
; LO G I N : Au Gust 20 0 8 cO N fe re N ce re p O rt s 105

from the logs. This can entail considerable developer effort,
and getting just the right level of logging can require many
iterations: Too much logging can produce unacceptable
overhead, but too little will miss key state changes. And
even after the logs are captured, analysis remains chal-
lenging. D3S attempts to simplify the process of runtime
assertion checking, by letting developers add distributed
assertions to running systems on the fly. The primary
contributions of D3S are a simple language for distributed
predicates, the ability to inject predicates into running sys-
tems, and tolerance of host or network failures. D3S injects
code into running systems by rewriting the running binary
at specified hook points to collect assertions. These are sent
to a set of assertion-checking servers using messages tagged
with a Lamport clock to form globally consistent snapshots.
In order to tolerate failure, each node provides a heartbeat,
the loss of which removes it from the snapshot set.

The authors used D3S on five real systems (all third-party
applications) to evaluate whether it helped to find bugs.
They found that it was easy to write predicates for these sys-
tems and that they were able to discover bugs that required
runtime checking. Because only assertion state was logged
and checked, the overhead on running systems was low
(between 3% and 8%).

One audience member wondered how one could specify a
predicate that could be used to find performance problems.
Xuezheng acknowledged that this was a tricky problem, but
argued that being able to add and remove probes on the
fly would still be very helpful. Another attendee asked how
probes could be written for applications written in higher-
level languages other than C or C++. Xuezheng claimed that
most real applications are written in C/C++ and that higher-
level languages often provided better debugging facilities
directly.

LEET ’08: First USENIX Workshop on Large-Scale
Exploits and Emergent Threats

San Francisco, CA
April 15, 2008

at tacker behavior

Summarized by Joshua Mason (josh@jhu.edu)

n	 On the Spam Campaign Trail
Christian Kreibich, International Computer Science Institute;
Chris Kanich, Kirill Levchenko, Brandon Enright, and Geoffrey
M. Voelker, University of California, San Diego; Vern Paxson, In-
ternational Computer Science Institute; Stefan Savage, University
of California, San Diego

Christian Kreibich presented data he and his collaborators
gathered about the Storm botnet. The data was collected
by first reverse engineering and subsequently infiltrating
the botnet with the intention of discerning email address

harvesting properties, spam delivery efficacy, and the size of
individual spam campaigns. Data capture was accomplished
by running 16 virtual machines infected by Storm and
situating the nodes at several levels in the Storm hierarchy
while disallowing malicious activity such as actually send-
ing spam.

Running live instances of the Storm botnet led to several
interesting discoveries. First, Christian discussed the spam
templating functionality, which allows spammers to craft
messages using a variety of macros. These macros can then
be substituted with random data to make emails containing
the same general message difficult to cluster. They observed
14 different macros used during their deployment and
discovered 10 more with experimentation. The team also
discovered dictionaries for use in macro values (e.g., subject
lines and domain names) and various lists of email ad-
dresses (hit lists) used in different spam campaigns.

Kreibuch went on to give a myriad of different statistics
on the spam traffic they observed. They saw over 100,000
command and control connections for worker nodes of
the Storm network and were able to collect 172,000 spam
templates. They also observed 272,546 harvest reports that
contained information gathered from worker nodes. Perhaps
the most staggering statistic was the number of targeted
email addresses, coming in at 66.7 million. A survey of
these addresses revealed some fairly comical addresses such
as “first.lady@whitehouse.gov” and “stalin@kremlin.ru.”

Someone asked about what led to the discovery that one
of the largest lists collected contained domains for use in
randomizing spam by way of templates. This led an audi-
ence member to inquire as to whether templates were linked
to dictionary lists so as to better convince the receivers of
the spam’s legitimacy. Christian’s group did not observe the
behavior, but he admitted that it is an interesting possibil-
ity. Other questions related to the encrypted communica-
tion present in Storm and about the ease of infiltrating the
network. The speaker noted that infiltration was surpris-
ingly easy and encrypted communication is subject to
man-in-the-middle attacks. Niels Provos wondered whether
they’d tried to inject error messages to the bot master. They
did not, but the question led to a discussion of how easy it
would have been for the bot master(s) to detect their pres-
ence. The bot master could have asked Kreibuch’s worker
bots to send spam to certain addresses and then checked
whether the spam was actually sent, but this did not hap-
pen.

