
FlexSCFlexSC
Flexible System Call Scheduling with

Exception-Less System Calls

LivioLivio SoaresSoares and Michael Stumm

University of Toronto

2

Motivation

The synchronoussynchronous system call interface is a
legacy from the single core era

FlexSC implements efficient and flexibleefficient and flexible
system calls for the multicore era

Expensive! Costs are:
➔ direct: mode-switch
➔ indirect: processor
 structure pollution

3

FlexSC overview

Two contributions: FlexSC and FlexSC-Threads

Results in:

1) MySQL throughput increase of up to 40%
and latency reduction of 30%

2) Apache throughput increase of up to 115%
and latency reduction of 50%

4

Performance impact of synchronous syscalls

➔ Xalan from SPEC CPU 2006
➔ Virtually no time in the OS

➔ Linux on Intel Core i7 (Nehalem)
➔ Injected exceptions with varying frequencies

➔ DirectDirect: emulate null system call
➔ IndirectIndirect: emulate “write()” system call

➔ Measured only user-mode time
➔ Kernel time ignored

Ideally, user-mode performance is unaltered

5

1K 2K 5K 10K 20K 50K 100K
0%

10%

20%

30%

40%

50%

60%

70%
Xalan (SPEC CPU 2006)

Indirect
Direct

user-mode instructions between exceptions
(log scale)

D
e

g
ra

d
a

ti
o

n
 (

lo
w

e
r

is
 f

a
st

e
r)

Degradation due to sync. syscalls

Apache

MySQL

System calls can halfhalf processor efficiency;
indirectindirect cause is major contributor

6

Processor state pollution

➔Key source of performance impact

➔On a Linux write() call:
➔ up to 2/3rd of the L1 data cache and data

TLB are evictedevicted

➔Kernel performance equally affected
➔ Processor efficiency for OS code is also cut

in halfhalf

7

Synchronous system calls are expensive

User

Kernel

Traditional system calls are synchronous
and use exceptions to cross domains

8

Alternative: side-step the boundary

User

Kernel

Exception-less syscallsException-less syscalls remove synchronicity
by decoupling invocation from execution

9

Benefits of exception-less system calls

User

Kernel

➔Significantly reduce direct costs
➔ Fewer mode switches

➔Allow for batching
➔ Reduce indirect costs

➔Allow for dynamic multicore specialization
➔ Further reduce direct and indirect costs

10

Exception-less interface: syscall page

write(fd, buf, 4096);

entry = free_syscall_entry();

/* write syscall *//* write syscall */
entry->syscall = 1;
entry->num_args = 3;
entry->args[0] = fd;
entry->args[1] = buf;
entry->args[2] = 4096;
entry->status = SUBMITSUBMIT;

whilewhile (entry->status != DONEDONE)
do_something_else();

returnreturn entry->return_code;

11

Exception-less interface: syscall page

write(fd, buf, 4096);

entry = free_syscall_entry();

/* write syscall *//* write syscall */
entry->syscall = 1;
entry->num_args = 3;
entry->args[0] = fd;
entry->args[1] = buf;
entry->args[2] = 4096;
entry->status = SUBMITSUBMIT;

whilewhile (entry->status != DONEDONE)
do_something_else();

returnreturn entry->return_code;

SUBMITSUBMIT

12

Exception-less interface: syscall page

write(fd, buf, 4096);

entry = free_syscall_entry();

/* write syscall *//* write syscall */
entry->syscall = 1;
entry->num_args = 3;
entry->args[0] = fd;
entry->args[1] = buf;
entry->args[2] = 4096;
entry->status = SUBMITSUBMIT;

whilewhile (entry->status != DONEDONE)
do_something_else();

returnreturn entry->return_code;

DONEDONE

13

Syscall threads

➔Kernel-only threads
➔ Part of application process

➔Execute requests from syscall page
➔Schedulable on a per-core basis

14

System call batching

 Request as many system calls as possible
 Switch to kernel-mode
 Start executing all posted system calls

Avoids direct and indirect costs,
even on a single core

15

Dynamic multicore specialization

 FlexSC makes specializing cores simple
 Dynamically adapts to workload needs

16

What programs can benefit from FlexSC?
Event-driven servers
 (e.g., memcached, nginx webserver)

➔ Use asynchoronous calls, similar to FlexSC
➔ Can use FlexSC directly
➔ Mix sync and exception-less system calls

Multi-threaded servers: FlexSC-ThreadsFlexSC-Threads
➔ Thread library, compatible with Pthreads
➔ No changes to app. code or recompilation required
➔ Transparently converts legacy syscalls into

exception-less ones

17

FlexSC-Threads library

➔ Hybrid (M-on-N) threading model
➔ One kernel visible thread per core
➔ Many user threads per kernel-visible thread

➔ Redirects system calls (libc wrappers)
➔ Posts exception-less syscall to syscall page
➔ Switches to other user-level thread
➔ Resumes thread upon syscall completion

