling as well as packet sampling. Its flow coverage was
2–3 times better than packet sampling and 30% better than
maximal flow sampling. In addition, cSAMP is signifi-
cantly better than the other methods at achieving minimal
fractional coverage and network-wide goals. It is robust to
traffic dynamics and scalable. A question was asked about
whether cSAMP could be used for per-flow rate-limiting ap-
plications, and the response was that the current infrastruc-
ture is geared toward near-real-time analysis of flow reports
rather than real-time monitoring for rate-limiting.

n	 Studying Black Holes on the Internet with Hubble
Ethan Katz-Bassett, Harsha V. Madhyastha, John P. John,
and Arvind Krishnamurthy, University of Washington; David
Wetherall, University of Washington and Intel Research; Thomas
Anderson, University of Washington

Ethan started off his talk by pointing out that global reach-
ability is a basic Internet goal. In use, the Internet seems
usually to have such reachability, but there are numerous
cases where this isn’t true and there are transient reach-

ability problems. The Hubble system aims to automatically
identify persistent reachability problems. The algorithm
it employs includes three steps. First, distributed ping
monitors detect when a destination becomes unreachable.
Second, reachability analysis is conducted using distributed
traceroutes. Finally, the problem is classified. To detect
whether the problem involves the forward or backward link
between the source and the destination, Hubble employs IP
address spoofing by having another source send a packet
to the destination with the first source as its spoofed IP
address. If the original source then hears a response, we
can conclude that the problem was with the forward link;
otherwise, it must be with the backward link.

Problems are detected by pinging destinations every two
minutes. A destination is reported after a series of failed
pings. A BGP table is maintained from RouteViews feeds,
allowing for an IP-address-to-AS mapping. Next, the extent
of the problem is assessed by using traceroutes to gather
topological data, with probing continuing while the problem
persists. Analysis is performed to determine which trace-
routes reach the destination. Next, the problem is classified
according to ISPs, routers, and destinations, in order to help
operators diagnose and repair it.

The evaluation of Hubble presented in the talk focuses on
two questions: How much of the Internet is monitored, and
what percentage of paths is analyzed for each given prefix?
The results show that, every two minutes, 89% of the Inter-
net’s edge space and 92% of ASes are monitored. In addi-
tion, for 60% of prefixes, Hubble monitored routes through
all ASes on RIPE BGP paths to the prefix. Further results
show that spoofing works well and that many Internet holes
last for more than 10 hours and most were cases of partial
reachability. An interesting result was that multihoming
may not give resiliance to failure, since many multihomed
prefixes had problems in which multiple traceroutes termi-
nated in one provider while the prefix remained reachable
through another provider. Hubble is running continuously,
and a map of ongoing problems is available at http://hubble.
cs.washington.edu.

perform ance

Summarized by Petr Marchenko (p.marchenko@ucl.ac.uk)

n	 Maelstrom: Transparent Error Correction for Lambda
Networks
Mahesh Balakrishnan, Tudor Marian, Ken Birman, Hakim
Weatherspoon, and Einar Vollset, Cornell University

Mahesh Balakrishnan started by explaining the problem
that TCP/IP has when it is used in high-speed lambda
networks. TCP/IP was designed to provide connectivity in
congested networks; however, in networks such as Tera-
Grid with 40-Gbps links, there is no congestion but there
are packet drops because of dirty fiber, misconfiguration,
and switching contention. TCP/IP uses a feedback loop to
recover lost packets, which results in dramatic throughput

100	 ; LO G I N : 	VO L . 	33, 	N O. 	4

reduction. A loss rate of 0.1% is sufficient to reduce TCP/IP’s
throughput by an order of magnitude.

As a solution for this problem, Mahesh proposed the Mael-
strom Error Correction appliance, a rack of proxies resid-
ing between a sender and a receiver in a WAN link. These
proxies apply Forward Error Correction (FEC) for the traffic
being transmitted over the link. The sender proxy encodes
every five data packets in three FEC packets, and the re-
ceiver proxy checks the correctness of data packets and uses
FEC to recover lost or damaged data packets. This tech-
nique works well for random losses but not for burst losses.
Therefore, Maelstrom uses a new encoding scheme called
layer interleaving, which applies extra correction packets
over the blocks of packets (layers), using three layers of dif-
ferent length.