n	 Characterizing Botnets from Email Spam Records
Li Zhuang, University of California, Berkeley; John Dunagan,
Daniel R. Simon, Helen J. Wang, Ivan Osipkov, and Geoff
Hulten, Microsoft Research; J.D. Tygar, University of California,
Berkeley

John Dunagan presented a work led by Li Zhuang at UC
Berkeley that used trace information present in spam mes-
sages to correlate spam campaigns. Their spam corpora

106 ; LO G I N : VO L . 33, N O. 4

was gathered from the “junk” folder of Hotmail users over
9 days. Using this data, they discovered that 50% of spam
botnets have more than 1,000 bots and 80% of botnets use
less than half of their bots in each spam campaign. The last
statistic begs the somewhat depressing question: Have spam
botnets reached the point where they don’t need as many
bots as they have? In addition, Dunagan indicated that 60%
of botnet-related spam is from long-lived botnets.

To associate spam bots with botnets, they attempted to link
these bots to individual spam campaigns, in the hope that
the same spam campaigns are perpetrated by individual
botnets. This was accomplished by using three separate
techniques. First, the same spam campaigns tend to use the
same target URLs (i.e., ask the spammed user to visit the
same site). The target URLs had to match exactly for this
metric to work, which seems to be a somewhat defeated
spam campaign correlation mechanism based on the ran-
domization of URLs discussed in Kreibuch’s presentation.
Their second technique to link spam campaigns, then, used
the similar body content present in messages. Finally, they
also attempted to link bots to botnets based on whether the
same bots are participating in the same campaigns.

Once they associated a spam campaign to an individual
botnet, they tried to estimate the number of individual ma-
chines present in the botnet. This becomes difficult because
of the prevalence of dynamic IP addresses among compro-
mised machines. So, they used MSN data containing login
events to link machines across dynamic IP addresses and
thus to establish the variation pattern on subnets. Because
users could easily be logging in from home and then from
work, they define an upper bound on the potential variabil-
ity present on subnets.

The first questioner asked how overlapping content in
spam messages was used, given that the messages are often
designed to defeat such correlation techniques. Dunagan
said they used Rabin fingerprints and that currently used
spam obfuscation techniques do not achieve enough poly-
morphism to make correlation impossible or even difficult.
Another audience member asked whether the team notified
MSN users found to be infected. Dunagan noted that their
MSN data was not from the same 9-day period as their
spam data; while they might be able to notify a user that
they were infected a month ago, they didn’t have the clear-
ance to do so.

n	 Peeking into Spammer Behavior from a Unique Vantage
Point
Abhinav Pathak and Y. Charlie Hu, Purdue University; Z. Mor-
ley Mao, University of Michigan

Abhinav Pathak presented the third and final spam talk at
LEET. His research observed spam from the vantage point
of open SMTP relays. To collect data, they set up an open
relay that sent only those messages that test for open relays.
All other email was blocked. Spammers attempting to locate
open relays send messages containing the IP address of

the relay they are testing to email addresses the spammers
control. Thus, to fool the spammers into thinking the relay
is functional, Pathak’s team allows sending these messages.
This methodology for convincing spammers of an open
relay also leads to the relay being blacklisted by projects
such as Spamhaus. To counteract this, emails containing the
strings DNSBL, ORDB, and a few others are not relayed.

Their open relay data collection approach identified two
types of spammers: low-volume spammers (LVS), which
appear in large numbers and use coordinated spamming
at a low rate and low volume, and high-volume spammers
(HVS), which have fewer nodes and send uncoordinated/
disorganized spam at a very high rate of throughput. The
LVS are considered more interesting because of their coordi-
nated approach. They perform open relay scanning and dis-
tribute the open relays identified. The list of email addresses
is also split into chunks and processed so as to avoid send-
ing the same message to the same address multiple times.
The chunking they observed is done alphabetically and is
thus easily identifiable.

Perhaps the most interesting portion of the talk came in the
discussion of a graph of email list chunk number versus
time. This graph allows a systematic distinction to be made
between the LVS and HVS types. The LVS spam increases
linearly over time whereas HVS spam happens in one burst.
Also, based on the observation that list chunking happens
alphabetically, the graph also allows the separation of spam
into spam campaigns.

