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Message from the Program Co-Chairs

Welcome to OSDI 10, the biggest OSDI yet, with 32 papers selected from an all-time high of 199 submissions. In
approaching the task of chairing OSDI, we started with the explicit intention of accepting a larger set of papers,
consistent with the growth in the field. Below we outline some of the rationale behind this goal, and the process we
applied to achieve it.

Computer systems research is growing as a community. We believe that progress on computer systems research is
limited by manpower, not by the limits of a finite domain for interesting research. By implication, as the number
of systems researchers increases, the volume of interesting research likely goes up as well. Year after year, top
research programs add faculty or research positions in the systems area, while at the same time new programs es-
tablish their presence in the field, including newfound growth outside the traditionally strong geographies. The ex-
pansion of our community is consistent with the robust scientific and commercial application of computer systems
research, providing a strong economic basis for this growth. We believe a larger OSDI program is an appropriate
reflection of this growth in the systems community.

We were also motivated by the challenge in making meaningful distinctions, under the pressure of program com-
mittee deadlines, between papers that are almost accepted and those almost rejected. The fragility of PC decision
process has been documented and discussed elsewhere [A08]. Too often, rejections seem arbitrary in retrospect,
hinging on the nuances of a PC discussion rather than clear merit. In accepting more papers we hope to incremen-
tally improve on the fragility of these decisions, while also building a program that is more diverse and therefore of
broader interest.

This goal of a larger program was a consideration throughout the review process. The PC was split into two groups:
a “heavy” PC who participated in the first two rounds of reviewing, and a “heavier” PC who also reviewed papers
in round three and attended a face-to-face meeting to decide final outcomes. In the first round, each paper received
two reviews and approximately 35 papers were pruned. To reduce the risk of a premature pruning decision, we
allowed reviewers to “rescue” a pruned paper by simply stating their support, with no discussion required. Each
round-2 paper received three additional reviews. Another 80 or so papers were pruned after this round. This left us
with a pool of 85 papers, each of which received two or three additional reviews in preparation for the PC meeting.
After the second and third review rounds, borderline papers were discussed electronically by the reviewers and
rejected by consensus of the reviewers.

In the single-day, face-to-face PC meeting each remaining paper was presented by a reviewer, generally an advo-
cate, followed by a time-limited discussion. Based on the first discussion, we binned each paper into one of four
categories: “accept,” “acceptable,” “questionable,” and “reject.” No rejects were allowed in the first part of the day,
the goal of this rule being to avoid the problem of a negative start leading to rejecting good papers early. When all
papers had been discussed once, we briefly considered and then accepted the “acceptable” papers as a group, then
began the difficult work of reconsidering the “questionable” papers. At the end of the meeting about 30 papers had
been accepted.

99 G

In the days following the PC meeting, a small set of additional papers were accepted based on an email vote by the
heavier PC members. While unusual, we justified this process based on our goal to create a larger and more inter-
esting program, and a sentiment shared by many PC members that the PC discussion had not given due consider-
ation to several of the best liked but most controversial papers. In retrospect we believe these late accepts allowed
us to create a stronger and more interesting program, and we would encourage future PC chairs to plan an appro-
priate process for thoughtful consideration of difficult papers after the bustle of the PC meeting has subsided. For
example, even with a single-day PC meeting, it might make sense to put a small set of papers into an “overnight”
category, allowing a broader collection of PC members to study them before a final decision the next day.

Apart from the review process, we took some additional measures to try and get more reviews and reviewers in a
mindset to accept. We encouraged positivity, following Hill and McKinley’s excellent advice [HMO05]. We strictly
applied conflict-of-interest rules, such that conflicted PC members were not given access to results for conflicted
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papers until notifications had been sent to authors. We tried to lighten the PC load from papers that had no chance
of acceptance, to leave more quality time for the remaining papers.

Before we close we’d like to briefly acknowledge a few individuals who made a difference in our bringing this
program to you. The USENIX staff was fantastic throughout the entire process. We also thank Eddie Kohler for his
continued support of HotCRP, a truly wonderful piece of software. We also would like to acknowledge the program
committee for their tireless efforts and thoughtful reviews, and Haryadi Gunawi for his detailed note-taking during
the PC meeting. Finally, we would like to thank our families and the families of PC members for supporting (and
tolerating!) the long hours required to do this kind of work.

Thank you for attending OSDI 10, and have a great conference!

Remzi Arpaci-Dusseau, University of Wisconsin, Madison
Brad Chen, Google
OSDI ’10 Program Co-Chairs
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An Analysis of Linux Scalability to Many Cores

Silas Boyd-Wickizer, Austin T. Clements, Yandong Mao, Aleksey Pesterev,
M. Frans Kaashoek, Robert Morris, and Nickolai Zeldovich
MIT CSAIL

ABSTRACT

This paper analyzes the scalability of seven system appli-
cations (Exim, memcached, Apache, PostgreSQL, gmake,
Psearchy, and MapReduce) running on Linux on a 48-
core computer. Except for gmake, all applications trigger
scalability bottlenecks inside a recent Linux kernel. Us-
ing mostly standard parallel programming techniques—
this paper introduces one new technique, sloppy coun-
ters—these bottlenecks can be removed from the kernel
or avoided by changing the applications slightly. Modify-
ing the kernel required in total 3002 lines of code changes.
A speculative conclusion from this analysis is that there
is no scalability reason to give up on traditional operating
system organizations just yet.

1 INTRODUCTION

There is a sense in the community that traditional kernel
designs won’t scale well on multicore processors: that
applications will spend an increasing fraction of their time
in the kernel as the number of cores increases. Promi-
nent researchers have advocated rethinking operating sys-
tems [10, 28, 43] and new kernel designs intended to al-
low scalability have been proposed (e.g., Barrelfish [11],
Corey [15], and fos [53]). This paper asks whether tradi-
tional kernel designs can be used and implemented in a
way that allows applications to scale.

This question is difficult to answer conclusively, but
we attempt to shed a small amount of light on it. We
analyze scaling a number of system applications on
Linux running with a 48-core machine. We examine
Linux because it has a traditional kernel design, and be-
cause the Linux community has made great progress in
making it scalable. The applications include the Exim
mail server [2], memcached [3], Apache serving static
files [1], PostgreSQL [4], gmake [23], the Psearchy file
indexer [35, 48], and a multicore MapReduce library [38].
These applications, which we will refer to collectively
as MOSBENCH, are designed for parallel execution and
stress many major Linux kernel components.

Our method for deciding whether the Linux kernel
design is compatible with application scalability is as
follows. First we measure scalability of the MOSBENCH
applications on a recent Linux kernel (2.6.35-rc5, released
July 12, 2010) with 48 cores, using the in-memory tmpfs
file system to avoid disk bottlenecks. gmake scales well,

but the other applications scale poorly, performing much
less work per core with 48 cores than with one core. We
attempt to understand and fix the scalability problems, by
modifying either the applications or the Linux kernel. We
then iterate, since fixing one scalability problem usually
exposes further ones. The end result for each applica-
tion is either good scalability on 48 cores, or attribution
of non-scalability to a hard-to-fix problem with the ap-
plication, the Linux kernel, or the underlying hardware.
The analysis of whether the kernel design is compatible
with scaling rests on the extent to which our changes to
the Linux kernel turn out to be modest, and the extent
to which hard-to-fix problems with the Linux kernel ulti-
mately limit application scalability.

As part of the analysis, we fixed three broad kinds of
scalability problems for MOSBENCH applications: prob-
lems caused by the Linux kernel implementation, prob-
lems caused by the applications’ user-level design, and
problems caused by the way the applications use Linux
kernel services. Once we identified a bottleneck, it typi-
cally required little work to remove or avoid it. In some
cases we modified the application to be more parallel, or
to use kernel services in a more scalable fashion, and in
others we modified the kernel. The kernel changes are all
localized, and typically involve avoiding locks and atomic
instructions by organizing data structures in a distributed
fashion to avoid unnecessary sharing. One reason the
required changes are modest is that stock Linux already
incorporates many modifications to improve scalability.
More speculatively, perhaps it is the case that Linux’s
system-call API is well suited to an implementation that
avoids unnecessary contention over kernel objects.

The main contributions of this paper are as follows.
The first contribution is a set of 16 scalability improve-
ments to the Linux 2.6.35-rc5 kernel, resulting in what we
refer to as the patched kernel, PK. A few of the changes
rely on a new idea, which we call sloppy counters, that
has the nice property that it can be used to augment shared
counters to make some uses more scalable without having
to change all uses of the shared counter. This technique
is particularly effective in Linux because typically only
a few uses of a given shared counter are scalability bot-
tlenecks; sloppy counters allow us to replace just those
few uses without modifying the many other uses in the
kernel. The second contribution is a set of application
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benchmarks, MOSBENCH, to measure scalability of op-
erating systems, which we make publicly available. The
third is a description of the techniques required to im-
prove the scalability of the MOSBENCH applications. Our
final contribution is an analysis using MOSBENCH that
suggests that there is no immediate scalability reason to
give up on traditional kernel designs.

The rest of the paper is organized as follows. Section 2
relates this paper to previous work. Section 3 describes
the applications in MOSBENCH and what operating sys-
tem components they stress. Section 4 summarizes the
differences between the stock and PK kernels. Section 5
reports on the scalability of MOSBENCH on the stock
Linux 2.6.35-rc5 kernel and the PK kernel. Section 6
discusses the implications of the results. Section 7 sum-
marizes this paper’s conclusions.

2 RELATED WORK

There is a long history of work in academia and industry
to scale Unix-like operating systems on shared-memory
multiprocessors. Research projects such as the Stanford
FLASH [33] as well as companies such as IBM, Se-
quent, SGI, and Sun have produced shared-memory ma-
chines with tens to hundreds processors running variants
of Unix. Many techniques have been invented to scale
software for these machines, including scalable locking
(e.g., [41]), wait-free synchronization (e.g., [27]), mul-
tiprocessor schedulers (e.g., [8, 13, 30, 50]), memory
management (e.g., [14, 19, 34, 52, 57]), and fast message
passing using shared memory (e.g., [12, 47]). Textbooks
have been written about adapting Unix for multiproces-
sors (e.g., [46]). These techniques have been incorporated
in current operating systems such as Linux, Mac OS X,
Solaris, and Windows. Cantrill and Bonwick summarize
the historical context and real-world experience [17].

This paper extends previous scalability studies by ex-
amining a large set of systems applications, by using a
48-core PC platform, and by detailing a particular set of
problems and solutions in the context of Linux. These
solutions follow the standard parallel programming tech-
nique of factoring data structures so that each core can
operate on separate data when sharing is not required, but
such that cores can share data when necessary.

Linux scalability improvements. Early multiproces-
sor Linux kernels scaled poorly with kernel-intensive par-
allel workloads because the kernel used coarse-granularity
locks for simplicity. Since then the Linux commu-
nity has redesigned many kernel subsystems to im-
prove scalability (e.g., Read-Copy-Update (RCU) [39],
local run queues [6], libnuma [31], and improved
load-balancing support [37]). The Linux symposium
(www . linuxsymposium.org) features papers related to
scalability almost every year. Some of the redesigns are
based on the above-mentioned research, and some com-

panies, such as IBM and SGI [16], have contributed code
directly. Kleen provides a brief history of Linux kernel
modifications for scaling and reports some areas of poor
scalability in a recent Linux version (2.6.31) [32]. In this
paper, we identify additional kernel scaling problems and
describes how to address them.

Linux scalability studies. Gough ef al. study the scal-
ability of Oracle Database 10g running on Linux 2.6.18
on dual-core Intel Itanium processors [24]. The study
finds problems with the Linux run queue, slab alloca-
tor, and I/O processing. Cui et al. uses the TPCC-UVa
and Sysbench-OLTP benchmarks with PostgreSQL to
study the scalability of Linux 2.6.25 on an Intel 8-core
system [56], and finds application-internal bottlenecks
as well as poor kernel scalability in System V IPC. We
find that these problems have either been recently fixed
by the Linux community or are a consequence of fixable
problems in PostgreSQL.

Veal and Foong evaluate the scalability of Apache run-
ning on Linux 2.6.20.3 on an §-core AMD Opteron com-
puter using SPECweb2005 [51]. They identify Linux scal-
ing problems in the kernel implementations of scheduling
and directory lookup, respectively. On a 48-core com-
puter, we also observe directory lookup as a scalability
problem and PK applies a number of techniques to ad-
dress this bottleneck. Pesterev et al. identify scalability
problems in the Linux 2.6.30 network code using mem-
cached and Apache [44]. The PK kernel addresses these
problems by using a modern network card that supports a
large number of virtual queues (similar to the approach
taken by Route Bricks [21]).

Cui et al. describe microbenchmarks for measuring
multicore scalability and report results from running them
on Linux on a 32-core machine [55]. They find a number
of scalability problems in Linux (e.g., memory-mapped
file creation and deletion). Memory-mapped files show
up as a scalability problem in one MOSBENCH application
when multiple threads run in the same address space with
memory-mapped files.

A number of new research operating systems use scal-
ability problems in Linux as motivation. The Corey pa-
per [15] identified bottlenecks in the Linux file descriptor
and virtual memory management code caused by unneces-
sary sharing. Both of these bottlenecks are also triggered
by MOSBENCH applications. The Barrelfish paper [11]
observed that Linux TLB shootdown scales poorly. This
problem is not observed in the MOSBENCH applications.
Using microbenchmarks, the fos paper [53] finds that the
physical page allocator in Linux 2.6.24.7 does not scale
beyond 8 cores and that executing the kernel and applica-
tions on the same core results in cache interference and
high miss rates. We find that the page allocator isn’t a
bottleneck for MOSBENCH applications on 48 cores (even
though they stress memory allocation), though we have
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reason to believe it would be a problem with more cores.
However, the problem appears to be avoidable by, for
example, using super-pages or modifying the kernel to
batch page allocation.

Solaris scalability studies. Solaris provides a UNIX
API and runs on SPARC-based and x86-based multi-
core processors. Solaris incorporates SNZIs [22], which
are similar to sloppy counters (see section 4.3). Tseng
et al. report that SAP-SD, IBM Trade and several syn-
thetic benchmarks scale well on an 8-core SPARC system
running Solaris 10 [49]. Zou et al. encountered coarse
grained locks in the UDP networking stack of Solaris
10 that limited scalability of the OpenSER SIP proxy
server on an 8-core SPARC system [29]. Using the mi-
crobenchmarks mentioned above [55], Cui et al. compare
FreeBSD, Linux, and Solaris [54], and find that Linux
scales better on some microbenchmarks and Solaris scales
better on others. We ran some of the MOSBENCH appli-
cations on Solaris 10 on the 48-core machine used for
this paper. While the Solaris license prohibits us from re-
porting quantitative results, we observed similar or worse
scaling behavior compared to Linux; however, we don’t
know the causes or whether Solaris would perform better
on SPARC hardware. We hope, however, that this paper
helps others who might analyze Solaris.

3 THE MOSBENCH APPLICATIONS

To stress the kernel we chose two sets of applications:
1) applications that previous work has shown not to
scale well on Linux (memcached; Apache; and Metis, a
MapReduce library); and 2) applications that are designed
for parallel execution and are kernel intensive (gmake,
PostgreSQL, Exim, and Psearchy). Because many ap-
plications are bottlenecked by disk writes, we used an
in-memory tmpfs file system to explore non-disk limita-
tions. We drive some of the applications with synthetic
user workloads designed to cause them to use the ker-
nel intensively, with realism a secondary consideration.
This collection of applications stresses important parts
of many kernel components (e.g., the network stack, file
name cache, page cache, memory manager, process man-
ager, and scheduler). Most spend a significant fraction
of their CPU time in the kernel when run on a single
core. All but one encountered serious scaling problems
at 48 cores caused by the stock Linux kernel. The rest of
this section describes the selected applications, how they
are parallelized, and what kernel services they stress.

3.1 Mail server

Exim [2] is a mail server. We operate it in a mode where
a single master process listens for incoming SMTP con-
nections via TCP and forks a new process for each con-
nection, which in turn accepts the incoming mail, queues
it in a shared set of spool directories, appends it to the

per-user mail file, deletes the spooled mail, and records
the delivery in a shared log file. Each per-connection pro-
cess also forks twice to deliver each message. With many
concurrent client connections, Exim has a good deal of
parallelism. It spends 69% of its time in the kernel on
a single core, stressing process creation and small file
creation and deletion.

3.2 Object cache

memcached [3] is an in-memory key-value store often
used to improve web application performance. A single
memcached server running on multiple cores is bottle-
necked by an internal lock that protects the key-value hash
table. To avoid this problem, we run multiple memcached
servers, each on its own port, and have clients determin-
istically distribute key lookups among the servers. This
organization allows the servers to process requests in par-
allel. When request sizes are small, memcached mainly
stresses the network stack, spending 80% of its time pro-
cessing packets in the kernel at one core.

3.3 Web server

Apache [1] is a popular Web server, which previous work
(e.g., [51]) has used to study Linux scalability. We run a
single instance of Apache listening on port 80. We config-
ure this instance to run one process per core. Each process
has a thread pool to service connections; one thread is
dedicated to accepting incoming connections while the
other threads process the connections. In addition to the
network stack, this configuration stresses the file system
(in particular directory name lookup) because it stats and
opens a file on every request. Running on a single core,
an Apache process spends 60% of its execution time in
the kernel.

3.4 Database

PostgreSQL [4] is a popular open source SQL database,
which, unlike many of our other workloads, makes exten-
sive internal use of shared data structures and synchro-
nization. PostgreSQL also stresses many shared resources
in the kernel: it stores database tables as regular files
accessed concurrently by all PostgreSQL processes, it
starts one process per connection, it makes use of kernel
locking interfaces to synchronize and load balance these
processes, and it communicates with clients over TCP
sockets that share the network interface.

Ideally, PostgreSQL would scale well for read-mostly
workloads, despite its inherent synchronization needs.
PostgreSQL relies on snapshot isolation, a form of opti-
mistic concurrency control that avoids most read locks.
Furthermore, most write operations acquire only row-
level locks exclusively and acquire all coarser-grained
locks in shared modes. Thus, in principle, PostgreSQL
should exhibit little contention for read-mostly workloads.
In practice, PostgreSQL is limited by bottlenecks in both
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its own code and in the kernel. For a read-only work-
load that avoids most application bottlenecks, PostgreSQL
spends only 1.5% of its time in the kernel with one core,
but this grows to 82% with 48 cores.

3.5 Parallel build

gmake [23] is an implementation of the standard make
utility that supports executing independent build rules
concurrently. gmake is the unofficial default benchmark
in the Linux community since all developers use it to
build the Linux kernel. Indeed, many Linux patches
include comments like “This speeds up compiling the
kernel.” We benchmarked gmake by building the stock
Linux 2.6.35-rc5 kernel with the default configuration
for x86_64. gmake creates more processes than there are
cores, and reads and writes many files. The execution
time of gmake is dominated by the compiler it runs, but
system time is not negligible: with one core, 7.6% of the
execution time is system time.

3.6 Fileindexer

Psearchy is a parallel version of searchy [35, 48], a pro-
gram to index and query Web pages. We focus on the
indexing component of searchy because it is more system
intensive. Our parallel version, pedsort, runs the searchy
indexer on each core, sharing a work queue of input files.
Each core operates in two phases. In phase 1, it pulls input
files off the work queue, reading each file and recording
the positions of each word in a per-core hash table. When
the hash table reaches a fixed size limit, it sorts it alpha-
betically, flushes it to an intermediate index on disk, and
continues processing input files. Phase 1 is both compute
intensive (looking up words in the hash table and sorting
it) and file-system intensive (reading input files and flush-
ing the hash table). To avoid stragglers in phase 1, the
initial work queue is sorted so large files are processed
first. Once the work queue is empty, each core merges
the intermediate index files it produced, concatenating the
position lists of words that appear in multiple intermedi-
ate indexes, and generates a binary file that records the
positions of each word and a sequence of Berkeley DB
files that map each word to its byte offset in the binary
file. To simplify the scalability analysis, each core starts
a new Berkeley DB every 200,000 entries, eliminating
a logarithmic factor and making the aggregate work per-
formed by the indexer constant regardless of the number
of cores. Unlike phase 1, phase 2 is mostly file-system
intensive. While pedsort spends only 1.9% of its time
in the kernel at one core, this grows to 23% at 48 cores,
indicating scalability limitations.

3.7 MapReduce

Metis is a MapReduce [20] library for single multicore
servers inspired by Phoenix [45]. We use Metis with an
application that generates inverted indices. This workload

allocates large amounts of memory to hold temporary
tables, stressing the kernel memory allocator and soft page
fault code. This workload spends 3% of its runtime in the
kernel with one core, but this rises to 16% at 48 cores.

4 KERNEL OPTIMIZATIONS

The MOSBENCH applications trigger a few scalability
bottlenecks in the kernel. We describe the bottlenecks
and our solutions here, before presenting detailed per-
application scaling results in Section 5, because many
of the bottlenecks are common to multiple applications.
Figure 1 summarizes the bottlenecks. Some of these prob-
lems have been discussed on the Linux kernel mailing
list and solutions proposed; perhaps the reason these solu-
tions have not been implemented in the standard kernel is
that the problems are not acute on small-scale SMPs or
are masked by I/O delays in many applications. Figure 1
also summarizes our solution for each bottleneck.

4.1 Scalability tutorial

Why might one expect performance to scale well with the
number of cores? If a workload consists of an unlimited
supply of tasks that do not interact, then you’d expect to
get linear increases in total throughput by adding cores
and running tasks in parallel. In real life parallel tasks
usually interact, and interaction usually forces serial ex-
ecution. Amdahl’s Law summarizes the result: however
small the serial portion, it will eventually prevent added
cores from increasing performance. For example, if 25%
of a program is serial (perhaps inside some global locks),
then any number of cores can provide no more than 4-
times speedup.

Here are a few types of serializing interactions that
the MOSBENCH applications encountered. These are all
classic considerations in parallel programming, and are
discussed in previous work such as [17].

e The tasks may lock a shared data structure, so that
increasing the number of cores increases the lock
wait time.

o The tasks may write a shared memory location, so
that increasing the number of cores increases the
time spent waiting for the cache coherence proto-
col to fetch the cache line in exclusive mode. This
problem can occur even in lock-free shared data
structures.

e The tasks may compete for space in a limited-size
shared hardware cache, so that increasing the number
of cores increases the cache miss rate. This problem
can occur even if tasks never share memory.

e The tasks may compete for other shared hardware
resources such as inter-core interconnect or DRAM
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Parallel accept

Apache

Concurrent accept system calls contend on shared socket fields.

dentry reference counting

User per-core backlog queues for listening sockets.

Apache, Exim

File name resolution contends on directory entry reference counts.

Mount point (vfsmount) reference counting

Use sloppy counters to reference count directory entry objects.

Apache, Exim

Walking file name paths contends on mount point reference counts.

IP packet destination (dst_entry) reference counting

Use sloppy counters for mount point objects.

memcached, Apache

IP packet transmission contends on routing table entries.

Protocol memory usage tracking

Use sloppy counters for IP routing table entries.

memcached, Apache

Cores contend on counters for tracking protocol memory consumption.

Acquiring directory entry (dentry) spin locks

=

Use sloppy counters for protocol usage counting.

Apache, Exim

Walking file name paths contends on per-directory entry spin locks.

Mount point table spin lock

=

Use a lock-free protocol in dlookup for checking filename matches.

Apache, Exim

Resolving path names to mount points contends on a global spin lock.

Adding files to the open list

=

Use per-core mount table caches.

Apache, Exim

Cores contend on a per-super block list that tracks open files.
Allocating DMA buffers

Use per-core open file lists for each super block that has open files.

memcached, Apache

DMA memory allocations contend on the memory node 0 spin lock.

False sharing in net_device and device

=

Allocate Ethernet device DMA buffers from the local memory node.

memcached, Apache, PostgreSQL

False sharing causes contention for read-only structure fields.

False sharing in page

=

Place read-only fields on their own cache lines.

Exim

False sharing causes contention for read-mostly structure fields.

inode lists

=

Place read-only fields on their own cache lines.

memcached, Apache

Cores contend on global locks protecting lists used to track inodes.

Dcache lists

=

Avoid acquiring the locks when not necessary.

memcached, Apache

Cores contend on global locks protecting lists used to track dentrys.

Per-inode mutex

=

Avoid acquiring the locks when not necessary.
PostgreSQL

Cores contend on a per-inode mutex in 1seek. = Use atomic reads to eliminate the need to acquire the mutex.
Super-page fine grained locking Metis

Super-page soft page faults contend on a per-process mutex. = Protect each super-page memory mapping with its own mutex.
Zeroing super-pages Metis

Zeroing super-pages flushes the contents of on-chip caches. = Use non-caching instructions to zero the contents of super-pages.

Figure 1: A summary of Linux scalability problems encountered by MOSBENCH applications and their corresponding fixes. The fixes add 2617 lines

of code to Linux and remove 385 lines of code from Linux.

interfaces, so that additional cores spend their time
waiting for those resources rather than computing.

e There may be too few tasks to keep all cores busy,
so that increasing the number of cores leads to more
idle cores.

Many scaling problems manifest themselves as delays
caused by cache misses when a core uses data that other
cores have written. This is the usual symptom both for
lock contention and for contention on lock-free mutable
data. The details depend on the hardware cache coherence
protocol, but the following is typical. Each core has a
data cache for its own use. When a core writes data that
other cores have cached, the cache coherence protocol
forces the write to wait while the protocol finds the cached
copies and invalidates them. When a core reads data
that another core has just written, the cache coherence
protocol doesn’t return the data until it finds the cache that
holds the modified data, annotates that cache to indicate
there is a copy of the data, and fetches the data to the
reading core. These operations take about the same time

as loading data from off-chip RAM (hundreds of cycles),
so sharing mutable data can have a disproportionate effect
on performance.

Exercising the cache coherence machinery by modify-
ing shared data can produce two kinds of scaling problems.
First, the cache coherence protocol serializes modifica-
tions to the same cache line, which can prevent parallel
speedup. Second, in extreme cases the protocol may
saturate the inter-core interconnect, again preventing addi-
tional cores from providing additional performance. Thus
good performance and scalability often demand that data
be structured so that each item of mutable data is used by
only one core.

In many cases scaling bottlenecks limit performance
to some maximum, regardless of the number of cores. In
other cases total throughput decreases as the number of
cores grows, because each waiting core slows down the
cores that are making progress. For example, non-scalable
spin locks produce per-acquire interconnect traffic that is
proportional to the number of waiting cores; this traffic
may slow down the core that holds the lock by an amount
proportional to the number of waiting cores [41]. Acquir-
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ing a Linux spin lock takes a few cycles if the acquiring
core was the previous lock holder, takes a few hundred
cycles if another core last held the lock and there is no
contention, and are not scalable under contention.

Performance is often the enemy of scaling. One way
to achieve scalability is to use inefficient algorithms, so
that each core busily computes and makes little use of
shared resources such as locks. Conversely, increasing
the efficiency of software often makes it less scalable, by
increasing the fraction of time it uses shared resources.
This effect occurred many times in our investigations of
MOSBENCH application scalability.

Some scaling bottlenecks cannot easily be fixed, be-
cause the semantics of the shared resource require serial
access. However, it is often the case that the implementa-
tion can be changed so that cores do not have to wait for
each other. For example, in the stock Linux kernel the set
of runnable threads is partitioned into mostly-private per-
core scheduling queues; in the common case, each core
only reads, writes, and locks its own queue [36]. Many
scaling modifications to Linux follow this general pattern.

Many of our scaling modifications follow this same
pattern, avoiding both contention for locks and contention
for the underlying data. We solved other problems using
well-known techniques such as lock-free protocols or fine-
grained locking. In all cases we were able to eliminate
scaling bottlenecks with only local changes to the kernel
code. The following subsections explain our techniques.

4.2 Multicore packet processing

The Linux network stack connects different stages of
packet processing with queues. A received packet typ-
ically passes through multiple queues before finally ar-
riving at a per-socket queue, from which the application
reads it with a system call like read or accept. Good
performance with many cores and many independent net-
work connections demands that each packet, queue, and
connection be handled by just one core [21, 42]. This
avoids inter-core cache misses and queue locking costs.
Recent Linux kernels take advantage of network cards
with multiple hardware queues, such as Intel’s 82599
10Gbit Ethernet (IXGBE) card, or use software tech-
niques, such as Receive Packet Steering [26] and Receive
Flow Steering [25], to attempt to achieve this property.
With a multi-queue card, Linux can be configured to as-
sign each hardware queue to a different core. Transmit
scaling is then easy: Linux simply places outgoing pack-
ets on the hardware queue associated with the current
core. For incoming packets, such network cards provide
an interface to configure the hardware to enqueue incom-
ing packets matching a particular criteria (e.g., source IP
address and port number) on a specific queue and thus
to a particular core. This spreads packet processing load
across cores. However, the IXGBE driver goes further:

for each core, it samples every 20" outgoing TCP packet
and updates the hardware’s flow directing tables to de-
liver further incoming packets from that TCP connection
directly to the core.

This design typically performs well for long-lived con-
nections, but poorly for short ones. Because the technique
is based on sampling, it is likely that the majority of
packets on a given short connection will be misdirected,
causing cache misses as Linux delivers to the socket on
one core while the socket is used on another. Furthermore,
because few packets are received per short-lived connec-
tion, misdirecting even the initial handshake packet of a
connection imposes a significant cost.

For applications like Apache that simultaneously ac-
cept connections on all cores from the same listening
socket, we address this problem by allowing the hard-
ware to determine which core and thus which application
thread will handle an incoming connection. We modify
accept to prefer connections delivered to the local core’s
queue. Then, if the application processes the connection
on the same core that accepted it (as in Apache), all pro-
cessing for that connection will remain entirely on one
core. Our solution has the added benefit of addressing
contention on the lock that protects the single listening
socket’s connection backlog queue.

To implement this, we configured the IXGBE to direct
each packet to a queue (and thus core) using a hash of the
packet headers designed to deliver all of a connection’s
packets (including the TCP handshake packets) to the
same core. We then modified the code that handles TCP
connection setup requests to queue requests on a per-core
backlog queue for the listening socket, so that a thread
will accept and process connections that the IXGBE di-
rects to the core running that thread. If accept finds the
current core’s backlog queue empty, it attempts to steal
a connection request from a different core’s queue. This
arrangement provides high performance for short connec-
tions by processing each connection entirely on one core.
If threads were to move from core to core while handling
a single connection, a combination of this technique and
the current sampling approach might be best.

4.3 Sloppy counters

Linux uses shared counters for reference-counted garbage
collection and to manage various resources. These coun-
ters can become bottlenecks if many cores update them.
In these cases lock-free atomic increment and decrement
instructions do not help, because the coherence hardware
serializes the operations on a given counter.

The MOSBENCH applications encountered bottle-
necks from reference counts on directory entry objects
(dentrys), mounted file system objects (vEsmounts), net-
work routing table entries (dst_entrys), and counters
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Figure 2: An example of the kernel using a sloppy counter for dentry
reference counting. A large circle represents a local counter, and a gray
dot represents a held reference. In this figure, a thread on core O first
acquires a reference from the central counter. When the thread releases
this reference, it adds the reference to the local counter. Finally, another
thread on core 0 is able to acquire the spare reference without touching
the central counter.

tracking the amount of memory allocated by each net-
work protocol (such as TCP or UDP).

Our solution, which we call sloppy counters, builds on
the intuition that each core can hold a few spare references
to an object, in hopes that it can give ownership of these
references to threads running on that core, without having
to modify the global reference count. More concretely,
a sloppy counter represents one logical counter as a sin-
gle shared central counter and a set of per-core counts
of spare references. When a core increments a sloppy
counter by V/, it first tries to acquire a spare reference
by decrementing its per-core counter by V. If the per-
core counter is greater than or equal to V, meaning there
are sufficient local references, the decrement succeeds.
Otherwise the core must acquire the references from the
central counter, so it increments the shared counter by
V. When a core decrements a sloppy counter by V/, it
releases these references as local spare references, incre-
menting its per-core counter by V. Figure 2 illustrates
incrementing and decrementing a sloppy counter. If the
local count grows above some threshold, spare references
are released by decrementing both the per-core count and
the central count.

Sloppy counters maintain the invariant that the sum
of per-core counters and the number of resources in use
equals the value in the shared counter. For example, a
shared dentry reference counter equals the sum of the
per-core counters and the number of references to the
dentry currently in use.

A core usually updates a sloppy counter by modifying
its per-core counter, an operation which typically only
needs to touch data in the core’s local cache (no waiting
for locks or cache-coherence serialization).

We added sloppy counters to count references to
dentrys, vismounts, and dst_entrys, and used sloppy
counters to track the amount of memory allocated by
each network protocol (such as TCP and UDP). Only

uses of a counter that cause contention need to be mod-
ified, since sloppy counters are backwards-compatible
with existing shared-counter code. The kernel code that
creates a sloppy counter allocates the per-core counters.
It is occasionally necessary to reconcile the central and
per-core counters, for example when deciding whether an
object can be de-allocated. This operation is expensive,
so sloppy counters should only be used for objects that
are relatively infrequently de-allocated.

Sloppy counters are similar to Scalable NonZero Indi-
cators (SNZI) [22], distributed counters [9], and approxi-
mate counters [5]. All of these techniques speed up incre-
ment/decrement by use of per-core counters, and require
significantly more work to find the true total value. Sloppy
counters are attractive when one wishes to improve the
performance of some uses of an existing counter without
having to modify all points in the code where the counter
is used. A limitation of sloppy counters is that they use
space proportional to the number of cores.

4.4 Lock-free comparison

We found situations in which MOSBENCH applications
were bottlenecked by low scalability for name lookups
in the directory entry cache. The directory entry cache
speeds up lookups by mapping a directory and a file name
to a dentry identifying the target file’s inode. When
a potential dentry is located, the lookup code acquires
a per-dentry spin lock to atomically compare several
fields of the dentry with the arguments of the lookup
function. Even though the directory cache has been op-
timized using RCU for scalability [40], the dentry spin
lock for common parent directories, such as /usr, was
sometimes a bottleneck even if the path names ultimately
referred to different files.