Maelstrom was evaluated on the Emulab testbed. It is
able to cope with loss rates up to 2% without significant
throughput degradation, whereas TCP/IP’s performance de-
grades dramatically when loss rate is increased from 0.01%
to 1%. The overhead introduced by Maelstrom does not
depend on the length of the links, but only on the data rate.
The proposed solution is transparent, as it does not require
modification of network infrastructure and software. Thus,
TCP/IP can be run over Maelstrom.

Michael Walfish wondered why they rejected the possibility
of using rateless code in their paper. Mahesh admitted that
rateless code could be used in their system; however, he did
not explain why they found it unusable but suggested tak-
ing this question offline. One attendee asked for a clarifica-
tion of the difference between this work and the work pre-
sented at NSDI four years ago. Mahesh agreed that the work
has some similarities, but the earlier one was doing error
correction in the network; thus, their deployment models
are completely different. Bob Read from Facebook asked
whether Maelstrom supports n + 1 connectivity or whether
there is always one-to-one mapping. Mahesh responded
that if there are several connection points, they have to be
paired; therefore, it is always one-to-one mapping.

n	 Swift: A Fast Dynamic Packet Filter
Zhenyu Wu, Mengjun Xie, and Haining Wang, The College of
William and Mary

Zhenyu Wu addressed the problem of fast dynamic packet
filtering. Dynamic filtering is essential for building network
services, network engineering, and intrusion detection,
where it is required to adjust the filter at runtime. When
there is a dynamic filter update, the traditional filters such
as BSD Packet Filter (BPF) requires three preprocessing
phases: compilation of a new filter, user-kernel copying (as
the filter runs in the kernel), and security checking to make
sure that a new filter can be safely run in the kernel. These
stages prolong filter update latency, which results in misses
of hundreds or even thousands of packets. This gap

can cause serious problems for critical applications such as
intrusion detection systems.

Zhenyu presented SWIFT, a packet filter that takes an alter-
native approach to achieving high performance, especially
for dynamic filtering tasks. Like BPF, SWIFT is based on
a fixed set of instructions executed by the in-kernel inter-
preter. However, SWIFT is designed to optimize the filtering
performance with powerful instructions and a simplified
computational model. Powerful instructions allow SWIFT to
accomplish common filtering tasks with a smaller number
of instructions. This speeds up static filtering and allows
removing the filter compilation stage in filter updates,
which improves the dynamic filtering performance. SWIFT
eliminates security checking during filter update; instead, it
is banned from controlling the execution path and storing
data. This prevents it from tampering with the kernel.

Simplifying the filter update procedure by removing the
compilation and security checks allows SWIFT to achieve at
least three orders of magnitude lower filter update latency
in comparison with Linux Socket Filter (LSF). This reduces
the number of missing packets per connection by about
two orders of magnitude. The powerful instruction set and
simplified computational model increase filtering speed;
thus, SWIFT outperforms LSF by up to three times in terms
of packet processing speed.

securit y

Summarized by Brendan Cully (brendan@cs.ubc.ca)

n	 Securing Distributed Systems with Information Flow
 Control
Nickolai Zeldovich, Silas Boyd-Wickizer, and David Mazières,
Stanford University

It is very hard to build secure distributed systems. One
major reason is simply code size: Application code can run
into millions of lines, much of which is unaudited third-
party library code of uncertain provenance. Within these
large applications, even tiny vulnerabilities can lead to
catastrophic data exposure. Although it isn’t feasible to fix
every application bug, systems such as Asbestos, HiStar, and
Flume demonstrate that it is possible to prevent untrusted
code from seeing private data in the first place. They do
this using decentralized information flow control (DIFC) to
track data as it flows across applications and enforce access
control rules on that data. For example, a database credit
card query might be labeled according to the user creden-
tials supplied with it, and data flow control could then
ensure that the response is only visible to the same applica-
tion path that provided the credentials.

Current DIFC systems are limited to applications running
on a single host. Nickolai Zeldovich presented a system,
called DStar, that allows DIFC to be enforced across a net-
work of mutually distrusting applications. This is done by

; LO G I N : 	auGusT	20 0 8	 cO N fe re N ce	re p O rT s	 101

delegating local labels to an export process on each physical
host, which uses self-signed labels (in which the public key
of the exporter is part of the label name) to transfer labels
over the network, where they may be converted back to
local labels. To support decentralized flow control, any pro-
cess can create new labels, remove labels it owns, and grant
the ability to remove labels to other processes.