Some interesting questions centered on the effectiveness of
spam blacklisting. One audience member inquired as to the
effect on observed spam when Pathak did happen to get the
relay blacklisted. Pathak replied that upon blacklisting their
open relay, spam stopped entirely, indicating that either
spam blacklists are checked by spammers or that spam-
mers constantly test open relays for efficacy. Other audience
members inquired as to the amount of spam that is actu-
ally sent using open relays, given the automatic open relay
blocking by Hotmail and other large email hosts. These
questions couldn’t really be answered, but work is being
conducted now to better grasp how much spam employs
open relays.

n	 Behind Phishing: An Examination of Phisher Modi
 Operandi
D. Kevin McGrath and Minaxi Gupta, Indiana University,
Bloomington

Kevin McGrath presented his measurement study on phish-
ing. His intention was to determine whether phishing URLs
have differing characteristics when it comes to URL com-
position, registration, and cycle. He had two data sources:
Mark Monitor, which is a list of phishing sites obtained
from large ISPs that are verified by hand and updated every
5 minutes, and PhishTank, which has a list of community
submitted and verified phishing URLs updated once every

; LO G I N : Au Gust 20 0 8 cO N fe re N ce re p O rt s 107

hour. McGrath also obtained the zone files for the com, net,
info, and biz top-level domains.

Their methodology for information gathering begins by
obtaining a thin whois of the domain upon the domain’s
first occurrence. Then when the feed is updated, they fetch
the DNS records for every domain seen to date to establish
domain life cycle. They also perform geolocation via the
IP2location service. Collecting these pieces of information
over a period of 211 days allowed McGrath to establish
several patterns in phishing domain characteristics. He gave
details of the composition of phishing URLs. For example,
over 30% of phishing domains are 8 characters in length,
and the relative letter frequencies between phishing and
nonphishing domains differ considerably. McGrath notes
that the characters a, c, and e tend to appear with the same
frequencies in phishing domains, whereas nonphishing
domains follow the typical English frequency table. The
more interesting observation is in the lifetime of a phishing
domain, lasting approximately 3 days on average.

Someone inquired as to whether this study was really a
characterization of phishing domains or whether it was
simply characterizing data present in MarkMonitor and
PhishTank. The answer is of course unknown as there is no
global list of phishing sites, but it is an important point. An
audience member also inquired about the incentive of do-
main name registrars to fix this problem, given that they re-
ceive money for these registrations. McGrath responded that
registrars do not profit from typical phishing sites because
of the 5-day registration grace period. If a domain lasts less
than 5 days, no money is exchanged. This fact also yields
a deeper understanding as to why the average lifespan of a
phishing site is under 5 days.

new threats and rel ated challenges

Summarized by Rik Farrow (rik@usenix.org)

Awarded Best Paper!

n	 Designing and Implementing Malicious Hardware
Samuel T. King, Joseph Tucek, Anthony Cozzie, Chris Grier,
Weihang Jiang, and Yuanyuan Zhou, University of Illinois at
Urbana Champaign

Sam King began with some history of similar attacks, as
well as a mention of the recent sales of Chinese-made,
bogus Cisco gear by contractors to U.S. DoD customers.
King and his co-authors have designed the Illinois Mali-
cious Processor (IMP), a SPARC v8 processor that runs
Linux with a twist.

They implemented the IMP by adding a small number
of gates (.05 and .08% of the total gates) in two different
attacks, using a FPGA (Field Programmable Gate Array)
programmed using a modified version of VHDL (Very High
Speed Integrated Circuit Hardware Description Language)
for the Leon3 implementation of the SPARC processor.

In one attack, a local attacker runs code that includes a
sequence of bytes that gets detected by additional code in
the logic of the data cache controller. When this trigger
is seen, other added logic loads code and data into the L1
caches, executes this code, and elevates the privilege level
of the process that sent the sequence of bytes as the trigger
(instant root).

King also presented a second design, called shadow mode,
where the trigger sequence appears in a dropped network
packet, and the code to execute gets copied from the data
portion of this packet. King described two attacks, one
where login as any user is permitted with the password
“letmein” after the trigger and a second that hooks read and
write system calls and captures possible passwords. The
login backdoor exits immediately after use, disappearing
from cache, whereas the password capture code remains
resident. The login attack has a small impact on perfor-
mance (barely more than that of a local attacker logging in
as root), but the password capture attack results in 13% loss
in performance. King then demonstrated the login attack
using the embedded system with the IMP version of the
SPARC he had set up.