We optimized dentry comparisons using a lock-free
protocol similar to Linux’ lock-free page cache lookup
protocol [18]. The lock-free protocol uses a generation
counter, which the PK kernel increments after every mod-
ification to a directory entry (e.g., mv foo bar). During
a modification (when the dentry spin lock is held), PK
temporarily sets the generation counter to 0. The PK ker-
nel compares dentry fields to the arguments using the
following procedure for atomicity:

e If the generation counter is 0, fall back to the lock-
ing protocol. Otherwise remember the value of the
generation counter.

e Copy the fields of the dentry to local variables. If
the generation afterwards differs from the remem-
bered value, fall back to the locking protocol.

e Compare the copied fields to the arguments. If there
is a match, increment the reference count unless it is
0, and return the dentry. If the reference count is 0,
fall back to the locking protocol.
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The lock-free protocol improves scalability because it
allows cores to perform lookups for the same directory
entries without serializing.

4.5 Per-core data structures

We encountered three kernel data structures that caused
scaling bottlenecks due to lock contention: a per-super-
block list of open files that determines whether a read-
write file system can be remounted read-only, a table of
mount points used during path lookup, and the pool of
free packet buffers. Though each of these bottlenecks is
caused by lock contention, bottlenecks would remain if
we replaced the locks with finer grained locks or a lock
free protocol, because multiple cores update the data struc-
tures. Therefore our solutions refactor the data structures
so that in the common case each core uses different data.

We split the per-super-block list of open files into per-
core lists. When a process opens a file the kernel locks
the current core’s list and adds the file. In most cases
a process closes the file on the same core it opened it
on. However, the process might have migrated to another
core, in which case the file must be expensively removed
from the list of the original core. When the kernel checks
if a file system can be remounted read-only it must lock
and scan all cores’ lists.

We also added per-core vEsmount tables, each acting
as a cache for a central vismount table. When the kernel
needs to look up the vEsmount for a path, it first looks in
the current core’s table, then the central table. If the latter
succeeds, the result is added to the per-core table.

Finally, the default Linux policy for machines with
NUMA memory is to allocate packet buffers (skbuffs)
from a single free list in the memory system closest to the
I/O bus. This caused contention for the lock protecting
the free list. We solved this using per-core free lists.

4.6 Eliminating false sharing

We found some MOSBENCH applications caused false
sharing in the kernel. In the cases we identified, the ker-
nel located a variable it updated often on the same cache
line as a variable it read often. The result was that cores
contended for the falsely shared line, limiting scalabil-
ity. Exim per-core performance degraded because of false
sharing of physical page reference counts and flags, which
the kernel located on the same cache line of a page vari-
able. memcached, Apache, and PostgreSQL faced simi-
lar false sharing problems with net_device and device
variables. In all cases, placing the heavily modified data
on a separate cache line improved scalability.

4.7 Avoiding unnecessary locking

For small numbers of cores, lock contention in Linux
does not limit scalability for MOSBENCH applications.
With more than 16 cores, the scalability of memcached,
Apache, PostgreSQL, and Metis are limited by waiting for

Stock =
PK o

0.8 [~ -

il

Exim  memcached Apache PostgreSQL gmake pedsort Metis

Per-core throughput at 48 cores relative to 1 core

Figure 3: MOSBENCH results summary. Each bar shows the ratio of
per-core throughput with 48 cores to throughput on one core, with 1.0
indicating perfect scalability. Each pair of bars corresponds to one
application before and after our kernel and application modifications.

and acquiring spin locks and mutexes' in the file system
and virtual memory management code. In many cases we
were able to eliminate acquisitions of the locks altogether
by modifying the code to detect special cases when ac-
quiring the locks was unnecessary. In one case, we split
a mutex protecting all the super page mappings into one
mutex per mapping.

S EVALUATION

This section evaluates the MOSBENCH applications on
the most recent Linux kernel at the time of writing
(Linux 2.6.35-rc5, released on July 12, 2010) and our
modified version of this kernel, PK. For each applica-
tion, we describe how the stock kernel limits scalability,
and how we addressed the bottlenecks by modifying the
application and taking advantage of the PK changes.

Figure 3 summarizes the results of the MOSBENCH
benchmark, comparing application scalability before and
after our modifications. A bar with height 1.0 indicates
perfect scalability (48 cores yielding a speedup of 48).
Most of the applications scale significantly better with
our modifications. All of them fall short of perfect scal-
ability even with those modifications. As the rest of this
section explains, the remaining scalability bottlenecks are
not the fault of the kernel. Instead, they are caused by
non-parallelizable components in the application or un-
derlying hardware: resources that the application’s design
requires it to share, imperfect load balance, or hardware
bottlenecks such as the memory system or the network
card. For this reason, we conclude that the Linux ker-
nel with our modifications is consistent with MOSBENCH
scalability up to 48 cores.

For each application we show scalability plots in the
same format, which shows throughput per core (see, for
example, Figure 4). A horizontal line indicates perfect

I'A thread initially busy waits to acquire a mutex, but if the wait time
is long the thread yields the CPU.
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scalability: each core contributes the same amount of
work regardless of the total number of cores. In practice
one cannot expect a truly horizontal line: a single core
usually performs disproportionately well because there
is no inter-core sharing and because Linux uses a stream-
lined lock scheme with just one core, and the per-chip
caches become less effective as more active cores share
them. For most applications we see the stock kernel’s line
drop sharply because of kernel bottlenecks, and the PK
line drop more modestly.

5.1 Method

We run the applications that modify files on a tmpfs in-
memory file system to avoid waiting for disk I/O. The
result is that MOSBENCH stresses the kernel more it would
if it had to wait for the disk, but that the results are not
representative of how the applications would perform
in a real deployment. For example, a real mail server
would probably be bottlenecked by the need to write each
message durably to a hard disk. The purpose of these
experiments is to evaluate the Linux kernel’s multicore
performance, using the applications to generate a reason-
ably realistic mix of system calls.

We run experiments on a 48-core machine, with a Tyan
Thunder S4985 board and an M4985 quad CPU daughter-
board. The machine has a total of eight 2.4 GHz 6-core
AMD Opteron 8431 chips. Each core has private 64 Kbyte
instruction and data caches, and a 512 Kbyte private L2
cache. The cores on each chip share a 6 Mbyte L3 cache,
1 Mbyte of which is used for the HT Assist probe fil-
ter [7]. Each chip has 8 Gbyte of local off-chip DRAM.
A core can access its L1 cache in 3 cycles, its L2 cache in
14 cycles, and the shared on-chip L3 cache in 28 cycles.
DRAM access latencies vary, from 122 cycles for a core
to read from its local DRAM to 503 cycles for a core to
read from the DRAM of the chip farthest from it on the
interconnect. The machine has a dual-port Intel 82599
10Gbit Ethernet (IXGBE) card, though we use only one
port for all experiments. That port connects to an Ethernet
switch with a set of load-generating client machines.

Experiments that use fewer than 48 cores run with
the other cores entirely disabled. memcached, Apache,
Psearchy, and Metis pin threads to cores; the other ap-
plications do not. We run each experiment 3 times and
show the best throughput, in order to filter out unrelated
activity; we found the variation to be small.

5.2 Exim

To measure the performance of Exim 4.71, we configure
Exim to use tmp£s for all mutable files—spool files, log
files, and user mail files—and disable DNS and RFC1413
lookups. Clients run on the same machine as Exim. Each
repeatedly opens an SMTP connection to Exim, sends 10
separate 20-byte messages to a local user, and closes the
SMTP connection. Sending 10 messages per connection
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Figure 4: Exim throughput and runtime breakdown.

prevents exhaustion of TCP client port numbers. Each
client sends to a different user to prevent contention on
user mail files. We use 96 client processes regardless of
the number of active cores; as long as there are enough
clients to keep Exim busy, the number of clients has little
effect on performance.

We modified and configured Exim to increase perfor-
mance on both the stock and PK kernels:

e Berkeley DB v4.6 reads /proc/stat to find the number
of cores. This consumed about 20% of the total run-
time, so we modified Berkeley DB to aggressively
cache this information.

e We configured Exim to split incoming queued mes-
sages across 62 spool directories, hashing by the
per-connection process ID. This improves scala-
bility because delivery processes are less likely to
create files in the same directory, which decreases
contention on the directory metadata in the kernel.

e We configured Exim to avoid an exec() per mail
message, using deliver drop_privilege.

Figure 4 shows the number of messages Exim can pro-
cess per second on each core, as the number of cores
varies. The stock and PK kernels perform nearly the
same on one core. As the number of cores increases, the
per-core throughput of the stock kernel eventually drops
toward zero. The primary cause of the throughput drop
is contention on a non-scalable kernel spin lock that se-
rializes access to the vfsmount table. Exim causes the
kernel to access the vEsmount table dozens of times for
each message. Exim on PK scales significantly better,
owing primarily to improvements to the vfsmount ta-
ble (Section 4.5) and the changes to the dentry cache
(Section 4.4).

Throughput on the PK kernel degrades from one to
two cores, while the system time increases, because of
the many kernel data structures that are not shared with
one core but must be shared (with cache misses) with
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Figure 5: memcached throughput.

two cores. The throughput on the PK kernel continues
to degrade; however, this is mainly due to application-
induced contention on the per-directory locks protecting
file creation in the spool directories. As the number of
cores increases, there is an increasing probability that
Exim processes running on different cores will choose the
same spool directory, resulting in the observed contention.

We foresee a potential bottleneck on more cores due
to cache misses when a per-connection process and the
delivery process it forks run on different cores. When
this happens the delivery process suffers caches misses
when it first accesses kernel data—especially data related
to virtual address mappings—that its parent initialized.
The result is that process destruction, which frees virtual
address mappings, and soft page fault handling, which
reads virtual address mappings, execute more slowly with
more cores. For the Exim configuration we use, however,
this slow down is negligible compared to slow down that
results from contention on spool directories.

5.3 memcached

We run a separate memcached 1.4.4 process on each
core to avoid application lock contention. Each server is
pinned to a separate core and has its own UDP port. Each
client thread repeatedly queries a particular memcached
instance for a non-existent key because this places higher
load on the kernel than querying for existing keys. There
are a total of 792 client threads running on 22 client
machines. Requests are 68 bytes, and responses are 64.
Each client thread sends a batch of 20 requests and waits
for the responses, timing out after 100 ms in case packets
are lost.

For both kernels, we use a separate hardware receive
and transmit queue for each core and configure the
IXGBE to inspect the port number in each incoming
packet header, place the packet on the queue dedicated to
the associated memcached’s core, and deliver the receive
interrupt to that core.

Figure 5 shows that memcached does not scale well on
the stock Linux kernel.
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Figure 6: Apache throughput and runtime breakdown.

One scaling problem occurs in the memory allocator.
Linux associates a separate allocator with each socket to
allocate memory from that chip’s attached DRAM. The
stock kernel allocates each packet from the socket nearest
the PCI bus, resulting in contention on that socket’s allo-
cator. We modified the allocation policy to allocate from
the local socket, which improved throughput by ~30%.

Another bottleneck was false read/write sharing of
IXGBE device driver data in the net.device and
device structures, resulting in cache misses for all cores
even on read-only fields. We rearranged both structures
to isolate critical read-only members to their own cache
lines. Removing a single falsely shared cache line in
net_device increased throughput by 30% at 48 cores.

The final bottleneck was contention on the dst_entry
structure’s reference count in the network stack’s destina-
tion cache, which we replaced with a sloppy counter (see
Section 4.3).

The “PK” line in Figure 5 shows the scalability of
memcached with these changes. The per core throughput
drops off after 16 cores. We have isolated this bottleneck
to the IXGBE card itself, which appears to handle fewer
packets as the number of virtual queues increases. As a
result, it fails to transmit packets at line rate even though
there are always packets queued in the DMA rings.

To summarize, while memcached scales poorly, the
bottlenecks caused by the Linux kernel were fixable and
the remaining bottleneck lies in the hardware rather than
in the Linux kernel.

5.4 Apache

A single instance of Apache running on stock Linux scales
very poorly because of contention on a mutex protecting
the single accept socket. Thus, for stock Linux, we run
a separate instance of Apache per core with each server
running on a distinct port. Figure 6 shows that Apache
still scales poorly on the stock kernel, even with separate
Apache instances.

For PK, we run a single instance of Apache 2.2.14 on
one TCP port. Apache serves a single static file from an
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ext3 file system; the file resides in the kernel buffer cache.
We serve a file that is 300 bytes because transmitting a
larger file exhausts the available 10 Gbit bandwidth at a
low server core count. Each request involves accepting a
TCP connection, opening the file, copying its content to a
socket, and closing the file and socket; logging is disabled.
We use 58 client processes running on 25 physical client
machines (many clients are themselves multi-core). For
each active server core, each client opens 2 TCP connec-
tions to the server at a time (so, for a 48-core server, each
client opens 96 TCP connections).

All the problems and solutions described in Section 5.3
apply to Apache, as do the modifications to the dentry
cache for both files and sockets described in Section 4.
Apache forks off a process per core, pinning each new pro-
cess to a different core. Each process dedicates a thread
to accepting connections from the shared listening socket
and thus, with the accept queue changes described in Sec-
tion 4.2, each connection is accepted on the core it initially
arrives on and all packet processing is performed local to
that core. The PK numbers in Figure 6 are significantly
better than Apache running on the stock kernel; however,
Apache’s throughput on PK does not scale linearly.

Past 36 cores, performance degrades because the net-
work card cannot keep up with the increasing workload.
Lack of work causes the server idle time to reach 18% at
48 cores. At 48 cores, the network card’s internal diagnos-
tic counters show that the card’s internal receive packet
FIFO overflows. These overflows occur even though the
clients are sending a total of only 2 Gbits and 2.8 million
packets per second when other independent tests have
shown that the card can either receive upwards of 4 Gbits
per second or process 5 million packets per second.

We created a microbenchmark that replicates the
Apache network workload, but uses substantially less
CPU time on the server. In the benchmark, the client ma-
chines send UDP packets as fast as possible to the server,
which also responds with UDP packets. The packet mix
is similar to that of the Apache benchmark. While the mi-
crobenchmark generates far more packets than the Apache
clients, the network card ultimately delivers a similar num-
ber of packets per second as in the Apache benchmark
and drops the rest. Thus, at high core counts, the network
card is unable to deliver additional load to Apache, which
limits its scalability.

5.5 PostgreSQL

We evaluate Linux’s scalability running PostgreSQL 8.3.9
using both a 100% read workload and a 95%/5%
read/write workload. The database consists of a sin-
gle indexed 600 Mbyte table of 10,000,000 key-value
pairs stored in tmpfs. We configure PostgreSQL to use
a 2 Gbyte application-level cache because PostgreSQL
protects its cache free-list with a single lock and thus
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Figure 7: PostgreSQL read-only workload throughput and runtime
breakdown.
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Figure 8: PostgreSQL read/write workload throughput and runtime
breakdown.

scales poorly with smaller caches. While we do not pin
the PostgreSQL processes to cores, we do rely on the
IXGBE driver to route packets from long-lived connec-
tions directly to the cores processing those connections.

Our workload generator simulates typical high-
performance PostgreSQL configurations, where middle-
ware on the client machines aggregates multiple client
connections into a small number of connections to the
server. Our workload creates one PostgreSQL connection
per server core and sends queries (selects or updates) in
batches of 256, aggregating successive read-only transac-
tions into single transactions. This workload is intended to
minimize application-level contention within PostgreSQL
in order to maximize the stress PostgreSQL places on the
kernel.

The “Stock” line in Figures 7 and 8 shows that Post-
greSQL has poor scalability on the stock kernel. The first
bottleneck we encountered, which caused the read/write
workload’s total throughput to peak at only 28 cores, was
due to PostgreSQL’s design. PostgreSQL implements
row- and table-level locks atop user-level mutexes; as
a result, even a non-conflicting row- or table-level lock
acquisition requires exclusively locking one of only 16
global mutexes. This leads to unnecessary contention for
non-conflicting acquisitions of the same lock—as seen in
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the read/write workload—and to false contention between
unrelated locks that hash to the same exclusive mutex. We
address this problem by rewriting PostgreSQL’s row- and
table-level lock manager and its mutexes to be lock-free
in the uncontended case, and by increasing the number of
mutexes from 16 to 1024.

The “Stock + mod PG” line in Figures 7 and 8 shows
the results of this modification, demonstrating improved
performance out to 36 cores for the read/write workload.
While performance still collapses at high core counts,
the cause of this has shifted from excessive user time to
excessive system time. The read-only workload is largely
unaffected by the modification as it makes little use of
row- and table-level locks.

With modified PostgreSQL on stock Linux, through-
put for both workloads collapses at 36 cores, with sys-
tem time rising from 1.7 pseconds/query at 32 cores to
322 pseconds/query at 48 cores. The main reason is the
kernel’s 1seek implementation. PostgreSQL calls 1seek
many times per query on the same two files, which in turn
acquires a mutex on the corresponding inode. Linux’s
adaptive mutex implementation suffers from starvation
under intense contention, resulting in poor performance.
However, the mutex acquisition turns out not to be neces-
sary, and PK eliminates it.

Figures 7 and 8 show that, with PK’s modified 1seek
and smaller contributions from other PK changes, Post-
greSQL performance no longer collapses. On PK, Post-
greSQL’s overall scalability is primarily limited by con-
tention for the spin lock protecting the buffer cache page
for the root of the table index. It spends little time in the
kernel, and is not limited by Linux’s performance.

5.6 gmake

We measure the performance of parallel gmake by build-
ing the object files of Linux 2.6.35-rc5 for x86_64. All
input source files reside in the buffer cache, and the output
files are written to tmpfs. We set the maximum number
of concurrent jobs of gmake to twice the number of cores.

Figure 9 shows that gmake on 48 cores achieves ex-
cellent scalability, running 35 times faster on 48 cores
than on one core for both the stock and PK kernels. The
PK kernel shows slightly lower system time owing to the
changes to the dentry cache. gmake scales imperfectly
because of serial stages at the beginning of the build and
straggling processes at the end.

gmake scales so well in part because much of the CPU
time is in the compiler, which runs independently on
each core. In addition, Linux kernel developers have
thoroughly optimized kernel compilation, since it is of
particular importance to them.

5.7 Psearchy/pedsort

Figure 10 shows the runtime for different versions of
pedsort indexing the Linux 2.6.35-rc5 source tree, which
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Figure 9: gmake throughput and runtime breakdown.
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Figure 10: pedsort throughput and runtime breakdown.

consists of 368 Mbyte of text across 33,312 source files.
The input files are in the buffer cache and the output
files are written to tmpfs. Each core uses a 48 Mbyte
word hash table and limits the size of each output index
to 200,000 entries (see Section 3.6). As a result, the
total work performed by pedsort and its final output are
independent of the number of cores involved.

The initial version of pedsort used a single process with
one thread per core. The line marked “Stock + Threads” in
Figure 10 shows that it scales badly. Most of the increase
in runtime is in system time: for 1 core the system time
is 2.3 seconds, while at 48 cores the total system time is
41 seconds.

Threaded pedsort scales poorly because a per-process
kernel mutex serializes calls to mmap and munmap for a
process’ virtual address space. pedsort reads input files
using libc file streams, which access file contents via
mmap, resulting in contention over the shared address
space, even though these memory-mapped files are logi-
cally private to each thread in pedsort. We avoided this
problem by modifying pedsort to use one process per
core for concurrency, eliminating the mmap contention by
eliminating the shared address space. This modification
involved changing about 10 lines of code in pedsort. The
performance of this version on the stock kernel is shown
as “Stock + Procs” in Figure 10. Even on a single core,
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the multi-process version outperforms the threaded ver-
sion because any use of threads forces glibc to use slower,
thread-safe variants of various library functions.

With a small number of cores, the performance of the
process version depends on how many cores share the per-
socket L3 caches. Figure 10’s “Stock + Procs” line shows
performance when the active cores are spread over few
sockets, while the “Stock + Procs RR” shows performance
when the active cores are spread evenly over sockets. As
corroborated by hardware performance counters, the latter
scheme provides higher performance because each new
socket provides access to more total L3 cache space.

Using processes, system time remains small, so the ker-
nel is not a limiting factor. Rather, as the number of cores
increases, pedsort spends more time in the glibc sorting
function msort_with_tmp, which causes the decreasing
throughput and rising user time in Figure 10. As the num-
ber of cores increases and the total working set size per
socket grows, msort_with_tmp experiences higher L3
cache miss rates. However, despite its memory demands,
msort_with_tmp never reaches the DRAM bandwidth
limit. Thus, pedsort is bottlenecked by cache capacity.

5.8 Metis

We measured Metis performance by building an inverted
index from a 2 Gbyte in-memory file. As for Psearchy,
we spread the active cores across sockets and thus have
access to the machine’s full L3 cache space at 8 cores.

The “Stock + 4 KB pages” line in Figure 11 shows
Metis’ original performance. As the number of cores
increases, the per-core performance of Metis decreases.
Metis allocates memory with mmap, which adds the new
memory to a region list but defers modifying page ta-
bles. When a fault occurs on a new mapping, the kernel
locks the entire region list with a read lock. When many
concurrent faults occur on different cores, the lock itself
becomes a bottleneck, because acquiring it even in read
mode involves modifying shared lock state.

We avoided this problem by mapping memory with
2 Mbyte super-pages, rather than 4 Kbyte pages, using
Linux’s hugetlbfs. This results in many fewer page
faults and less contention on the region list lock. We
also used finer-grained locking in place of a global mutex
that serialized super-page faults. The “PK + 2MB pages”
line in Figure 11 shows that use of super-pages increases
performance and significantly reduces system time.

With super-pages, the time spent in the kernel becomes
negligible and Metis’ scalability is limited primarily by
the DRAM bandwidth required by the reduce phase. This
phase is particularly memory-intensive and, at 48 cores,
accesses DRAM at 50.0 Gbyte/second, just shy of the
maximum achievable throughput of 51.5 Gbyte/second
measured by our microbenchmarks.
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Figure 11: Metis throughput and runtime breakdown.

Application | Bottleneck

Exim App: Contention on spool directories
memcached | HW: Transmit queues on NIC
Apache HW: Receive queues on NIC
PostgreSQL | App: Application-level spin lock
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Metis HW: DRAM throughput

Figure 12: Summary of the current bottlenecks in MOSBENCH, at-
tributed either to hardware (HW) or application structure (App).

5.9 Evaluation summary

Figure 3 summarized the significant scalability improve-
ments resulting from our changes. Figure 12 summarizes
the bottlenecks that limit further scalability of MOSBENCH
applications. In each case, the application is bottle-
necked by either shared hardware resources or application-
internal scalability limits. None are limited by Linux-
induced bottlenecks.

6 DISCUSSION

The results from the previous section show that the MOS-
BENCH applications can scale well to 48 cores, with mod-
est changes to the applications and to the Linux kernel.
Different applications or more cores are certain to reveal
more bottlenecks, just as we encountered bottlenecks at
48 cores that were not important at 24 cores. For exam-
ple, the costs of thread and process creation seem likely
to grow with more cores in the case where parent and
child are on different cores. Given our experience scaling
Linux to 48 cores, we speculate that fixing bottlenecks
in the kernel as the number of cores increases will also
require relatively modest changes to the application or
to the Linux kernel. Perhaps a more difficult problem is
addressing bottlenecks in applications, or ones where ap-
plication performance is not bottlenecked by CPU cycles,
but by some other hardware resource, such as DRAM
bandwidth.

Section 5 focused on scalability as a way to increase
performance by exploiting more hardware, but it is usu-
ally also possible to increase performance by exploiting
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a fixed amount of hardware more efficiently. Techniques
that a number of recent multicore research operating sys-
tems have introduced (such as address ranges, dedicating
cores to functions, shared memory for inter-core message
passing, assigning data structures carefully to on-chip
caches, etc. [11, 15, 53]) could apply equally well to
Linux, improving its absolute performance and benefiting
certain applications. In future work, we would like to
explore such techniques in Linux.

One benefit of using Linux for multicore research is that
it comes with many applications and has a large developer
community that is continuously improving it. However,
there are downsides too. For example, if future processors
don’t provide high-performance cache coherence, Linux’s
shared-memory-intensive design may be an impediment
to performance.

7 CONCLUSION

This paper analyzes the scaling behavior of a traditional
operating system (Linux 2.6.35-rc5) on a 48-core com-
puter with a set of applications that are designed for par-
allel execution and use kernel services. We find that we
can remove most kernel bottlenecks that the applications
stress by modifying the applications or kernel slightly.
Except for sloppy counters, most of our changes are ap-
plications of standard parallel programming techniques.
Although our study has a number of limitations (e.g., real
application deployments may be bottlenecked by 1/0), the
results suggest that traditional kernel designs may be com-
patible with achieving scalability on multicore comput-
ers. The MOSBENCH applications are publicly available
athttp://pdos.csail.mit.edu/mosbench/, so that
future work can investigate this hypothesis further.
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Abstract

Current web browsers are complex, have enormous
trusted computing bases, and provide attackers with easy
access to modern computer systems. In this paper we in-
troduce the Illinois Browser Operating System (IBOS),
a new operating system and a new browser that re-
duces the trusted computing base for web browsers. In
our architecture we expose browser-level abstractions
at the lowest software layer, enabling us to remove al-
most all traditional OS components and services from
our trusted computing base by mapping browser abstrac-
tions to hardware abstractions directly. We show that this
architecture is flexible enough to enable new browser se-
curity policies, can still support traditional applications,
and adds little overhead to the overall browsing experi-
ence.

1 Introduction

Web-based applications (web apps), browsers, and op-
erating systems have become popular targets for attack-
ers of computer systems. Vulnerabilities in web apps
are widespread and increasing. For example, cross-site
scripting (XSS), which is effectively a form of script in-
jection into a web app, recently overtook the ubiquitous
buffer overflow as the most common security vulnerabil-
ity [50]. Vulnerabilities in web browsers are less com-
mon than web app vulnerabilities, but still occur often.
For example, in 2009 Internet Explorer, Chrome, Safari,
and Firefox had 349 new security vulnerabilities [4], and
attackers exploit browsers commonly [53, 37, 42, 41, 4].
Vulnerabilities in libraries, system services, and oper-
ating systems are less common than vulnerabilities in
browsers, but are still problematic for modern systems.
For example, glibc, GTK+, X, and Linux had 114 new
security vulnerabilities in 2009 [1], and in 2009 the most
commonly attacked vulnerability was a remote code ex-
ecution bug in the Windows kernel [4].

However, not all attacks on web apps, browsers, and
operating systems are equally virulent. At the top of the
computer stack, attacks on web apps, such as XSS, oper-
ate within current browser security policies that contain
the damage to the vulnerable web app. Moving down
the computer stack, attacks on browsers can cause more
damage because a successful attack gives the attacker ac-
cess to browser data for all web apps and access to other
resources on the system. At the lowest layers of the
computer stack, attacks on libraries, shared system ser-
vices, and operating systems are the most serious attacks
because attackers can access arbitrary states and events,
giving them complete control of the system.

Overall, these trends indicate that vulnerabilities
higher in the computer stack are more common, but vul-
nerabilities lower in the computer stack provide attack-
ers with more control and are more damaging. In this
paper we focus on preventing and containing attacks on
browsers, libraries, system services, and operating sys-
tems — the lower layers of the computer stack.

Current research efforts into more secure web
browsers help improve the security of browsers, but
remain susceptible to attacks on lower layers of the
computer stack. The OP web browser [26], Gazelle
[52], Chrome [11], and ChromeOS [25] propose new
browser architectures for separating the functionality
of the browser from security mechanisms and policies.
However, these more secure web browsers are all built
on top of commodity operating systems and include
complex user-mode libraries and shared system services
within their trusted computing base (TCB). Even kernel
designs with strong isolation between OS components
(e.g., microkernels [24, 27, 28] and information-flow ker-
nels [18, 57, 33]) still have OS services that are shared
by all applications, which attackers can compromise and
still cause damage. Here are a few ways that an attacker
can still cause damage to more secure web browsers built
on top of traditional OSes:
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e A compromised Ethernet driver can send sensitive
HTTP data (e.g., passwords or login cookies) to any
remote host or change the HTTP response data be-
fore routing it to the network stack.

e A compromised storage module can modify or steal
any browser related persistent data.

e A compromised network stack can tamper with any
network connection or send sensitive HTTP data to
an attacker.

e A compromised window manager can draw any
content on top of a web page to deploy visual at-
tacks, such as phishing.

In this paper we describe IBOS, an operating sys-
tem and a browser co-designed to reduce drastically the
TCB for web browsers and to simplify browser-based
systems. Our key insight is that our lowest-layer soft-
ware can expose browser-level abstractions, rather than
general-purpose OS abstractions, to provide vastly im-
proved security properties for the browser without affect-
ing the TCB for traditional applications. Some examples
of browser abstractions are cookies for persistent storage,
hypertext transfer protocol (HTTP) connections for net-
work /O, and tabs for displaying web pages. To support
traditional applications, we build UNIX-like abstractions
on top of our browser abstractions.

IBOS improves on past approaches by removing typi-
cally shared OS components and system services from
our browser’s TCB, including device drivers, network
protocol implementations, the storage stack, and win-
dow management software. All of these components run
above a trusted reference monitor [9], which enforces our
security policies. These components operate on browser-
level abstractions, allowing us to map browser security
policies down to the lowest-level hardware directly and
to remove drivers and system services from our TCB.

This architecture is a stark contrast to current systems
where all applications layer application-specific abstrac-
tions on top of general-purpose OS abstractions, inherit-
ing the cruft needed to implement and access these gen-
eral OS abstractions. By exposing application-specific
abstractions at the OS layer, we can cut through complex
software layers for one particular application without af-
fecting traditional applications adversely, which still run
on top of general OS abstractions and still inherit cruft.
We choose to illustrate this principle using a web browser
because browsers are used widely and have been prone
to security failures recently. Our goal is to build a sys-
tem where a user can visit a trusted web site safely, even
one or more of the components on the system have been
compromised.

Our contributions are:

e IBOS is the first system to improve browser and OS
security by making browser-level abstractions first-
class OS abstractions, providing a clean separation
between browser functionality and browser security.

e We show that having low-layer software expose
browser abstractions enables us to remove almost
all traditional OS components from our TCB, in-
cluding device drivers and shared OS services, al-
lowing IBOS to withstand a wide range of attacks.

e We demonstrate that IBOS can still support tradi-
tional applications that interact with the browser and
shared OS services without compromising the secu-
rity of our system.

2 The IBOS architecture

This paper presents the design and implementation of
the IBOS operating system and browser that reduce the
TCB for browsing drastically. Our primary goals are to
enforce today’s browser security policies with a small
TCB, without restricting functionality, and without slow-
ing down performance. To withstand attacks, IBOS must
ensure any compromised component (1) cannot tamper
with data it should not have access to, (2) cannot leak
sensitive information to third parties, and (3) cannot ac-
cess components operating on behalf of different web
sites.

In this section we discuss the design principles that
guide our design and the overall system architecture. In
Section 4 we discuss the security policies and mecha-
nisms we use.

2.1 Design principles

We embrace microkernel [27], Exokernel [19], and
safety kernel design principles in our overall architec-
ture. By combining these principles with our insight
about exposing browser abstractions at the lowest soft-
ware layer we hope to converge on a more trustworthy
browser design. Five key principles guide our design:

1. Make security decisions at the lowest layer of soft-
ware. By pushing our security decisions to the low-
est layers we hope to avoid including the millions
of lines of library and OS code in our TCB.

2. Use controlled sharing between web apps and tra-
ditional apps. Sharing data between web apps and
traditional apps is a fundamental functionality of
today’s practical systems and should be supported.
However, this sharing should be facilitated through
a narrow interface to prevent misuse.
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Figure 1: Overall IBOS architecture. Our system con-
tains user-mode drivers, browsers APl managers, web
page instances, and traditional processes. To manage the
interactions between these components, we use a refer-
ence monitor that runs within our IBOS kernel. Shaded
regions make up the TCB.

3. Maintain compatibility with current browser secu-
rity policies. Our primary goal is to improve the
enforcement of current browser policies without
changing current web-based applications.

4. Expose enough browser states and events to enable
new browser security policies. In addition to en-
forcing current browser policies, we would like our
architecture to adapt easily to future browser poli-
cies.

5. Avoid rule-based OS sandboxing for browser com-
ponents. Fundamentally, rule-based OS sandbox-
ing is about restricting unused or overly permis-
sive interfaces exposed by today’s operating sys-
tems. However, sandboxing systems can be com-
plex (the Ubuntu 10.04 SELinux reference policy
uses over 104K lines of policy code) and difficult to
implement correctly [23, 51]. If our architecture re-
quires OS sandboxing for browser components then
we should rethink the architecture.

2.2 Overall architecture

Figure 1 shows the overall IBOS architecture. The IBOS
architecture uses a basic microkernel approach with a
thin kernel for managing hardware and facilitating mes-
sage passing between processes. The system includes
user-mode device drivers for interacting directly with
hardware devices, such as network interface cards (NIC),
and browser API managers for accessing the drivers and

implementing browser abstractions. The key browser
abstractions that the browser API managers implement
are HTTP requests, cookies and local storage for stor-
ing persistent data, and tabs for displaying user-interface
(UI) content. Web apps use these abstractions directly
to implement browser functionality, and traditional ap-
plications (traditional apps) use a UNIX layer to access
UNIX-like abstractions on top of these browser abstrac-
tions.

2.2.1 The IBOS kernel

Our IBOS kernel is the software TCB for the browser and
includes resource management functionality and a refer-
ence monitor for security enforcement. The IBOS kernel
also handles many traditional OS tasks such as manag-
ing global resources, creating new processes, and man-
aging memory for applications. To facilitate message
passing, the IBOS kernel includes the L4Ka::Pistachio
[8] message passing implementation and MMU manage-
ment functions. All messages pass through our reference
monitor and are subjected to our overall system security
policy. Section 4 describes the policies that the IBOS
kernel enforces and the mechanisms it uses to implement
these policies.

2.2.2 Network, storage, and UI managers

The IBOS network subsystem handles HTTP requests
and socket calls for applications. To handle HTTP re-
quests, network processes check a local cache to see if
the request can be serviced via the cache, fetch any cook-
ies needed for the request, format the HTTP data into a
TCP stream, and transform that TCP stream into a series
of Ethernet frames that are sent to the NIC driver. Socket
network processes export a basic socket API and simply
transform TCP streams to Ethernet frames for transmis-
sion across the network. Only traditional apps can access
our socket network processes. The IBOS kernel manages
global states, like port allocation.

The IBOS storage manager maintains persistent stor-
age for key-value data pairs. The browser uses the stor-
age manager to store HTTP cookies and HTMLS5 local
storage objects, and the basic object store includes op-
tional parameters, such as Path and Max-Age, to ex-
pose cookie properties to the reference monitor. The
storage manager uses several different namespaces to
isolate objects from each other. Web apps and net-
work processes share a namespace based on the origin
(the <protocol, domain name, port> tuple of
a uniform resource locator) that they originate from,
and web apps and traditional apps share a “localhost”
namespace, which is separate from the HTTP names-
pace. All other drivers and managers have their own pri-
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vate namespaces to access persistent data.