Because DStar’s trust model is decentralized, it is possible to
use flow control even across multiple operating systems. For
instance, highly sensitive data might be processed under the
HiStar environment, but less sensitive data could be handed
off to Linux systems or even completely untrusted cloud
computing systems.

An audience member asked how this category system differs
from a normal capability system. Nickolai responded that
categories are strictly more general. For instance, they make
it possible to assert negative access rules.

n	 Wedge: Splitting Applications into Reduced-Privilege
 Compartments
Andrea Bittau, Petr Marchenko, Mark Handley, and Brad Karp,
University College London

The number of reported security vulnerabilities continues
to increase every year. This is partly because program-
mers ignore the principle of least privilege. Andrea Birtau
argued that they do this because the process-based privilege
mechanisms commonly available now are not fine-grained
enough to provide good protection. Wedge is a system
designed to help with this problem in two ways: first, by
providing a simple partitioning mechanism called sthreads,
which only shares memory with other sthreads that have
been explicitly tagged, and second, by introducing a tool
called crowbar which helps to find good partition strategies
for existing legacy applications.

The standard approach to privilege separation is to fork
when changing privilege levels, using file descriptors
between processes to share data. Unfortunately, it’s easy to
accidentally leak information to child processes, because
memory is copied into them by default, and so it must be
manually scrubbed before the child begins executing. It’s
also hard to share information, because it must be serialized
across a file descriptor. Sthreads avoid the latter problem be-
cause, like standard threads, they run in the same address
space. They also avoid the former problem because they
can only see memory in other sthreads for which they have
been granted a capability. Sthreads associate a tag with all
memory they allocate and may grant tags to other sthreads.

It would be desirable to apply this mechanism to existing
code, but ad hoc analysis of how data is shared among tasks
in an existing monolithic application is impractical. For
example, the Apache Web server accesses over 600 differ-
ent memory objects. Manually tagging each of them would
be both painful and hard to get exactly right. Static analy-
sis may also fail (e.g., because of function pointer usage).

Crowbar attempts to discover partitions by observing the
actual access patterns of running applications, using the Pin
dynamic instrumentation system.

Andrea was asked about his experience designing applica-
tions using Wedge. He told the audience that he wrote a
DNS server from scratch with sthreads and didn’t feel that
explicit memory tagging required significant extra effort.
Converting legacy code was of course much more difficult.

energy

Summarized by Geoffrey Werner-Allen (werner@eecs.harvard.
edu)

n	 Reducing Network Energy Consumption via Sleeping and
Rate-Adaptation
Sergiu Nedevschi and Lucian Popa, University of California,
Berkeley, and Intel Research, Berkeley; Gianluca Iannaccone and
Sylvia Ratnasamy, Intel Research, Berkeley; David Wetherall,
University of Washington and Intel Research, Seattle

The rising energy consumption of networking-related equip-
ment is a pressing issue, given rising energy costs and the
increased recognition of the impact of CO2 emissions on the
global climate. Given that most network equipment is provi-
sioned for maximum load, which is rarely reached, network
devices provide a great opportunity for power savings.
Power consumption should reflect utilization, not capacity.
This work explores two techniques to reduce power con-
sumption: sleeping, that is, disabling routers for periods of
time, and frequency scaling, that is, reducing the process-
ing speed of the router itself. Combined, these techniques
should reduce both the active and the idle power consump-
tion of routers. Given that new routers are beginning to
be shipped with the ability to sleep and rate-adapt, these
techniques are a promising way to reduce power consump-
tion while protecting performance.

In general, sleep states consume much less power than even
idle ones; however, the transition time to awaken the router
when data arrives is a concern. The authors assume that the
router can be awakened by either a timer or link activity. To
create periods in which a link can sleep, they buffer packets
at the link and then transmit them through in a burst.
Coordinating these buffer and burst periods throughout a
network can ensure that the introduced latency does not in-
crease as data traverses multiple hops. However, it turns out
that their experiments show that the benefits of coordinat-
ing sleeping are minimal compared to uncoordinated sleep-
ing, which captures most of the available energy savings.