The first questions related to how easy it might be to dis-
cover this attack. Sergey Bratus mentioned that in the USSR,
chips were routinely reverse engineered specifically to
address this attack, and King countered by mentioning the
CIA pipeline control software that was acquired by the Rus-
sians and caused a catastrophe when used. Another person
wondered whether multicore processors would make this
trick more difficult. King responded that the same changes
could be used in all processors. Kevin McGrath suggested
that special-purpose multicore systems might even make
this attack simpler if you just target the one core you are
interested in. Brandon Enright pointed out that the MMU or
some other device might work as well, but King stated that
the CPU got to see the entire dynamic instruction stream,
making it better suited as a target for this attack.

n	 Catching Instant Messaging Worms with Change-Point
Detection Techniques
Guanhua Yan, Los Alamos National Laboratory; Zhen Xiao,
Peking University; Stephan Eidenbenz, Los Alamos National
Laboratory

Guanhua Yan begin by explaining the issues with IM
worms. Instant Messaging relies on servers for transferring
messages, but the protocols permit file transfer directly be-
tween clients that a worm can use to infect another system
without passing through any server. IM worms can also use
a URL that points to a malware download site, also result-
ing in potential infection without passing through a central
server.

The authors propose a statistical method that watches for
the change-point in frequency of file-transfer requests or
URLs being sent. They designed and tested, using simulated
infections, two algorithms based on CUSUM, a sequential

108 ; LO G I N : VO L . 33, N O. 4

analysis technique used for monitoring change detection.
In their simulation, their algorithms were able to detect the
presence of both aggressive spreading and self-restraining
IM worms. The self-restraining worms would be designed
specifically to avoid detection by throttling infection at-
tempts below a threshold.

Niels Provos asked how computationally expensive their
algorithms are. Yan answered that the performance scales
linearly because you can keep track of past values for total
file transfers or URLs included. Provos also asked about the
computational complexity, and Yan said that their algo-
rithm is O(n2) and is practical for up to 100 internal users.
Someone else observed that social intimacy in IM is very
skewed, with most conversations with 1.9 buddies over a
month in AIM, and 5.5 in MSN, so worm propagation could
be detected more simply by noticing abrupt changes in so-
cial intimacy. Someone else asked whether all clients could
become infected during the five-minute window used in
the experiment, and Yan responded that only a fraction of
clients were infected in five minutes. Angelos Keromytis and
Niels Provos wondered whether network intrusion detection
that watched for patterns in data would work as well. Yan
pointed out that this approach is statistics-based. The ses-
sion chair ended the discussion at this point.

n	 Exploiting Machine Learning to Subvert Your Spam Filter
Blaine Nelson, Marco Barreno, Fuching Jack Chi, Anthony D.
Joseph, Benjamin I.P. Rubinstein, Udam Saini, Charles Sutton,
J.D. Tygar, and Kai Xia, University of California, Berkeley

Blain Nelson proposed techniques for preventing spammers
from poisoning Bayesian spam filters. Bayesian filters must
be taught the difference between ham (good email) and
spam. The spammers do this by creating emails that will
be classified as spam, for example, by including the words
“replica Rolex” in the subject, then including a large number
of nonspam words into their message. The goal is to cause
the spam filter to misclassify ham (nonspam), and thus
force the adjustment of the spam threshold so that more
spam gets through the filter. Another possible goal would
be for an attacker to cause an email, for example a bid, to
be misclassified as spam. For example, sending the most
common 90,000 tokens from Usenet postings (a set that
includes both common misspellings and slang) increases
the misclassification rate to 36% when just 1% of the mail is
used for training the SpamBayes to recognize spam.

The authors suggest the Reject On Negative Impact (RONI)
defense, where any email message that causes the Spam-
Bayes filter to begin to reject a set of known ham mes-
sages must not be included in the spam learning set. This
approach works well against dictionary attacks, but not
against focused attacks. The authors also used a second
technique, in which the thresholds for ham and spam get
adjusted dynamically.