The IBOS UI manager plays the role of the window
manager for the system. However, rather than implement
the browser UI components on top of the traditional win-
dow motif, we opted for a tabbed browser motif. Basic
browser UI widgets, called the browser chrome, are dis-
played at the top of the screen. IBOS displays web pages
in tabs and the user can have any number of tabs open for
web apps. There is a tab for basic browser configuration
and administration, and a tab that is shared by traditional
apps. If traditional apps wish to implement the window
motif, they can do so within the tab. The main advan-
tage of our browser-based motif is that it enables IBOS
to bypass the extra layers of indirection traditional win-
dow managers put between applications and the under-
lying graphics hardware, exposing browser Ul elements
and events directly to the IBOS kernel. We discuss the
security implications of our design decision in more de-
tail in Section 4.8.

2.2.3 Web apps, traditional apps, and plugins

The IBOS system supports two different types of pro-
cesses: web page instances and traditional processes. A
web page instance is a process that is created for each in-
dividual web page a user visits. Each time the user clicks
on a link or types a uniform resource locator (URL) into
the address bar, the IBOS kernel creates a new web page
instance. Web page instances are responsible for issuing
HTTP requests, parsing HTML, executing JavaScript,
and rendering web content to a tab. Traditional processes
can execute arbitrary instructions, and the key difference
between a web page instance and a traditional processes
is that the IBOS kernel gives them different security la-
bels, which the kernel uses for access control decisions.
Web page instances are labeled with the origin of the
HTTP request used to initiate the new web page, and tra-
ditional processes are labeled as being from “localhost.”
These two processes interact via the storage subsystem
since both types of processes can access “localhost” data.

In general, plugins are external applications that
browsers use to render non-HTML content. One com-
mon example of a plugin is the Flash player that enables
browsers to play Flash content. In IBOS, plugins run as
traditional processes, except that they are launched by
the browser and the system gives them access to browser
states and events through a standard plugin programming
interface, called the NPAPI [2].

3 Current browser policies

In this section we give a brief introduction to the same-
origin policy (SOP) for browser security. For a more

complete discussion of this policy and others, plus exper-
imental results showing how current browsers implement
them, please see a recent paper by Singh, et al. [47].

The primary security policy that all modern browsers
implement is the SOP. The SOP acts as a non-
interference policy for the web. Loosely speaking, the
SOP provides isolation for web pages and states that
come from different origins — origins are used as labels
for browser access control policies. If the browser has a
web page open from uiuc.edu and from attacker.
com, the SOP should ensure that these two web pages are
isolated from each other. Unfortunately, Chrome, IES,
Safari, and Firefox all enforce the SOP using a number
of checks scattered throughout the millions of lines of
browser code and current browsers have had trouble im-
plementing the SOP correctly [14].

In a browser, a frame is a container that encapsulates
a HTML document and any material included in that
HTML document. Web pages are frames, and web de-
velopers can embed additional frames within web pages
— these frames are called iframes. Developers can
include i frames from the same origin as the hosting
frame, or from a different origin. Each frame is labeled
with the origin of the main HTML document used to pop-
ulate the frame, meaning that a cross-origin i f rame has
a different label than the hosting web page.

In general HTML documents include references to
network objects that the browser will download and dis-
play to form the web page. These network objects can
be images, JavaScript, and CSS. Browsers can download
these objects from any domain and the browser labels
them with the origin of the hosting frame. For exam-
ple, if a page from uiuc.edu includes a script from
foo.com, that script runs with full uiuc.edu per-
missions and can access any of the states in that web
page. Browsers can also download HTML documents
and XML HTTP requests (used for Ajax), but the SOP
dictates that these objects must come from the same ori-
gin as the hosting frame.

4 IBOS security policies and mechanisms

Our primary goal is to enforce browser security policies
from within our IBOS kernel. This section describes the
mechanisms that the IBOS kernel uses to enforce the
SOP. We also discuss policies and mechanisms for en-
forcing Ul interactions, and we describe a custom policy
engine that lets web sites further restrict current policies.

4.1 Threat model and assumptions

Our primary goal is to ensure that the IBOS kernel up-
holds our security policies even if one or more of the sub-
systems have been compromised. In our threat model,
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Figure 2: This figure enlarges the right half of Figure 1
and shows how our IBOS subsystems interact when a
web page instance from uiuc.edu issues a network
request to foo.com. Subsystems are shown in boxes
and solid and dotted arrows represent IBOS messages for
outgoing and incoming data respectively. The reference
monitor (which is not shown here) checks all these mes-
sages to enforce security properties.

we assume that an attacker controls a web site and can
serve arbitrary data to our browser, or that the system
contains a malicious traditional app. We also assume that
this malicious data or traditional app can compromise
one or more of the components in our system. These
susceptible components include all drivers, browser API
managers, web page instances, and traditional processes.
Once the attacker takes control of these components, we
assume that he or she can execute arbitrary instructions
as a result of the attack. We focus on maintaining the in-
tegrity and confidentiality of the data in our browser. In
other words, we would like the user to be able to open a
web page on a trusted web server, and interact with this
web page securely, even if everything on the client sys-
tem outside of our TCB has been compromised. Avail-
ability is an important, but separate, aspect of browser
security that we do not address in this paper.

In our system we trust the layers upon which we built
IBOS. These layers include the IBOS kernel and the un-
derlying hardware. Like all other browsers, IBOS pred-
icates security decisions based on domain names, so we
trust domain name servers to map domain names to IP
addresses correctly. Compromising any of these trusted
layers compromises the security of IBOS.

4.2 1IBOS work flow

This section describes a web page instance making a net-
work request to help illustrate the security mechanisms
that IBOS uses.

Figure 2 shows the flow of how a web page instance
fetches data from the network. The user visits a page
hosted at uiuc.edu and this web page includes an im-
age from foo . com. To download the image, (1) the web
page instance will make an HTTP request that the IBOS
kernel forwards to an appropriate network process. The
network process forms a HTTP request, which includes
setting up HTTP headers, (2) fetching cookies from the
storage subsystem, (3) requesting a free local TCP port
to transform this request into TCP/IP packets and Ether-
net frames, and (4) sending it to network manager. The
network manager notifies the Ethernet driver which (5)
programs the NIC to transmits the packet out to the net-
work. When the NIC receives a reply for the request, (6)
it notifies the Ethernet driver. The driver subsequently
(7) notifies the network manager, which (8) forwards the
packet to the appropriate network process. The network
process then parses the data and (9) passes the resulting
HTTP reply and data to the original web page instance.

4.3 1IBOS labels

To enforce access control decisions, the IBOS kernel la-
bels web page instances, traditional processes, and net-
work processes. IBOS labels specify the resources that
a process can access or messages it can receive. Each
web page instance has one label, which is the origin of
the main HTML document. Each traditional process is
labeled as being from “localhost” when they are created.
Each network process has an origin label for the network
resources it handles and has an origin label for the web
page instances that are allowed to access it. IBOS la-
bels the processes upon creation, and keeps the labels
unchanged throughout the processes’ life-cycle.

An important point is that the IBOS kernel infers the
origin labels for web page instances and network pro-
cesses automatically by extracting related information
from the messages passed among them. By inferring la-
bels rather than relying on processes to label themselves,
the IBOS kernel ensures that it has the correct label in-
formation, even if a process is compromised.

The newUrl and fetchUrl IBOS system calls are the
two requests that cause the kernel to label processes. The
newUrl system call is used by web page instances and the
UI manager use to navigate the browser to a new URL.
The newUrl system call consists of two arguments: a
URL and a byte array for HTTP POST data. When the
IBOS kernel receives a newUrl request it will create a
new web page instance and set the label for this web page
instance by parsing the origin out of the URL argument
of the newUrl request. When servicing newUrl requests,
the IBOS kernel will reuse old web page instances (to
reduce process startup times), but only when the origin
labels match for the old web page instance and the URL
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argument.

Web page instances use the fetchUrl system call to is-
sue HTTP and HTTPS requests to fetch network objects,
such as images. The fetchUrl system call has two ar-
guments: a URL and HTTP header information. When
a web page instance issues a fetchUrl system call, the
IBOS kernel uses the origin of the web page instance
(set by the original newUrl call) and the origin of the
fetchUrl URL argument to find a network process with
these same labels, or creates a new network processes
and labels it accordingly if an existing network process
cannot be found.

More details about how we use these labels for access
control decisions are described in the remainder of this
section.

4.4 Security invariants

For all of our subsystems, we use security invariants that
are assertions on all interactions between subsystems that
check basic security properties. The key to our security
invariants is that we can extract security relevant infor-
mation from messages automatically, and provide high
assurance that the system maintains the security policy
without having to understand how each individual sub-
system is implemented. Using these security invariants,
we remove from the TCB almost all of the components
found in modern commodity operating systems, includ-
ing device drivers.

The ideal security invariant is complete, implementa-
tion agnostic, executes quickly, and requires only a small
amount of code in the IBOS kernel. A complete invariant
can infer all of the states needed to ensure the high-level
security policy, and an implementation agnostic invari-
ant can infer states without relying on the specific imple-
mentation of individual subsystems. The IBOS kernel
evaluates invariants in the kernel and inline with mes-
sages, so security invariants should execute quickly and
require little code to implement. In our design we strive
to make the appropriate trade offs among these proper-
ties to improve security without making the system slow
or increasing our TCB significantly. The base security
invariant we have is:

SI 0: All components can only perform their designated
functions.

For example, the UI subsystem can never ask for
cookie data or the storage manager cannot impersonate
a network process to send synthesized attack HTTP data
to a web page instance.

4.5 Driver invariants

The two driver invariants the IBOS kernel enforces are:

SI 1: Drivers cannot access DMA buffers directly.
SI2: Devices can only access validated DMA buffers.

In our approach, we use a split driver architecture
where we separate the management of device control reg-
isters from the use of device buffers (SI 1). For example,
our Ethernet driver never has access to transmit or re-
ceive buffers directly. Instead, it knows the physical ad-
dresses where the IBOS kernel stores these buffers, and
it programs the NIC to use them. By separating these
two functions we can interpose on the communications
between them to ensure that IBOS upholds browser secu-
rity policies, even if an attacker completely compromises
a shared driver.

Using this split architecture, processes fill in device-
specific buffers for DMA transfers, and the IBOS ker-
nel infers when drivers initiate DMA transfers to ensure
that the driver instructs the device to use a verified DMA
buffer (SI 2). Fortunately, DMA buffers tend to use
well-defined interfaces, like Ethernet frames for Ether-
net drivers, so the IBOS kernel can readily glean security
relevant information from these DMA buffers before the
device accesses them. Unfortunately, the interface be-
tween drivers and devices is device-specific, so the IBOS
kernel must have a small state machine for each device
to properly infer DMA transfers. However, we found this
state machine to be quite small for the devices that we use
in IBOS.

In IBOS we implement a driver for the e1000 NIC, a
VESA BIOS Extensions driver for our video card, and
drivers for the mouse and keyboard.

4.6 Storage invariants

The primary invariant we strive to enforce in the storage
manager is:

SI 3: All of our key-value pairs maintain confidentiality
and integrity even if the storage stack itself becomes
compromised.

To enforce this invariant, our IBOS kernel encrypts
all objects before passing them to the storage subsystem.
To encrypt data, the IBOS kernel maintains separate en-
cryption keys for all of the namespaces on the IBOS sys-
tem. These namespaces include separate namespaces for
HTTP cookies based on the domain of the cookie, sep-
arate namespaces for web page instances based on the
origin of the page, separate namespaces for each of our
subsystems, and a separate namespace for all traditional
apps. When the IBOS kernel passes a request to the stor-
age manager it will append the security labels, a copy
of the key from the key-value pair, and a hash of the
contents to the payload before encrypting the data and
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passing it to the storage subsystem. When the IBOS ker-
nel retrieves this data, it can decrypt the data and check
the labels and integrity of the information. By using en-
cryption, the IBOS kernel does not need to implement
security invariants for any of our storage drivers, and our
storage subsystem is free to make data persistent using
any mechanisms it sees fit, such as the network (like in
our implementation) or via a disk-based storage system.

Our current implementation does not make any efforts
to avoid an attacker that deletes objects or replays old
storage data. For web applications this limitation has
only a small effect because the cookie standards do not
require browsers to keep cookies persistently and be-
cause web applications often limit the lifetime of cookies
using expiration dates, which are also part of the cookie
standard. However, if this limitation did become prob-
lematic, we could apply the principles learned from dis-
tributed or secure file systems to provide stronger guar-
antees.

4.7 Network process invariants

Our IBOS kernel maintains five main invariants for net-
work processes:

SI 4: The kernel must route network requests from web
page instances to the proper network process.

SIS: The kernel must route Ethernet frames from the
NIC to the proper network processes.

SI 6: Ethernet frames from network processes to the
NIC must have an IP address and TCP port that
matches the origin of the network process.

SI7: HTTP data from network processes to web page
instances must adhere to the SOP.

SI 8: Network processes for different web page in-
stances must remain isolated.

To help enforce these invariants, IBOS puts all net-
work processes in their own protection domains. If a web
page instance makes a HTTP request, the kernel will ex-
tract the origin from the request message and either route
this request to an existing network process that has the
same label, or it will create a new network process and
label the network process with the origin of the HTTP
request. Likewise, the kernel inspects incoming Ether-
net frames to extract the origin and TCP port informa-
tion, and routes these frames to the appropriately labeled
network process. By putting network processes in their
own protection domains, the kernel naturally ensures that
network requests from web page instances and Ethernet
frames from the NIC are routed to the correct network
process (SI 4) (SI5).

To ensure that the NIC sends outgoing Ethernet frames
to the correct host, the IBOS kernel checks all outgoing
Ethernet frames before sending them to the NIC to check

the IP address and TCP port against the label of the send-
ing network process (SI 6). Also, the IBOS kernel checks
cookies before passing them to the network process to
ensure that all of the origin labels adhere to cookie stan-
dards. By performing these checks, the IBOS kernel en-
sures that the NIC sends outgoing network requests to
the proper host and that the request can only include data
that would be available to the server anyway.

To enforce the SOP, the IBOS kernel inspects HTTP
data before forwarding it to the appropriate web page
instance and drops any HTML documents from differ-
ent origins (SI 7). To inspect data, the kernel uses the
content sniffing algorithm from Chrome [10] to identify
HTML documents so the kernel can check to make sure
that the origin of HTML documents and the origin of the
web page instance match. This countermeasure prevents
compromised web page instances from peering into the
contents of a cross-origin HTML document, thus pre-
venting the compromised web page instance from read-
ing sensitive information included in the HTML docu-
ment.

To help isolate web page instances from each other,
we also label network processes with the origin of the
web page instance (SI 8). This second label is used only
for network access control decisions and does not affect
the cookie policy, which is predicated on the origin of
the network request. To access network processes, the
origin of the web page instance must match the origin of
this second label. By using this second label, the IBOS
kernel isolates network requests from different web page
instances to the same origin. As a result of this isolation,
a web page instance that is served a malicious network
resource (e.g., a malicious ad [41]) that compromises a
network process remains isolated from other web page
instances. If an attacker can compromise a network pro-
cess, IBOS limits the damage to the web page instance
that included the malicious content.

4.8 Ul invariants

The three Ul invariants that the IBOS kernel enforces are:

S19: The browser chrome and web page content dis-
plays are isolated.

SI10: Only the current tab can access the screen,
mouse, and keyboard.

SI11: The URL of the current tab is displayed to the
user.

The key mechanisms that our Ul subsystem uses to
provide isolation are to use a frame buffer video driver
and page protections to isolate portions of the screen (SI
9). Our video driver uses a section of memory, called
a frame buffer, for writing to the screen. Processes
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Figure 3: IBOS display isolation. This figure shows how
IBOS divides the display into three main parts: a bar at
the top for the kernel, a bar for browser chrome, and the
rest for displaying web page content. The IBOS kernel
enforces this isolation using page protections and without
relying on a window manager.

write pixel values to this frame buffer and the graph-
ics card displays these pixels. Although our mechanism
makes heavy use of the software rastering available in Qt
Framework[3], our experiences and anecdotal evidence
from the Qt developers shows that software rastering can
perform roughly as fast as native X drivers running on
Linux [7]. The key advantage of our approach is that
the IBOS kernel can use standard page-protection mech-
anisms to isolate portions of the screen. Although our
current implementation does not support hardware accel-
eration, we believe that our techniques will work because
the IBOS kernel can interpose on standardized accelera-
tion hardware/software interfaces, such as OpenGL and
DirectX.

To provide screen isolation, we divide up the screen
into three horizontal portions (Figure 3). At the top, we
reserve a small bar that only the IBOS kernel can access.
We use the next section of the screen for the Ul subsys-
tem to draw the browser chrome. Finally, we provide
the remainder of the screen to the web page instance. To
ensure that only one web page instance can write to the
screen at any given time, we only map the frame buffer
memory region into the currently active web page in-
stance and we only route mouse and keyboard events to
this currently active web page instance (SI 10).

To switch tabs, the UI subsystem notifies the IBOS
kernel about which tab is the current tab, and the IBOS
kernel updates the frame buffer page table entries ap-
propriately. However, a malicious UI manager could
switch tabs arbitrarily and cause the address bar and the
tab content to become out of sync (e.g., shows a page
from attacker. com, but claims the page comes from
uiuc.edu). One alternative we considered for this UI

inconsistency was interposing on mouse and keyboard
clicks to infer which tab the user clicked on, and also
performing optical character recognition on the address
bar to determine the address that the Ul manager is dis-
playing. However, tracking this level of detail would re-
quire far too much implementation specific information
and would require the IBOS kernel to track additional
events like a user switching the order of tabs.

Our approach for the IBOS kernel is to use the kernel
display area to display the URL for the currently visi-
ble web page instance (SI 11). The kernel derives the
URL from the label of the currently visible web page
instance, providing high assurance that the URL the ker-
nel displays matches the URL of the visible web page
instance without tracking implementation specific states
and events in the Ul manager. Although this security in-
variant appears simple, it is something that modern web
browsers have had trouble getting right [13].

4.9 Web page instances and iframes

The IBOS kernel creates a new web page instance each
time a user clicks on a link or types a new URL in the
address bar. To enforce the SOP on iframes, we run
cross-origin i frames in separate web page instances.
This separation allows us to fully track the SOP using
kernel visible entities. To facilitate communication be-
tween web page instances and the iframes that they
host, we marshal postMessage calls between the two.

Our current display isolation primitives are coarse
grained and we rely on the web page instance to manage
cross-origin iframe displays even though iframes
run in separate protection domains. However, current
display policies allow web page instances to draw over
cross-origin i f rames that they host, so this design deci-
sion has no impact on current browser policies. One po-
tential shortcoming of this display management approach
is that compromised web page instances can read the dis-
play data for embedded iframes. Fortunately, many
sites with sensitive information, like facebook.com
and gmail.com, use frame busting techniques [34] to
prevent cross-origin sites from embedding them, which
the IBOS kernel can enforce.

4.10 Custom policies

Our main focus of this project is being able to enforce
current browser policies from the lowest layer of soft-
ware. However, we also want to create an architecture
that exposes enough browser states and events to en-
able novel browser security policies. Attacks such as
XSS operate within traditional browser policies and can
be difficult to prevent without relying on the HTML or
JavaScript engine implementations. Although our archi-

24

9th USENIX Symposium on Operating Systems Design and Implementation (OSDI ’10)

USENIX Association



tecture cannot prevent XSS, our goal is to prevent these
types of attacks from causing damage.

One mechanism we implement in IBOS is to give
a web server the ability to create its own more re-
strictive security policy to prevent attacks from sending
sensitive information to third-party hosts. In our cus-
tom policy, we allow web sites to specify a server-side
policy file that IBOS retrieves to restrict network ac-
cesses for a web page instance, similar to Tahoma man-
ifests [15]. For example, assume that a bank website
located at http://www.bank.com creates a policy
fileathttp://www.bank.com/.policy thatspec-
ifies the online bank system can only access resources
from www.bank.comor data.bank.com. IBOS re-
trieves the policy file and automatically applies a more
restrictive policy for the online bank web application.
This restrictive policy prevents an attacker from sending
stolen information to a third-party host, providing an ad-
ditional layer of protection for the web application.

5 Implementation

The implementation of IBOS is divided into three parts:
the IBOS kernel, IBOS messaging passing interfaces,
and IBOS subsystems. The IBOS kernel is implemented
on top of the L4Ka::Pistachio microkernel and runs on
X86-64 uniprocessor and SMP platforms. We modi-
fied L4Ka to improve its support for SMP systems. The
IBOS kernel schedules processes based on a static prior-
ity scheduling algorithm.

The IBOS kernel provides three basic APIs (i.e.,
send (), recv (), and poll ()) to facilitate message
passing. Applications use send () and recv () for
communication and call pol1 () to wait for new mes-
sages. The IBOS kernel intercepts all messages and au-
tomatically extracts the semantics from them, like cre-
ating a new web page instance or forwarding cookies to
network processes. Then the kernel inspects the seman-
tics to make sure they conform to all security invariants
and policies that we described in previous sections.

The IBOS subsystems implements APIs for web
browsers and traditional applications. They are built on
top of an IBOS-specific uClibc [6] C library, IwIP [17]
TCP/IP stack and the Qt Framework [3]. The web
browser also uses an IBOS-specific WebKit [5] to parse
and render web pages.

To support traditional apps, we use our uClibc and Qt
implementations to provide access to browser abstrac-
tions using the UNIX-like abstractions of the C runtime,
and GUI support from Qt. We use a few Qt sample pro-
grams for testing and we implement one plugin. Our plu-
gin is a PDF viewer that uses the Ghostscript PDF ren-
dering engine with bindings for Qt.

System LOC
IBOS 42,044
IBOS Kernel 8,905
L4Ka::Pistachio 33,139
Firefox on Linux > 5,684,639
Firefox 3.5 2,171,267
GTK+ 2.18 489,502
glibc 2.11 740,314
X.Org 7.5 653,276
Linux kernel 2.6.31 1,630,280
ChromeOS > 4,407,066
Chrome browser kernel 4.1.249 714,348
GTK+ 2.18 489,502
glibc 2.11 740,314
ChromeOS kernel & services (May 2010) 2,462,902

Table 1: Estimation of LOC of TCBs for IBOS, Firefox
on Linux, and ChromeOS. LOC counts are also shown
for some major components that are included in the TCB.

6 Evaluation

This section describes our evaluation of IBOS. In our
evaluation, we analyze the security of IBOS by measur-
ing the number of lines of code (LOC) in the IBOS TCB
and comparing it with other systems, and by looking at
recent bugs in comparable systems and counting vulner-
abilities that IBOS is susceptible to. We also revisit the
example attacks we discussed in the introduction, and we
measure the performance.

6.1 TCB

In IBOS, our goal is to minimize the TCB for web
browsers and to simplify browser-based systems. To
quantitatively evaluate our effort, we count the LOC in
the IBOS TCB and compare it against the TCB for Fire-
fox and ChromeOS. IBOS supports fewer hardware ar-
chitectures, platforms, device drivers and features, such
as browser extensions, than Firefox running on Linux
and ChromeOS. For a fair comparison, we only count
source code that is used for running above Linux and on
the X86-64 platform. Also, we omit all device drivers
from our counts except for the drivers we implement in
IBOS.

Table 1 shows the result of LOC counts in the TCB for
these three systems, measured by SLOCCount [54]. For
Firefox and ChromeQOS, our counts are conservative be-
cause we only count the major components that make up
the TCB for each system — there are likely more compo-
nent that are also in the TCB for these systems. Because
the IBOS TCB has only around 42K LOC, it is possible
to formally verify or manually review the entire IBOS
TCB. And in fact, one L4 type microkernel has already
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Affected Component || Num. | Prevented
Linux kernel overall 21 20 (95%)
File system 12 12 (100%)
Network stack 5 5(100%)
Other 4 3(75%)
X Server 2 2 (100%)
GTK+ & glibc 5 5 (100%)
Overall 28 27 (96 %)

Table 2: OS and library vulnerabilities. This table shows
the number of vulnerabilities that IBOS prevents.

been formally verified [32].

6.2 OS and library vulnerabilities

To evaluate the security impact of IBOS’s reduced TCB,
we obtained a list of 74 vulnerabilities found in the Linux
kernel, X Server, GTK+, and glibc this year so far (as
of Sep. 18, 2010) [1] to see how the IBOS architecture
handles them. Out of the 74 vulnerabilities, 20 are re-
lated to unsupported hardware architectures and devices,
and 26 cause denial-of-service, which is out-of-scope for
this paper. For the remaining 28, we classify them based
on the subsystem the vulnerability lies in to determine if
IBOS is susceptible to these vulnerabilities.

Table 2 shows IBOS is able to prevent 27 of 28 vul-
nerabilities (96%). The only vulnerability we miss is
a memory corruption vulnerability in the e1000 Ether-
net driver. Normally IBOS is not susceptible to bugs in
device drivers, but this particular bug resulted from the
driver not accounting properly for Ethernet frames larger
than 1500 bytes, and this type of logic is what our NIC
verification state machine uses, so we counted this bug
against IBOS.

6.3 Browser vulnerabilities

To evaluate security improvements that IBOS makes
for browsers themselves, we compared how well
IBOS could contain or prevent vulnerabilities found in
Google’s Chrome browser. For this evaluation, we ob-
tained a list of 295 publicly visible bugs with the “se-
curity” label in Chrome’s bug tracker. Out of the 295
bugs, 42 cause denial-of-service such as a simple crash or
100% CPU utilization. IBOS does not address denial-of-
service or resource management currently. An additional
78 are either invalid, duplicate, not actually security is-
sues, or related to features that IBOS does not have, such
as browser extensions. For the remaining 175 bugs, we
examined each of them to the best of our knowledge and
classified them into the following seven categories and
compared how Chrome and IBOS handle those cases:

Memory exploitation: an attacker could use a memory
corruption bug to deploy a remote code execution attack.
For Chrome, if the bug is in its rendering engine, Chrome
contains the attack. However, bugs in the browser kernel
give attackers access to the entire browser. For IBOS,
bugs in either the rendering engine or other service com-
ponents are contained as they are all out of the TCB.

XSS: browsers rely on careful sanitization and correct
processing of different encodings to prevent XSS attacks.
For both Chrome and IBOS, it is infeasible to eliminate
XSS attacks, but they both contain the attacks in the af-
fected web apps.

SOP circumvention: Chrome runs contents in frames
from different origins in a single address space and uses
scattered “if” and “else” statements to enforce the same-
origin policy. This logic can be sometime subverted. In
IBOS, we run iframes in different web page instances to
provide strong isolation and check cross-origin access in
the IBOS kernel.

Sandbox bypassing: Chrome uses sandboxing tech-
niques, such as SELinux, to limit the rendering engine’s
authority. However, rule-based sandboxing is complex
and can be bypassed in some scenarios. In IBOS, we
designed browser abstractions to restrict the authority of
each subsystem, which are immune to this kind of prob-
lem naturally.

Interface spoofing: browsers are sometime vulnerable
to visual attacks in which a malicious website can use
complex HTTP redirection or even replicate the “look
and feel” of victim websites to deploy phishing. Chrome
uses a blacklist-based filter to warn users of malicious
websites. In IBOS, the IBOS kernel separates the dis-
play of different web page instances and uses the labels
of web page instances to display the correct URL in the
top of the screen to give the user a visual cue of which
website he or she is visiting.

Ul design flaw: some security concerns arise because
of careless implementation, such as showing users’ pass-
words in plain text. Both Chrome and IBOS are vulnera-
ble to this type of problem.

Misc: some vulnerabilities could not easily be classi-
fied and mostly have low security severity. This is the
category for those remaining bugs.

In Table 3, we show the detailed results of the analysis
of the 175 vulnerabilities, broken down by the classifi-
cations above. We examined each of them to determine
whether Chrome contains the threats in the affected com-
ponents, and whether IBOS contains or eliminates the at-
tacks. The table shows IBOS successfully protects users
from 135 of the 175 vulnerabilities (77%).

The largest portion of bugs are browser implementa-
tion flaws that cause memory corruption and allow re-
mote code execution. Chrome does a fairly good job
containing most of them when they are in the rendering
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Chrome IBOS

Category Example Num. | Contained | Contained or eliminated
Memory exploitation A bug in layout engine leads to remote code execution 82 71 (86%) 79 (96%)

XSS XSS issue due to the lack of support for ISO-2022-KR 14 12 (87%) 14 (100%)

SOP circumvention XMLHttpRequest allows loading from another origin 21 0 (0%) 21 (100%)
Sandbox bypassing Sandbox bypassing due to directory traversal 12 0 (0%) 12 (100%)
Interface spoofing Two pages merge together in certain situation 6 0 (0%) 6 (100%)

UI design flaw Plain-text information leak due to autosuggest 17 0(0%) 0(0%)

Misc Geolocation events fire after document deletion 22 0(0%) 3 (14%)

Overall 175 83 (46%) 135 (77%)

Table 3: Browser vulnerabilities. This table shows the number of Chrome vulnerabilities that Chrome itself contains

and IBOS contains or eliminates.

engine. However, Chrome is unable to contain exploits
in the browser kernel. A good example is a bug in the
HTTP chunked encoding module in the browser kernel,
which opens the possibility for a remote attacker to inject
code. In IBOS, the TCP/IP and HTTP stack is pushed out
of the TCB, and is replicated and isolated according to
browser security policies. Thus, IBOS is able to contain
this bug. The three memory corruption bugs IBOS could
not contain were from bugs in Chrome’s message pass-
ing system. Because the IBOS message passing logic
resides within our TCB, we counted these bugs as bugs
that IBOS would have missed.

6.4 Motivation revisited

In the introduction, we listed some examples of attacks
that an attacker can use to still cause damage to modern
secure web browsers by exploiting code in their TCB.
We revisit these examples again to argue that IBOS can
prevent them.

A compromised Ethernet driver cannot access the
DMA buffers used by the device. Even if an attacker
exploits the Ethernet driver, he or she still cannot tamper
with network packets because the driver does not have
access to DMA buffers and because the IBOS kernel val-
idates all transmit and receive buffers that the driver sets.

A compromised storage module has little impact on
data confidentiality and integrity. The IBOS kernel en-
crypts all data with secret keys that only the IBOS ker-
nel has access to. Stored objects are tagged with a hash
and origin information so that the IBOS kernel is able
to detect tampered data. The only thing a compromised
storage module can do is delete objects.

A compromised network stack is constrained as well.
In IBOS, every network process runs a complete net-
work stack. A compromised network process cannot
send users’ data to a third party host as the IBOS ker-
nel ensures it can only communicate with the expected
host. Network processes do have the ability to modify or
replay HTTP requests, but the web server might have a

mechanism to defend against replay attacks.

A Compromised window manager cannot affect other
subsystems in IBOS. In IBOS, the role of window man-
ager is simplified to only draw the browser chrome. It
can change some potentially sensitive information, such
web page titles. However, the IBOS kernel displays the
URL of the current tab in the kernel display area, provid-
ing users with some visual cues as to the provenance of
the displayed web content.

6.5 Performance

To evaluate the performance implication of IBOS’s ar-
chitecture, we compare its browsing experience to other
web browsers running in Linux. All experiments were
carried out on a 2.33GHz Intel Core 2 Quad CPU
Q8200 with 4GB of memory, a 320GB 7200RPM Sea-
gate ST3320613 SATA hard drive and an Intel PRO/1000
NIC connected to 1000 Mbps Ethernet. For Linux, we
used Ubuntu 9.10 with kernel version 2.6.31-16-generic
(x86-64).

We use page load latency to represent browsing ex-
perience. Page load latency is defined as the elapsed
time between initial URL request and the DOM onload
event. We compare IBOS with Firefox 3.5.9, Chrome
for Linux 4.1.249. We also ported most of the IBOS
browser components to Linux platform (noted as IBOS-
Linux) to focus on the performance impact of our IBOS
kernel architecture. In IBOS, we statically allocate pro-
cessors for subsystems as follows: the kernel and device
drivers run on CPUO, network processes run on CPU1,
web page instances run on CPU2, and all other compo-
nents run on CPU3. IBOS, IBOS-Linux, and Chrome all
use a same version of WebKit from February 2010 with
just-in-time JavaScript compilation and HTTP pipelining
enabled. For the WebKit-based browsers, we instrument
them to measure the time in between the initial URL re-
quest and the DOM onload event. For Firefox, we use
an extension that measures these same events. To reduce
noise introduced by our network connection, we load
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Figure 4: Page load latencies for IBOS and other web
browsers. All latencies are shown in milliseconds.

each web site using a fresh web page/browser instance
with an empty cache 15 times and report the average of
the five shortest page load latency times.

In Figure 4, we present the page load latency times
for six popular websites and show the standard devia-
tions with the error bars. Overall, Chrome has the short-
est page load latencies due to its effective optimization
techniques. For maps.google.com, IBOS, IBOS-
Linux, and Chrome out-perform Firefox, possibly due
to optimization in the WebKit engine for this particular
site. For www.bing.com, sfbay.craigslist.
org and cs.illinois.edu, IBOS, IBOS-Linux,
and Firefox show roughly the same results. IBOS has the
fastest loading time for craigslist. Craigslist
is a simple web site with few HTTP requests and with a
large number of HTML elements. We hypothesize that
the small performance improvement is due to the simpli-
fied IBOS software stack.

Both en.wikipedia.org/wiki/Main_Page
and www . facebook.com have more HTTP requests
than any of the other sites, and we observe slower page
load latencies for IBOS than for other browsers. For
these experiments IBOS performs slower than IBOS-
Linux. Because we use the IBOS components in Linux,
we believe that this performance difference occurs from
overhead in the IBOS kernel. To test this hypothesis, we
ran a number of micro benchmarks on the two systems
and we believe that the overhead is due to contention for
spinlocks in the L4 IPC implementation. The net effect
of this contention is that heavy use of network processes
requires heavy use of IPC, which adds latency to all IPC
messages and slows down the overall system. However,
the IBOS-Linux results for these experiments show that
this slow down is not fundamental and can be fixed with
a more mature kernel implementation.

Overall, the page load latency experiments show that
even with a prototype implementation of IBOS, our ar-

chitecture will not slow down the browsing speed signif-
icantly for the web sites we tested.