Rate adaptation involves lowering the processing rate of the
router to just the point necessary to keep up with link traf-
fic. In general, the perfect link adaptation algorithm is not
implementable, as it requires future knowledge of link activ-
ity. Instead, the heuristic algorithm the authors implement
observes the local queue depth and current rates in order
to choose future rates. As their analysis shows, uniformly

102	 ; LO G I N : 	VO L . 	33, 	N O. 	4

spaced variable rates are better for capturing the benefits of
rate adaptation then the exponentially spaced rates available
on many routers currently shipping. The authors evalua-
ted their approach through simulations using power states
and transitions from an Intel NIC. They found that, on this
particular card, sleeping produced better results than rate
adaptation, but they point out that this card, like many oth-
ers, was not really designed for power savings. They then
present a complete model of power savings that will allow
them to evaluate future cards. Finally, they showed results
indicating that, when comparing rate adaptation and sleep-
ing, there is a utilization threshold that serves as a crossover
point: Under it, sleeping performs better; after it, rate adap-
tation performs better.

Brian Zill from Microsoft Research asked whether the
hardware used for this purpose in typical networking is
optimized for energy consumption, and whether many of
the benefits they described may be achieved simply through
better hardware design. Mr. Nedevschi responded that
today’s networking hardware is indeed not particularly
power-aware, but that this is beginning to change. An-
other questioner asked what percentage of the total energy
consumption of networked equipment was tied up in the
switching hardware that they are improving. Mr. Nedev-
schi wasn’t sure. Finally, another questioner asked how this
would affect TCP congestion control, and Mr. Nedevschi
pointed out that they were careful that their changes pro-
duced no impact on TCP performance.

n	 Energy-Aware Server Provisioning and Load Dispatching
for Connection-Intensive Internet Services
Gong Chen, University of California, Los Angeles; Wenbo He,
University of Illinois at Urbana-Champaign; Jie Liu and Suman
Nath, Microsoft Research; Leonidas Rigas, Microsoft; Lin Xiao
and Feng Zhao, Microsoft Research

Jie Liu stated that IT servers are the energy hog of the IT in-
dustry. The speaker pointed out that the increase in server
energy consumption between 2000 and 2006 was enough
to power 5.8 million American homes. Obviously, there is
a chance to save a significant amount of energy if server
energy consumption can be better managed. And the op-
portunity exists, because server load fluctuates for a variety
of reasons throughout the day. This work focuses on adjust-
ing the number of servers needed to serve MSN Messenger,
a connection-intensive application. Because it is costly to
migrate connections between servers, the authors focus on
predictive techniques to identify the number of servers to
have active at any given moment, combined with different
approaches to load balancing connections across the servers
active at any given moment. In addition, because shutting
down servers conserves the most energy, the authors focus
on ways to completely shut down servers when not in use.

A brief overview of the MSN Messenger architecture was
presented. The servers targeted for power savings are the
connection servers, which are in charge of maintaining
persistent client connections but not storing a great deal of

client state. The authors identify three metrics: service avail-
ability, service continuity, and service latency. Each server
has a bounded number of connections and a bounded con-
nection rate at which it can accept new connections. For the
servers and application studied, the number of connections
is on the order of 100k, whereas the server can only add
around 70 new connections per second, meaning that they
can be modeled by leaky buckets with tiny input pipes.
The slow speed with which connections can be added also
makes forward-looking provisioning all the more important.

The first step is load forecasting, in which regression models
incorporating daily and seasonal fluctuations, along with
the current state of the system, are used to predict load. In
the experiments they performed, the system was trained on
five weeks of data and then tried to predict a single week.
Load dispatching is another key part of the system since
the rates with which users can be added are limited and the
distribution of users affects which machines can be shut
down and how many users will be affected. The balancing
approach assigns users to all available machines roughly
evenly, whereas the skewing approach assigns users to fill
one machine at a time.

Their evaluation looked at several different combinations
of these approaches (e.g., skewing versus balancing and
forecasting versus no forecasting). What they found is that
skewing plus forecasting performs the best, with a 30%
reduction in energy used. A number of graphs pictorially
demonstrating the impact of different load balancing poli-
cies were shown. Finally, the authors identify a number of
alternate approaches, including TCP state migration as well
and building support into the client, allowing it to handle
requests to move to a different server.