Jaeyeon Jung asked about the spammer sending multiple
messages instead of just one, and Nelson responded that

that method results in less impact, so many more messages
are required. Someone else asked whether this was why
spammers were including blocks of valid text in past spam,
and Nelson answered that it is not clear why spammers
were doing this in the past, but if you have enough tokens,
the effect would be one of poisoning SpamBayes. Another
person asked about excluding just some tokens instead of
entire messages, and Nelson said they hadn’t looked into
that, leading to some discussion. Brandon Enright suggested
defending against this attack by using bigram (word pairs).
Nelson answered that they were looking into doing that.
Sergey Bratus wondered whether they check if the message
is actually read or not in deciding on using it in training;
Nelson responded that they did consider some work like
this. As the workshop broke up for lunch, a small crowd
gathered around Nelson.

measurements, uncertainties, and legal issues

Summarized by Rik Farrow (rik@usenix.org)

n	 Conducting Cybersecurity Research Legally and Ethically
Aaron J. Burstein, University of California, Berkeley, School of
Law

Aaron Burstein began his talk with a disclaimer. “Noth-
ing in this presentation constitutes legal advice. If this was
legal advice, it would be followed by a bill.” He then went
on to explain the U.S. legal landscape that impacts security
researchers. The DMCA (Digital Millennium Copyright Act)
has no research exception, for example. For researchers in-
terested in capturing network traffic, the relevant laws are:

Wiretap Act: Prohibits real-time interception of 	■

the content of electronic communications; the
distinction between content and noncontent is
vague, with the To and From lines being noncontent,
but the Subject line of email is considered content.
Pen Register/Trap and Trace statute: Prohibits 	■

real-time interception of noncontent portions of
electronic communications.
Stored Communications Act (SCA): Prohibits 	■

providers of “electronic communications service to
the public” from knowingly disclosing the contents
of customers’ communications.

All three of these acts include loopholes that allow the pro-
viders of a service to monitor and capture network data. In
the cases of Wiretap and Pen/Trap acts, providers may cap-
ture whatever content or noncontent they want as needed
to protect the “rights and property” of the operator. In the
case of the SCA, the operator can use stored data within the
organization however they want. But in all of these cases,
handing over this data to a researcher could be illegal.

The Wiretap Act and the SCA both came before widespread
computer networks, and the Electronic Communication
and Privacy Act (ECPA) and Computer Fraud and Abuse
Act (CFAA) were written later. Burstein then presented two

; LO G I N : Au Gust 20 0 8 cO N fe re N ce re p O rt s 109

scenarios. In the first, a researcher approaches a commer-
cial ISP and asks for packet traces. Burstein points out that
this would be covered by the ECPA and that there are no
research exceptions. At this point, I asked about ISPs who
share content and noncontent data with advertisers so the
ISP can insert ads into email and Web browsing. Burstein
said that this is allowed under the law. Someone else asked
about having a student who works for an ISP during the
summer. Burstein thought this would work, as long as the
student did not remove the data from the ISP. Even continu-
ing to use a login account to view logs later appeared to be
okay.

In the second scenario, a researcher is capturing malware,
allowing it to infect a sandbox, then watching what the
malware does on the network. Note that this is similar to
what Polychronakis et al. did in their paper, except that
they prevent the malware from infecting other machines
and captured all communications. Burstein said that if the
researcher permits the malware to send out code and or
data that infects systems not under the researcher’s control,
that would be in violation of the CFAA. He noted that the
CFAA does not ban malware, that communicating with any
external system was problematical, and sending out mal-
ware or even certain data (the CFAA specifically prohibits
the sending of stolen passwords and financial data) runs
afoul of the law.

Burstein concluded by saying that researchers should work
closely with their own network administrators, as they can
then work to help protect the rights and properties of the
network owner while having legal access to network content
and noncontent. He suggested both legal fixes, as well as
working toward best practices and a code of conduct.