7 Additional related work

7.1 Alternative kernel architectures

Operating systems designed to reduce the trusted com-
puting base for applications are not new. For example,
several recent OSes propose using information flow to
allow applications to specify information flow policies
that are enforced by a thin kernel [18, 57, 33]; KeyKOS
[12], EROS [45], and seL4 [32] provide capability sup-
port using a small kernel; and Microkernels [24, 27, 28]
push typical OS components into user space. In IBOS,
we apply these principles to a new application — the web
browser — and include support for user interface com-
ponents and window manager operations. Also, these
previous approaches support general purpose security
mechanisms, like information flow and capabilities, and
shared resources and device drivers are part of the TCB.
The IBOS security policy is specific to web browsers,
and although this is less general, we can track this pol-
icy to hardware abstractions and can remove drivers and
other shared components from our TCB.

Both Exokernels [19, 31] and L4 [27] rethink low-
layer software abstractions. In both projects, they ad-
vocate exposing abstractions that are close to the under-
lying hardware to enable applications to customize for
improved performance. In IBOS we build on these pre-
vious works — in fact we use the L4Ka::Pistachio L4 [8]
MMU abstractions and message passing implementation
directly. However, the key difference between our work
and L4 and Exokernel is that we expose high-level ap-
plication abstractions at our lowest layer of software, not
low-level hardware abstractions. Our focus is on making
web browsers more secure and the system software we
use to accomplish this improved security.

7.2 Browser security

A number of recent papers have proposed new browser
architectures including SubOS [29, 30], safe web pro-
grams [44], OP [26], Chrome [11, 43], Gazelle [52], and
ServiceOS [38]. Although the browser portion of IBOS
does resemble some of these works, they all run on top of
commodity OSes and include complex libraries and win-
dow managers in their TCB, something that IBOS avoids
by focusing on the OS architecture of our system.

The webOS from Palm [40] and the upcoming
ChromeOS from Google [25] run a web browser on top
of a Linux kernel. ChromeOS includes kernel harden-
ing using trusted boot, mandatory access controls, and
sandboxing mechanisms for reducing the attack surface
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of their system. However, ChromeOS and IBOS have
fundamentally different design philosophies. ChromeOS
starts with a large and complex system and tries to re-
move and restrict the unused and unneeded portions of
the system. In contrast, IBOS starts with a clean slate
and only adds to our system functionality needed for
our browser. Although our approach does require im-
plementing from scratch low-level software and fitting
device drivers to a new driver model, the end result has 2
to 3 orders of magnitude fewer lines of code in the TCB,
while still retaining nearly all of the same functionality.

In the Tahoma browser [15], the authors propose using
virtual machine monitors (VMMs) to enable web appli-
cations to specify code that runs on the client. Tahoma
uses server-side manifests to specify the security pol-
icy for the downloaded code and the VMM enforces
this security policy. Tahoma does expose a few browser
abstractions from their VMM to help manage UI ele-
ments and network connections, but operates mostly on
hardware-level abstractions. Because Tahoma operates
on hardware-level abstractions, Tahoma is unable to pro-
vide full backwards-compatible web semantics from the
VMM and more fine-grained protection for browsers,
such as isolating i frames embedded in a web applica-
tion. Also, many modern VMMs use a full-blown com-
modity OS in a privileged virtual machine or host OS for
driver support, leaving tens of millions of lines of code
in the TCB potentially.

7.3 Device driver security

Device driver security has focused on three main topics.
First, several projects focus on restricting driver access to
I/O ports and device access to main memory via DMA.
For example, RVM uses a software-only approach to re-
strict DMA access of devices [55], SVA prevents the OS
from accessing driver registers via memory mapped /O
through memory safety checks [16], and Mungi [35] re-
lies on using a hardware IOMMU to limit which mem-
ory regions are accessible from devices. Second, sys-
tem designers isolate drivers from the rest of the system.
This isolation can be achieved by running drivers in user-
mode, which has been a staple of Microkernel systems
[24, 36, 28], using software to protect the OS from ker-
nel drivers [20, 58], or by using page table protections
within the OS [49, 48]. The driver security architec-
ture in IBOS differs from these approaches because our
system provides fine-grained protection for individual re-
quests within a shared driver in addition to isolating the
driver from the rest of the system.

7.4 Secure window managers

A number of recent projects have looked at reducing the
TCB for window managers. For example DoPE [21] and
Nitpicker [22] move widget rendering from the server
to the client, leaving the server to only manage shared
buffers. CMW [56], EWS [46], and TrustGraph [39] also
use clients for rendering, but are able to apply capabili-
ties and mandatory access control policies to application
user-interface elements. In IBOS, we deprecate the gen-
eral window notion of modern computer systems in favor
of the simpler browser chrome and tab motif, allowing
us to track our security policies down to the underlying
graphics hardware on our system.

8 Conclusions

In this paper, we presented IBOS, an operating system
and web browser co-designed to reduce drastically the
trusted computing base for web browsers and to sim-
plify browsing systems. To achieve this improvement,
we built IBOS with browser abstractions as first-class OS
abstractions and removed traditional shared system com-
ponents and services from its TCB. With our new archi-
tecture, we showed that IBOS enforced traditional and
novel security policies, and we argued that the overall
system security and usability could withstand successful
attacks on device drivers, browser components, or tradi-
tional applications. Our experimental results showed that
IBOS added little overhead when compared to today’s
high-performance browsers running on fast and mature
commodity operating systems.
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FlexSC: Flexible System Call Scheduling with Exception-Less System Calls
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Abstract

For the past 30+ years, system calls have been the de facto
interface used by applications to request services from the
operating system kernel. System calls have almost uni-
versally been implemented as a synchronous mechanism,
where a special processor instruction is used to yield user-
space execution to the kernel. In the first part of this
paper, we evaluate the performance impact of traditional
synchronous system calls on system intensive workloads.
We show that synchronous system calls negatively affect
performance in a significant way, primarily because of
pipeline flushing and pollution of key processor structures
(e.g., TLB, data and instruction caches, etc.).

We propose a new mechanism for applications to
request services from the operating system kernel:
exception-less system calls. They improve processor effi-
ciency by enabling flexibility in the scheduling of operat-
ing system work, which in turn can lead to significantly in-
creased temporal and spacial locality of execution in both
user and kernel space, thus reducing pollution effects on
processor structures. Exception-less system calls are par-
ticularly effective on multicore processors. They primar-
ily target highly threaded server applications, such as Web
servers and database servers.

We present FlexSC, an implementation of exception-
less system calls in the Linux kernel, and an accompany-
ing user-mode thread package (FlexSC-Threads), binary
compatible with POSIX threads, that translates legacy
synchronous system calls into exception-less ones trans-
parently to applications. We show how FlexSC improves
performance of Apache by up to 116%, MySQL by up to
40%, and BIND by up to 105% while requiring no modi-
fications to the applications.

1 Introduction

System calls are the de facto interface to the operating sys-
tem kernel. They are used to request services offered by,
and implemented in the operating system kernel. While

Michael Stumm
University of Toronto
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Figure 1: User-mode instructions per cycles (IPC) of Xalan
(from SPEC CPU 2006) in response to a system call exception
event, as measured on an Intel Core i7 processor.

different operating systems offer a variety of different ser-
vices, the basic underlying system call mechanism has
been common on all commercial multiprocessed operat-
ing systems for decades. System call invocation typically
involves writing arguments to appropriate registers and
then issuing a special machine instruction that raises a
synchronous exception, immediately yielding user-mode
execution to a kernel-mode exception handler. Two im-
portant properties of the traditional system call design are
that: (1) a processor exception is used to communicate
with the kernel, and (2) a synchronous execution model is
enforced, as the application expects the completion of the
system call before resuming user-mode execution. Both of
these effects result in performance inefficiencies on mod-
€rn processors.

The increasing number of available transistors on a chip
(Moore’s Law) has, over the years, led to increasingly
sophisticated processor structures, such as superscalar
and out-of-order execution units, multi-level caches, and
branch predictors. These processor structures have, in
turn, led to a large increase in the performance poten-
tial of software, but at the same time there is a widening
gap between the performance of efficient software and the
performance of inefficient software, primarily due to the
increasing disparity of accessing different processor re-
sources (e.g., registers vs. caches vs. memory). Server
and system-intensive workloads, which are of particular
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interest in our work, are known to perform well below the
potential processor throughput [11, 12, 19]. Most studies
attribute this inefficiency to the lack of locality. We claim
that part of this lack of locality, and resulting performance
degradation, stems from the current synchronous system
call interface.

Synchronous implementation of system calls negatively
impacts the performance of system intensive workloads,
both in terms of the direct costs of mode switching and,
more interestingly, in terms of the indirect pollution of
important processor structures which affects both user-
mode and kernel-mode performance. A motivating ex-
ample that quantifies the impact of system call pollution
on application performance can be seen in Figure 1. It
depicts the user-mode instructions per cycles (kernel cy-
cles and instructions are ignored) of one of the SPEC CPU
2006 benchmarks (Xalan) immediately before and after a
pwrite system call. There is a significant drop in in-
structions per cycle (IPC) due to the system call, and it
takes up to 14,000 cycles of execution before the IPC of
this application returns to its previous level. As we will
show, this performance degradation is mainly due to inter-
ference caused by the kernel on key processor structures.

To improve locality in the execution of system intensive
workloads, we propose a new operating system mecha-
nism: the exception-less system call. An exception-less
system call is a mechanism for requesting kernel services
that does not require the use of synchronous processor ex-
ceptions. In our implementation, system calls are issued
by writing kernel requests to a reserved syscall page, us-
ing normal memory store operations. The actual execu-
tion of system calls is performed asynchronously by spe-
cial in-kernel syscall threads, which post the results of
system calls to the syscall page after their completion.

Decoupling the system call execution from its invoca-
tion creates the possibility for flexible system call schedul-
ing, offering optimizations along two dimensions. The
first optimization allows for the deferred batch execution
of system calls resulting in increased temporal locality of
execution. The second provides the ability to execute sys-
tem calls on a separate core, in parallel to executing user-
mode threads, resulting in spatial, per core locality. In
both cases, system call threads become a simple, but pow-
erful abstraction.

One interesting feature of the proposed decoupled sys-
tem call model is the possibility of dynamic core special-
ization in multicore systems. Cores can become temporar-
ily specialized for either user-mode or kernel-mode execu-
tion, depending on the current system load. We describe
how the operating system kernel can dynamically adapt
core specialization to the demands of the workload.

One important challenge of our proposed system is how

to best use the exception-less system call interface. One
option is to rewrite applications to directly interface with

the exception-less system call mechanism. We believe the
lessons learned by the systems community with event-
driven servers indicate that directly using exception-less
system calls would be a daunting software engineer-
ing task. For this reason, we propose a new M-on-IN
threading package (M user-mode threads executing on N
kernel-visible threads, with M >> N). The main purpose
of this threading package is to harvest independent sys-
tem calls by switching threads, in user-mode, whenever a
thread invokes a system call.
This research makes the following contributions:

e We quantify, at fine granularity, the impact of syn-
chronous mode switches and system call execution on
the micro-architectural processor structures, as well as
on the overall performance of user-mode execution.

e We propose a new operating system mechanism, the
exception-less system call, and describe an implemen-
tation, FlexSC', in the Linux kernel.

e We present a M-on-N threading system, compati-
ble with PThreads, that transparently uses the new
exception-less system call facility.

e We show how exception-less system calls coupled with
our M-on-N threading system improves performance
of important system-intensive highly threaded work-
loads: Apache by up to 116%, MySQL by to 40%, and
BIND by up to 105%.

2 The (Real) Costs of System Calls

In this section, we analyze the performance costs associ-
ated with a traditional, synchronous system call. We ana-
lyze these costs in terms of mode switch time, the system
call footprint, and the effect on user-mode and kernel-
mode IPC. We used the Linux operating system kernel
and an Intel Nehalem (Core i7) processor, along with its
performance counters to obtain our measurements. How-
ever, we believe the lessons learned are applicable to most
modern high-performance processors® and other operat-
ing system kernels.

2.1 Mode Switch Cost

Traditionally, the performance cost attributed to system
calls is the mode switch time. The mode switch time con-
sists of the time necessary to execute the appropriate sys-
tem call instruction in user-mode, resuming execution in
an elevated protection domain (kernel-mode), and the re-
turn of control back to user-mode. Modern processors im-
plement the mode switch as a processor exception: flush-
ing the user-mode pipeline, saving a few registers onto the

IPronounced as “flex” (/'fleks/).
2Experiments performed on an older PowerPC 970 processor yielded
similar insights than the ones presented here.
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[ Syscall [ Instructions [ Cycles [ IPC [ i-cache [ d-cache [ L2 [ L3 [ d-TLB
stat 4972 13585 | 0.37 32 186 660 | 2559 21
pread 3739 12300 | 0.30 32 294 679 | 2160 20
pwrite 5689 | 31285 | 0.18 50 373 985 | 3160 44
open+close 6631 19162 | 0.34 47 240 900 | 3534 28
mmap-munmap 8977 19079 | 047 41 233 869 | 3913 7
open+write4close 9921 | 32815 | 0.30 78 481 | 1462 | 5105 49

Table 1: System call footprint of different processor structures. For the processors structures (caches and TLB), the numbers represent
number of entries evicted; the cache line for the processor is of 64-bytes. i-cache and d-cache refer to the instruction and data sections
of the L1 cache, respectively. The d-TLB represents the data portion of the TLB.

kernel stack, changing the protection domain, and redi-
recting execution to the registered exception handler. Sub-
sequently, return from exception is necessary to resume
execution in user-mode.

We measured the mode switch time by implement-
ing a new system call, gettsc that obtains the time
stamp counter of the processor and immediately returns
to user-mode. We created a simple benchmark that in-
voked gettsc 1 billion times, recording the time-stamp
before and after each call. The difference between each
of the three time-stamps identifies the number of cycles
necessary to enter and leave the operating system kernel,
namely 79 cycles and 71 cycles, respectively. The total
round-trip time for the gettsc system call is modest at
150 cycles, being less than the latency of a memory ac-
cess that misses the processor caches (250 cycles on our
machine).?

2.2 System Call Footprint

The mode switch time, however, is only part of the cost of
a system call. During kernel-mode execution, processor
structures including the L1 data and instruction caches,
translation look-aside buffers (TLB), branch prediction ta-
bles, prefetch buffers, as well as larger unified caches (L2
and L3), are populated with kernel specific state. The re-
placement of user-mode processor state by kernel-mode
processor state is referred to as the processor state pollu-
tion caused by a system call.

To quantify the pollution caused by system calls, we
used the Core 17 hardware performance counters (HPC).
We ran a high instruction per cycle (IPC) workload,
Xalan, from the SPEC CPU 2006 benchmark suite that
is known to invoke few system calls. We configured an
HPC to trigger infrequently (once every 10 million user-
mode instructions) so that the processor structures would
be dominated with application state. We then set up the
HPC exception handler to execute specific system calls,
while measuring the replacement of application state in
the processor structures caused by kernel execution (but
not by the performance counter exception handler itself).

3For all experiments presented in this paper, user-mode applications
execute in 64-bit mode and when using synchronous system calls, use
the “syscall” x86_-64 instruction, which is currently the default in Linux.

Table 1 shows the footprint on several processor struc-
tures for three different system calls and three system call
combinations. The data shows that, even though the num-
ber of i-cache lines replaced is modest (between 2 and
5 KB), the number of d-cache lines replaced is signifi-
cant. Given that the size of the d-cache on this processor
is 32 KB, we see that the system calls listed pollute at
least half of the d-cache, and almost all of the d-cache in
the “open-+write4-close” case. The 64 entry first level d-
TLB is also significantly polluted by most system calls.
Finally, it is interesting to note that the system call impact
on the L2 and L3 caches is larger than on the L1 caches,
primarily because the L2 and L3 caches use more aggres-
sive prefetching.

2.3 System Call Impact on User IPC

Ultimately, the most important measure of the real cost
of system calls is the performance impact on the applica-
tion. To quantify this, we executed an experiment similar
to the one described in the previous subsection. However,
instead of measuring kernel-mode events, we only mea-
sured user-mode instructions per cycle (IPC), ignoring all
kernel execution. Ideally, user-mode IPC should not de-
crease as a result of invoking system calls, since the cy-
cles and instructions executed as part of the system call
are ignored in our measurements. In practice, however,
user-mode IPC is affected by two sources of overhead:

Direct: The processor exception associated with the sys-
tem call instruction that flushes the processor pipeline.

Indirect: System call pollution on the processor struc-
tures, as quantified in Table 1.

Figures 2 and 3 show the degradation in user-mode IPC
when running Xalan (from SPEC CPU 2006) and SPEC-
JBB, respectively, given different frequencies of pwrite
calls. These benchmarks were chosen since they have
been created to avoid significant use of system services,
and should spend only 1-2% of time executing in kernel-
mode. The graphs show that different workloads can have
different sensitivities to system call pollution. Xalan has
a baseline user-mode IPC of 1.46, but the IPC degrades
by up to 65% when executing a pwrite every 1,000-
2,000 instructions, yielding an IPC between 0.58 and 0.50.
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Figure 2: System call (pwrite) impact on user-mode IPC as a
function of system call frequency for Xalan.
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Figure 3: System call (pwrite) impact on user-mode IPC as a
function of system call frequency for SPEC JBB.

SPEC-JBB has a slightly lower baseline of 0.97, but still
observes a 45% degradation of user-mode IPC.

The figures also depict the breakdown of user-mode
IPC degradation due to direct and indirect costs. The
degradation due to the direct cost was measured by issu-
ing a null system call, while the indirect portion is cal-
culated subtracting the direct cost from the degradation
measured when issuing a pwrite system call. For high
frequency system call invocation (once every 2,000 in-
structions, or less), the direct cost of raising an exception
and subsequent flushing of the processor pipeline is the
largest source of user-mode IPC degradation. However,
for medium frequencies of system call invocation (once
per 2,000 to 100,000 instructions), the indirect cost of sys-
tem calls is the dominant source of user-mode IPC degra-
dation.

To understand the implication of these results on typi-
cal server workloads, it is necessary to quantify the sys-
tem call frequency of these workloads. The average user-
mode instruction count between consecutive system calls
for three popular server workloads are shown in Table 2.
For this frequency range in Figures 2 and 3 we observe
user-mode IPC performance degradation between 20%
and 60%. While the excecution of the server workloads
listed in Table 2 is not identical to that of Xalan or SPEC-

Workload (server) Instructions per Syscall

DNSbench (BIND) 2445
ApacheBench (Apache) 3368
Sysbench (MySQL) 12435

Table 2: The average number of instructions executed on differ-
ent workloads before issuing a syscall.
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Figure 4: System call (pwrite), impact on kernel-mode IPCs
for x as a function of system call frequency.

JBB, the data presented here indicates that server work-
loads suffer from significant performance degradation due
to processor pollution of system calls.

24

The lack of locality due to frequent mode switches also
negatively affects kernel-mode IPC. Figure 4 shows the
impact of different system call frequencies on the kernel-
mode IPC. As expected, the performance trend is opposite
to that of user-mode execution. The more frequent the
system calls, the more kernel state is maintained in the
Pprocessor.

Note that the kernel-mode IPC listed in Table 1 for dif-
ferent system calls ranges from 0.18 to 0.47, with an av-
erage of 0.32. This is significantly lower than the 1.47
and 0.97 user-mode IPC for Xalan and SPEC-JBB, re-
spectively; up to 8x slower.

Mode Switching Cost on Kernel IPC

3 Exception-Less System Calls

To address (and partially eliminate) the performance im-
pact of traditional, synchronous system calls on system
intensive workloads, we propose a new operating system
mechanism called exception-less system call. Exception-
less system call is a mechanism for requesting kernel ser-
vices that does not require the use of synchronous pro-
cessor exceptions. The key benefit of exception-less sys-
tem calls is the flexibility in scheduling system call execu-
tion, ultimately providing improved locality of execution
of both user and kernel code. We explore two use cases:

System call batching: Delaying the execution of a series
of system calls and executing them in batches minimizes
the frequency of switching between user and kernel execu-
tion, eliminating some of the mode switch overhead and
allowing for improved temporal locality. This improves
both the direct and indirect costs of system calls.

Core specialization: In multicore systems, exception-
less system calls allow a system call to be scheduled on
a core different than the one on which the system call was
invoked. Scheduling system calls on a separate processor
core allows for improved spatial locality and with it lower
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Figure 5: Illustration of synchronous and exception-less system
call invocation. The left diagram shows the sequential nature
of exception-based system calls, while the right diagram depicts
exception-less user and kernel communication through shared
memory.
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Figure 6: 64-byte syscall entry from the syscall page.

indirect costs. In an ideal scenario, no mode switches are
necessary, eliminating the direct cost of system calls.

The design of exception-less system calls consists of
two components: (1) an exception-less interface for user-
space threads to register system calls, along with (2) an
in-kernel threading system that allows the delayed (asyn-
chronous) execution of system calls, without interrupting
or blocking the thread in user-space.

3.1 Exception-Less Syscall Interface

The interface for exception-less system calls is simply a
set of memory pages that is shared amongst user and ker-
nel space. The shared memory page, henceforth referred
to as syscall page, is organized to contain exception-less
system call entries. Each entry contains space for the re-
quest status, system call number, arguments, and return
value.

With traditional synchronous system calls, invocation
occurs by populating predefined registers with system call
information and issuing a specific machine instruction that
immediately raises an exception. In contrast, to issue an
exception-less system call, the user-space threads must
find a free entry in the syscall page and populate the en-
try with the appropriate values using regular store instruc-
tions. The user-space thread can then continue executing
without interruption. It is the responsibility of the user-
space thread to later verify the completion of the system
call by reading the status information in the entry. None
of these operations, issuing a system call or verifying its
completion, causes exceptions to be raised.

3.2 Syscall Pages

Syscall pages can be viewed as a table of syscall en-
tries, each containing information specific to a single sys-
tem call request, including the system call number, ar-
guments, status (free/submitted/busy/done), and the result

(Figure 6). In our 64-bit implementation, we have orga-
nized each entry to occupy 64 bytes. This size comes from
the Linux ABI which allows any system call to have up to
6 arguments, and a return value, totalling 56 bytes. Al-
though the remaining 3 fields (syscall number, status and
number of arguments) could be packed in less than the
remaining 8 bytes, we selected 64 bytes because 64 is a
divisor of popular cache line sizes of today’s processor.
To issue an exception-less system call, the user-space
thread must find an entry in one of its syscall pages that
contain a free status field. It then writes the syscall num-
ber and arguments to the entry. Lastly, the status field is
changed to submitted*, indicating to the kernel that the re-
quest is ready for execution. The thread must then check
the status of the entry until it becomes done, consume the
return value, and finally set the status of the entry to free.

3.3 Decoupling Execution from Invocation

Along with the exception-less interface, the operating sys-
tem kernel must support delayed execution of system
calls. Unlike exception-based system calls, the exception-
less system call interface does not result in an explicit ker-
nel notification, nor does it provide an execution stack. To
support decoupled system call execution, we use a spe-
cial type of kernel thread, which we call syscall thread.
Syscall threads always execute in kernel mode, and their
sole purpose is to pull requests from syscall pages and ex-
ecute them on behalf of the user-space thread. Figure 5
illustrates the difference between traditional synchronous
system calls, and our proposed split system call model.

The combination of the exception-less system call in-
terface and independent syscall threads allows for great
flexibility in the scheduling the execution of system calls.
Syscall threads may wake up only after user-space is un-
able to make further progress, in order to achieve tempo-
ral locality of execution on the processor. Orthogonally,
syscall threads can be scheduled on a different processor
core than that of the user-space thread, allowing for spa-
tial locality of execution. On modern multicore proces-
sors, cache to cache communication is relatively fast (in
the order of 10s of cycles), so communicating the entries
of syscall pages from a user-space core to a kernel core, or
vice-versa, should only cause a small number of processor
stalls.

3.4 Implementation — FlexSC

Our implementation of the exception-less system call
mechanism is called FlexSC (Flexible System Call) and
was prototyped as an extension to the Linux kernel. Al-
though our implementation was influenced by a mono-

4User-space must update the status field last, with an appropriate
memory barrier, to prevent the kernel from selecting incomplete syscall
entries to execute.
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lithic kernel architecture, we believe that most of our de-
sign could be effective with other kernel architectures,
e.g., exception-less micro-kernel IPCs, and hypercalls in
a paravirtualized environment.

We have implemented FlexSC for the x86_64 and
PowerPC64 processor architectures. Porting FlexSC to
other architectures is trivial; a single function is needed,
which moves arguments from the syscall page to appropri-
ate registers, according to the ABI of the processor archi-
tecture. Two new system calls were added to Linux as part
of FlexSC, flexsc_register and flexsc_wait.

flexsc_register () This system call is used by pro-
cesses that wish to use the FlexSC facility. Making this
registration procedure explicit is not strictly necessary, as
processes can be registered with FlexSC upon creation.
We chose to make it explicit mainly for convenience of
prototyping, giving us more control and flexibility in user-
space. One legitimate reason for making registration ex-
plicit is to avoid the extra initialization overheads incurred
for processes that do not use exception-less system calls.

Invocation of the flexsc_register system call must
use the traditional, exception-based system call interface
to avoid complex bootstrapping; however, since this sys-
tem call needs to execute only once, it does not impact
application performance. Registration involves two steps:
mapping one or more syscall pages into user-space virtual
memory space, and spawning one syscall thread per entry
in the syscall pages.

flexsc_wait () The decoupled execution model of
exception-less system calls creates a challenge in user-
space execution, namely what to do when the user-space
thread has nothing more to execute and is waiting on
pending system calls. With the proposed execution model,
the OS kernel loses the ability to determine when a user-
space thread should be put to sleep. With synchronous
system calls, this is simply achieved by putting the thread
to sleep while it is executing a system call if the call blocks
waiting for a resource.

The solution we adopted is to require that the user ex-
plicitly communicate to the kernel that it cannot progress
until one of the issued system calls completes by invok-
ing the flexsc_wait system call. We implemented
flexsc_wait as an exception-based system call, since
execution should be synchronously directed to the kernel.
FlexSC will later wake up the user-space thread when at
least one of posted system calls are complete.

3.5 Syscall Threads

Syscall threads is the mechanism used by FlexSC to allow
for exception-less execution of system calls. The Linux
system call execution model has influenced some imple-
mentation aspects of syscall threads in FlexSC: (1) the vir-
tual address space in which system call execution occurs

is the address space of the corresponding process, and (2)
the current thread context can be used to block execution
should a necessary resource not be available (for example,
waiting for I/O).

To resolve the virtual address space requirement,
syscall threads are created during flexsc_register.
Syscall threads are thus “cloned” from the registering pro-
cess, resulting in threads that share the original virtual ad-
dress space. This allows the transfer of data from/to user-
space with no modification to Linux’s code.

FlexSC would ideally never allow a syscall thread to
sleep. If a resource is not currently available, notification
of the resource becoming available should be arranged,
and execution of the next pending system call should be-
gin. However, implementing this behavior in Linux would
require significant changes and a departure from the basic
Linux architecture. Instead, we adopted a strategy that al-
lows FlexSC to maintain the Linux thread blocking archi-
tecture, as well as requiring only minor modifications (3
lines of code) to Linux context switching code, by creat-
ing multiple syscall threads for each process that registers
with FlexSC.

In fact, FlexSC spawns as many syscall threads as there
are entries available in the syscall pages mapped in the
process. This provisions for the worst case where ev-
ery pending system call blocks during execution. Spawn-
ing hundreds of syscall threads may seem expensive, but
Linux in-kernel threads are typically much lighter weight
than user threads: all that is needed is a task_struct
and a small, 2-page, stack for execution. All the other
structures (page table, file table, etc.) are shared with the
user process. In total, only 10KB of memory is needed
per syscall thread.

Despite spawning multiple threads, only one syscall
thread is active per application and core at any given point
in time. If system calls do not block all the work is exe-
cuted by a single syscall thread, while the remaining ones
sleep on a work-queue. When a syscall thread needs to
block, for whatever reason, immediately before it is put
to sleep, FlexSC notifies the work-queue. Another thread
wakes-up and immediately starts executing the next sys-
tem call. Later, when resources become free, current
Linux code wakes up the waiting thread (in our case, a
syscall thread), and resumes its execution, so it can post its
result to the syscall page and return to wait in the FlexSC
work-queue.

3.6 FlexSC Syscall Thread Scheduler

FlexSC implements a syscall thread scheduler that is re-
sponsible for determining when and on which core sys-
tem calls will execute. This scheduler is critical to per-
formance, as it influences the locality of user and kernel
execution.
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On a single-core environment, the FlexSC scheduler
assumes the user-space will attempt to post as many
exception-less system calls as possible, and subsequently
call flexsc_wait (). The FlexSC scheduler then
wakes up an available syscall thread that starts executing
the first system call. If the system call does not block,
the same syscall thread continues to execute the next sub-
mitted syscall entry. If the execution of a syscall thread
blocks, the currently scheduled syscall thread notifies the
scheduler to wake another thread to continue to execute
more system calls. The scheduler does not wake up the
user-space thread until all available system calls have been
issued, and have either finished or are currently blocked
with at least one system call having been completed. This
is done to minimize the number of mode switches to user-
space.

For multicore execution, the scheduler biases execution
of syscall threads on a subset of available cores, dynam-
ically specializing cores according to the workload re-
quirements. In our current implementation, this is done
by attempting to schedule syscall threads using a prede-
termined, static list of cores. Upon a scheduling decision,
the first core on the list is selected. If a syscall thread of
a process is currently running on that core, the next core
on the list is selected as the target. If the selected core is
not currently executing a syscall thread, an inter-processor
interrupt is sent to the remote core, signalling that it must
wake a syscall thread.

As previously described, there is never more than one
syscall thread concurrently executing per core, for a given
process. However in the multicore case, for the same pro-
cess, there can be as many syscall threads as cores con-
currently executing on the entire system. To avoid cache-
line contention of syscall pages amongst cores, before a
syscall thread begins executing calls from a syscall page,
it locks the page until all its submitted calls have been
issued. Since FlexSC processes typically map multiple
syscall pages, each core on the system can schedule a
syscall thread to work independently, executing calls from
different syscall pages.

4 System Calls Galore — FlexSC-Threads

Exception-less system calls present a significant change to
the semantics of the system call interface with potentially
drastic implications for application code and program-
mers. Programming using exception-less system calls di-
rectly is more complex than using synchronous system
calls, as they do not provide the same, easy-to-reason-
about sequentiality. In fact, our experience is that pro-
gramming using exception-less system calls is akin to
event-driven programming, which has itself been criti-
cized for being a complex programming model [21]. The
main difference is that with exception-less system calls,

not only are I/O related calls scheduled for future comple-
tion, any system calls can be requested, verified for com-
pletion, and handled, as if it were an asynchronous event.

To address the programming complexities, we propose
the use of exception-less system calls in two different
modes that might be used depending on the concurrency
model adopted by the programmer. We argue that if used
according to our recommendations, exception-less sys-
tem calls should pose no more complexity than their syn-
chronous counter-parts.

4.1 Event-driven Servers, a Case for Hybrid
Execution

For event-driven systems, we advocate a hybrid approach
where both synchronous and exception-less system calls
coexist. System calls that are executed in performance
critical paths of applications should use exception-less
calls while all other calls should be synchronous. After
all, there is no good justification to make a simple getpid()
complex to program.

Event-driven servers already have their code structured
so that performance critical paths of execution are split
into three parts: request event, wait for completion and
handle event. Adapting an event-driven server to use
exception-less system calls, for the already considered
events, should be straightforward. However, we have not
yet attempted to evaluate the use of exception-less system
calls in an event-driven program, and leave this as future
work.

4.2 FlexSC-Threads

Multiprocessing has become the default for computation
on servers. With the emergence and ubiquity of multi-
core processors, along with projection of future chip man-
ufacturing technologies, it is unlikely that this trend will
reverse in the medium future. For this reason, and be-
cause of its relative simplicity vis-a-vis event-based pro-
gramming, we believe that the multithreading concur-
rency model will continue to be the norm.

In this section, we describe the design and implementa-
tion of FlexSC-Threads, a threading package that trans-
forms legacy synchronous system calls into exception-
less ones transparently to applications. It is intended
for server-type applications with many user-mode threads,
such as Apache or MySQL. FlexSC-Threads is compli-
ant with POSIX Threads, and binary compatible with
NPTL [8], the default Linux thread library. As a re-
sult, Linux multi-threaded programs work with FlexSC-
Threads “out of the box™ without modification or recom-
pilation.

FlexSC-Threads uses a simple M-on-N threading
model (M user-mode threads executing on N kernel-
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Figure 7: The left-most diagram depicts the components of FlexSC-Threads pertaining to a single core. Each core executes a pinned

kernel-visible thread, which in turn can multiplex multiple user-mode threads.

Multiple syscall pages, and consequently syscall

threads, are also allocated (and pinned) per core. The middle diagram depicts a user-mode thread being preempted as a result of
issuing a system call. The right-most diagram depicts the scenario where all user-mode threads are waiting for system call requests;
in this case FlexSC-Threads library synchronously invokes flexsc_wait () to the kernel.

Kernel

Core 0

Figure 8: Multicore example. Opaque threads are active, while
grayed-out threads are inactive. Syscall pages are accessible to
both cores, as we run using shared-memory, leveraging the fast
on-chip communication of multicores.

visible threads). We rely on the ability to perform user-
mode thread switching solely in user-space to transpar-
ently transform legacy synchronous calls into exception-
less ones. This is done as follows:

1. We redirect to our library each [libc call that issues a
legacy system call. Typically, applications do not di-
rectly embed code to issue system calls, but instead
call wrappers in the dynamically loaded libc. We use
the dynamic loading capabilities of Linux to redirect
execution of such calls to our library.

2. FlexSC-Threads then post the corresponding
exception-less system call to a syscall page and
switch to another user-mode thread that is ready.

3. If we run out of ready user-mode threads, FlexSC
checks the syscall page for any syscall entries that
have been completed, waking up the appropriate
user-mode thread so it can obtain the result of the
completed system call.

4. As alast resort, flexsc_wait () is called, putting
the kernel visible thread to sleep until one of the
pending system calls has completed.

FlexSC-Threads implements multicore support by cre-
ating a single kernel visible thread per core available to
the process, and pinning each kernel visible thread to a

specific core. Multiple user-mode threads multiplex exe-
cution on the kernel visible thread. Since kernel-visitble
threads only block when there is no more available work,
there is no need to create more than one kernel visi-
ble thread per core. Figure 7 depicts the components of
FlexSC-Threads and how they interact during execution.