Rik Farrow of USENIX asked about some sharp spikes in
the load graphs that had been shown. These turned out to
be due to code rollouts or the effect of shutting down ma-
chines and having a bunch of clients reconnect all at once.
Professor Vahdat from UCSD asked about using virtual
machines to assist in the state migration, to which Mr. Liu
responded that their servers don’t actually maintain much
state.

routing

Summarized by Petr Marchenko (p.marchenko@ucl.ac.uk)

Awarded Best Paper!

n	 Consensus Routing: The Internet as a Distributed System
John P. John, Ethan Katz-Bassett, Arvind Krishnamurthy, and
Thomas Anderson, University of Washington; Arun Venkatara-
mani, University of Massachusetts Amherst

Internet protocols have traditionally favored responsiveness
(a liveness property) over consistency (a safety property).
Thus, they apply routing updates immediately to its for-
warding tables before propagating them to other routers.

; LO G I N : 	auGusT	20 0 8	 cO N fe re N ce	re p O rT s	 103

This causes routing loops and blackholes. Fully 10%–15%
of BGP updates cause loops and 30% packet loss.

John P. John presented consensus routing, where he pro-
posed to separate safety and liveness properties using two
models of packet delivery: stable and transient. A stable
mode ensures that a route is adopted only after all depen-
dent routers have agreed upon a consistent view of the
global state. This is achieved by a distributed snapshot and
a consensus protocol. Transient mode ensures availability
when a packet encounters a router that does not possess a
stable route because of a link failure or an incompletion of
consensus protocol. In this case, the router makes forward-
ing decisions based on transient heuristics such as backup
routes, deflections, and detours. Consensus routing, which
resides as a layer on top of BGP, does not require changes to
BGP and does not disclose any more information regarding
its routing policies than BGP does.

Comparison of BGP’s connectivity and consensus rout-
ing connectivity in case of AS traffic engineering (prefix
withdrawing) showed that BGP maintains connectivity only
in 40% of the test cases, whereas consensus routing does so
in 99% of the test cases. The loss of connectivity happens
because of the transient loops. Consensus routing was able
to converge from one consistent state to another, thereby
avoiding transient loops in all test cases. Consensus routing
adds traffic overhead, as it requires 30% more update bytes
than BGP.

There was a question about whether a policy is more or
less opaque with consensus routing than with BGP. John
answered that since the entire policy is not known to all,
it is as opaque as with BGP. Another question concerned
whether it is possible to bundle updates. The answer was
that bundling would cause inconsistency as a single update
propagate policy that affects individual ASes. Someone
wondered about the downtime in traffic forwarding that is
caused by performing updates. John said that the effect of
applying updates is covered by detour routing in the tran-
sient stage.

n	 Passport: Secure and Adoptable Source Authentication
Xin Liu, Ang Li, and Xiaowei Yang, University of California,
Irvine; David Wetherall, Intel Research Seattle and University of
Washington

Xin Liu addressed the problem of source address spoofing,
since it damages the Internet in a variety of ways. Address
spoofing significantly mitigates the effectiveness of DoS
defense mechanisms. It also makes possible reflector attacks
and makes source address filtering untrustworthy.

Xin Liu proposed Passport, a novel network-layer source
authentication system. Passport treats an AS as a trusted
and fate-sharing unit, and it authenticates the source of a
packet to the granularity of the origin AS. It uses symmet-
ric-key cryptography and checks packets only at admin-
istrative boundaries. When a packet leaves its source AS,

the border router stamps one Message Authentication Code
(MAC) for each AS on the path into the packet’s Passport
header. When the packet enters an AS on the path, the bor-
der router verifies the corresponding MAC value, using the
secret key shared with the source AS. The correct MAC can
only be produced by the source AS that also knows the key.

Passport relies on the routing system to efficiently manage
keys using Diffie-Hellman key exchange on routing adver-
tisements. Source address spoofing within a single AS is
considered to be an internal issue for an AS. This solution
can be incrementally deployed, as it is interoperable with
legacy ASes.

An attendee asked about the routing assumptions. Xin
stated that Passport requires routers having complete rout-
ing tables. Another question was asked about MTU because
Passport adds MACs. Xin said that this is not an issue for
routers; they can increase the size of the packet and they do
it anyway for things such as VPNs.

n	 Context-based Routing: Technique, Applications, and
 Experience
Saumitra Das, Purdue University; Yunnan Wu and Ranveer
Chandra, Microsoft Research, Redmond; Y. Charlie Hu, Purdue
University

Saumitra Das discussed the effects of new lower-layer
technologies such as multiple radios and link layer network
coding on the routing path in wireless mesh networks. As
he pointed out, conventional routing frameworks do not
allow taking advantage of the new lower-layer technologies,
since the costs of the links are examined in isolation from
each other. Thus, multiple radios and network coding are
not considered by conventional routing mechanisms.