Someone asked whether a researcher has a duty to report
certain content, and Burstein pointed out that the ECPA
does allow you to report certain things. In some cases, such
as discovering child pornography, you have an obligation
to report, and running crawlers can put you into serious
jeopardy.

n	 Measurements and Mitigation of Peer-to-Peer-based
 Botnets: A Case Study on Storm Worm
Thorsten Holz, University of Mannheim; Moritz Steiner,
University of Mannheim and Institut Eurécom; Frederic Dahl,
University of Mannheim; Ernst Biersack, Eurécom; Felix Freiling,
University of Mannheim

Thorsten Holz presented more work related to Storm, and
as he did so, it quickly became apparent that groups of
researchers had actually been interacting via the Storm in
an unexpected manner that has inflated the reported size of
Storm botnets. Storm uses P2P for commands and updates,
but it also communicates with a list of servers, so it is a hy-
brid. The P2P portion uses Overnet, and by crawling Over-
net, Holz and his co-authors discovered 45,000–80,000
Storm bots at different times. They send out probes every

30 minutes, whereas the UCSD group (Kanich et al.) sends
probes every 15 seconds.

Holz reported that Storm infections tripled over the Christ-
mas to New Year week of 2007 because of successful
social engineering attacks. Fabian Monrose asked why the
numbers go down sometimes, and Holz replied that events
such as MSRT sending out a patch can result in systems
becoming clean. Then Holz stated that they introduce 224
hashes (16 million) to the P2P system (the hashes being
used to locate bots), and Niels Provos immediately asked
whether this could inflate the number of discovered Storm
bots. Holz said this certainly could, and someone else said
“That’s you!” Holz went on to mention that they had also
experimented with disrupting Storm. One method relies on
introducing sybils, malicious peers under the control of the
researchers, that can be used to spy on traffic and abuse the
network in other ways.

Through their crawling of P2P and their sybils, Holz claims
to have seen between a minimum of 5,000–6,000 and a
maximum of 80,000 Storm bots per day. David Dagon, the
session chair, suggested that perhaps researchers need to set
up a Storm users list. Someone else asked why they don’t
see the 16 million nodes represented by the hashes Holz
injects into the network. Holz responded by saying they are
using only two IP addresses. Someone else mentioned that
researchers need to be consistent in their methods, so they
aren’t tripping over one another while researching Storm.
Brandon Enright of UCSD (another Storm researcher) ex-
pressed concern that the Storm authors might stop using
Overnet (the P2P network that Storm relies on), and Holz
agreed. You can learn more about Storm from previously
published articles in the December 2007 issue of ;login:.

n	 The Heisenbot Uncertainty Problem: Challenges in Sepa-
rating Bots from Chaff
Chris Kanich, Kirill Levchenko, Brandon Enright, Geoffrey M.
Voelker, and Stefan Savage, University of California, San Diego

Chris Kanich described the UCSD team’s work in determin-
ing the number of active Storm participants and succeeding
in outing another researcher active in crawling/poisoning
the Storm botnet. Kanich pointed out that the number of
claimed Storm bots is extremely high, with MSRT reporting
a lower bound of 275,000. Kanich reported that research
groups, as well as competitors to the Storm botnet, have
been very active, and that this has inflated the number of
nodes.

Storm uses Overnet, a P2P file-sharing network based on
the Kademlia DHT algorithm. The UCSD team discovered
an error in the generation of unique object IDs (OIDs) used
by Storm, limiting the total number of OIDs to 32k (215).
This does not place an upper bound on the number of
nodes, as not all nodes will communicate, but it does make
the OID itself into an oracle that can identify a true Storm
infection as opposed to a file-sharing client or another
research crawler. The UCSD team built a tool named Storm-

110 ; LO G I N : VO L . 33, N O. 4

drain that implements a state machine for categorizing
Overnet nodes. Potential Storm nodes are only considered
Active when they actually respond, and nonresponding
systems are moved into a Removed state, then quickly into a
Dead state, over a short period of time.

Someone asked about dynamic IP address, and Kanich
replied that they don’t care about this, as they are only
interested in the instantaneous number of nodes. Someone
else pointed out that Kademlia should time out old peers,
but Kanich reported that Storm’s implementation is broken,
and its K buckets are not recycled every four hours as they
should be. David Dagon noticed a spike in a graph and
asked when that occurred. Kanich replied, “March 10,” to
which Dagon said, “I owe you a drink.” Kanich described
improvements in Stormdrain, such as advertising OID
hashes that are “close” to recently advertised peers, and this
increased the proportion of nodes considered Active rather
than just Live. Gary Warner wondered whether the Storm
nodes could be distinguished from Overnet nodes based on
the command set used, and Kanich replied that although
they didn’t do that, it should work.