As an optimization, we have designed FlexSC-Threads
to register a private set of syscall pages per kernel vis-
ible thread (i.e., per core). Since syscall pages are pri-
vate to each core, there is no need to synchronize their
access with costly atomic instructions. The FlexSC-
Threads user-mode scheduler implements a simple form
of cooperative scheduling, with system calls acting as
yield points. Consequently, syscall pages behave as lock-
free single-producer (kernel-visible thread) and single-
consumer (syscall thread) data structures.

From the kernel side, although syscall threads are
pinned to specific cores, they do not only execute system
call requests from syscall pages registered to that core. An
example of this is shown in Figure 8, where user-mode
threads execute on core 0, while syscall threads running
on core | are satisfying system call requests.

It is important to note that FlexSC-Threads relies on a
large number of independent user-mode threads to post
concurrent exception-less system calls. Since threads are
executing independently, there is no constraint on order-
ing or serialization of system call execution (thread-safety
constraints should be enforced at the application level
and is orthogonal to the system call execution model).
FlexSC-Threads leverages the independent requests to ef-
ficiently schedule operating system work on single or mul-
ticore systems. For this reason, highly threaded work-
loads, such as internet/network servers, are ideal candi-
dates for FlexSC-Threads.

S Experimental Evaluation

We first present the results of a microbenchmark that
shows the overhead of the basic exception-less system
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[ Component | Specification

Cores 4
Cache line 64 B for all caches
Private L1 i-cache 32 KB, 3 cycle latency
Private L1 d-cache 32 KB, 4 cycle latency
Private L2 cache 512 KB, 11 cycle latency
Shared L3 cache 8 MB, 35-40 cycle latency

Memory 250 cycle latency (avg.)
TLB (L1) 64 (data) + 64 (instr.) entries
TLB (L2) 512 entries

Table 3: Characteristics of the 2.3GHz Core i7 processor.
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Figure 9: Exception-less system call cost on a single-core.

call mechanism, and then we show the performance of
two popular server applications, Apache and MySQL,
transparently using exception-less system calls through
FlexSC-Threads. Finally, we analyze the sensitivity of
the performance of FlexSC to the number of system call
pages.

FlexSC was implemented in the Linux kernel, version
2.6.33. The baseline line measurements we present were
collected using unmodified Linux (same version), and the
default native POSIX threading library (NPTL). We iden-
tify the baseline configuration as “sync”, and the system
with exception-less system calls as “flexsc”.

The experiments presented in this section were run on
an Intel Nehalem (Core i7) processor with the character-
istics shown in Table 3. The processor has 4 cores, each
with 2 hyper-threads. We disabled the hyper-threads, as
well as the “TurboBoost” feature, for all our experiments
to more easily analyze the measurements obtained.

For the Apache and MySQL experiments, requests
were generated by a remote client connected to our test
machine through a 1 Gbps network, using a dedicated
router. The client machine contained a dual core Core2
processor, running the same Linux installation as the test
machine, and was not CPU or network constrained in any
of the experiments.

All values reported in our evaluation represent the av-
erage of 5 separate runs.

5.1 Overhead

The overhead of executing an exception-less system call
involves switching to a syscall thread, de-marshalling ar-
guments from the appropriate syscall page entry, switch-
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Figure 10: Exception-less system call cost, in the worst case, for
remote core execution.

ing back to the user-thread, and retrieving the return value
from the syscall page entry. To measure this overhead,
we created a micro-benchmark that successively invokes a
getppid () system call. Since the user and kernel foot-
prints of this call is small, the time measured corresponds
to the direct cost of issuing system calls.

We varied the number of batched system calls, in the
exception-less case, to verify if the direct costs are amor-
tized when batching an increasing number of calls. The
results obtained executing on a single core are shown in
Figure 9. The baseline time, show as a horizontal line, is
the time to execute an exception-based system call on a
single core. Executing a single exception-less system call
on a single core is 43% slower than a synchronous call.
However, when batching 2 or more calls there is no over-
head, and when batching 32 or more calls, the execution
of each call is up to 130% faster than a synchronous call.

We also measured the time to execute system calls on
a remote core (Figure 10). In addition to the single core
operations, remote core execution entails sending an inter-
processor interrupt (IPI) to wake up the remote syscall
thread. In the remote core case, the time to issue a sin-
gle exception-less system call can be more than 10 times
slower than a synchronous system call on the same core.
This measurement represents a worst case scenario when
there is no currently executing syscall thread. Despite the
high overhead, the overhead on remote core execution is
recouped when batching 32 or more system calls.

5.2 Apache

We used Apache version 2.2.15 to evaluate the perfor-
mance of FlexSC-Threads. Since FlexSC-Threads is bi-
nary compatible with NPTL, we used the same Apache
binary for both FlexSC and Linux/NPTL experiments.
We configured Apache to use a different maximum num-
ber of spawned threads for each case. The performance
of Apache running on NPTL degrades with too many
threads, and we experimentally determined that 200 was
optimal for our workload and hence used that configura-
tion for the NPTL case. For the FlexSC-Threads case, we
raised the maximum number of threads to 1000.

The workload we used was ApacheBench, a HTTP
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Figure 11: Comparison of Apache throughput of Linux/NPTL and FlexSC executing on 1, 2 and 4 cores.
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Figure 13: Comparison of Apache latency of Linux/NPTL and
FlexSC executing on 1, 2 and 4 cores, with 256 concurrent re-
quests.

workload generator that is distributed with Apache. It
is designed to stress-test the Web server determining the
number of requests per second that can be serviced, with
varying number of concurrent requests.

Figure 11 shows the results of Apache running on 1, 2
and 4 cores. For the single core experiments, FlexSC em-
ploys system call batching, and for the multicore experi-
ments it additionally dynamically redirects system calls to
maximize core locality. The results show that, except for
a very low number of concurrent requests, FlexSC outper-
forms Linux/NPTL by a wide margin. With system call
batching alone (1 core case), we observe a throughput im-
provement of up to 86%. The 2 and 4 core experiments
show that FlexSC achieves up to 116% throughput im-
provement, showing the added benefit of dynamic core
specialization.

Table 4 shows the effects of FlexSC on the microarchi-
tectural state of the processor while running Apache. It
displays various processor metrics, collected using hard-
ware performance counters during execution with 512

concurrent requests. The most important metric listed
is the instruction per cycles (IPC) of the user and ker-
nel mode for the different setups, as it summarizes the
efficiency of execution. The other values listed are nor-
malized values using misses per kilo-instructions (MPKI).
MPKI is a widely used normalization method that makes
it easy to compare values obtained from different execu-
tions.

The most efficient execution of the four listed in the
table is FlexSC on 1 core, yielding an IPC of 0.94 on both
kernel and user execution, which is 95-108% higher than
for NPTL. While the FlexSC execution of Apache on 4
cores is not as efficient as the single core case, with an
average IPC of 0.75, there is still an 71% improvement,
on average, over NPTL.

Most metrics we collected are significantly improved
with FlexSC. Of particular importance are the perfor-
mance critical structures that have a high MPKI value
on NPTL such as d-cache, i-cache, and L2 cache. The
better use of these microarchitectural structures effec-
tively demonstrates the premise of this work, namely that
exception-less system calls can improve processor effi-
ciency. The only structure which observes more misses
on FlexSC is the user-mode TLB. We are currently inves-
tigating the reason for this.

There is an interesting disparity between the through-
put improvement (94%) and the IPC improvement (71%)
in the 4 core case. The difference comes from the added
benefit of localizing kernel execution with core specializa-
tion. Figure 12a shows the time breakdown of Apache ex-
ecuting on 4 cores. FlexSC execution yields significantly
less idle time than the NPTL execution.” The reduced
idle time is a consequence of lowering the contention
on a specific kernel semaphore. Linux protects address
spaces with a per address-space read-write semaphore
(mmap-sem). Profiling shows that every Apache thread
allocates and frees memory for serving requests, and both
of these operations require the semaphore to be held with
write permission. Further, the network code in Linux in-
vokes copy__user (), which transfers data in and out
of the user address-space. This function verifies that the
user-space memory is indeed valid, and to do so acquires

5The execution of Apache on 1 or 2 core did not present idle time.
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Apache User

Kernel

Setup

IPC | L3 L2 [ d-cache [ i-cache | TLB [ Branch

IPC [ L3 L2 [ d-cache [ i-cache | TLB [ Branch

sync (1 core) 0.48 | 3.7 | 68.9 63.8 | 1308 | 7.7

209 | 045 | 1.4 | 80.0 782 | 159.6 | 4.6 15.7

flexsc (1 core) | 0.94 | 1.7 | 27.5 35.3 41.3 8.8

12.6 {094 | 1.0 | 15.8 31.6 452 | 3.3 11.2

sync (4 cores) | 0.45 | 3.9 | 64.6 67.9 1276 | 9.6

202|043 | 441|495 73.8 | 1249 | 44 15.2

flexsc (4 cores) | 0.74 | 1.0 | 37.5 55.5 494 | 19.3

13.00.76 | 1.5 | 19.1 50.2 63.7| 4.2 11.6

Table 4: Micro-architectural breakdown of Apache execution on uni- and quad-core setups. All values shown, except for IPC, are
normalized using misses per kilo-instruction (MPKI): therefore, lower numbers yield more efficient execution and higher IPC.

the semaphore with read permissions. In the NPTL case,
threads from all 4 cores compete on this semaphore, re-
sulting in 50% idle time. With FlexSC, kernel code is
dynamically scheduled to run predominantly on 2 out of
the 4 cores, halving the contention to this resource, elimi-
nating 38% of the original idle time.

Another important metric for servicing Web requests
besides throughput is latency of individual requests. One
might intuitively expect that latency of requests to be
higher under FlexSC because of batching and asyn-
chronous servicing of system calls, but the opposite is the
case. Figure 13 shows the average latency of requests
when processing 256 concurrent requests (other concur-
rency levels showed similar trends). The results show that
Web requests on FlexSC are serviced within 50-60% of
the time needed on NPTL, on average.

53 MySQL

In the previous section, we demonstrated the effectiveness
of FlexSC running on a workload with a significant pro-
portion of kernel time. In this section, we experiment with
OLTP on MySQL, a workload for which the proportion of
kernel execution is smaller (roughly 25%). Our evaluation
used MySQL version 5.5.4 with an InnoDB backend en-
gine, and as in the Apache evaluation, we used the same
binary for running on NPTL and on FlexSC. We also used
the same configuration parameters for both the NPTL and
FlexSC experiments, after tuning them for the best NPTL
performance.

To generate requests to MySQL, we used the sysbench
system benchmark utility. Sysbench was created for
benchmarking MySQL processor performance and con-
tains an OLTP inspired workload generator. The bench-
mark allows executing concurrent requests by spawning
multiple client threads, connecting to the server, and se-
quentially issuing SQL queries. To handle the concurrent
clients, MySQL spawns a user-level thread per connec-
tion. At the end, sysbench reports the number of trans-
actions per second executed by the database, as well as
average latency information. For these experiments, we
used a database with 5M rows, resulting in 1.2 GB of data.
Since we were interested in stressing the CPU component
of MySQL, we disabled synchronous transactions to disk.
Given that the configured database was small enough to
fit in memory, the workload presented no idle time due to

disk I/O.

Figure 14 shows the throughput numbers obtained on
1, 2 and 4 cores when varying the number of concur-
rent client threads issuing requests to the MySQL server.®
For this workload, system batching on one core provides
modest improvements: up to 14% with 256 concurrent re-
quests. On 2 and 4 cores, however, we see that FlexSC
provides a consistent improvement with 16 or more con-
current clients, achieving up to 37%-40% higher through-
put.

Table 5 contains the microarchitectural processor met-
rics collected for the execution of MySQL. Because
MySQL invokes the kernel less frequently than Apache,
kernel execution yields high miss rates, resulting in a low
IPC of 0.33 on NPTL. In the single core case, FlexSC does
not greatly alter the execution of user-space, but increases
kernel IPC by 36%. FlexSC allows the kernel to reuse
state in the processor structures, yielding lower misses
across most metrics. In the case of 4 cores, FlexSC also
improves the performance of user-space IPC by as much
as 30%, compared to NPTL. Despite making less of an
impact in the kernel IPC than in single core execution,
there is still a 25% kernel IPC improvement over NPTL.

Figure 15 shows the average latencies of individual re-
quests for MySQL execution with 256 concurrent clients.
As is the case with Apache, the latency of requests on
FlexSC is improved over execution on NPTL. Requests
on FlexSC are satisfied within 70-88% of the time used
by requests on NPTL.

5.4 Sensitivity Analysis

In all experiments presented so far, FlexSC was config-
ured to have 8 system call pages per core, allowing up to
512 concurrent exception-less system calls per core.
Figure 16 shows the sensitivity of FlexSC to the num-
ber of available syscall entries. It depicts the throughput
of Apache, on 1 and 4 cores, while servicing 2048 concur-
rent requests per core, so that there would always be more
requests available than syscall entries. Uni-core perfor-
mance approaches its best with 200 to 250 syscall entries

SFor both NPTL and FlexSC, increasing the load on MySQL yields
peak throughput between 32 and 128 concurrent clients after which
throughput degrades. The main reason for performance degradation is
the costly and coarse synchronization used in MySQL. MySQL and
Linux kernel developers have observed similar performance degradation.
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Figure 14: Comparison of MySQL throughput of Linux/NPTL and FlexSC executing on 1, 2 and 4 cores.
MySQL User Kernel
Setup IPC [ L3 ] L2 [ d-cache [i-cache [ TLB [ Branch [ IPC | L3 | L2 d-cache [ i-cache [ TLB [ Branch
sync (1 core) 112 | 0.6 | 21.1 34.8 242 | 3.8 7.8 1033|165 | 1252 209.6 | 1849 | 3.9 17.4
flexsc (1 core) | 1.10 | 0.8 | 19.6 36.3 236 | 5.4 69 ]045|232| 55.1 131.9 86.5| 3.7 13.6
sync (4 cores) | 0.55 | 3.7 | 15.8 25.2 189 3.1 591036 | 166 | 78.0 1470 | 1200| 3.6 15.7
flexsc (4 cores) | 0.72 | 2.7 | 16.7 30.6 209 | 4.1 6.5|045| 184 | 46.6 104.4 63.5| 25 11.5

Table 5: Micro-architectural breakdown of MySQL execution on uni- and quad-core setups. All values shown, except for IPC, are
normalized using misses per kilo-instruction (MPKI): therefore, lower numbers yield more efficient execution and higher IPC.
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Figure 15: Comparison of MySQL latency of Linux/NPTL and
FlexSC executing on 1, 2 and 4 cores, with 256 concurrent re-
quests.

50000
45000
40000
35000
30000
25000
20000
15000

10000 g ‘@4 cores

5000 =1 core

Throughput (requests/sec.)

0 100 200 300 400 500 600
Number of syscall entries (per core)

Figure 16: Execution of Apache on FlexSC-Threads, showing
the performance sensitivity of FlexSC to different number of
syscall pages. Each syscall page contains 64 syscall entries.

(3 to 4 syscall pages), while quad-core execution starts
to plateau with 300 to 400 syscall entries (6 to 7 syscall
pages).

It is particularly interesting to compare Figure 16 with
figures 9 and 10. The direct cost of mode switching, ex-
emplified by the micro-benchmark, has a lesser effect on
performance when compared to the indirect cost of mix-
ing user- and kernel-mode execution.

6 Related Work

6.1 System Call Batching

The idea of batching calls in order to save crossings
has been extensively explored in the systems community.
Specific to operating systems, multi-calls are used in both
operating systems and paravirtualized hypervisors as a
mechanism to address the high overhead of mode switch-
ing. Cassyopia is a compiler targeted at rewriting pro-
grams to collect many independent system calls, and sub-
mitting them as a single multi-call [18]. An interesting
technique in Cassyopia, which could be eventually ex-
plored in conjunction with FlexSC, is the concept of a
looped multi-call where the result of one system call can
be automatically fed as an argument to another system call
in the same multi-call. In the context of hypervisors, both
Xen and VMware currently support a special multi-call
hypercall feature [4][20].

An important difference between multi-calls and
exception-less system calls is the level of flexibility ex-
posed. The multi-call proposals do not investigate the
possibility of parallel execution of system calls, or ad-
dress the issue of blocking system calls. In multi-calls,
system calls are executed sequentially; each system call
must complete before a subsequent can be issued. With
exception-less system calls, system calls can be executed
in parallel, and in the presence of blocking, the next call
can execute immediately.

6.2 Locality of Execution and Multicores

Several researchers have studied the effects of operating
system execution on application performance [1, 3, 7, 6,
11, 13]. Larus and Parkes also identified processor inef-
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ficiencies of server workloads, although not focusing on
the interaction with the operating system. They proposed
Cohort Scheduling to efficiently execute staged computa-
tions to improve locality of execution [11].

Techniques such as Soft Timers [3] and Lazy Receiver
Processing [9] also address the issue of locality of execu-
tion, from the other side of the compute stack: handling
device interrupts. Both techniques describe how to limit
processor interference associated with interrupt handling,
while not impacting the latency of servicing requests.

Most similar to the multicore execution of FlexSC
is Computation Spreading proposed by Chakraborty et.
al [6]. They introduced processor modifications to al-
low for hardware migration of threads, and evaluated the
effects on migrating threads upon entering the kernel to
specialize cores. Their simulation-based results show an
improvement of up to 20% on Apache, however, they ex-
plicitly do not model TLBs and provide for fast thread mi-
gration between cores. On current hardware, synchronous
thread migration between cores requires a costly inter-
processor interrupt.

Recently, both Corey and Factored Operating System
(fos) have proposed dedicating cores for specific operating
system functionality [24, 25]. There are two main differ-
ences between the core specialization possible with these
proposals and FlexSC. First, both Corey and fos require
a micro-kernel design of the operating system kernel in
order to execute specific kernel functionality on dedicated
cores. Second, FlexSC can dynamically adapt the propor-
tion of cores used by the kernel, or cores shared by user
and kernel execution, depending on the current workload
behavior.

Explicit off-loading of select OS functionality to cores
has also been studied for performance [15, 16] and power
reduction in the presence of single-ISA heterogeneous
multicores [14]. While these proposals rely on expen-
sive inter-processor interrupts to offload system calls, we
hope FlexSC can provide for a more efficient, and flexible,
mechanism that can be used by such proposals.

6.3 Non-blocking Execution

Past research on improving system call performance has
focused extensively on blocking versus non-blocking be-
havior. Typically researchers have analyzed the use of
threading, event-based (non-blocking), and hybrid sys-
tems for achieving high performance on server applica-
tions [2, 10, 17, 21, 22, 23]. Capriccio described tech-
niques to improve performance of user-level thread li-
braries for server applications [22]. Specifically, Behren
et al. showed how to efficiently manage thread stacks,
minimizing wasted space, and propose resource aware
scheduling to improver server performance. For an
extensive performance comparison of thread-based and

event-driven Web server architectures we refer the reader
to [17].

Finally, the Linux community has proposed a generic
mechanism for implementing non-blocking system calls,
which is call asynchronous system calls [5]. In their pro-
posal, system calls are still exception-based, and tenta-
tively execute synchronously. Like scheduler activations,
if a blocking condition is detected, they utilize a “syslet”
thread to block, allowing the user thread to continue exe-
cution.

The main difference between many of the proposals for
non-blocking execution and FlexSC is that none of the
non-blocking system call proposals completely decouple
the invocation of the system call from its execution. As
we have discussed, the flexibility resulting from this de-
coupling is crucial for efficiently exploring optimizations
such as system call batching and core specialization.

7 Concluding Remarks

In this paper, we introduced the concept of exception-less
system calls that decouples system call invocation from
execution. This allows for flexible scheduling of system
call execution which in turn enables system call batching
and dynamic core specialization that both improve local-
ity in a significant way. System calls are issued by writ-
ing kernel requests to a reserved syscall page using nor-
mal store operations, and they are executed by special in-
kernel syscall threads, which then post the results to the
syscall page.

In fact, the concept of exception-less system calls origi-
nated as a mechanism for low-latency communication be-
tween user and kernel-space with hyper-threaded proces-
sors in mind. We had hoped that communicating directly
through the shared L1 cache would be much more effi-
cient than mode switching. However, the measurements
presented in Section 2 made it clear that mixing user and
kernel-mode execution on the same core would not be effi-
cient for server class workloads. In future work we intend
to study how to exploit exception-less system calls as a
communication mechanism in hyper-threaded processors.

We presented our implementation of FlexSC, a Linux
kernel extension, and FlexSC-Threads, a M -on-N thread-
ing package that is binary compatible with NPTL and
that transparently transforms synchronous system calls
into exception-less ones. ~ With this implementation,
we demonstrated how FlexSC improves throughput of
Apache by up to 116% and MySQL by up to 40% while
requiring no modifications to the applications. We be-
lieve these two workloads are representative of other
highly threaded server workloads that would benefit from
FlexSC. For example, experiments with the BIND DNS
server demonstrated throughput improvements of between
30% and 105% depending on the concurrency of requests.
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In the current implementation of FlexSC, syscall
threads process system call requests in no specific or-
der, opportunistically issuing calls as they are posted on
syscall pages. The asynchronous execution model, how-
ever, would allow for different selection algorithms. For
example, syscall threads could sort the requests to con-
secutively execute requests of the same type, potentially
yielding greater locality of execution. Also, system calls
that perform I/O could be prioritized so as to issue them
as early as possible. Finally, if a large number of cores are
available, cores could be dedicated to specific system call
types to promote further locality gains.

8 Acknowledgements

This work was supported in part by Discovery Grant fund-
ing from the Natural Sciences and Engineering Research
Council (NSERC) of Canada. We would like to thank
the feedback from the OSDI reviewers, and to Emmett
Witchel for shepherding our paper. Special thanks to
Ioana Burcea for encouraging the work in its early stages,
and the Computer Systems Lab members (University of
Toronto), as well as Benjamin Gamsa, for insightful com-
ments on the work and drafts of this paper.

References

[1] AGARWAL, A., HENNESSY, J., AND HOROWITZ, M. Cache per-
formance of operating system and multiprogramming workloads.
ACM Trans. Comput. Syst. 6, 4 (1988), 393-431.

[2] ANDERSON, T. E., BERSHAD, B. N., LAZOWSKA, E. D., AND
LEVY, H. M. Scheduler Activations: Effective Kernel Support for
the User-Level Management of Parallelism. ACM Trans. Comput.
Syst. 10, 1 (1992), 53-79.

[3] ARON, M., AND DRUSCHEL, P. Soft timers: efficient microsec-

ond software timer support for network processing. ACM Trans.
Comput. Syst. (TOCS) 18, 3 (2000), 197-228.

[4] BARHAM, P., DRAGOVIC, B., FRASER, K., HAND, S., HAR-
RIS, T., HO, A., NEUGEBAUER, R., PRATT, I., AND WARFIELD,
A. Xen and the art of virtualization. In Proceedings of the 19th
ACM Symposium on Operating Systems Principles (SOSP) (2003),
pp. 164-177.

[5] BROWN, Z. Asynchronous system calls. In Proceedings of the
Ottawa Linux Symposium (OLS) (2007), pp. 81-85.

[6] CHAKRABORTY, K., WELLS, P. M., AND SoHI, G. S. Com-
putation Spreading: Employing Hardware Migration to Specialize
CMP Cores On-the-fly. In Proceedings of the 12th International
Conference on Architectural Support for Programming Languages
and Operating Systems (ASPLOS) (2006), pp. 283-292.

[7] CHEN, J. B., AND BERSHAD, B. N. The impact of operating
system structure on memory system performance. In Proceed-
ings of the 14th ACM Symposium on Operating Systems Principles
(SOSP) (1993), pp. 120-133.

[8] DREPPER, U., AND MOLNAR, I The Native POSIX
Thread Library for Linux. Tech. rep., RedHat Inc, 2003.
http://people.redhat.com/drepper/nptl-design.pdf.

[9] DRUSCHEL, P., AND BANGA, G. Lazy receiver processing (LRP):
a network subsystem architecture for server systems. In Proceed-
ings of the 2nd USENIX Symposium on Operating Systems Design
and Implementation (OSDI) (1996), pp. 261-275.

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

ELMELEEGY, K., CHANDA, A., CoX, A. L., AND
ZWAENEPOEL, W. Lazy asynchronous I/O for event-driven
servers. In Proceedings of the annual conference on USENIX
Annual Technical Conference (ATEC) (2004), pp. 21-21.

LARUS, J., AND PARKES, M. Using Cohort-Scheduling to En-
hance Server Performance. In Proceedings of the annual con-
ference on USENIX Annual Technical Conference (ATEC) (2002),
pp. 103-114.

L1, T., JoHN, L. K., SIVASUBRAMANIAM, A., VIJAYKRISH-
NAN, N., AND RUBIO, J. Understanding and Improving Operating
System Effects in Control Flow Prediction. In Proceedings of the
10th International Conference on Architectural Support for Pro-
gramming Languages and Operating Systems (ASPLOS) (2002),
pp. 68-80.

MogGuL, J. C., AND BORG, A. The Effect of Context Switches
on Cache Performance. In Proceedings of the 4th International
Conference on Architectural Support for Programming Languages
and Operating Systems (ASPLOS) (1991), pp. 75-84.

MogGuL, J. C., MUDIGONDA, J., BINKERT, N., RAN-
GANATHAN, P., AND TALWAR, V. Using asymmetric single-ISA
CMPs to save energy on operating systems. IEEE Micro 28, 3
(2008), 26-41.

NELLANS, D., BALASUBRAMONIAN, R., AND BRUNVAND,
E. OS execution on multi-cores: is out-sourcing worthwhile?
SIGOPS Oper. Syst. Rev. 43, 2 (2009), 104-105.

NELLANS, D., SUDAN, K., BRUNVAND, E., AND BALASUBRA-
MONIAN, R. Improving Server Performance on Multi-Cores via
Selective Off-loading of OS Functionality. In Sixth Annual Work-
shorp on the Interaction between Operating Systems and Com-
puter Architecture (WIOSCA) (2010), pp. 13-20.

PARIAG, D., BRECHT, T., HARJI, A., BUHR, P., SHUKLA, A.,
AND CHERITON, D. R. Comparing the performance of Web
server architectures. In Proceedings of the 2nd European Con-
ference on Computer Systems (Eurosys) (2007), pp. 231-243.
RAJAGOPALAN, M., DEBRAY, S. K., HILTUNEN, M. A., AND
SCHLICHTING, R. D. Cassyopia: compiler assisted system opti-
mization. In Proceedings of the 9th conference on Hot Topics in
Operating Systems (HotOS) (2003), pp. 18-18.

REDSTONE, J. A., EGGERS, S.J., AND LEVY, H. M. An analysis
of operating system behavior on a simultaneous multithreaded ar-
chitecture. In Proceedings of the 9th International Conference on
Architectural Support for Programming Languages and Operating
Systems (ASPLOS) (2000), pp. 245-256.

VMWARE. VMWare Virtual Machine Interface Specification.
http://www.vmware.com/pdf/vmi_specs.pdf.

VON BEHREN, R., CONDIT, J., AND BREWER, E. Why Events
Are A Bad Idea (for high-concurrency servers). In Proceedings of
the 9th conference on Hot Topics in Operating Systems (HotOS)
(2003).

VON BEHREN, R., CONDIT, J., ZHOU, F., NECULA, G. C., AND
BREWER, E. Capriccio: scalable threads for internet services. In
Proceedings of the 19th ACM Symposium on Operating Systems
Principles (SOSP) (2003), pp. 268-281.

WELSH, M., CULLER, D., AND BREWER, E. SEDA: An Ar-
chitecture for Well-Conditioned, Scalable Internet Services. In
Proceedings of the 18th ACM Symposium on Operating Systems
Principles (SOSP) (2001), pp. 230-243.

WENTZLAFF, D., AND AGARWAL, A. Factored Operating Sys-
tems (fos): The Case for a Scalable Operating System for Multi-
cores. SIGOPS Oper. Syst. Rev. 43,2 (2009), 76-85.

WICKIZER, S. B., CHEN, H., CHEN, R., MAO, Y., KAASHOEK,
F., MORRIS, R., PESTEREV, A., STEIN, L., WU, M., DAL Y.,
ZHANG, Y., AND ZHANG, Z. Corey: An operating system for
many cores. In Proceedings of the 8th USENIX Symposium on
Operating Systems Design and Implementation (OSDI) (2008).

46

9th USENIX Symposium on Operating Systems Design and Implementation (OSDI ’10)

USENIX Association



Finding a needle in Haystack: Facebook’s photo storage
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Abstract: This paper describes Haystack, an object stor-
age system optimized for Facebook’s Photos applica-
tion. Facebook currently stores over 260 billion images,
which translates to over 20 petabytes of data. Users up-
load one billion new photos (~60 terabytes) each week
and Facebook serves over one million images per sec-
ond at peak. Haystack provides a less expensive and
higher performing solution than our previous approach,
which leveraged network attached storage appliances
over NFS. Our key observation is that this traditional
design incurs an excessive number of disk operations
because of metadata lookups. We carefully reduce this
per photo metadata so that Haystack storage machines
can perform all metadata lookups in main memory. This
choice conserves disk operations for reading actual data
and thus increases overall throughput.

1 Introduction

Sharing photos is one of Facebook’s most popular fea-
tures. To date, users have uploaded over 65 billion pho-
tos making Facebook the biggest photo sharing website
in the world. For each uploaded photo, Facebook gen-
erates and stores four images of different sizes, which
translates to over 260 billion images and more than 20
petabytes of data. Users upload one billion new photos
(~60 terabytes) each week and Facebook serves over
one million images per second at peak. As we expect
these numbers to increase in the future, photo storage
poses a significant challenge for Facebook’s infrastruc-
ture.

This paper presents the design and implementation
of Haystack, Facebook’s photo storage system that has
been in production for the past 24 months. Haystack is
an object store [7, 10, 12, 13, 25, 26] that we designed
for sharing photos on Facebook where data is written
once, read often, never modified, and rarely deleted. We
engineered our own storage system for photos because
traditional filesystems perform poorly under our work-
load.

In our experience, we find that the disadvantages of
a traditional POSIX [21] based filesystem are directo-
ries and per file metadata. For the Photos application
most of this metadata, such as permissions, is unused

and thereby wastes storage capacity. Yet the more sig-
nificant cost is that the file’s metadata must be read from
disk into memory in order to find the file itself. While
insignificant on a small scale, multiplied over billions
of photos and petabytes of data, accessing metadata is
the throughput bottleneck. We found this to be our key
problem in using a network attached storage (NAS) ap-
pliance mounted over NFS. Several disk operations were
necessary to read a single photo: one (or typically more)
to translate the filename to an inode number, another to
read the inode from disk, and a final one to read the
file itself. In short, using disk 1Os for metadata was the
limiting factor for our read throughput. Observe that in
practice this problem introduces an additional cost as we
have to rely on content delivery networks (CDNs), such
as Akamai [2], to serve the majority of read traffic.

Given the disadvantages of a traditional approach,
we designed Haystack to achieve four main goals:

High throughput and low latency. Our photo storage
systems have to keep up with the requests users make.
Requests that exceed our processing capacity are either
ignored, which is unacceptable for user experience, or
handled by a CDN, which is expensive and reaches a
point of diminishing returns. Moreover, photos should
be served quickly to facilitate a good user experience.
Haystack achieves high throughput and low latency
by requiring at most one disk operation per read. We
accomplish this by keeping all metadata in main mem-
ory, which we make practical by dramatically reducing
the per photo metadata necessary to find a photo on disk.

Fault-tolerant. In large scale systems, failures happen
every day. Our users rely on their photos being available
and should not experience errors despite the inevitable
server crashes and hard drive failures. It may happen
that an entire datacenter loses power or a cross-country
link is severed. Haystack replicates each photo in
geographically distinct locations. If we lose a machine
we introduce another one to take its place, copying data
for redundancy as necessary.

Cost-effective. Haystack performs better and is less
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expensive than our previous NFS-based approach. We
quantify our savings along two dimensions: Haystack’s
cost per terabyte of usable storage and Haystack’s read
rate normalized for each terabyte of usable storage'.
In Haystack, each usable terabyte costs ~28% less
and processes ~4x more reads per second than an
equivalent terabyte on a NAS appliance.

Simple. In a production environment we cannot over-
state the strength of a design that is straight-forward
to implement and to maintain. As Haystack is a new
system, lacking years of production-level testing, we
paid particular attention to keeping it simple. That
simplicity let us build and deploy a working system in a
few months instead of a few years.

This work describes our experience with Haystack
from conception to implementation of a production
quality system serving billions of images a day. Our
three main contributions are:

e Haystack, an object storage system optimized for
the efficient storage and retrieval of billions of pho-
tos.

e Lessons learned in building and scaling an inex-
pensive, reliable, and available photo storage sys-
tem.

e A characterization of the requests made to Face-
book’s photo sharing application.

We organize the remainder of this paper as fol-
lows. Section 2 provides background and highlights
the challenges in our previous architecture. We de-
scribe Haystack’s design and implementation in Sec-
tion 3. Section 4 characterizes our photo read and write
workload and demonstrates that Haystack meets our de-
sign goals. We draw comparisons to related work in Sec-
tion 5 and conclude this paper in Section 6.

2 Background & Previous Design

In this section, we describe the architecture that ex-
isted before Haystack and highlight the major lessons
we learned. Because of space constraints our discus-
sion of this previous design elides several details of a
production-level deployment.

2.1 Background

We begin with a brief overview of the typical design
for how web servers, content delivery networks (CDN5s),
and storage systems interact to serve photos on a popular

!'The term ‘usable’ takes into account capacity consumed by fac-
tors such as RAID level, replication, and the underlying filesystem

Web
Server Photo Photo Photo
Storage Storage Storage
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Figure 1: Typical Design

site. Figure 1 depicts the steps from the moment when
a user visits a page containing an image until she down-
loads that image from its location on disk. When visiting
a page the user’s browser first sends an HTTP request
to a web server which is responsible for generating the
markup for the browser to render. For each image the
web server constructs a URL directing the browser to a
location from which to download the data. For popular
sites this URL often points to a CDN. If the CDN has
the image cached then the CDN responds immediately
with the data. Otherwise, the CDN examines the URL,
which has enough information embedded to retrieve the
photo from the site’s storage systems. The CDN then
updates its cached data and sends the image to the user’s
browser.