Benefits of exception-less syscalls
while maintaining sequential syscall interface

18

FlexSC-Threads in action

User

19

FlexSC-Threads in action

On a syscall:

 Post request to system call page
 Block user-level thread

20

FlexSC-Threads in action

Kernel

On a syscall:

 Post request to system call page
 Block user-level thread
 Switch to next ready thread

21

FlexSC-Threads in action

User

Kernel

If all user-level threads become blocked:
1) enter kernel
2) wait for completion of at least 1 syscall

22

Evaluation
➔Linux 2.6.33

➔Nehalem (Core i7) server, 2.3GHz
➔ 4 cores on a chip

➔Clients connected on 1 Gbps network

➔Workloads
➔ Sysbench on MySQL (80% user, 20% kernel)
➔ ApacheBench on Apache (50% user, 50% kernel)

➔Default Linux NTPL (“syncsync”) vs.

 FlexSC-Threads (“flexscflexsc”)

23

Sysbench: “OLTP” on MySQL (1 core)

0 50 100 150 200 250 300
0

100

200

300

400

500

flexsc
sync

Request Concurrency

T
h

ro
u

g
h

p
u

t
(r

e
q

u
e

st
s/

se
c

.)

15% improvement

24

Sysbench: “OLTP” on MySQL (4 cores)

0 50 100 150 200 250 300
0

200

400

600

800

1,000

flexsc
sync

Request Concurrency

T
h

ro
u

g
h

p
u

t
(r

e
q

u
e

st
s/

se
c

.)

40% improvement

25

MySQL latency per client request

sync flexsc sync flexsc sync flexsc
0

100
200
300
400
500
600
700
800
900

1,000

256 connections

95th
percentile
average

L
a

te
n

c
y

(m
s)

1 core 2 cores 4 cores

1900

Up to 30% reduction of average
request latencies

26

MySQL processor metrics

IPC
L3

L2
d-cache

i-cache
TLB

Branch
IPC

L3
L2

d-cache
i-cache

TLB
Branch

0

0.2

0.4

0.6

0.8

1

1.2

1.4
SysBench (4 cores)

R
e

la
ti

ve
 P

e
rf

o
rm

a
n

c
e

(f
le

xs
c

/s
yn

c
)

User Kernel

Performance improvements consequence of
more efficient processor execution

27

ApacheBench throughput (1 core)

0 200 400 600 800 1000
0

5,000
10,000
15,000
20,000
25,000
30,000
35,000
40,000
45,000

flexsc
sync

Request Concurrency

T
h

ro
u

g
h

p
u

t
(r

e
q

u
e

st
s/

se
c

.)

80-90% improvement

28

ApacheBench throughput (4 cores)

0 200 400 600 800 1000
0

5,000
10,000
15,000
20,000
25,000
30,000
35,000
40,000
45,000

flexsc
sync

Request Concurrency

T
h

ro
u

g
h

p
u

t
(r

e
q

u
e

st
s/

se
c

.)

115% improvement

29

Apache latency per client request

sync flexsc sync flexsc sync flexsc
0

5

10

15

20

25

30

256 concurrent requests

99th
percentile
average

L
a

te
n

c
y

(m
s)

1 core 2 cores 4 cores

238

Up to 50% reduction of average
request latencies

30

Apache processor metrics

IPC
L3

L2
d-cache

i-cache
TLB

Branch
IPC

L3
L2

d-cache
i-cache

TLB
Branch

0

0.5

1

1.5

2

Apache (1 core)

R
e

la
ti

ve
 P

e
rf

o
rm

a
n

c
e

(f
le

xs
c

/s
yn

c
)

User Kernel

Processor efficiency doubles for kernel
and user-mode execution

31

Discussion

➔New OS architecture not necessary
➔ Exception-less syscalls can coexist with legacy ones

➔Foundation for non-blocking system calls
➔ select() / poll() in user-space
➔ Interesting case of non-blocking free()

➔Multicore ultra-specialization
➔ TCP Servers (Rutgers; Iftode et.al), FS Servers

➔Single-ISA asymmetric cores
➔ OS-friendly cores (HP Labs; Mogul et. al)

32

Concluding Remarks
➔ System calls degrade server performance

➔ Processor pollution is inherent to synchronous
system calls

➔ Exception-less syscallsException-less syscalls
➔ Flexible and efficient system call execution

➔ FlexSC-ThreadsFlexSC-Threads
➔ Leverages exception-less syscalls
➔ No modifications to multi-threaded applications

➔ Throughput & latency gains
➔ 2x throughput improvement for Apache and BIND
➔ 1.4x throughput improvement for MySQL

FlexSCFlexSC
Flexible System Call Scheduling with

Exception-Less System Calls

LivioLivio SoaresSoares and Michael Stumm

University of Toronto

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33