Saumitra suggested a framework for routing in the pres-
ence of inherent link interdependencies, called context-
based routing. It includes a new context-based path metric
and route selection method that leverage the advantages of
network coding and multiple radios. This context-based
framework uses conditional link metrics: the Expected
Resource Consumption (ERC), which models the cost sav-
ing from network coding, and a Self-Interference–aware
Metric (SIM) for multiple radio systems. A context-based
path pruning method uses these metrics to identify a pref-
erable path. Based on these primitives, Saumitra and his
colleagues implemented a Context Routing Protocol (CRP)
and conducted experiments on two testbeds, demonstrating
significant throughput gains.

An attendee asked whether the links advertised by CRP
would already be congested. Saumitra said that the lower
cost is advertised based on the throughput gain that you
would get. One attendee wanted to know how much pre-
dictability you need in the flows to calculate the correct cost
of the flow. The response was that they have a mechanism
in the paper to ensure that equilibrium is reached.

104	 ; LO G I N : 	VO L . 	33, 	N O. 	4

understanding systems

Summarized by Brendan Cully (brendan@cs.ubc.ca)

n	 NetComplex: A Complexity Metric for Networked System
Designs
Byung-Gon Chun, ICSI; Sylvia Ratnasamy, Intel Research Berke-
ley; Eddie Kohler, University of California, Los Angeles

Simplicity has always been valued very highly in system de-
sign, but it is hard to measure quantitatively. Crude metrics
like number of messages or total state size can be very mis-
leading; for example, flooding is simple but produces many
messages. Byung-Gon Chun presented a new metric, called
NetComplex, to better reflect our intuition about the com-
plexity of the algorithmic component of networked systems.
It is based on the observation that these systems center on
distributed state, and this state is dependent on the mes-
sages that communicate it. NetComplex uses a dependency
graph in which discrete elements of single-host state form
the nodes of the graph and messages that change that state
form the edges.

NetComplex divides complexity into two levels. The most
basic level is state complexity, which is the number of state
changes that occur across the dependency graph as a result
of changes to each variable. Operation complexity is a
higher-level metric which aggregates the total state com-
plexity resulting from an operation as defined by the system
API. This is the metric by which Byung-Gon proposed that
alternative algorithms be compared.

The rest of the presentation attempted to demonstrate the
accuracy of the metric, first by using it on several different
routing protocols, where it was determined that compact
routing was the most complex protocol in spite of the fact
that it had both the least state and the fewest messages
(because it was designed for scalability). The metric was
also applied to a number of classical distributed systems
and then compared to the complexity rankings assigned by
a survey of 19 graduate students in a distributed systems
class; they matched closely.

There were a number of interesting questions. One attendee
observed that Ethernet was a wildly successful algorithm,
but according to this metric it would be classified as ex-
tremely complex (owing to exponential backoff). Another
attendee pointed out that conventional metrics apply to
resources, so that a system with limited bandwidth might
optimize for fewer messages at the expense of more state.
He wondered how NetComplex was intended to be used
to select systems given that it did not apply to particular
resources. Byung-Gon replied that, in general, the simplest
algorithm was the best choice for producing robust systems.

n	 DieCast: Testing Distributed Systems with an Accurate
Scale Model
Diwaker Gupta, Kashi V. Vishwanath, and Amin Vahdat,
 University of California, San Diego

A recurring problem for application developers is that they
simply do not have the resources to test their applications
in all of the different environments in which they will
eventually be deployed. DieCast is a system that attempts
to replicate large systems with a high degree of fidelity on
a much smaller number of machines, while also providing
reproducibility and making efficient use of the available
hardware. Its approach is to use virtualization to multiplex
many logical machines onto a single physical host, and then
to carefully manipulate perceived time within the VMs to
adjust for the reduced CPU available to them. This allows
CPU to scale to large numbers of logical systems, but it does
not scale either RAM or disk capacity.

Within a single virtual machine, time dilation (presented at
NSDI ’06 by the same group) can be used to hide increased
runtime from the running operating system. But in such an
environment, unmodified I/O would appear correspond-
ingly faster. For example, in a VM in which virtual time
progresses at one-tenth the speed of real time, a 1-Gbps
network link would appear to run at 10 Gbps. Therefore,
DieCast interposes on network and disk devices to scale
them according to the time dilation factor in effect, so that
perceived latency and throughput match those of the real
devices.