2.2 NFS-based Design

In our first design we implemented the photo storage
system using an NFS-based approach. While the rest
of this subsection provides more detail on that design,
the major lesson we learned is that CDNs by themselves
do not offer a practical solution to serving photos on a
social networking site. CDNs do effectively serve the
hottest photos— profile pictures and photos that have
been recently uploaded—but a social networking site
like Facebook also generates a large number of requests
for less popular (often older) content, which we refer to
as the long tail. Requests from the long tail account for a
significant amount of our traffic, almost all of which ac-
cesses the backing photo storage hosts as these requests
typically miss in the CDN. While it would be very con-
venient to cache all of the photos for this long tail, doing
so would not be cost effective because of the very large
cache sizes required.

Our NFS-based design stores each photo in its own
file on a set of commercial NAS appliances. A set of
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Figure 2: NFS-based Design

machines, Photo Store servers, then mount all the vol-
umes exported by these NAS appliances over NFS. Fig-
ure 2 illustrates this architecture and shows Photo Store
servers processing HTTP requests for images. From an
image’s URL a Photo Store server extracts the volume
and full path to the file, reads the data over NFS, and
returns the result to the CDN.

We initially stored thousands of files in each directory
of an NFS volume which led to an excessive number of
disk operations to read even a single image. Because
of how the NAS appliances manage directory metadata,
placing thousands of files in a directory was extremely
inefficient as the directory’s blockmap was too large to
be cached effectively by the appliance. Consequently
it was common to incur more than 10 disk operations to
retrieve a single image. After reducing directory sizes to
hundreds of images per directory, the resulting system
would still generally incur 3 disk operations to fetch an
image: one to read the directory metadata into memory,
a second to load the inode into memory, and a third to
read the file contents.

To further reduce disk operations we let the Photo
Store servers explicitly cache file handles returned by
the NAS appliances. When reading a file for the first
time a Photo Store server opens a file normally but also
caches the filename to file handle mapping in mem-
cache [18]. When requesting a file whose file handle
is cached, a Photo Store server opens the file directly
using a custom system call, open_by_filehandle, that
we added to the kernel. Regrettably, this file handle
cache provides only a minor improvement as less pop-
ular photos are less likely to be cached to begin with.

One could argue that an approach in which all file han-
dles are stored in memcache might be a workable solu-
tion. However, that only addresses part of the problem
as it relies on the NAS appliance having all of its in-
odes in main memory, an expensive requirement for tra-
ditional filesystems. The major lesson we learned from
the NAS approach is that focusing only on caching—
whether the NAS appliance’s cache or an external cache
like memcache—has limited impact for reducing disk
operations. The storage system ends up processing the
long tail of requests for less popular photos, which are
not available in the CDN and are thus likely to miss in
our caches.

2.3 Discussion

It would be difficult for us to offer precise guidelines
for when or when not to build a custom storage system.
However, we believe it still helpful for the community
to gain insight into why we decided to build Haystack.

Faced with the bottlenecks in our NFS-based design,
we explored whether it would be useful to build a sys-
tem similar to GFS [9]. Since we store most of our user
data in MySQL databases, the main use cases for files
in our system were the directories engineers use for de-
velopment work, log data, and photos. NAS appliances
offer a very good price/performance point for develop-
ment work and for log data. Furthermore, we leverage
Hadoop [11] for the extremely large log data. Serving
photo requests in the long tail represents a problem for
which neither MySQL, NAS appliances, nor Hadoop are
well-suited.

One could phrase the dilemma we faced as exist-
ing storage systems lacked the right RAM-to-disk ra-
tio. However, there is no right ratio. The system just
needs enough main memory so that all of the filesystem
metadata can be cached at once. In our NAS-based ap-
proach, one photo corresponds to one file and each file
requires at least one inode, which is hundreds of bytes
large. Having enough main memory in this approach is
not cost-effective. To achieve a better price/performance
point, we decided to build a custom storage system that
reduces the amount of filesystem metadata per photo so
that having enough main memory is dramatically more
cost-effective than buying more NAS appliances.

3 Design & Implementation

Facebook uses a CDN to serve popular images and
leverages Haystack to respond to photo requests in the
long tail efficiently. When a web site has an I/O bot-
tleneck serving static content the traditional solution is
to use a CDN. The CDN shoulders enough of the bur-
den so that the storage system can process the remaining
tail. At Facebook a CDN would have to cache an unrea-
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sonably large amount of the static content in order for
traditional (and inexpensive) storage approaches not to
be I/O bound.

Understanding that in the near future CDNs would not
fully solve our problems, we designed Haystack to ad-
dress the critical bottleneck in our NFS-based approach:
disk operations. We accept that requests for less popu-
lar photos may require disk operations, but aim to limit
the number of such operations to only the ones neces-
sary for reading actual photo data. Haystack achieves
this goal by dramatically reducing the memory used for
filesystem metadata, thereby making it practical to keep
all this metadata in main memory.

Recall that storing a single photo per file resulted
in more filesystem metadata than could be reasonably
cached. Haystack takes a straight-forward approach:
it stores multiple photos in a single file and therefore
maintains very large files. We show that this straight-
forward approach is remarkably effective. Moreover, we
argue that its simplicity is its strength, facilitating rapid
implementation and deployment. We now discuss how
this core technique and the architectural components
surrounding it provide a reliable and available storage
system. In the following description of Haystack, we
distinguish between two kinds of metadata. Applica-
tion metadata describes the information needed to con-
struct a URL that a browser can use to retrieve a photo.
Filesystem metadata identifies the data necessary for a
host to retrieve the photos that reside on that host’s disk.

3.1 Overview

The Haystack architecture consists of 3 core compo-
nents: the Haystack Store, Haystack Directory, and
Haystack Cache. For brevity we refer to these com-
ponents with ‘Haystack’ elided. The Store encapsu-
lates the persistent storage system for photos and is the
only component that manages the filesystem metadata
for photos. We organize the Store’s capacity by phys-
ical volumes. For example, we can organize a server’s
10 terabytes of capacity into 100 physical volumes each
of which provides 100 gigabytes of storage. We further
group physical volumes on different machines into logi-
cal volumes. When Haystack stores a photo on a logical
volume, the photo is written to all corresponding physi-
cal volumes. This redundancy allows us to mitigate data
loss due to hard drive failures, disk controller bugs, etc.
The Directory maintains the logical to physical mapping
along with other application metadata, such as the log-
ical volume where each photo resides and the logical
volumes with free space. The Cache functions as our in-
ternal CDN, which shelters the Store from requests for
the most popular photos and provides insulation if up-
stream CDN nodes fail and need to refetch content.

Haystack ! '
Directory Haystack : !
Store !
L =
2(13

iy

Svg:/t;r Haystack 1| 090 !

! 1

Cache | “00500° :
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Figure 3: Serving a photo

Figure 3 illustrates how the Store, Directory, and
Cache components fit into the canonical interactions be-
tween a user’s browser, web server, CDN, and storage
system. In the Haystack architecture the browser can be
directed to either the CDN or the Cache. Note that while
the Cache is essentially a CDN, to avoid confusion we
use ‘CDN’ to refer to external systems and ‘Cache’ to
refer to our internal one that caches photos. Having an
internal caching infrastructure gives us the ability to re-
duce our dependence on external CDNs.

When a user visits a page the web server uses the Di-
rectory to construct a URL for each photo. The URL
contains several pieces of information, each piece cor-
responding to the sequence of steps from when a user’s
browser contacts the CDN (or Cache) to ultimately re-
trieving a photo from a machine in the Store. A typical
URL that directs the browser to the CDN looks like the
following:

http://(CDN)/(Cache)/(Machine id)/(Logical volume, Photo)

The first part of the URL specifies from which CDN
to request the photo. The CDN can lookup the photo
internally using only the last part of the URL.: the logical
volume and the photo id. If the CDN cannot locate the
photo then it strips the CDN address from the URL and
contacts the Cache. The Cache does a similar lookup to
find the photo and, on a miss, strips the Cache address
from the URL and requests the photo from the specified
Store machine. Photo requests that go directly to the
Cache have a similar workflow except that the URL is
missing the CDN specific information.
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Figure 4 illustrates the upload path in Haystack.
When a user uploads a photo she first sends the data to a
web server. Next, that server requests a write-enabled
logical volume from the Directory. Finally, the web
server assigns a unique id to the photo and uploads it
to each of the physical volumes mapped to the assigned
logical volume.

3.2 Haystack Directory

The Directory serves four main functions. First, it pro-
vides a mapping from logical volumes to physical vol-
umes. Web servers use this mapping when uploading
photos and also when constructing the image URLSs for
a page request. Second, the Directory load balances
writes across logical volumes and reads across physi-
cal volumes. Third, the Directory determines whether
a photo request should be handled by the CDN or by
the Cache. This functionality lets us adjust our depen-
dence on CDNs. Fourth, the Directory identifies those
logical volumes that are read-only either because of op-
erational reasons or because those volumes have reached
their storage capacity. We mark volumes as read-only at
the granularity of machines for operational ease.

When we increase the capacity of the Store by adding
new machines, those machines are write-enabled; only
write-enabled machines receive uploads. Over time the
available capacity on these machines decreases. When a
machine exhausts its capacity, we mark it as read-only.
In the next subsection we discuss how this distinction
has subtle consequences for the Cache and Store.

The Directory is a relatively straight-forward compo-
nent that stores its information in a replicated database
accessed via a PHP interface that leverages memcache

I

Haystack i
Store

I

I

to reduce latency. In the event that we lose the data on
a Store machine we remove the corresponding entry in
the mapping and replace it when a new Store machine is
brought online.

3.3 Haystack Cache

The Cache receives HTTP requests for photos from
CDNs and also directly from users’ browsers. We or-
ganize the Cache as a distributed hash table and use a
photo’s id as the key to locate cached data. If the Cache
cannot immediately respond to the request, then the
Cache fetches the photo from the Store machine iden-
tified in the URL and replies to either the CDN or the
user’s browser as appropriate.

We now highlight an important behavioral aspect of
the Cache. It caches a photo only if two conditions
are met: (a) the request comes directly from a user and
not the CDN and (b) the photo is fetched from a write-
enabled Store machine. The justification for the first
condition is that our experience with the NFS-based de-
sign showed post-CDN caching is ineffective as it is un-
likely that a request that misses in the CDN would hit in
our internal cache. The reasoning for the second is in-
direct. We use the Cache to shelter write-enabled Store
machines from reads because of two interesting proper-
ties: photos are most heavily accessed soon after they
are uploaded and filesystems for our workload gener-
ally perform better when doing either reads or writes
but not both (Section 4.1). Thus the write-enabled Store
machines would see the most reads if it were not for
the Cache. Given this characteristic, an optimization we
plan to implement is to proactively push recently up-
loaded photos into the Cache as we expect those photos
to be read soon and often.

3.4 Haystack Store

The interface to Store machines is intentionally basic.
Reads make very specific and well-contained requests
asking for a photo with a given id, for a certain logical
volume, and from a particular physical Store machine.
The machine returns the photo if it is found. Otherwise,
the machine returns an error.

Each Store machine manages multiple physical vol-
umes. Each volume holds millions of photos. For
concreteness, the reader can think of a physical vol-
ume as simply a very large file (100 GB) saved as
‘/hay/haystack _<logical volume id>’. A Store machine
can access a photo quickly using only the id of the cor-
responding logical volume and the file offset at which
the photo resides. This knowledge is the keystone of
the Haystack design: retrieving the filename, offset, and
size for a particular photo without needing disk opera-
tions. A Store machine keeps open file descriptors for
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Figure 5: Layout of Haystack Store file

Field Explanation

Header Magic number used for recovery

Cookie Random number to mitigate
brute force lookups

Key 64-bit photo id

Alternate key 32-bit supplemental id

Flags Signifies deleted status

Size Data size

Data The actual photo data

Footer Magic number for recovery

Data Checksum | Used to check integrity

Padding Total needle size is aligned to 8 bytes

Table 1: Explanation of fields in a needle

each physical volume that it manages and also an in-
memory mapping of photo ids to the filesystem meta-
data (i.e., file, offset and size in bytes) critical for re-
trieving that photo.

We now describe the layout of each physical volume
and how to derive the in-memory mapping from that
volume. A Store machine represents a physical volume
as a large file consisting of a superblock followed by
a sequence of needles. Each needle represents a photo
stored in Haystack. Figure 5 illustrates a volume file and
the format of each needle. Table 1 describes the fields
in each needle.

To retrieve needles quickly, each Store machine main-
tains an in-memory data structure for each of its vol-
umes. That data structure maps pairs of (key, alter-
nate key)? to the corresponding needle’s flags, size in

2For historical reasons, a photo’s id corresponds to the key while its
type is used for the alternate key. During an upload, web servers scale
each photo to four different sizes (or types) and store them as separate
needles, but with the same key. The important distinction among these

bytes, and volume offset. After a crash, a Store machine
can reconstruct this mapping directly from the volume
file before processing requests. We now describe how
a Store machine maintains its volumes and in-memory
mapping while responding to read, write, and delete re-
quests (the only operations supported by the Store).

3.4.1 Photo Read

When a Cache machine requests a photo it supplies the
logical volume id, key, alternate key, and cookie to the
Store machine. The cookie is a number embedded in
the URL for a photo. The cookie’s value is randomly
assigned by and stored in the Directory at the time that
the photo is uploaded. The cookie effectively eliminates
attacks aimed at guessing valid URLSs for photos.

When a Store machine receives a photo request from a
Cache machine, the Store machine looks up the relevant
metadata in its in-memory mappings. If the photo has
not been deleted the Store machine seeks to the appro-
priate offset in the volume file, reads the entire needle
from disk (whose size it can calculate ahead of time),
and verifies the cookie and the integrity of the data. If
these checks pass then the Store machine returns the
photo to the Cache machine.

3.4.2 Photo Write

When uploading a photo into Haystack web servers pro-
vide the logical volume id, key, alternate key, cookie,
and data to Store machines. Each machine syn-
chronously appends needle images to its physical vol-
ume files and updates in-memory mappings as needed.
While simple, this append-only restriction complicates
some operations that modify photos, such as rotations.
As Haystack disallows overwriting needles, photos can
only be modified by adding an updated needle with the
same key and alternate key. If the new needle is written
to a different logical volume than the original, the Direc-
tory updates its application metadata and future requests
will never fetch the older version. If the new needle is
written to the same logical volume, then Store machines
append the new needle to the same corresponding physi-
cal volumes. Haystack distinguishes such duplicate nee-
dles based on their offsets. That is, the latest version of a
needle within a physical volume is the one at the highest
offset.

3.4.3 Photo Delete

Deleting a photo is straight-forward. A Store machine
sets the delete flag in both the in-memory mapping
and synchronously in the volume file. Requests to get
deleted photos first check the in-memory flag and return
errors if that flag is enabled. Note that the space occu-

needles is the alternate key field, which in decreasing order can be ‘n,

a, ‘s, or ‘t’.
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Figure 6: Layout of Haystack Index file

pied by deleted needles is for the moment lost. Later,
we discuss how to reclaim deleted needle space by com-
pacting volume files.

3.4.4 The Index File

Store machines use an important optimization—the in-
dex file—when rebooting. While in theory a machine
can reconstruct its in-memory mappings by reading all
of its physical volumes, doing so is time-consuming as
the amount of data (terabytes worth) has to all be read
from disk. Index files allow a Store machine to build its
in-memory mappings quickly, shortening restart time.

Store machines maintain an index file for each of
their volumes. The index file is a checkpoint of the in-
memory data structures used to locate needles efficiently
on disk. An index file’s layout is similar to a volume
file’s, containing a superblock followed by a sequence
of index records corresponding to each needle in the su-
perblock. These records must appear in the same order
as the corresponding needles appear in the volume file.
Figure 6 illustrates the layout of the index file and Ta-
ble 2 explains the different fields in each record.

Restarting using the index is slightly more compli-
cated than just reading the indices and initializing the
in-memory mappings. The complications arise because
index files are updated asynchronously, meaning that
index files may represent stale checkpoints. When we
write a new photo the Store machine synchronously ap-
pends a needle to the end of the volume file and asyn-
chronously appends a record to the index file. When
we delete a photo, the Store machine synchronously sets
the flag in that photo’s needle without updating the in-
dex file. These design decisions allow write and delete
operations to return faster because they avoid additional
synchronous disk writes. They also cause two side ef-
fects we must address: needles can exist without corre-
sponding index records and index records do not reflect
deleted photos.

Field ‘ Explanation
Key 64-bit key
Alternate key | 32-bit alternate key

Flags Currently unused
Offset Needle offset in the Haystack Store
Size Needle data size

Table 2: Explanation of fields in index file.

We refer to needles without corresponding index
records as orphans. During restarts, a Store machine
sequentially examines each orphan, creates a match-
ing index record, and appends that record to the index
file. Note that we can quickly identify orphans because
the last record in the index file corresponds to the last
non-orphan needle in the volume file. To complete the
restart, the Store machine now initializes its in-memory
mappings using only the index files.

Since index records do not reflect deleted photos, a
Store machine may retrieve a photo that has in fact been
deleted. To address this issue, after a Store machine
reads the entire needle for a photo, that machine can
then inspect the deleted flag. If a needle is marked as
deleted the Store machine updates its in-memory map-
ping accordingly and notifies the Cache that the object
was not found.

3.4.5 Filesystem

We describe Haystack as an object store that utilizes
a generic Unix-like filesystem, but some filesystems
are better suited for Haystack than others. In partic-
ular, the Store machines should use a filesystem that
does not need much memory to be able to perform ran-
dom seeks within a large file quickly. Currently, each
Store machine uses XFS [24], an extent based file sys-
tem. XFS has two main advantages for Haystack. First,
the blockmaps for several contiguous large files can
be small enough to be stored in main memory. Sec-
ond, XFS provides efficient file preallocation, mitigat-
ing fragmentation and reining in how large block maps
can grow.

Using XFS, Haystack can eliminate disk operations
for retrieving filesystem metadata when reading a photo.
This benefit, however, does not imply that Haystack can
guarantee every photo read will incur exactly one disk
operation. There exists corner cases where the filesys-
tem requires more than one disk operation when photo
data crosses extents or RAID boundaries. Haystack pre-
allocates 1 gigabyte extents and uses 256 kilobyte RAID
stripe sizes so that in practice we encounter these cases
rarely.
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3.5 Recovery from failures

Like many other large-scale systems running on com-
modity hardware [5, 4, 9], Haystack needs to tolerate
a variety of failures: faulty hard drives, misbehaving
RAID controllers, bad motherboards, etc. We use two
straight-forward techniques to tolerate failures—one for
detection and another for repair.

To proactively find Store machines that are having
problems, we maintain a background task, dubbed pitch-
fork, that periodically checks the health of each Store
machine. Pitchfork remotely tests the connection to
each Store machine, checks the availability of each vol-
ume file, and attempts to read data from the Store ma-
chine. If pitchfork determines that a Store machine con-
sistently fails these health checks then pitchfork auto-
matically marks all logical volumes that reside on that
Store machine as read-only. We manually address the
underlying cause for the failed checks offline.

Once diagnosed, we may be able to fix the prob-
lem quickly. Occasionally, the situation requires a more
heavy-handed bulk sync operation in which we reset the
data of a Store machine using the volume files supplied
by a replica. Bulk syncs happen rarely (a few each
month) and are simple albeit slow to carry out. The main
bottleneck is that the amount of data to be bulk synced is
often orders of magnitude greater than the speed of the
NIC on each Store machine, resulting in hours for mean
time to recovery. We are actively exploring techniques
to address this constraint.

3.6 Optimizations

We now discuss several optimizations important to
Haystack’s success.

3.6.1

Compaction is an online operation that reclaims the
space used by deleted and duplicate needles (needles
with the same key and alternate key). A Store machine
compacts a volume file by copying needles into a new
file while skipping any duplicate or deleted entries. Dur-
ing compaction, deletes go to both files. Once this pro-
cedure reaches the end of the file, it blocks any further
modifications to the volume and atomically swaps the
files and in-memory structures.

We use compaction to free up space from deleted pho-
tos. The pattern for deletes is similar to photo views:
young photos are a lot more likely to be deleted. Over
the course of a year, about 25% of the photos get deleted.

3.6.2 Saving more memory

Compaction

As described, a Store machine maintains an in-memory
data structure that includes flags, but our current system
only uses the flags field to mark a needle as deleted. We
eliminate the need for an in-memory representation of

flags by setting the offset to be 0 for deleted photos. In
addition, Store machines do not keep track of cookie
values in main memory and instead check the supplied
cookie after reading a needle from disk. Store machines
reduce their main memory footprints by 20% through
these two techniques.

Currently, Haystack uses on average 10 bytes of main
memory per photo. Recall that we scale each uploaded
image to four photos all with the same key (64 bits), dif-
ferent alternate keys (32 bits), and consequently differ-
ent data sizes (16 bits). In addition to these 32 bytes,
Haystack consumes approximately 2 bytes per image
in overheads due to hash tables, bringing the total for
four scaled photos of the same image to 40 bytes. For
comparison, consider that an xfs_inode_t structure in
Linux is 536 bytes.

3.6.3 Batch upload

Since disks are generally better at performing large se-
quential writes instead of small random writes, we batch
uploads together when possible. Fortunately, many
users upload entire albums to Facebook instead of single
pictures, providing an obvious opportunity to batch the
photos in an album together. We quantify the improve-
ment of aggregating writes together in Section 4.

4 Evaluation

We divide our evaluation into four parts. In the first we
characterize the photo requests seen by Facebook. In
the second and third we show the effectiveness of the
Directory and Cache, respectively. In the last we ana-
lyze how well the Store performs using both synthetic
and production workloads.

4.1 Characterizing photo requests

Photos are one of the primary kinds of content that users
share on Facebook. Users upload millions of photos ev-
ery day and recently uploaded photos tend to be much
more popular than older ones. Figure 7 illustrates how
popular each photo is as a function of the photo’s age.
To understand the shape of the graph, it is useful to dis-
cuss what drives Facebook’s photo requests.

4.1.1 Features that drive photo requests

Two features are responsible for 98% of Facebook’s
photo requests: News Feed and albums. The News Feed
feature shows users recent content that their friends have
shared. The album feature lets a user browse her friends’
pictures. She can view recently uploaded photos and
also browse all of the individual albums.

Figure 7 shows a sharp rise in requests for photos that
are a few days old. News Feed drives much of the traffic
for recent photos and falls sharply away around 2 days
when many stories stop being shown in the default Feed
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Figure 7: Cumulative distribution function of the num-
ber of photos requested in a day categorized by age (time
since it was uploaded).

Operations Daily Counts

Photos Uploaded ~120 Million

Haystack Photos Written ~1.44 Billion

Photos Viewed 80-100 Billion

[ Thumbnails ] 10.2 %

[ Small ] 84.4 %

[ Medium ] 0.2 %

[ Large ] 52 %

Haystack Photos Read 10 Billion

Table 3: Volume of daily photo traffic.

view. There are two key points to highlght from the fig-
ure. First, the rapid decline in popularity suggests that
caching at both CDNs and in the Cache can be very ef-
fective for hosting popular content. Second, the graph
has a long tail implying that a significant number of re-
quests cannot be dealt with using cached data.

4.1.2 Traffic Volume

Table 3 shows the volume of photo traffic on Facebook.
The number of Haystack photos written is 12 times the
number of photos uploaded since our application scales
each image to 4 sizes and saves each size in 3 different
locations. The table shows that Haystack responds to
approximately 10% of all photo requests from CDNss.
Observe that smaller images account for most of the
photos viewed. This trait underscores our desire to min-
imize metadata overhead as inefficiencies can quickly
add up. Additionally, reading smaller images is typi-
cally a more latency sensitive operation for Facebook as
they are displayed in the News Feed whereas larger im-
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Figure 8: Volume of multi-write operations sent to 9
different write-enabled Haystack Store machines. The
graph has 9 different lines that closely overlap each
other.

ages are shown in albums and can be prefetched to hide
latency.

4.2 Haystack Directory

The Haystack Directory balances reads and writes
across Haystack Store machines. Figure 8 depicts that as
expected, the Directory’s straight-forward hashing pol-
icy to distribute reads and writes is very effective. The
graph shows the number of multi-write operations seen
by 9 different Store machines which were deployed into
production at the same time. Each of these boxes store a
different set of photos. Since the lines are nearly indis-
tinguishable, we conclude that the Directory balances
writes well. Comparing read traffic across Store ma-
chines shows similarly well-balanced behavior.

4.3 Haystack Cache

Figure 9 shows the hit rate for the Haystack Cache. Re-
call that the Cache only stores a photo if it is saved on
a write-enabled Store machine. These photos are rel-
atively recent, which explains the high hit rates of ap-
proximately 80%. Since the write-enabled Store ma-
chines would also see the greatest number of reads, the
Cache is effective in dramatically reducing the read re-
quest rate for the machines that would be most affected.

4.4 Haystack Store

Recall that Haystack targets the long tail of photo re-
quests and aims to maintain high-throughput and low-
latency despite seemingly random reads. We present
performance results of Store machines on both synthetic
and production workloads.
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Reads Writes
Benchmark [ Config # Operations Thr oughput Latency (in ms) 'I:hl.‘Ollghput Latency (in ms)
(in images/s) Avg. Std. dev. (in images/s) Avg. Std. dev.

Random IO [ Only Reads ] 902.3 332 26.8 — — —

Haystress [ A # Only Reads ] 770.6 38.9 30.2 - — -

Haystress [ B # Only Reads ] 877.8 34.2 28.1 — — —
Haystress [ C # Only Multi-Writes ] — — - 6099.4 4.9 16.0
Haystress [ D # Only Multi-Writes ] — — — 7899.7 15.2 15.3
Haystress [ E # Only Multi-Writes ] - - - 10843.8 439 16.3
Haystress [ F # Reads & Multi-Writes ] 718.1 41.6 31.6 232.0 11.9 6.3
Haystress [ G # Reads & Multi-Writes ] 692.8 42.8 33.7 440.0 11.9 6.9

Table 4: Throughput and latency of read and multi-write operations on synthetic workloads. Config B uses a mix of
8KB and 64KB images. Remaining configs use 64KB images.
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Figure 9: Cache hit rate for images that might be poten-
tially stored in the Haystack Cache.

4.4.1

We deploy Store machines on commodity storage
blades. The typical hardware configuration of a 2U stor-
age blade has 2 hyper-threaded quad-core Intel Xeon
CPUs, 48 GB memory, a hardware raid controller with
256-512MB NVRAM, and 12 x 1TB SATA drives.
Each storage blade provides approximately 9TB of
capacity, configured as a RAID-6 partition managed by
the hardware RAID controller. RAID-6 provides ade-
quate redundancy and excellent read performance while
keeping storage costs down. The controller’s NVRAM
write-back cache mitigates RAID-6’s reduced write per-
formance. Since our experience suggests that caching
photos on Store machines is ineffective, we reserve the
NVRAM fully for writes. We also disable disk caches
in order to guarantee data consistency in the event of a

Experimental setup

crash or power loss.
4.4.2 Benchmark performance

We assess the performance of a Store machine using two
benchmarks: Randomio [22] and Haystress. Randomio
is an open-source multithreaded disk I/O program that
we use to measure the raw capabilities of storage de-
vices. It issues random 64KB reads that use direct I/O to
make sector aligned requests and reports the maximum
sustainable throughput. We use Randomio to establish a
baseline for read throughput against which we can com-
pare results from our other benchmark.

Haystress is a custom built multi-threaded program
that we use to evaluate Store machines for a variety of
synthetic workloads. It communicates with a Store ma-
chine via HTTP (as the Cache would) and assesses the
maximum read and write throughput a Store machine
can maintain. Haystress issues random reads over a
large set of dummy images to reduce the effect of the
machine’s buffer cache; that is, nearly all reads require
a disk operation. In this paper, we use seven different
Haystress workloads to evaluate Store machines.

Table 4 characterizes the read and write throughputs
and associated latencies that a Store machine can sus-
tain under our benchmarks. Workload A performs ran-
dom reads to 64KB images on a Store machine with 201
volumes. The results show that Haystack delivers 85%
of the raw throughput of the device while incurring only
17% higher latency.

We attribute a Store machine’s overhead to four fac-
tors: (a) it runs on top of the filesystem instead of access-
ing disk directly; (b) disk reads are larger than 64KB as
entire needles need to be read; (c) stored images may
not be aligned to the underlying RAID-6 device stripe
size so a small percentage of images are read from more
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than one disk; and (d) CPU overhead of Haystack server
(index access, checksum calculations, etc.)

In workload B, we again examine a read-only work-
load but alter 70% of the reads so that they request
smaller size images (8KB instead of 64KB). In practice,
we find that most requests are not for the largest size
images (as would be shown in albums) but rather for the
thumbnails and profile pictures.

Workloads C, D, and E show a Store machine’s write
throughput. Recall that Haystack can batch writes to-
gether. Workloads C, D, and E group 1, 4, and 16 writes
into a single multi-write, respectively. The table shows
that amortizing the fixed cost of writes over 4 and 16
images improves throughput by 30% and 78% respec-
tively. As expected, this reduces per image latency, as
well.

Finally, we look at the performance in the presence
of both read and write operations. Workload F uses a
mix of 98% reads and 2% multi-writes while G uses
a mix of 96% reads and 4% multi-writes where each
multi-write writes 16 images. These ratios reflect what
is often observed in production. The table shows that the
Store delivers high read throughput even in the presence
of writes.

4.4.3 Production workload

The section examines the performance of the Store on
production machines. As noted in Section 3, there
are two classes of Stores—write-enabled and read-only.
Write-enabled hosts service read and write requests,
read-only hosts only service read requests. Since these
two classes have fairly different traffic characteristics,
we analyze a group of machines in each class. All ma-
chines have the same hardware configuration.

Viewed at a per-second granularity, there can be large
spikes in the volume of photo read and write operations
that a Store box sees. To ensure reasonable latency even
in the presence of these spikes, we conservatively allo-
cate a large number of write-enabled machines so that
their average utilization is low.

Figure 10 shows the frequency of the different types
of operations on a read-only and a write-enabled Store
machine. Note that we see peak photo uploads on Sun-
day and Monday, with a smooth drop the rest of the
week until we level out on Thursday to Saturday. Then
a new Sunday arrives and we hit a new weekly peak. In
general our footprint grows by 0.2% to 0.5% per day.

As noted in Section 3, write operations to the Store
are always multi-writes on production machines to
amortize the fixed cost of write operations. Finding
groups of images is fairly straightforward since 4 dif-
ferent sizes of each photo is stored in Haystack. It is
also common for users to upload a batch of photos into
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Figure 10: Rate of different operations on two Haystack
Store machines: One read-only and the other write-
enabled.

a photo album. As a combination of these two factors,
the average number of images written per multi-write
for this write-enabled machine is 9.27.

Section 4.1.2 explained that both read and delete rates
are high for recently uploaded photos and drop over
time. This behavior can be also be observed in Fig-
ure 10; the write-enabled boxes see many more requests
(even though some of the read traffic is served by the
Cache).

Another trend worth noting: as more data gets written
to write-enabled boxes the volume of photos increases,
resulting in an increase in the read request rate.

Figure 11 shows the latency of read and multi-write
operations on the same two machines as Figure 10 over
the same period.

The latency of multi-write operations is fairly low
(between 1 and 2 milliseconds) and stable even as the
volume of traffic varies dramatically. Haystack ma-
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Figure 11: Average latency of Read and Multi-write op-
erations on the two Haystack Store machines in Fig-
ure 10 over the same 3 week period.

chines have a NVRAM-backed raid controller which
buffers writes for us. As described in Section 3, the
NVRAM allows us to write needles asynchronously and
then issue a single fsync to flush the volume file once the
multi-write is complete. Multi-write latencies are very
flat and stable.

The latency of reads on a read-only box is also fairly
stable even as the volume of traffic varies significantly
(up to 3x over the 3 week period). For a write-enabled
box the read performance is impacted by three primary
factors. First, as the number of photos stored on the ma-
chine increases, the read traffic to that machine also in-
creases (compare week-over-week traffic in figure 10).
Second, photos on write-enabled machines are cached
in the Cache while they are not cached for a read-only
machine?. This suggests that the buffer cache would be
more effective for a read-only machine. Third, recently
written photos are usually read back immediately be-
cause Facebook highlights recent content. Such reads on
Write-enabled boxes will always hit in the buffer cache
and improve the hit rate of the buffer cache. The shape
of the line in the figure is the result of a combination of
these three factors.

The CPU utilization on the Store machines is low.
CPU idle time varies between 92-96%.

5 Related Work

To our knowledge, Haystack targets a new design point
focusing on the long tail of photo requests seen by a

3Note that for traffic coming through a CDN, they are cached in
the CDNSs and not in the Cache in both instances

large social networking website.

Filesystems Haystack takes after log-structured filesys-
tems [23] which Rosenblum and Ousterhout designed
to optimize write throughput with the idea that most
reads could be served out of cache. While measure-
ments [3] and simulations [6] have shown that log-
structured filesystems have not reached their full poten-
tial in local filesystems, the core ideas are very relevant
to Haystack. Photos are appended to physical volume
files in the Haystack Store and the Haystack Cache shel-
ters write-enabled machines from being overwhelmed
by the request rate for recently uploaded data. The key
differences are (a) that the Haystack Store machines
write their data in such a way that they can efficiently
serve reads once they become read-only and (b) the read
request rate for older data decreases over time.

Several works [8, 19, 28] have proposed how to
manage small files and metadata more efficiently. The
common thread across these contributions is how to
group related files and metadata together intelligently.
Haystack obviates these problems since it maintains
metadata in main memory and users often upload
related photos in bulk.

Object-based storage Haystack’s architecture shares
many similarities with object storage systems proposed
by Gibson et al. [10] in Network-Attached Secure Disks
(NASD). The Haystack Directory and Store are perhaps
most similar to the File and Storage Manager concepts,
respectively, in NASD that separate the logical storage
units from the physical ones. In OBFS [25], Wang et
al. build a user-level object-based filesystem that is i
the size of XFS. Although OBFS achieves greater write
throughput than XFS, its read throughput (Haystack’s
main concern) is slightly worse.

Managing metadata Weil et al. [26, 27] address
scaling metadata management in Ceph, a petabyte-scale
object store. Ceph further decouples the mapping from
logical units to physical ones by introducing generating
functions instead of explicit mappings. Clients can cal-
culate the appropriate metadata rather than look it up.
Implementing this technique in Haystack remains future
work. Hendricks et. al [13] observe that traditional
metadata pre-fetching algorithms are less effective for
object stores because related objects, which are identi-
fied by a unique number, lack the semantic groupings
that directories implicitly impose. Their solution is to
embed inter-object relationships into the object id. This
idea is orthogonal to Haystack as Facebook explicitly
stores these semantic relationships as part of the social
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graph. In Spyglass [15], Leung et al. propose a design
for quickly and scalably searching through metadata
of large-scale storage systems. Manber and Wu also
propose a way to search through entire filesystems in
GLIMPSE [17]. Patil et al. [20] use a sophisticated
algorithm in GIGA+ to manage the metadata associated
with billions of files per directory. We engineered a
simpler solution than many existing works as Haystack
does not have to provide search features nor traditional
UNIX filesystem semantics.