During three weeks of Stormdrain crawling in March 2008,
the number of active nodes varied between 8,000 and
23,000 Active nodes. David Dagon asked whether the UCSD
group would be willing to coordinate with his groups in
probing, and both Kanich and Brandon Enright said they
would be willing to communicate with other researchers.

An article on Storm begins on page 6 of this issue.

n	 Ghost Turns Zombie: Exploring the Life Cycle of Web-
based Malware
Michalis Polychronakis, FORTH-ICS; Panayiotis Mavrommatis
and Niels Provos, Google Inc.

Michalis Polychronakis presented this paper, which ex-
pands on work published last year at HotBots about drive-
by downloads. Drive-by downloads involve Web pages that
have been modified to include script or iFrame sections,
resulting in the installation of malware on systems, cur-
rently focused on Windows. In this work, the researchers
monitored attempted communications after infection, ana-
lyzing over 448,000 responder sessions. Polychronakis said
that they found that malware reports information about the
infected system, address books, browser history files, stored
passwords captured by keyloggers or browser hooks, and
attempts to join botnets.

Their setup used Windows systems running within VMs
that were passed a URL suspected of causing drive-by
downloads. To capture outgoing connections, they set up a
number of proxies for known protocols, as well as generic
responders that often worked, even though the actual
protocol was unknown. The generic responder looks for
hints to the protocol when a nonstandard port is used, then
emulates that protocol if known. If unknown, a generic
banner gets sent to the malware if there is no activity after
a number of seconds, and this often resulted in a useful

response. Besides connecting to servers that collect stolen
data, malware often portscanned local networks, looking
for Windows services such as SMB, NetBIOS, MSSQL, and
DCOM.

McGrath asked whether some requests to nonstandard
ports were using HTTPS, and Polychronakis replied that
they generally were not using that protocol. Jaeyeon Jung
asked how many types of malware were seen; Polychro-
nakis responded that they didn’t analyze which malware
family was sending traffic as they couldn’t perform analy-
sis on so many infections. Someone else asked about the
capacity of their system, and Polychronakis said they could
check about a million pages a day using their setup. John
Ramsey mentioned they had developed Caffeine Monkey,
which does some URL analysis. Then he asked whether the
malware was encrypted or packed. Niels Provos answered,
that most is at least obfuscated and a lot of the Javascript is
encrypted. David Dagon asked whether the malware tests
to see whether it is running in a VM or in an emulated envi-
ronment. Provos responded that malware download servers
won’t even respond to requests from IP source addresses
known to belong to researchers’ networks. But they have
not seen malware that appears to be aware that it is running
within a VM.

work-in-progress reports

Summarized by Joshua Mason (josh@jhu.edu)

Will Drewry presented a methodology for fuzzing regular
expressions. Although the methodology was not discussed
in detail, their results were quite impressive. Their fuzzer
has so far led to 15 security advisories, with 3 or 4 causing
code execution. The impact of the methodology is intrigu-
ing because of the number of applications affected by the
regular expression engines they broke. Their advisories af-
fect applications such as Adobe’s Flash Player, Apple’s Safari
browser, Adobe Acrobat Reader, and Postgres SQL. Adobe
Flash alone is one of the most prevalent pieces of client-side
software on the Internet today, with over 98% market pen-
etration. They intend to publish the source for the fuzzer,
which will hopefully lead to more secure regular expression
engines in the future.

Gary Warner from the University of Alabama at Birming-
ham presented an ongoing work aiming to gather an
unprecedented amount of spam. He presented techniques
he is currently employing, such as asking for the MX record
for popular domains without a mail server and voluntarily
submitting their email addresses to email address farming
malware. Warner’s team is also attempting to get an “opt-in”
plug-in for SpamAssassin that would, if a user agrees, have
all the user’s spam sent to their spam collection project.
The intended uses for the captured spam are numerous; he
briefly discussed using some data-mining algorithms to at-
tempt day-to-day spam campaign tracking.

; LO G I N : Au Gust 20 0 8 cO N fe re N ce re p O rt s 111

Rick Wesson from Support Intelligence presented an ongo-
ing Internet mapping project. They use software from mea-
surementfactory.com to map live portions of the Internet.
The point of the project is to employ visualization tools to
establish trends present online. Data gathered can poten-
tially be used for a variety of applications, such as establish-
ing malicious segments of the Internet.

