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Motivation

The  synchronoussynchronous system call interface is a 
legacy from the single core era

FlexSC implements efficient and flexibleefficient and flexible
system calls for the multicore era

Expensive! Costs are:
➔ direct: mode-switch
➔ indirect: processor
          structure pollution
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FlexSC overview

Two contributions: FlexSC and FlexSC-Threads

Results in:

1) MySQL throughput increase of  up to 40%
and latency reduction of  30%

2) Apache throughput increase of  up to 115%
and latency reduction of  50%
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Performance impact of  synchronous syscalls

➔ Xalan from SPEC CPU 2006
➔ Virtually no time in the OS

➔ Linux on Intel Core i7 (Nehalem)
➔ Injected exceptions with varying frequencies

➔ DirectDirect: emulate null system call
➔ IndirectIndirect: emulate “write()” system call

➔ Measured only user-mode time
➔ Kernel time ignored

Ideally, user-mode performance is unaltered
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Processor state pollution

➔Key source of  performance impact

➔On a Linux write() call:
➔ up to 2/3rd of  the L1 data cache and data 

TLB are evictedevicted

➔Kernel performance equally affected
➔ Processor efficiency for OS code is also cut 

in halfhalf
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Synchronous system calls are expensive

User

Kernel

Traditional system calls are synchronous
and use exceptions to cross domains
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Alternative: side-step the boundary

User

Kernel

Exception-less syscallsException-less syscalls remove synchronicity
by decoupling invocation from execution
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Benefits of  exception-less system calls

User

Kernel

➔Significantly reduce direct costs
➔ Fewer mode switches

➔Allow for batching
➔ Reduce indirect costs

➔Allow for dynamic multicore specialization
➔ Further reduce direct and indirect costs
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Exception-less interface: syscall page

write(fd, buf, 4096);

entry = free_syscall_entry();

/* write syscall *//* write syscall */
entry->syscall = 1;
entry->num_args = 3;
entry->args[0] = fd;
entry->args[1] = buf;
entry->args[2] = 4096;
entry->status = SUBMITSUBMIT;

whilewhile (entry->status != DONEDONE)
do_something_else();

returnreturn entry->return_code;
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Exception-less interface: syscall page

write(fd, buf, 4096);

entry = free_syscall_entry();

/* write syscall *//* write syscall */
entry->syscall = 1;
entry->num_args = 3;
entry->args[0] = fd;
entry->args[1] = buf;
entry->args[2] = 4096;
entry->status = SUBMITSUBMIT;

whilewhile (entry->status != DONEDONE)
do_something_else();

returnreturn entry->return_code;

SUBMITSUBMIT
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Exception-less interface: syscall page

write(fd, buf, 4096);

entry = free_syscall_entry();

/* write syscall *//* write syscall */
entry->syscall = 1;
entry->num_args = 3;
entry->args[0] = fd;
entry->args[1] = buf;
entry->args[2] = 4096;
entry->status = SUBMITSUBMIT;

whilewhile (entry->status != DONEDONE)
do_something_else();

returnreturn entry->return_code;

DONEDONE
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Syscall threads

➔Kernel-only threads
➔ Part of  application process

➔Execute requests from syscall page
➔Schedulable on a per-core basis
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System call batching

   Request as many system calls as possible
   Switch to kernel-mode
   Start executing all posted system calls

Avoids direct and indirect costs,
even on a single core
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Dynamic multicore specialization

 FlexSC makes specializing cores simple
 Dynamically adapts to workload needs
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What programs can benefit from FlexSC?
Event-driven servers
  (e.g., memcached, nginx webserver)

➔ Use asynchoronous calls, similar to FlexSC 
➔ Can use FlexSC directly
➔ Mix sync and exception-less system calls

Multi-threaded servers: FlexSC-ThreadsFlexSC-Threads
➔ Thread library, compatible with Pthreads
➔ No changes to app. code or recompilation required
➔ Transparently converts legacy syscalls into 

exception-less ones
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FlexSC-Threads library

➔ Hybrid (M-on-N) threading model
➔ One kernel visible thread per core
➔ Many user threads per kernel-visible thread 

➔ Redirects system calls (libc wrappers)
➔ Posts exception-less syscall to syscall page
➔ Switches to other user-level thread
➔ Resumes thread upon syscall completion

Benefits of  exception-less syscalls
while maintaining sequential syscall interface
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FlexSC-Threads in action

User
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FlexSC-Threads in action

On a syscall:

    Post request to system call page
    Block user-level thread
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FlexSC-Threads in action

Kernel

On a syscall:

    Post request to system call page
    Block user-level thread
    Switch to next ready thread
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FlexSC-Threads in action

User

Kernel

If  all user-level threads become blocked:
1) enter kernel
2) wait for completion of  at least 1 syscall
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Evaluation
➔Linux 2.6.33

➔Nehalem (Core i7) server, 2.3GHz
➔ 4 cores on a chip

➔Clients connected on 1 Gbps network

➔Workloads
➔ Sysbench on MySQL (80% user, 20% kernel)
➔ ApacheBench on Apache (50% user, 50% kernel)

➔Default Linux NTPL (“syncsync”) vs. 

     FlexSC-Threads (“flexscflexsc”)
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Sysbench: “OLTP” on MySQL (1 core)
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Sysbench: “OLTP” on MySQL (4 cores)
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MySQL latency per client request
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MySQL processor metrics
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ApacheBench throughput (1 core)
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ApacheBench throughput (4 cores)
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Apache latency per client request
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Apache processor metrics
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Discussion

➔New OS architecture not necessary
➔ Exception-less syscalls can coexist with legacy ones

➔Foundation for non-blocking system calls
➔ select() / poll() in user-space
➔ Interesting case of  non-blocking free()

➔Multicore ultra-specialization
➔ TCP Servers (Rutgers; Iftode et.al), FS Servers

➔Single-ISA asymmetric cores
➔ OS-friendly cores (HP Labs; Mogul et. al)
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Concluding Remarks
➔ System calls degrade server performance

➔ Processor  pollution is inherent to synchronous 
system calls

➔ Exception-less syscallsException-less syscalls
➔ Flexible and efficient system call execution

➔ FlexSC-ThreadsFlexSC-Threads 
➔ Leverages exception-less syscalls
➔ No modifications to multi-threaded applications

➔ Throughput & latency gains
➔ 2x throughput improvement for Apache and BIND
➔ 1.4x throughput improvement for MySQL
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