Distributed filesystems Haystack’s notion of a logi-
cal volume is similar to Lee and Thekkath’s [14] vir-
tual disks in Petal. The Boxwood project [16] explores
using high-level data structures as the foundation for
storage. While compelling for more complicated al-
gorithms, abstractions like B-trees may not have high
impact on Haystack’s intentionally lean interface and
semantics. Similarly, Sinfonia’s [1] mini-transactions
and PNUTS’s [5] database functionality provide more
features and stronger guarantees than Haystack needs.
Ghemawat et al. [9] designed the Google File System
for a workload consisting mostly of append operations
and large sequential reads. Bigtable [4] provides a stor-
age system for structured data and offers database-like
features for many of Google’s projects. It is unclear
whether many of these features make sense in a system
optimized for photo storage.

6 Conclusion

This paper describes Haystack, an object storage sys-
tem designed for Facebook’s Photos application. We de-
signed Haystack to serve the long tail of requests seen
by sharing photos in a large social network. The key
insight is to avoid disk operations when accessing meta-
data. Haystack provides a fault-tolerant and simple solu-
tion to photo storage at dramatically less cost and higher
throughput than a traditional approach using NAS appli-
ances. Furthermore, Haystack is incrementally scalable,
a necessary quality as our users upload hundreds of mil-
lions of photos each week.
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Abstract

Highly available cloud storage is often implemented with
complex, multi-tiered distributed systems built on top
of clusters of commodity servers and disk drives. So-
phisticated management, load balancing and recovery
techniques are needed to achieve high performance and
availability amidst an abundance of failure sources that
include software, hardware, network connectivity, and
power issues. While there is a relative wealth of fail-
ure studies of individual components of storage systems,
such as disk drives, relatively little has been reported so
far on the overall availability behavior of large cloud-
based storage services.

We characterize the availability properties of cloud
storage systems based on an extensive one year study of
Google’s main storage infrastructure and present statis-
tical models that enable further insight into the impact
of multiple design choices, such as data placement and
replication strategies. With these models we compare
data availability under a variety of system parameters
given the real patterns of failures observed in our fleet.

1 Introduction

Cloud storage is often implemented by complex multi-
tiered distributed systems on clusters of thousands of
commodity servers. For example, in Google we run
Bigtable [9], on GFS [16], on local Linux file systems
that ultimately write to local hard drives. Failures in any
of these layers can cause data unavailability.

Correctly designing and optimizing these multi-
layered systems for user goals such as data availability
relies on accurate models of system behavior and perfor-
mance. In the case of distributed storage systems, this
includes quantifying the impact of failures and prioritiz-
ing hardware and software subsystem improvements in

*Now at Dept. of Industrial Engineering and Operations Research
Columbia University

the datacenter environment.

We present models we derived from studying a year of
live operation at Google and describe how our analysis
influenced the design of our next generation distributed
storage system [22].

Our work is presented in two parts. First, we measured
and analyzed the component availability, e.g. machines,
racks, multi-racks, in tens of Google storage clusters. In
this part we:

e Compare mean time to failure for system compo-
nents at different granularities, including disks, ma-
chines and racks of machines. (Section 3)

o Classify the failure causes for storage nodes, their
characteristics and contribution to overall unavail-
ability. (Section 3)

e Apply a clustering heuristic for grouping failures
which occurs almost simultaneously and show that
a large fraction of failures happen in bursts. (Sec-
tion 4)

e Quantify how likely a failure burst is associated
with a given failure domain. We find that most large
bursts of failures are associated with rack- or multi-
rack level events. (Section 4)

Based on these results, we determined that the criti-
cal element in models of availability is their ability to
account for the frequency and magnitude of correlated
failures.

Next, we consider data availability by analyzing un-
availability at the distributed file system level, where one
file system instance is referred to as a cell. We apply two
models of multi-scale correlated failures for a variety of
replication schemes and system parameters. In this part
we:

e Demonstrate the importance of modeling correlated
failures when predicting availability, and show their
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impact under a variety of replication schemes and
placement policies. (Sections 5 and 6)

e Formulate a Markov model for data availability, that
can scale to arbitrary cell sizes, and captures the in-
teraction of failures with replication policies and re-
covery times. (Section 7)

e Introduce multi-cell replication schemes and com-
pare the availability and bandwidth trade-offs
against single-cell schemes. (Sections 7 and 8)

e Show the impact of hardware failure on our cells is
significantly smaller than the impact of effectively
tuning recovery and replication parameters. (Sec-
tion 8)

Our results show the importance of considering
cluster-wide failure events in the choice of replication
and recovery policies.

2 Background

We study end to end data availability in a cloud com-
puting storage environment. These environments often
use loosely coupled distributed storage systems such as
GFS [1, 16] due to the parallel I/O and cost advantages
they provide over traditional SAN and NAS solutions. A
few relevant characteristics of such systems are:

e Storage server programs running on physical ma-
chines in a datacenter, managing local disk storage
on behalf of the distributed storage cluster. We refer
to the storage server programs as storage nodes or
nodes.

e A pool of storage service masters managing data
placement, load balancing and recovery, and moni-
toring of storage nodes.

e A replication or erasure code mechanism for user
data to provide resilience to individual component
failures.

A large collection of nodes along with their higher
level coordination processes [17] are called a cell or
storage cell. These systems usually operate in a shared
pool of machines running a wide variety of applications.
A typical cell may comprise many thousands of nodes
housed together in a single building or set of colocated
buildings.

2.1 Availability

A storage node becomes unavailable when it fails to re-
spond positively to periodic health checking pings sent
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Figure 1: Cumulative distribution function of the duration of
node unavailability periods.

by our monitoring system. The node remains unavail-
able until it regains responsiveness or the storage system
reconstructs the data from other surviving nodes.

Nodes can become unavailable for a large number of
reasons. For example, a storage node or networking
switch can be overloaded; a node binary or operating
system may crash or restart; a machine may experience
a hardware error; automated repair processes may tem-
porarily remove disks or machines; or the whole clus-
ter could be brought down for maintenance. The vast
majority of such unavailability events are transient and
do not result in permanent data loss. Figure 1 plots the
CDF of node unavailability duration, showing that less
than 10% of events last longer than 15 minutes. This
data is gathered from tens of Google storage cells, each
with 1000 to 7000 nodes, over a one year period. The
cells are located in different datacenters and geographi-
cal regions, and have been used continuously by different
projects within Google. We use this dataset throughout
the paper, unless otherwise specified.

Experience shows that while short unavailability
events are most frequent, they tend to have a minor im-
pact on cluster-level availability and data loss. This is
because our distributed storage systems typically add
enough redundancy to allow data to be served from other
sources when a particular node is unavailable. Longer
unavailability events, on the other hand, make it more
likely that faults will overlap in such a way that data
could become unavailable at the cluster level for long
periods of time. Therefore, while we track unavailabil-
ity metrics at multiple time scales in our system, in this
paper we focus only on events that are 15 minutes or
longer. This interval is long enough to exclude the ma-
jority of benign transient events while not too long to ex-
clude significant cluster-wide phenomena. Asin [11], we
observe that initiating recovery after transient failures is
inefficient and reduces resources available for other op-
erations. For these reasons, GFS typically waits 15 min-
utes before commencing recovery of data on unavailable
nodes.
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We primarily use two metrics throughout this paper.
The average availability of all /V nodes in a cell is defined
as:

ZNieN uptime(V;)

A =
N > n,en (uptime(N;) + downtime(N;))

(D

We use uptime(V;) and downtime(V;) to refer to the
lengths of time a node N, is available or unavailable, re-
spectively. The sum of availability periods over all nodes
is called node uptime. We define uptime similarly for
other component types. We define unavailability as the
complement of availability.

Mean time to failure, or MTTF, is commonly quoted
in the literature related to the measurements of availabil-
ity. We use MTTF for components that suffer transient
or permanent failures, to avoid frequent switches in ter-
minology.

MTTF — — 2PUme )
number failures

Availability measurements for nodes and individual
components in our system are presented in Section 3.

2.2 Data replication

Distributed storage systems increase resilience to fail-
ures by using replication [2] or erasure encoding across
nodes [28]. In both cases, data is divided into a set of
stripes, each of which comprises a set of fixed size data
and code blocks called chunks. Data in a stripe can be re-
constructed from some subsets of the chunks. For repli-
cation, R = n refers to n identical chunks in a stripe,
so the data may be recovered from any one chunk. For
Reed-Solomon erasure encoding, RS(n,m) denotes n
distinct data blocks and m error correcting blocks in each
stripe. In this case a stripe may be reconstructed from any
n chunks.

We call a chunk available if the node it is stored on
is available. We call a stripe available if enough of its
chunks are available to reconstruct the missing chunks,
if any.

Data availability is a complex function of the individ-
ual node availability, the encoding scheme used, the dis-
tribution of correlated node failures, chunk placement,
and recovery times that we will explore in the second part
of this paper. We do not explore related mechanisms for
dealing with failures, such as additional application level
redundancy and recovery, and manual component repair.

3 Characterizing Node Availability

Anything that renders a storage node unresponsive is
a potential cause of unavailability, including hardware

component failures, software bugs, crashes, system re-
boots, power loss events, and loss of network connec-
tivity. We include in our analysis the impact of software
upgrades, reconfiguration, and other maintenance. These
planned outages are necessary in a fast evolving datacen-
ter environment, but have often been overlooked in other
availability studies. In this section we present data for
storage node unavailability and provide some insight into
the main causes for unavailability.

3.1 Numbers from the fleet

Failure patterns vary dramatically across different hard-
ware platforms, datacenter operating environments, and
workloads. We start by presenting numbers for disks.

Disks have been the focus of several other studies,
since they are the system component that permanently
stores the data, and thus a disk failure potentially results
in permanent data loss. The numbers we observe for disk
and storage subsystem failures, presented in Table 2, are
comparable with what other researchers have measured.
One study [29] reports ARR (annual replacement rate)
for disks between 2% and 4%. Another study [19] fo-
cused on storage subsystems, thus including errors from
shelves, enclosures, physical interconnects, protocol fail-
ures, and performance failures. They found AFR (annual
failure rate) generally between 2% and 4%, but for some
storage systems values ranging between 3.9% and 8.3%.

For the purposes of this paper, we are interested in
disk errors as perceived by the application layer. This
includes latent sector errors and corrupt sectors on disks,
as well as errors caused by firmware, device drivers, con-
trollers, cables, enclosures, silent network and memory
corruption, and software bugs. We deal with these er-
rors with background scrubbing processes on each node,
as in [5, 31], and by verifying data integrity during client
reads [4]. Background scrubbing in GFS finds between
1 in 10% to 107 of older data blocks do not match the
checksums recorded when the data was originally writ-
ten. However, these cell-wide rates are typically concen-
trated on a small number of disks.

We are also concerned with node failures in addition
to individual disk failures. Figure 2 shows the distribu-
tion of three mutually exclusive causes of node unavail-
ability in one of our storage cells. We focus on node
restarts (software restarts of the storage program running
on each machine), planned machine reboots (e.g. ker-
nel version upgrades), and unplanned machine reboots
(e.g. kernel crashes). For the purposes of this figure we
do not exclude events that last less than 15 minutes, but
we still end the unavailability period when the system
reconstructs all the data previously stored on that node.
Node restart events exhibit the greatest variability in du-
ration, ranging from less than one minute to well over an
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Figure 3: Rate of events per 1000 nodes per day, for one exam-
ple cell.

hour, though they usually have the shortest duration. Un-
planned reboots have the longest average duration since
extra checks or corrective action is often required to re-
store machines to a safe state.

Figure 3 plots the unavailability events per 1000 nodes
per day for one example cell, over a period of three
months. The number of events per day, as well as the
number of events that can be attributed to a given cause
vary significantly over time as operational processes,
tools, and workloads evolve. Events we cannot classify
accurately are labeled unknown.

The effect of machine failures on availability is de-
pendent on the rate of failures, as well as on how long
the machines stay unavailable. Figure 4 shows the node
unavailability, along with the causes that generated the
unavailability, for the same cell used in Figure 3. The
availability is computed with a one week rolling window,
using definition (1). We observe that the majority of un-
availability is generated by planned reboots.

Unknown
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Figure 4: Storage node unavailability computed with a one
week rolling window, for one example cell.

Cause Unavailability (%)

average / min / max

Node restarts 0.0139/0.0004 / 0.1295

Planned machine reboots 0.0154 /0.0050/ 0.0563
Unplanned machine reboots | 0.0025 /0.0000 / 0.0122
Unknown 0.0142/0.0013/0.0454

Table 1: Unavailability attributed to different failure causes,
over the full set of cells.

Table 1 shows the unavailability from node restarts,
planned and unplanned machine reboots, each of which
is a significant cause. The numbers are exclusive, thus
the planned machine reboots do not include node restarts.

Table 2 shows the MTTF for a series of important
components: disk, nodes, and racks of nodes. The num-
bers we report for component failures are inclusive of
software errors and hardware failures. Though disks fail-
ures are permanent and most node failures are transitory,
the significantly greater frequency of node failures makes
them a much more important factor for system availabil-
ity (Section 8.4).

4 Correlated Failures

The co-occurring failure of a large number of nodes
can reduce the effectiveness of replication and encoding
schemes. Therefore it is critical to take into account the
statistical behavior of correlated failures to understand
data availability. In this section we are more concerned
with measuring the frequency and severity of such fail-
ures rather than root causes.
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Component Disk Node Rack

MTTF 10-50 years | 4.3 months | 10.2 years

Table 2: Component failures across several Google cells.

A ] Time intervals when a
> 2 min node is unavailable
el o )
g < ) } burst
z|, o — . } burst
} } } } } }— Time (min)

0 5 10 15 20 25 30

Figure 5: Seven node failures clustered into two failure bursts
when the window size is 2 minutes. Note how only the unavail-
ability start times matter.

We define a failure burst and examine features of these
bursts in the field. We also develop a method for identi-
fying which bursts are likely due to a failure domain. By
failure domain, we mean a set of machines which we ex-
pect to simultaneously suffer from a common source of
failure, such as machines which share a network switch
or power cable. We demonstrate this method by validat-
ing physical racks as an important failure domain.

4.1 Defining failure bursts

We define a failure burst with respect to a window size
w as a maximal sequence of node failures, each one oc-
curring within a time window w of the next. Figure 5
illustrates the definition. We choose w = 120 s, for sev-
eral reasons. First, it is longer than the frequency with
which nodes are periodically polled in our system for
their status. A window length smaller than the polling
interval would not make sense as some pairs of events
which actually occur within the window length of each
other would not be correctly associated. Second, it is less
than a tenth of the average time it takes our system to re-
cover a chunk, thus, failures within this window can be
considered as nearly concurrent. Figure 6 shows the frac-
tion of individual failures that get clustered into bursts of
at least 10 nodes as the window size changes. Note that
the graph is relatively flat after 120 s, which is our third
reason for choosing this value.

Since failures are clustered into bursts based on their
times of occurrence alone, there is a risk that two bursts
with independent causes will be clustered into a single
burst by chance. The slow increase in Figure 6 past 120 s
illustrates this phenomenon. The error incurred is small
as long as we keep the window size small. Given a win-
dow size of 120 s and the set of bursts obtained from it,
the probability that a random failure gets included in a
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Figure 6: Effect of the window size on the fraction of individual
failures that get clustered into bursts of at least 10 nodes.

burst (as opposed to becoming its own singleton burst)
is 8.0%. When this inclusion happens, most of the time
the random failure is combined with a singleton burst to
form a burst of two nodes. The probability that a random
failure gets included in a burst of at least 10 nodes is only
0.068%. For large bursts, which contribute most unavail-
ability as we will see in Section 5.2, the fraction of nodes
affected is the significant quantity and changes insignifi-
cantly if a burst of size one or two nodes is accidentally
clustered with it.

Using this definition, we observe that 37% of failures
are part of a burst of at least 2 nodes. Given the result
above that only 8.0% of non-correlated failures may be
incorrectly clustered, we are confident that close to 37%
of failures are truly correlated.

4.2 Views of failure bursts

Figure 7 shows the accumulation of individual failures in
bursts. For clarity we show all bursts of size at least 10
seen over a 60 day period in an example cell. In the plot,
each burst is displayed with a separate shape. The n-th
node failure that joins a burst at time ¢,, is said to have
ordinal n — 1 and is plotted at point (¢,,n — 1). Two
broad classes of failure bursts can be seen in the plot:

1. Those failure bursts that are characterized by a large
number of failures in quick succession show up as
steep lines with a large number of nodes in the burst.
Such failures can be seen, for example, following a
power outage in a datacenter.

2. Those failure bursts that are characterized by a
smaller number of nodes failing at a slower rate
at evenly spaced intervals. Such correlated failures
can be seen, for example, as part of rolling reboot
or upgrade activity at the datacenter management
layer.

Figure 8 displays the bursts sorted by the number of
nodes and racks that they affect. The size of each bubble
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Figure 7: Development of failure bursts in one example cell.

indicates the frequency of each burst group. The group-
ing of points along the 45° line represent bursts where
as many racks are affected as nodes. The points furthest
away from this line represent the most rack-correlated
failure bursts. For larger bursts of at least 10 nodes, we
find only 3% have all their nodes on unique racks. We
introduce a metric to quantify this degree of domain cor-
relation in the next section.

4.3 Identifying domain-related failures

Domain-related issues, such those associated with phys-
ical racks, network switches and power domains, are fre-
quent causes of correlated failure. These problems can
sometimes be difficult to detect directly. We introduce
a metric to measure the likelihood that a failure burst is
domain-related, rather than random, based on the pat-
tern of failure observed. The metric can be used as an
effective tool for identifying causes of failures that are
connected to domain locality. It can also be used to eval-
uate the importance of domain diversity in cell design
and data placement. We focus on detecting rack-related
node failures in this section, but our methodology can be
applied generally to any domain and any type of failure.

Let a failure burst be encoded as an n-tuple
(k1,ka, ..., ky), where k1 < ko < ... < k,. Each
k; gives the number of nodes affected in the ¢-th rack af-
fected, where racks are ordered so that these values are
increasing. This rack-based encoding captures all rele-
vant information about the rack locality of the burst. Let
the size of the burst be the number of nodes that are af-
fected, i.e., >, k;. We define the rack-affinity score of
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Figure 8: Frequency of failure bursts sorted by racks and nodes
affected.

a burst to be
n

ki(k; — 1
3 (2 )

=1

Note that this is the number of ways of choosing two
nodes from the burst within the same rack. The score
allows us to compare the rack concentration of bursts of
the same size. For example the burst (1,4) has score 6.
The burst (1, 1,1, 2) has score 1 which is lower. There-
fore, the first burst is more concentrated by rack. Possi-
ble alternatives for the score include the sum of squares
>, k7 or the negative entropy » .-, k;log(k;). The
sum of squares formula is equivalent to our chosen score
because for a fixed burst size, the two formulas are re-
lated by an affine transform. We believe the entropy-
inspired formula to be inferior because its log factor
tends to downplay the effect of a very large k;. Its real-
valued score is also a problem for the dynamic program
we use later in computation.

We define the rack affinity of a burst in a particular cell
to be the probability that a burst of the same size affecting
randomly chosen nodes in that cell will have a smaller
burst score, plus half the probability that the two scores
are equal, to eliminate bias. Rack affinity is therefore a
number between 0 and 1 and can be interpreted as a ver-
tical position on the cumulative distribution of the scores
of random bursts of the same size. It can be shown that
for a random burst, the expected value of its rack affin-
ity is exactly 0.5. So we define a rack-correlated burst
to be one with a metric close to 1, a rack-uncorrelated
burst to be one with a metric close to 0.5, and a rack-
anti-correlated burst to be one with a metric close to 0
(we have not observed such a burst). It is possible to ap-
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proximate the metric using simulation of random bursts.
We choose to compute the metric exactly using dynamic
programming because the extra precision it provides al-
lows us to distinguish metric values very close to 1.

We find that, in general, larger failure bursts have
higher rack affinity. All our failure bursts of more than
20 nodes have rack affinity greater than 0.7, and those
of more than 40 nodes have affinity at least 0.9. It is
worth noting that some bursts with high rack affinity do
not affect an entire rack and are not caused by common
network or power issues. This could be the case for a
bad batch of components or new storage node binary or
kernel, whose installation is only slightly correlated with
these domains.

5 Coping with Failure

We now begin the second part of the paper where we
transition from node failures to analyzing replicated data
availability. Two methods for coping with the large num-
ber of failures described in the first part of this paper
include data replication and recovery, and chunk place-
ment.

5.1 Data replication and recovery

Replication or erasure encoding schemes provide re-
silience to individual node failures. When a node fail-
ure causes the unavailability of a chunk within a stripe,
we initiate a recovery operation for that chunk from the
other available chunks remaining in the stripe.

Distributed filesystems will necessarily employ
queues for recovery operations following node failure.
These queues prioritize reconstruction of stripes which
have lost the most chunks. The rate at which missing
chunks may be recovered is limited by the bandwidth of
individual disks, nodes, and racks. Furthermore, there
is an explicit design tradeoff in the use of bandwidth
for recovery operations versus serving client read/write
requests.

Unavailable Chunks in Stripe

= 3
@ 2 Unavailable Chunks in Stripe
O 1 Unavailable Chunk in Stripe
- H Hﬂﬂh
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Chunk Recoveries

Figure 9: Example chunk recovery after failure bursts.

This limit is particularly apparent during correlated
failures when a large number of chunks go missing at the
same time. Figure 9 shows the recovery delay after a fail-
ure burst of 20 storage nodes affecting millions of stripes.
Operators may adjust the rate-limiting seen in the figure.
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Figure 10: Stripe MTTF due to different burst sizes. Burst sizes
are defined as a fraction of all nodes: small (0-0.001), medium
(0.001-0.01), large (0.01-0.1). For each size, the left column
represents uniform random placement, and the right column
represents rack-aware placement.

The models presented in the following sections allow us
to measure the sensitivity of data availability to this rate-
limit and other parameters, described in Section 8.

5.2 Chunk placement and stripe unavailability

To mitigate the effect of large failure bursts in a single
failure domain we consider known failure domains when
placing chunks within a stripe on storage nodes. For ex-
ample, racks constitute a significant failure domain to
avoid. A rack-aware policy is one that ensures that no
two chunks in a stripe are placed on nodes in the same
rack.

Given a failure burst, we can compute the expected
fraction of stripes made unavailable by the burst. More
generally, we compute the probability that exactly k
chunks are affected in a stripe of size n, which is es-
sential to the Markov model of Section 7. Assuming that
stripes are uniformly distributed across nodes of the cell,
this probability is a ratio where the numerator is the num-
ber of ways to place a stripe of size n in the cell such
that exactly k of its chunks are affected by the burst, and
the denominator is the total number of ways to place a
stripe of size n in the cell. These numbers can be com-
puted combinatorially. The same ratio can be used when
chunks are constrained by a placement policy, in which
case the numerator and denominator are computed using
dynamic programming.

Figure 10 shows the stripe MTTF for three classes of
burst size. For each class of bursts we calculate the av-
erage fraction of stripes affected per burst and the rate
of bursts, to get the combined MTTF due to that class.
We see that for all encodings except R = 1, large fail-
ure bursts are the biggest contributor to unavailability
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despite the fact that they are much rarer. We also see
that for small and medium bursts sizes, and large encod-
ings, using a rack-aware placement policy increases the
stripe MTTF by a factor of 3 typically. This is a signifi-
cant gain considering that in uniform random placement,
most stripes end up with their chunks on different racks
due to chance.

6 Cell Simulation

This section introduces a trace-based simulation method
for calculating availability in a cell. The method replays
observed or synthetic sequences of node failures and cal-
culates the resulting impact on stripe availability. It of-
fers detailed view of availability in short time frames.

For each node, the recorded events of interest are
down, up and recovery complete events. When all nodes
are up, they are each assumed to be responsible for an
equal number of chunks. When a node goes down it
is still responsible for the same number of chunks until
15 minutes later when the chunk recovery process starts.
For simplicity and conservativeness, we assume that all
these chunks remain unavailable until the recovery com-
plete event. A more accurate model could model recov-
ery too, such as by reducing the number of unavailable
chunks linearly until the recovery complete event, or by
explicitly modelling recovery queues.

We are interested in the expected number of stripes
that are unavailable for at least 15 minutes, as a function
of time. Instead of simulating a large number of stripes,
itis more efficient to simulate all possible stripes, and use
combinatorial calculations to obtain the expected number
of unavailable stripes given a set of down nodes, as was
done in Section 5.2.

As a validation, we can run the simulation using the
stripe encodings that were in use at the time to see if the
predicted number of unavailable stripes matches the ac-
tual number of unavailable stripes as measured by our
storage system. Figure 11 shows the result of such a
simulation. The prediction is a linear combination of the
predictions for individual encodings present, in this case
mostly RS(5,3) and R = 3.

Analysis of hypothetical scenarios may also be made
with the cell simulator, such as the effect of encoding
choice and of chunk recovery rate. Although we may
not change the frequency and severity of bursts in an ob-
served sequence, bootstrap methods [13] may be used
to generate synthetic failure traces with different burst
characteristics. This is useful for exploring sensitivity to
these events and the impact of improvements in datacen-
ter reliability.
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Figure 11: Unavailability prediction over time for a particular
cell for a day with large failure bursts.

7 Markov Model of Stripe Availability

In this section, we formulate a Markov model of data
availability. The model captures the interaction of dif-
ferent failure types and production parameters with more
flexibility than is possible with the trace-based simula-
tion described in the previous section. Although the
model makes assumptions beyond those in the trace-
based simulation method, it has certain advantages. First,
it allows us to model and understand the impact of
changes in hardware and software on end-user data avail-
ability. There are typically too many permutations of sys-
tem changes and encodings to test each in a live cell. The
Markov model allows us to reason directly about the con-
tribution to data availability of each level of the storage
stack and several system parameters, so that we can eval-
uate tradeoffs. Second, the systems we study may have
unavailability rates that are so low they are difficult to
measure directly. The Markov model handles rare events
and arbitrarily low stripe unavailability rates efficiently.

The model focuses on the availability of a representa-
tive stripe. Let s be the total number of chunks in the
stripe, and 7 be the minimum number of chunks needed
to recover that stripe. As described in Section 2.2, r = 1
for replicated data and » = n for RS(n,m) encoded
data. The state of a stripe is represented by the number of
available chunks. Thus, the states are s, s—1,...,r,r—1
with the state » — 1 representing all of the unavailable
states where the stripe has less than the required r chunks
available. Figure 12 shows a Markov chain correspond-
ing to an R = 2 stripe.

The Markov chain transitions are specified by the rates
at which a stripe moves from one state to another, due to
chunk failures and recoveries. Chunk failures reduce the
number of available chunks, and several chunks may fail
‘simultaneously’ in a failure burst event. Balancing this,
recoveries increase the number of available chunks if any
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Figure 12: The Markov chain for a stripe encoded using R = 2.

are unavailable.

A key assumption of the Markov model is that events
occur independently and with constant rates over time.
This independence assumption, although strong, is not
the same as the assumption that individual chunks fail
independently of each other. Rather, it implies that fail-
ure events are independent of each other, but each event
may involve multiple chunks. This allows a richer and
more flexible view of the system. It also implies that re-
covery rates for a stripe depend only on its own current
state.

In practice, failure events are not always independent.
Most notably, it has been pointed out in [29] that the time
between disk failures is not exponentially distributed and
exhibits autocorrelation and long-range dependence. The
Weibull distribution provides a much better fit for disk
MTTFE

However, the exponential distribution is a reason-
able approximation for the following reasons. First, the
Weibull distribution is a generalization of the exponen-
tial distribution that allows the rate parameter to increase
over time to reflect the aging of disks. In a large pop-
ulation of disks, the mixture of disks of different ages
tends to be stable, and so the average failure rate in a
cell tends to be constant. When the failure rate is stable,
the Weibull distribution provides the same quality of fit
as the exponential. Second, disk failures make up only
a small subset of failures that we examined, and model
results indicate that overall availability is not particularly
sensitive to them. Finally, other authors ([24]) have con-
cluded that correlation and non-homogeneity of the re-
covery rate and the mean time to a failure event have
a much smaller impact on system-wide availability than
the size of the event.

7.1 Construction of the Markov chain

We compute the transition rate due to failures using ob-
served failure events. Let A\ denote the rate of failure
events affecting chunks, including node and disk failures.
For any observed failure event we compute the probabil-
ity that it affects k chunks out of the 7 available chunks in
a stripe. As in Section 6, for failure bursts this computa-
tion takes into account the stripe placement strategy. The
rate and severity of bursts, node, disk, and other failures

may be adjusted here to suit the system parameters under
exploration.

Averaging these probabilities over all failures events
gives the probability, p; ;, that arandom failure event will
affect 1—j out of 7 available chunks in a stripe. This gives
a rate of transition from state ¢ to state j < 4, of \; ; =
Ap;jfors > i >j >rand )\, = )\Zg;é Pij
for the rate of reaching the unavailable state. Note that
transitions from a state to itself are ignored.

For chunk recoveries, we assume a fixed rate of p for
recovering a single chunk, i.e. moving from a state ¢ to
i+ 1, where r < ¢ < s. In particular, this means we as-
sume that the recovery rate does not depend on the total
number of unavailable chunks in the cell. This is justi-
fied by setting p to a lower bound for the rate of recovery,
based on observed recovery rates across our storage cells
or proposed system performance parameters. While par-
allel recovery of multiple chunks from a stripe is possi-
ble, p; i+1 = (s — i)p, we model serial recovery to gain
more conservative estimates of stripe availability.

As with [12], the distributed systems we study use pri-
oritized recovery for stripes with more than one chunk
unavailable. Our Markov model allows state-dependent
recovery that captures this prioritization, but for ease of
exposition we do not use this added degree of freedom.

Finally, transition rates between pairs of states not
mentioned are zero.

With the Markov chain thus completely specified,
computing the MTTF of a stripe, as the mean time to
reach the ‘unavailable state’ » — 1 starting from state s,
follows by standard methods [27].

7.2 Extension to multi-cell replication

The models introduced so far can be extended to compute
the availability of multi-cell replication schemes. An ex-
ample of such a scheme is R = 3 x 2, where six replicas
of the data are distributed as R = 3 replication in each of
two linked cells. If data becomes unavailable at one cell
then it is automatically recovered from another linked
cell. These cells may be placed in separate datacenters,
even on separate continents. Reed-Solomon codes may
also be used, giving schemes such as RS(6,3) x 3 for
three cells each with a RS(6,3) encoding of the data.
We do not consider here the case when individual chunks
may be combined from multiple cells to recover data, or
other more complicated multi-cell encodings.

We compute the availability of stripes that span cells
by building on the Markov model just presented. Intu-
itively, we treat each cell as a ‘chunk’ in the multi-cell
‘stripe’, and compute its availability using the Markov
model. We assume that failures at different data centers
are independent, that is, that they lack a single point of
failure such as a shared power plant or network link. Ad-
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ditionally, when computing the cell availability, we ac-
count for any cell-level or datacenter-level failures that
would affect availability.

We build the corresponding transition matrix that
models the resulting multi-cell availability as follows.
We start from the transition matrices M; for each cell,
as explained in the previous section. We then build the
transition matrix for the combined scheme as the tensor
product of these, ®i M;, plus terms for whole cell fail-
ures, and for cross-cell recoveries if the data becomes
unavailable in some cells but is still available in at least
one cell. However, it is a fair approximation to simply
treat each cell as a highly-reliable chunk in a multi-cell
stripe, as described above.

Besides symmetrical cases, such as R = 3 x 2 repli-
cation, we can also model inhomogeneous replication
schemes, such as one cell with R = 3 and one with
R = 2. The state space of the Markov model is the
product of the state space for each cell involved, but may
be approximated again by simply counting how many of
each type of cell is available.

A point of interest here is the recovery bandwidth be-
tween cells, quantified in Section 8.5. Bandwidth be-
tween distant cells has significant cost which should
be considered when choosing a multi-cell replication
scheme.

8 Markov Model Findings

In this section, we apply the Markov models described
above to understand how changes in the parameters of
the system will affect end-system availability.

8.1 Markov model validation

We validate the Markov model by comparing MTTF pre-
dicted by the model with actual MTTF values observed
in production cells. We are interested in whether the
Markov model provides an adequate tool for reasoning
about stripe availability. Our main goal in using the
model is providing a relative comparison of competing
storage solutions, rather than a highly accurate predic-
tion of any particular solution.

We underline two observations that surface from val-
idation. First, the model is able to capture well the ef-
fect of failure bursts, which we consider as having the
most impact on the availability numbers. For the cells we
observed, the model predicted MTTF with the same or-
der of magnitude as the measured MTTF. In one particu-
lar cell, besides more regular unavailability events, there
was a large failure burst where tens of nodes became un-
available. This resulted in an MTTF of 1.76E+6 days,
while the model predicted SE+6 days. Though the rela-
tive error exceeds 100%, we are satisfied with the model

accuracy, since it still gives us a powerful enough tool to
make decisions, as can be seen in the following sections.

Second, the model can distinguish between failure
bursts that span racks, and thus pose a threat to availabil-
ity, and those that do not. If one rack goes down, then
without other events in the cell, the availability of stripes
with R=3 replication will not be affected, since the stor-
age system ensures that chunks in each stripe are placed
on different racks. For one example cell, we noticed tens
of medium sized failure bursts that affected one or two
racks. We expected the availability of the cell to stay
high, and indeed we measured MTTF = 29.52E+8 days.
The model predicted 5.77E+8 days. Again, the relative
error is significant, but for our purposes the model pro-
vides sufficiently accurate predictions.

Validating the model for all possible replication and
Reed-Solomon encodings is infeasible, since our produc-
tion cells are not set up to cover the complete space of
options. However, because of our large number of pro-
duction cells we are able to validate the model over a
range of encodings and operating conditions.

8.2 Importance of recovery rate

To develop some intuition about the sensitivity of stripe
availability to recovery rate, consider the situation where
there are no failure bursts. Chunks fail independently
with rate A and recover with rate p. As in the previous
section, consider a stripe with s chunks total which can
survive losing at most s—r chunks, such as RS(r, s — ).
Thus the transition rate from state 7 > r to state 7 — 1 is
i\, and from state i toi + lis pforr > i < s.

