On the Science of Power Management: Encouraging Sustainability R&D

Erez Zadok

Dept. of Computer Science
Stony Brook University

http://www.fsl.cs.sunysb.edu/
NSF SciPM Workshop 2009

- Science of Power Management
- Bring multi-disciplinary people:
 - Theory, practice, industry, academia, government.
 - Identify, prioritize, and recommend promising research directions
 - Over 80 participants
- 7 key findings
1: Observe Systems

- Simply measure and analyze what systems are doing
- At all levels from chip, to system, to data center, and beyond
- Disseminate results widely
- Encourage prototyping

- Required for modeling and optimization
2: Develop Metrics

- How can you demonstrate benefits?
- Need for useful, clear metrics
 - ops/sec, total watts/joules, ops/watt
 - ops/watt-second?
 - dollars?
- How to account for long term effects?
 - e-waste, carbon footprints
 - longer hardware lifetimes, IT manpower costs
3: Models

- Systems too complex today
- Models help simplify and understand
 - Make simulations useful
- **Challenge**: model the most significant factors
 - After you observe and develop metrics
- Need for models at all levels:
 - Hardware and software
 - Chip, system, data center, Internet wide
4: Optimization

- Too many “point” solutions
 - Short term incremental benefits
 - How useful to others?

- Systems are complex
 - Multi dimensional: power, performance, reliability, security, usability, ...
 - Multi-variate: lots of h/w and s/w knobs to tweak
 - Non-linear: e.g., power/perf. can go together or opposite
4: Optimization (cont.)

- Need rigorous analytical techniques
 - Algorithms
 - Control theory
- Global view optimization
 - Across all layers of s/w and h/w
5: Education

- Few IT classes
- Little education on power management
 - Special grad topics
- Need undergrad curriculum
 - Brought down to core topics
- For now: integrate into existing classes
- Example: security education in 1995 vs. 2010?
 - Cannot wait 15 years...
6: Develop a Scientific Community

- Cross all sub-disciplines of computer science
- Multi-disciplinary interactions
- Need more cross-disciplinary workshops and conferences

- E.g., NSF sponsorship of student travel for SustainIT’10 (thanks!)
7: Beyond IT

- Help beyond just computing and data centers
- Need lots of software, techniques, and tools for example:
 - Smart buildings
 - Smart power grids
 - Automated transportation systems
 - Tele-presence
 - Climate and weather modeling
Every Great Journey Starts with...

- ... peeling onion (layers)
- Develop optimal software
 - Applications, middleware, OSs, clusters
- but first: understand interactions of hardware, software, and workloads of complex distributed systems
- but first: understand simple clusters
- but first: understand client-server systems
- but first: understand standalone systems
- but first: understand individual components
Survey 1: Can Compression Help?

- **Idea**: if you compress all data, less to write and transmit, but costs in CPU
- Studied diff. hardware, compression tools/algorithms, and data types
- **Conclusions** [ACM SYSTOR 2009]
 - Improve energy/perf. by 10–40% at best
 - Worst case hurt energy/perf by 10–100x!
 - Heavily depends on hardware, software
 - Depends on workloads:
 - Data type, read to write ratios
Survey 2: Workload Effects on Servers

- Studied different server machines
 - Try different file system configurations
 - Workloads: Web, mail, database, etc.
- Found large perf/energy variations:
 - From 6–8% to 9 times better!
 - Small one-time reconfigurations needed
- Depends on exact hardware, software, configuration, and workloads
- Plug: FAST’10 paper, Friday 2/26 11am
Survey 3: Workload Effects on Client/Server Network File Systems

- NFSv4 standard and interoperable, but
 - Different implementations
- Studying mix of NFS clients and servers
 - BSD, Linux, Solaris
 - Workloads: Web, email, database, etc.
- Found 2–3x performance variations
 - Depends on hardware, software, configuration, and workloads
- Plug: NFSv4 study, FAST'10 Poster session
Conclusions

- Very complex systems
- Hard to understand and optimize
- Lots of waste in software
- Great opportunities to improve
 - Research opportunities
 - Commercial tools and services

Let’s get to work...