David Dagon presented a project he’s working on that he
calls “memory dumpster diving.” He intends to use his tech-
nique to perform automated memory analysis on malware.
This would spare malware analysts from performing the
arduous task of constantly having to reverse engineer new
instantiations of the same general bot software to obtain
required information such as encryption keys or connected
hosts. His platform would perform run-time analysis to
dump what seem to be relevant portions of memory, so the
analyst can simply take the information he wants out of the
memory trace.

Thorsten Holz presented a measurement study he and Fred-
eric Dahl are working on that gathers data on DDoS attacks
launched by the Storm worm. So far, it seems the Storm
worm’s attacks last an average of 90 minutes at 61 packets
per second and are typically against either individual users
or anti-spam/anti-spyware companies. He also very briefly
covered some new reverse engineering they were able to do
on the Storm networks’ encrypted communication. They ob-
tained the RSA key and can now encrypt messages to Storm
nodes to make them connect to arbitrary hosts.

BSDCan: The BSD Conference
Ottawa, Canada
May 16–17, 2008

opening session

Summarized by Bjoern A. Zeeb (bz@FreeBSD.org)

“BSDCan 2008, welcome back” was Dan Langille’s first
slide. But before telling you about all the conference talks
let’s go forward to the closing session to tell you one reason
why these summaries were written.

Dan’s Rules of Conference:

1. You do talk about conference.
2. You DO talk about conference.
3. You shall not stand in a direct line between TV and
Dan during an NHL game at conference.

In case you ignore rule #3 you’ll find out about #4, but that
is left as an exercise to the reader.

So the opening talk started with a screensaver of lots of
Nigeria s(c|p)am asking for letters of invitation. Would you
have imagined this happens to an organizer of a conference?
Dan continued thanking all the sponsors, talked about the
organizational things, and gave his talk, a summary of what

happened to him during the past year. It is the personal
touch that makes this special every year.

freebsd /mips, embedding freebsd

Summarized by Bjoern A. Zeeb (bz@FreeBSD.org)

Warner Losh
Warner Losh began talking about the long history of
FreeBSD/mips starting in the late 1990s with FreeBSD 3.x.
The second try to bring it into the mainstream started in
2002 and the third one at BSDCan 2006, which led to more
community success in getting to single users on real hard-
ware. In 2007 Juniper released code that was later merged
with the mips branch and gets to multiusers. FreeBSD/mips
is self-hosting now. Today mips32/r2 and mips64/r2 are
supported and FreeBSD runs on at least four SoC families:
ADMTek ADM5120, IDT RC32432, Broadcomm MIPS, and
the MIPS 4Ke core. More are to come soon. Currently the
work is merged from the Perforce repository into mainline
CVS.

Warner Losh then gave an update on the embedded
FreeBSD world. Two Google Summer of Code students
will work on a PowerPC port and on further reducing the
footprint size of embedded FreeBSD. Both the PowerPC and
ARM support develop well and there is more and more sup-
port in the repositories. He closed with an outline of future
projects.

resource-limiting on the virtual private server

Summarized by Mathieu Arnold (mat@FreeBSD.org)

Fred Clift, Verio
NTT-Verio uses FreeBSD extensively on its virtual hosting
services. They started at about the same time as jail(8), but
they added a lot of things to it, such as limits, similar to
rlimits, with io, network, mail inject, and syscall rate limit.
Those limits were needed to have numerous jails without
one taking all the resources. All those limits have clever
algorithms that allow bursts, so that the virtual servers feel
responsive when needed. They’re waiting on the lawyers to
release the code, which they have on FreeBSD 4, 6, and 7.
Slides with nice graphs are available at http://clift.org/fred/
bsdcan2008.pdf.

a closer look at the zfs file
system /zfs, the internals

Summarized by Mathieu Arnold (mat@FreeBSD.org)

Pawel Jakub Dawidek
Pawel started by peeling ZFS like an onion, explaining
how the components talk to each other and what they do.
The best way to get an idea is to look at his slides at
http://www.bsdcan.org/2008/schedule/attachments/
58_BSDCan2008-ZFSInternals.pdf. He then explained