The accuracy and utility of DieCast were evaluated in two
ways. First, the RUBiS Web application benchmark was
run natively on 40 nodes, and under DieCast on 4 nodes of
10 VMs each. The resulting throughput and response time
scores matched very closely. A case study was also provided
in which a scalable storage company reported good results
from testing changes to their high-performance computing
application.

n	 D3S: Debugging Deployed Distributed Systems
Xuezheng Liu and Zhenyu Guo, Microsoft Research Asia; Xi
Wang, Tsinghua University; Feibo Chen, Fudan University; Xiao-
chen Lian, Shanghai Jiaotong University; Jian Tang and Ming
Wu, Microsoft Research Asia; M. Frans Kaashoek, MIT CSAIL;
Zheng Zhang, Microsoft Research Asia

It is difficult to debug distributed systems, in particular
because it is hard to reproduce error conditions. Machines
run concurrently at varying speeds, and network condi-
tions change dynamically. For example, a distributed lock
manager may provide exclusive or shared locks with the
invariant that only one client can hold an exclusive lock.
Optimizations such as local state caching can make it tricky
to reason about whether the invariant always holds. Simu-
lation and model checking can help, but only to a degree.
Eventually, runtime checking is likely to be necessary.

The most common approach to runtime checking is to add
logging to an existing system and then to attempt to replay

; LO G I N : 	auGusT	20 0 8	 cO N fe re N ce	re p O rT s	 105

from the logs. This can entail considerable developer effort,
and getting just the right level of logging can require many
iterations: Too much logging can produce unacceptable
overhead, but too little will miss key state changes. And
even after the logs are captured, analysis remains chal-
lenging. D3S attempts to simplify the process of runtime
assertion checking, by letting developers add distributed
assertions to running systems on the fly. The primary
contributions of D3S are a simple language for distributed
predicates, the ability to inject predicates into running sys-
tems, and tolerance of host or network failures. D3S injects
code into running systems by rewriting the running binary
at specified hook points to collect assertions. These are sent
to a set of assertion-checking servers using messages tagged
with a Lamport clock to form globally consistent snapshots.
In order to tolerate failure, each node provides a heartbeat,
the loss of which removes it from the snapshot set.

The authors used D3S on five real systems (all third-party
applications) to evaluate whether it helped to find bugs.
They found that it was easy to write predicates for these sys-
tems and that they were able to discover bugs that required
runtime checking. Because only assertion state was logged
and checked, the overhead on running systems was low
(between 3% and 8%).

One audience member wondered how one could specify a
predicate that could be used to find performance problems.
Xuezheng acknowledged that this was a tricky problem, but
argued that being able to add and remove probes on the
fly would still be very helpful. Another attendee asked how
probes could be written for applications written in higher-
level languages other than C or C++. Xuezheng claimed that
most real applications are written in C/C++ and that higher-
level languages often provided better debugging facilities
directly.

LEET ’08: First USENIX Workshop on Large-Scale
Exploits and Emergent Threats

San Francisco, CA
April 15, 2008

at tacker behavior

Summarized by Joshua Mason (josh@jhu.edu)

n	 On the Spam Campaign Trail
Christian Kreibich, International Computer Science Institute;
Chris Kanich, Kirill Levchenko, Brandon Enright, and Geoffrey
M. Voelker, University of California, San Diego; Vern Paxson, In-
ternational Computer Science Institute; Stefan Savage, University
of California, San Diego

Christian Kreibich presented data he and his collaborators
gathered about the Storm botnet. The data was collected
by first reverse engineering and subsequently infiltrating
the botnet with the intention of discerning email address

harvesting properties, spam delivery efficacy, and the size of
individual spam campaigns. Data capture was accomplished
by running 16 virtual machines infected by Storm and
situating the nodes at several levels in the Storm hierarchy
while disallowing malicious activity such as actually send-
ing spam.

Running live instances of the Storm botnet led to several
interesting discoveries. First, Christian discussed the spam
templating functionality, which allows spammers to craft
messages using a variety of macros. These macros can then
be substituted with random data to make emails containing
the same general message difficult to cluster. They observed
14 different macros used during their deployment and
discovered 10 more with experimentation. The team also
discovered dictionaries for use in macro values (e.g., subject
lines and domain names) and various lists of email ad-
dresses (hit lists) used in different spam campaigns.