We compute the MTTE, given by the time taken to
reach state r — 1 starting in state s. Using standard meth-
ods related to Gambler’s Ruin, [8, 14, 15, 26], this comes
to:

where (a) ;) denotes (a)(a —1)(a —2)---(a — b+ 1).
Assuming recoveries take much less time than node
MTTF (i.e. p >> )), gives a stripe MTTF of:

psfr 1 (psr1>
+0
)\sf'r+1 (8)(s—r+1) A\S—T

By similar computations, the recovery bandwidth con-
sumed is approximately As per r data chunks.

Thus, with no correlated failures reducing recovery
times by a factor of p will increase stripe MTTF by a
factor of 12 for R = 3 and by p* for RS(9,4).

Reducing recovery times is effective when correlated
failures are few. For RS(6, 3) with no correlated failures,
a 10% reduction in recovery time results in a 19% reduc-
tion in unavailability. However, when correlated failures
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Policy MTTF(days) with | MTTF(days) w/o

(% overhead) correlated failures | correlated failures
R=2 (100) 147E+5 4.99E + 05
R =3(200) 6.82F 4+ 6 1.35E + 09
R =4(300) 1.40E + 8 2.75F + 12
R =5 (400) 241E 49 8.98F + 15
RS(4,2) (50) 1.80F + 6 1.35F + 09
RS(6,3) (50) 1.03E+ 7 4.95E + 12
RS(9,4) (44) 2.39E 4+ 6 9.01FE + 15
RS(8,4) (50) 511E+4+7 1.80F + 16

Table 3: Stripe MTTF in days, corresponding to various data
redundancy policies and space overhead.

Policy MTTF Bandwidth
(recovery time) (days) (per PB)
R =2x2(lday) | 1.08E+ 10 | 6.8MB/day
R =2 x 2(1hr) 2.58FE + 11 | 6.8MB/day
RS(6,3) x 2(1day) | 5.32E + 13 | 97KB/day
RS(6,3) x 2(1hr) | 1.22E 4+ 15 | 97KB/day

Table 4: Stripe MTTF and inter-cell bandwidth, for various
multi-cell schemes and inter-cell recovery times.

are taken into account, even a 90% reduction in recovery
time results in only a 6% reduction in unavailability.

8.3 Impact of correlation on effectiveness of data-
replication schemes

Table 3 presents stripe availability for several data-
replication schemes, measured in MTTFE. We contrast
this with stripe MTTF when node failures occur at the
same total rate but are assumed independent.

Note that failing to account for correlation of node fail-
ures typically results in overestimating availability by at
least two orders of magnitude, and eight in the case of
RS(8,4). Correlation also reduces the benefit of increas-
ing data redundancy. The gain in availability achieved
by increasing the replication number, for example, grows
much more slowly when we have correlated failures.
Reed Solomon encodings achieve similar resilience to
failures compared to replication, though with less stor-
age overhead.

8.4 Sensitivity of availability to component failure
rates

One common method for improving availability is reduc-
ing component failure rates. By inserting altered failure
rates of hardware into the model we can estimate the im-
pact of potential improvements without actually building
or deploying new hardware.

We find that improvements below the node (server)

layer of the storage stack do not significantly improve
data availability. Assuming R = 3 is used, a 10% re-
duction in the latent disk error rate has a negligible effect
on stripe availability. Similarly, a 10% reduction in the
disk failure rate increases stripe availability by less than
1.5%. On the other hand, cutting node failure rates by
10% can increase data availability by 18%. This holds
generally for other encodings.

8.5 Single vs multi-cell replication schemes

Table 4 compares stripe MTTF under several multi-cell
replication schemes and inter-cell recovery times, taking
into consideration the effect of correlated failures within
cells.

Replicating data across multiple cells (data centers)
greatly improves availability because it protects against
correlated failures. For example, R = 2 x 2 with 1 day
recovery time between cells has two orders of magnitude
longer MTTF than R = 4, shown in Table 3.

This introduces a tradeoff between higher replication
in a single cell and the cost of inter-cell bandwidth. The
extra availability for R = 2 x 2 with 1 day recoveries ver-
sus R = 4 comes at an average cost of 6.8 MB /(user PB)
copied between cells each day. This is the inverse MTTF
for R = 2.

It should be noted that most cross-cell recoveries will
occur in the event of large failure bursts. This must be
considered when calculating expected recovery times be-
tween cells and the cost of on-demand access to poten-
tially large amounts of bandwidth.

Considering the relative cost of storage versus recov-
ery bandwidth allows us to choose the most cost effective
scheme given particular availability goals.

9 Related Work

Several previous studies [3, 19, 25, 29, 30] focus on the
failure characteristics of independent hardware compo-
nents, such as hard drives, storage subsystems, or mem-
ory. As we have seen, these must be included when con-
sidering availability but by themselves are insufficient.
We focus on failure bursts, since they have a large in-
fluence on the availability of the system. Previous litera-
ture on failure bursts has focused on methods for discov-
ering the relationship between the size of a failure event
and its probability of occurrence. In [10], the existence
of near-simultaneous failures in two large distributed sys-
tems is reported. The beta-binomial density and the bi-
exponential density are used to fit these distributions in
[6] and [24], respectively. In [24], the authors further
note that using an over-simplistic model for burst size,
for example a single size, could result in “dramatic inac-
curacies” in practical settings. On the other hand, even
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though the mean time to failure and mean time to recov-
ery of system nodes tend to be non-uniform and corre-
lated, this particular correlation effect has only a limited
impact on system-wide availability.

There is limited previous work on discovering patterns
of correlation in failures. The conditional probability of
failures for each pair of nodes in a system has been pro-
posed in [6] as a measure of correlation in the system.
This computation extends heuristically to sets of larger
nodes. A paradigm for discovering maximally indepen-
dent groups of nodes in a system to cope with correlated
failures is discussed in [34]. That paradigm involves col-
lecting failure statistics on each node in the system and
computing a measure of correlation, such as the mutual
information, between every pair of nodes. Both of these
approaches are computationally intensive and the results
found, unlike ours, are not used to build a predictive an-
alytical model for availability.

Models that have been developed to study the relia-
bility of long-term storage fall into two categories, non-
Markov and Markov models. Those in the first category
tend to be less versatile. For example, in [5] the prob-
ability of multiple faults occurring during the recovery
period of a stripe is approximated. Correlation is intro-
duced by means of a multiplicative factor that is applied
to the mean time to failure of a second chunk when the
first chunk is already unavailable. This approach works
only for stripes that are replicated and is not easily ex-
tendable to Reed-Solomon encoding. Moreover, the fac-
tor controlling time correlation is neither measurable nor
derivable from other data.

In [33], replication is compared with Reed-Solomon
with respect to storage requirement, bandwidth for write
and repair and disk seeks for reads. However, the com-
parison assumes that sweep and repair are performed at
regular intervals, as opposed to on demand.

Markov models are able to capture the system much
more generally and can be used to model both replication
and Reed-Solomon encoding. Examples include [21],
[32], [11] and [35]. However, these models all assume
independent failures of chunks. As we have shown, this
assumption potentially leads to overestimation of data
availability by many orders of magnitude. The authors
of [20] build a tool to optimize the disaster recovery ac-
cording to availability requirements, with similar goals
as our analysis of multi-cell replication. However, they
do not focus on studying the effect of failure characteris-
tics and data redundancy options.

Node availability in our environment is different from
previous work, such as [7, 18, 23], because we study a
large system that is tightly coupled in a single administra-
tive domain. These studies focus on measuring and pre-
dicting availability of individual desktop machines from
many, potentially untrusted, domains. Other authors

[11] studied data replication in face of failures, though
without considering availability of Reed-Solomon en-
codings or multi-cell replication.

10 Conclusions

We have presented data from Google’s clusters that char-
acterize the sources of failures contributing to unavail-
ability. We find that correlation among node failures
dwarfs all other contributions to unavailability in our pro-
duction environment.

In particular, though disks failures can result in per-
manent data loss, the multitude of transitory node fail-
ures account for most unavailability. We present a simple
time-window-based method to group failure events into
failure bursts which, despite its simplicity, successfully
identifies bursts with a common cause. We develop ana-
lytical models to reason about past and future availability
in our cells, including the effects of different choices of
replication, data placement and system parameters.

Inside Google, the analysis described in this paper has
provided a picture of data availability at a finer granu-
larity than previously measured. Using this framework,
we provide feedback and recommendations to the de-
velopment and operational engineering teams on differ-
ent replication and encoding schemes, and the primary
causes of data unavailability in our existing cells. Spe-
cific examples include:

e Determining the acceptable rate of successful trans-
fers to battery power for individual machines upon
a power outage.

e Focusing on reducing reboot times, because
planned kernel upgrades are a major source of cor-
related failures.

e Moving towards a dynamic delay before initiating
recoveries, based on failure classification and recent
history of failures in the cell.

Such analysis complements the intuition of the design-
ers and operators of these complex distributed systems.
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Abstract

Managing data and computation is at the heart of data-
center computing. Manual management of data can lead
to data loss, wasteful consumption of storage, and labo-
rious bookkeeping. Lack of proper management of com-
putation can result in lost opportunities to share common
computations across multiple jobs or to compute results
incrementally.

Nectar is a system designed to address the aforemen-
tioned problems. It automates and unifies the manage-
ment of data and computation within a datacenter. In
Nectar, data and computation are treated interchange-
ably by associating data with its computation. De-
rived datasets, which are the results of computations, are
uniquely identified by the programs that produce them,
and together with their programs, are automatically man-
aged by a datacenter wide caching service. Any derived
dataset can be transparently regenerated by re-executing
its program, and any computation can be transparently
avoided by using previously cached results. This en-
ables us to greatly improve datacenter management and
resource utilization: obsolete or infrequently used de-
rived datasets are automatically garbage collected, and
shared common computations are computed only once
and reused by others.

This paper describes the design and implementation of
Nectar, and reports on our evaluation of the system using
analytic studies of logs from several production clusters
and an actual deployment on a 240-node cluster.

1 Introduction

Recent advances in distributed execution engines (Map-
Reduce [7], Dryad [18], and Hadoop [12]) and high-level
language support (Sawzall [25], Pig [24], BOOM [3],
HIVE [17], SCOPE [6], DryadLINQ [29]) have greatly

*L. Ravindranath is affiliated with the Massachusetts Institute of
Technology and was a summer intern on the Nectar project.

simplified the development of large-scale, data-intensive,
distributed applications. However, major challenges still
remain in realizing the full potential of data-intensive
distributed computing within datacenters. In current
practice, a large fraction of the computations in a dat-
acenter is redundant and many datasets are obsolete or
seldom used, wasting vast amounts of resources in a dat-
acenter.

As one example, we quantified the wasted storage in
our 240-node experimental Dryad/DryadLINQ cluster.
We crawled this cluster and noted the last access time
for each data file. We discovered that around 50% of the
files was not accessed in the last 250 days.

As another example, we examined the execution statis-
tics of 25 production clusters running data-parallel ap-
plications. We estimated that, on one such cluster, over
7000 hours of redundant computation can be eliminated
per day by caching intermediate results. (This is approx-
imately equivalent to shutting off 300 machines daily.)
Cumulatively, over all clusters, this figure is over 35,000
hours per day.

Many of the resource issues in a datacenter arise due
to lack of efficient management of either data or compu-
tation, or both. This paper describes Nectar: a system
that manages the execution environment of a datacenter
and is designed to address these problems.

A key feature of Nectar is that it treats data and com-
putation in a datacenter interchangeably in the following
sense. Data that has not been accessed for a long pe-
riod may be removed from the datacenter and substituted
by the computation that produced it. Should the data be
needed in the future, the computation is rerun. Similarly,
instead of executing a user’s program, Nectar can par-
tially or fully substitute the results of that computation
with data already present in the datacenter. Nectar relies
on certain properties of the programming environment
in the datacenter to enable this interchange of data and
computation.

Computations running on a Nectar-managed datacen-
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ter are specified as programs in LINQ [20]. LINQ com-
prises a set of operators to manipulate datasets of .NET
objects. These operators are integrated into high level
NET programming languages (e.g., C#), giving pro-
grammers direct access to .NET libraries as well tradi-
tional language constructs such as loops, classes, and
modules. The datasets manipulated by LINQ can contain
objects of an arbitrary .NET type, making it easy to com-
pute with complex data such as vectors, matrices, and
images. All of these operators are functional: they trans-
form input datasets to new output datasets. This property
helps Nectar reason about programs to detect program
and data dependencies. LINQ is a very expressive and
flexible language, e.g., the MapReduce class of compu-
tations can be trivially expressed in LINQ.

Data stored in a Nectar-managed datacenter are di-
vided into one of two classes: primary or derived. Pri-
mary datasets are created once and accessed many times.
Derived datasets are the results produced by computa-
tions running on primary and other derived datasets. Ex-
amples of typical primary datasets in our datacenters
are click and query logs. Examples of typical derived
datasets are the results of thousands of computations per-
formed on those click and query logs.

In a Nectar-managed datacenter, all access to a derived
dataset is mediated by Nectar. At the lowest level of the
system, a derived dataset is referenced by the LINQ pro-
gram fragment or expression that produced it. Program-
mers refer to derived datasets with simple pathnames that
contain a simple indirection (much like a UNIX symbolic
link) to the actual LINQ programs that produce them. By
maintaining this mapping between a derived dataset and
the program that produced it, Nectar can reproduce any
derived dataset after it is automatically deleted. Primary
datasets are referenced by conventional pathnames, and
are not automatically deleted.

A Nectar-managed datacenter offers the following ad-
vantages.

1. Efficient space utilization. Nectar implements a
cache server that manages the storage, retrieval, and
eviction of the results of all computations (i.e., de-
rived datasets). As well, Nectar retains the de-
scription of the computation that produced a de-
rived dataset. Since programmers do not directly
manage datasets, Nectar has considerable latitude
in optimizing space: it can remove unused or in-
frequently used derived datasets and recreate them
on demand by rerunning the computation. This is a
classic trade-off of storage and computation.

2. Reuse of shared sub-computations. Many appli-
cations running in the same datacenter share com-
mon sub-computations. Since Nectar automatically
caches the results of sub-computations, they will be

computed only once and reused by others. This sig-
nificantly reduces redundant computations, result-
ing in better resource utilization.

3. Incremental computations. Many datacenter ap-
plications repeat the same computation on a slid-
ing window of an incrementally augmented dataset.
Again, caching in Nectar enables us to reuse the re-
sults of old data and only compute incrementally for
the newly arriving data.

4. Ease of content management. With derived datasets
uniquely named by LINQ expressions, and auto-
matically managed by Nectar, there is little need for
developers to manage their data manually. In par-
ticular, they do not have to be concerned about re-
membering the location of the data. Executing the
LINQ expression that produced the data is sufficient
to access the data, and incurs negligible overhead in
almost all cases because of caching. This is a sig-
nificant advantage because most datacenter applica-
tions consume a large amount of data from diverse
locations and keeping track of the requisite filepath
information is often a source of bugs.

Our experiments show that Nectar, on average, could
improve space utilization by at least 50%. As well, in-
cremental and sub-computations managed by Nectar pro-
vide an average speed up of 30% for the programs run-
ning on our clusters. We provide a detailed quantitative
evaluation of the first three benefits in Section 4. We
have not done a detailed user study to quantify the fourth
benefit, but the experience from our initial deployment
suggests that there is evidence to support the claim.

Some of the techniques we used such as dividing
datasets into primary and derived and reusing the re-
sults of previous computations via caching are reminis-
cent of earlier work in version management systems [15],
incremental database maintenance [5], and functional
caching [16, 27]. Section 5 provides a more detailed
analysis of our work in relation to prior research.

This paper makes the following contributions to the
literature:

e We propose a novel and promising approach that
automates and unifies the management of data and
computation in a datacenter, leading to substantial
improvements in datacenter resource utilization.

o We present the design and implementation of our
system, including a sophisticated program rewriter
and static program dependency analyzer.

e We present a systematic analysis of the performance
of our system from a real deployment on 240-nodes
as well as analytical measurements.
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Figure 1: Nectar architecture. The system consists of a
client-side library and cluster-wide services. Nectar re-
lies on the services of DryadLINQ/Dryad and TidyFS, a
distributed file system.

The rest of this paper is organized as follows. Sec-
tion 2 provides a high-level overview of the Nectar sys-
tem. Section 3 describes the implementation of the sys-
tem. Section 4 evaluates the system using real work-
loads. Section 5 covers related work and Section 6 dis-
cusses future work and concludes the paper.

2 System Design Overview

The overall Nectar architecture is shown in Figure 1.
Nectar consists of a client-side component that runs on
the programmer’s desktop, and two services running in
the datacenter.

Nectar is completely transparent to user programs and
works as follows. It takes a DryadLINQ program as in-
put, and consults the cache service to rewrite it to an
equivalent, more efficient program. Nectar then hands
the resulting program to DryadLINQ which further com-
piles it into a Dryad computation running in the clus-
ter. At run time, a Dryad job is a directed acyclic graph
where vertices are programs and edges represent data
channels. Vertices communicate with each other through
data channels. The input and output of a DryadLINQ
program are expected to be streams. A stream consists of
an ordered sequence of extents, each storing a sequence
of object of some data type. We use an in-house fault-
tolerant, distributed file system called TidyFS to store
streams.

Nectar makes certain assumptions about the underly-
ing storage system. We require that streams be append-
only, meaning that new contents are added by either ap-
pending to the last extent or adding a new extent. The
metadata of a stream contains Rabin fingerprints [4] of
the entire stream and its extents.

Nectar maintains and manages two namespaces in

TidyFS. The program store keeps all DryadLINQ pro-
grams that have ever executed successfully. The data
store is used to store all derived streams generated by
DryadLINQ programs. The Nectar cache server pro-
vides cache hits to the program rewriter on the client
side. It also implements a replacement policy that deletes
cache entries of least value. Any stream in the data
store that is not referenced by any cache entry is deemed
to be garbage and deleted permanently by the Nectar
garbage collector. Programs in the program store are
never deleted and are used to recreate a deleted derived
stream if it is needed in the future.

A simple example of a program is shown in Ex-
ample 2.1. The program groups identical words in a
large document into groups and applies an arbitrary user-
defined function Reduce to each group. This is a typ-
ical MapReduce program. We will use it as a running
example to describe the workings of Nectar. TidyFS,
Dryad, and DryadLINQ are described in detail else-
where [8, 18, 29]. We only discuss them briefly below
to illustrate their relationships to our system.

In the example, we assume that the input D is a large
(replicated) dataset partitioned as Dy, D5 ... D,, in the
TidyFS distributed file system and it consists of lines of
text. SelectMany is a LINQ operator, which first pro-
duces a single list of output records for each input record
and then “flattens” the lists of output records into a sin-
gle list. In our example, the program applies the function
x => x.Split (’ ) to each line in D to produce
the list of words in D.

The program then uses the GroupBy operator to
group the words into a list of groups, putting the same
words into a single group. GroupBy takes a key-selector
function as the argument, which when applied to an
input record returns a collating “key” for that record.
GroupBy applies the key-selector function to each input
record and collates the input into a list of groups (multi-
sets), one group for all the records with the same key.

The last line of the program applies a transforma-
tion Reduce to each group. Select is a simpler ver-
sion of SelectMany. Unlike the latter, Select pro-
duces a single output record (determined by the function
Reduce) for each input record.

Example 2.1 A typical MapReduce job expressed in
LINQ. (x => x.Split(’ ")) produces a list of
blank-separated words; (x => x) produces a key for
each input; Reduce is an arbitrary user supplied func-
tion that is applied to each input.

words = D.SelectMany(x => x.Split ("’ ’));
groups = words.GroupBy (x => x);

result = groups.Select (x => Reduce (x));
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Figure 2: Execution graph produced by Nectar given
the input LINQ program in Example 2.1. The nodes
named SM+D executes SelectMany and distributes the
results. GB+S executes GroupBy and Select.

When the program in Example 2.1 is run for the first
time, Nectar, by invoking DryadLINQ, produces the dis-
tributed execution graph shown in Figure 2, which is then
handed to Dryad for execution. (For simplicity of exposi-
tion, we assume for now that there are no cache hits when
Nectar rewrites the program.) The SM+D vertex performs
the SelectMany and distributes the results by parti-
tioning them on a hash of each word. This ensures that
identical words are destined to the same GB+S vertex
in the graph. The GB+S vertex performs the GroupBy
and Select operations together. The AE vertex adds a
cache entry for the final result of the program. Notice
that the derived stream created for the cache entry shares
the same set of extents with the result of the computa-
tion. So, there is no additional cost of storage space. As
a rule, Nectar always creates a cache entry for the final
result of a computation.

2.1 Client-Side Library

On the client side, Nectar takes advantage of cached re-
sults from the cache to rewrite a program P to an equiv-
alent, more efficient program P’. It automatically inserts
AddEntry calls at appropriate places in the program so
new cache entries can be created when P’ is executed.
The AddEntry calls are compiled into Dryad vertices that
create new cache entries at runtime. We summarize the
two main client-side components below.

Cache Key Calculation
A computation is uniquely identified by its program
and inputs. We therefore use the Rabin fingerprint of

the program and the input datasets as the cache key for
a computation. The input datasets are stored in TidyFS
and their fingerprints are calculated based on the actual
stream contents. Nectar calculates the fingerprint of the
program and combines it with the fingerprints of the in-
put datasets to form the cache key.

The fingerprint of a DryadLINQ program must be able
to detect any changes to the code the program depends
on. However, the fingerprint should not change when
code the program does not depend on changes. This
is crucial for the correctness and practicality of Nectar.
(Fingerprints can collide but the probability of a colli-
sion can be made vanishingly small by choosing long
enough fingerprints.) We implement a static dependency
analyzer to compute the transitive closure of all the code
that can be reached from the program. The fingerprint is
then formed using all reachable code. Of course, our an-
alyzer only produces an over-approximation of the true
dependency.

Rewriter

Nectar rewrites user programs to use cached results
where possible. We might encounter different entries
in the cache server with different sub-expressions and/or
partial input datasets. So there are typically multiple al-
ternatives to choose from in rewriting a DryadLINQ pro-
gram. The rewriter uses a cost estimator to choose the
best one from multiple alternatives (as discussed in Sec-
tion 3.1).

Nectar supports the following two rewriting scenarios
that arise very commonly in practice.

Common sub-expressions. Internally, a DryadLINQ
program is represented as a LINQ expression tree. Nec-
tar treats all prefix sub-expressions of the expression tree
as candidates for caching and looks up in the cache for
possible cache hits for every prefix sub-expression.

Incremental computations. Incremental computation
on datasets is a common occurrence in data intensive
computing. Typically, a user has run a program P on in-
put D. Now, he is about to compute P on input D + D',
the concatenation of D and D’. The Nectar rewriter finds
a new operator to combine the results of computing on
the old input and the new input separately. See Sec-
tion 2.3 for an example.

A special case of incremental computation that occurs
in datacenters is a computation that executes on a sliding
window of data. That is, the same program is repeatedly
run on the following sequence of inputs:

Input1 = dl + dg + ...+ dn,
Inputg = dg + d3 + ...+ dn+17
Inputs =ds +dy + ... + dn_,_g,
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Here d; is a dataset that (potentially) consists of mul-
tiple extents distributed over many computers. So suc-
cessive inputs to the program (Input;) are datasets with
some old extents removed from the head of the previous
input and new extents appended to the tail of it. Nec-
tar generates cache entries for each individual dataset d;,
and can use them in subsequent computations.

In the real world, a program may belong to a combina-
tion of the categories above. For example, an application
that analyzes logs of the past seven days is rewritten as
an incremental computation by Nectar, but Nectar may
use sub-expression results of log preprocessing on each
day from other applications.

2.2 Datacenter-Wide Service

The datacenter-wide service in Nectar comprises two
separate components: the cache service and the garbage
collection service. The actual datasets are stored in
the distributed storage system and the datacenter-wide
services manipulate the actual datasets by maintaining
pointers to them.

Cache Service

Nectar implements a distributed datacenter-wide
cache service for bookkeeping information about Dryad-
LINQ programs and the location of their results. The
cache service has two main functionalities: (1) serving
the cache lookup requests by the Nectar rewriter; and (2)
managing derived datasets by deleting the cache entries
of least value.

Programs of all successful computations are uploaded
to a dedicated program store in the cluster. Thus, the
service has the necessary information about cached re-
sults, meaning that it has a recipe to recreate any de-
rived dataset in the datacenter. When a derived dataset
is deleted but needed in the future, Nectar recreates it us-
ing the program that produced it. If the inputs to that
program have themselves been deleted, it backtracks re-
cursively till it hits the immutable primary datasets or
cached derived datasets. Because of this ability to recre-
ate datasets, the cache server can make informed deci-
sions to implement a cache replacement policy, keeping
the cached results that yield the most hits and deleting the
cached results of less value when storage space is low.

Garbage Collector

The Nectar garbage collector operates transparently to
the users of the cluster. Its main job is to identify datasets
unreachable from any cache entry and delete them. We
use a standard mark-and-sweep collector. Actual content
deletion is done in the background without interfering
with the concurrent activities of the cache server and job
executions. Section 3.2 has additional detail.

Figure 3: Execution graph produced by Nectar on the
program in Example 2.1 after it elects to cache the results
of computations. Notice that the GroupBy and Select
are now encapsulated in separate nodes. The new AE
vertex creates a cache entry for the output of GroupBy.

2.3 Example: Program Rewriting

Let us look at the interesting case of incremental compu-
tation by continuing Example 2.1.

After the program has been executed a sufficient num-
ber of times, Nectar may elect to cache results from some
of its subcomputations based on the usage information
returned to it from the cache service. So subsequent runs
of the program may cause Nectar to create different exe-
cution graphs than those created previously for the same
program. Figure 3 shows the new execution graph when
Nectar chooses to cache the result of GroupBy (c.f. Fig-
ure 2). It breaks the pipeline of GroupBy and Select
and creates an additional AddEntry vertex (denoted by
AE) to cache the result of GroupBy. During the exe-
cution, when the GB stage completes, the AE vertex will
run, creating a new TidyFS stream and a cache entry for
the result of GroupBy. We denote the stream by G p,
partitioned as Gp,, Gp,, .. Gp,,.

Subsequently, assume the program in Example 2.1 is
run on input (D + X)), where X is a new dataset parti-
tioned as X7, Xo,.. Xj. The Nectar rewriter would get a
cache hit on G'p. So it only needs to perform GroupBy
on X and merge with Gp to form new groups. Figure 4
shows the new execution graph created by Nectar.

There are some subtleties involved in the rewriting
process. Nectar first determines that the number of par-
titions (n) of G p. It then computes GroupBy on X the
same way as GGp, generating n partitions with the same
distribution scheme using the identical hash function as
was used previously (see Figures 2 and 3). That is, the
rewritten execution graph has k SM+D vertices, but n GB
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vertices. The MG vertex then performs a pairwise merge
of the output GB with the cached result Gp. The result
of MG is again cached for future uses, because Nectar
notices the pattern of incremental computation and ex-
pects that the same computation will happen on datasets
of form G'py x+y in the future.

Figure 4: The execution graph produced by Nectar on
the program in Example 2.1 on the dataset D 4+ X. The
dataset X consists of k partitions. The MG vertex merges
groups with the same key. Both the results of GB and MG
are cached. There are £ SM+D vertices, but n GB, MG,
and S vertices. Gpu, ..., Gp, are the partitions of the
cached result.

Similar to MapReduce’s combiner optimization [7]
and Data Cube computation [10], DryadLINQ can de-
compose Reduce into the composition of two associa-
tive and commutative functions if Reduce is determined
to be decomposable. We handle this by first applying the
decomposition as in [28] and then the caching and rewrit-
ing as described above.

3 Implementation Details

We now present the implementation details of the two
most important aspects of Nectar: Section 3.1 describes
computation caching and Section 3.2 describes the auto-
matic management of derived datasets.

3.1 Caching Computations

Nectar rewrites a DryadLINQ program to an equivalent
but more efficient one using cached results. This gen-
erally involves: 1) identifying all sub-expressions of the
expression, 2) probing the cache server for all cache hits
for the sub-expressions, 3) using the cache hits to rewrite
the expression into a set of equivalent expressions, and 4)

choosing one that gives us the maximum benefit based on
some cost estimation.

Cache and Programs

A cache entry records the result of executing a pro-
gram on some given input. (Recall that a program may
have more than one input depending on its arity.) The
entry is of the form:

(FPpp, FPp, Result, Statistics, F'PList)

Here, F'Ppp is the combined fingerprint of the pro-
gram and its input datasets, F'Pp is the fingerprint of the
program only, Result is the location of the output, and
Statistics contains execution and usage information of
this cache entry. The last field F"PList contains a list
of fingerprint pairs each representing the fingerprints of
the first and last extents of an input dataset. We have one
fingerprint pair for every input of the program. As we
shall see later, it is used by the rewriter to search amongst
cache hits efficiently. Since the same program could have
been executed on different occasions on different inputs,
there can be multiple cache entries with the same F'Pp.

We use F'Ppp as the primary key. So our caching
is sound only if F'Ppp can uniquely determine the re-
sult of the computation. The fingerprint of the inputs is
based on the actual content of the datasets. The finger-
print of a dataset is formed by combining the fingerprints
of its extents. For a large dataset, the fingerprints of its
extents are efficiently computed in parallel by the data-
center computers.

The computation of the program fingerprint is tricky,
as the program may contain user-defined functions that
call into library code. We implemented a static depen-
dency analyzer to capture all dependencies of an ex-
pression. At the time a DryadLINQ program is in-
voked, DryadLINQ knows all the dynamic linked li-
braries (DLLs) it depends on. We divide them into two
categories: system and application. We assume system
DLLs are available and identical on all cluster machines
and therefore are not included in the dependency. For
an application DLL that is written in native code (e.g.,
C or assembler), we include the entire DLL as a depen-
dency. For soundness, we assume that there are no call-
backs from native to managed code. For an application
DLL that is in managed code (e.g., C#), our analyzer tra-
verses the call graph to compute all the code reachable
from the initial expression.

The analyzer works at the bytecode level. It uses stan-
dard .NET reflection to get the body of a method, finds
all the possible methods that can be called in the body,
and traverses those methods recursively. When a virtual
method call is encountered, we include all the possible
call sites. While our analysis is certainly a conservative
approximation of the true dependency, it is reasonably
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precise and works well in practice. Since dynamic code
generation could introduce unsoundness into the analy-
sis, it is forbidden in managed application DLLs, and is
statically enforced by the analyzer.

The statistics information kept in the cache entry is
used by the rewriter to find an optimal execution plan. It
is also used to implement the cache insertion and eviction
policy. It contains information such as the cumulative ex-
ecution time, the number of hits on this entry, and the last
access time. The cumulative execution time is defined as
the sum of the execution time of all upstream Dryad ver-
tices of the current execution stage. It is computed at the
time of the cache entry insertion using the execution logs
generated by Dryad.

The cache server supports a simple client interface.
The important operations include: (1) Lookup (fp)
finds and returns the cache entry that has fp as the pri-
mary key (F'Ppp); (2) Inquire (fp) returns all cache
entries that have fp as their F'Pp; and (3) AddEntry
inserts a new cache entry. We will see their uses in the
following sections.

The Rewriting Algorithm

Having explained the structure and interface of the
cache, let us now look at how Nectar rewrites a program.

For a given expression, we may get cache hits on
any possible sub-expression and subset of the input
dataset, and considering all of them in the rewriting
is not tractable. We therefore only consider cache
hits on prefix sub-expressions on segments of the input
dataset. More concretely, consider a simple example
D.Where (P) .Select (F). The Where operator ap-
plies a filter to the input dataset D, and the Select op-
erator applies a transformation to each item in its input.
We will only consider cache hits for the sub-expressions
S.Where (P) and S.Where (P) .Select (F) where
S is a subsequence of extents in D.

Our rewriting algorithm is a simple recursive proce-
dure. We start from the largest prefix sub-expression, the
entire expression. Below is an outline of the algorithm.
For simplicity of exposition, we assume that the expres-
sions have only one input.

Step 1. For the current sub-expression E, we probe the
cache server to obtain all the possible hits on it. There
can be multiple hits on different subsequences of the in-
put D. Let us denote the set of hits by H. Note that each
hit also gives us its saving in terms of cumulative exe-
cution time. If there is a hit on the entire input D, we use
that hit and terminate because it gives us the most sav-
ings in terms of cumulative execution time. Otherwise
we execute Steps 2-4.

Step 2. We compute the best execution plan for £ using
hits on its smaller prefixes. To do that, we first compute
the best execution plan for each immediate successor

prefix of E by calling our procedure recursively, and
then combine them to form a single plan for E. Let us
denote this plan by (P;, C7) where C1 is its saving in
terms of cumulative execution time.

Step 3. For the H hits on E (from Step 1), we choose
a subset of them such that (a) they operate on disjoint
subsequence of D, and (b) they give us the most saving
in terms of cumulative execution time. This boils down
to the well-known problem of computing the maxi-
mum independent sets of an interval graph, which has
a known efficient solution using dynamic programming
techniques [9]. We use this subset to form another ex-
ecution plan for £ on D. Let us denote this plan by
(P, C9).

Step 4. The final execution plan is the one from P; and
P; that gives us more saving.

In Step 1, the rewriter calls Inquire to compute H.
As described before, Inquire returns all the possible
cache hits of the program with different inputs. A useful
hit means that its input dataset is identical to a subse-
quence of extents of D. A brute force search is inefficient
and requires to check every subsequence. As an opti-
mization, we store in the cache entry the fingerprints of
the first and last extents of the input dataset. With that
information, we can compute H in linear time.

Intuitively, in rewriting a program P on incremental
data Nectar tries to derive a combining operator C' such
that P(D+ D') = C(P(D), D’), where C' combines the
results of P on the datasets D and D’. Nectar supports
all the LINQ operators DryadLINQ supports.

The combining functions for some LINQ opera-
tors require the parallel merging of multiple streams,
and are not directly supported by DryadLINQ. We
introduced three combining functions: MergeSort,
HashMergeGroups, and SortMergeGroups,
which are straightforward to implement using Dryad-
LINQ’s Apply operator [29]. MergeSort takes
multiple sorted input streams, and merge sorts them.
HashMergeGroups and SortMergeGroups take
multiple input streams and merge groups of the same
key from the input streams. If all the input streams are
sorted, Nectar chooses to use SortMergeGroups,
which is streaming and more efficient. Otherwise,
Nectar uses HashMergeGroups. The MG vertex in
Figure 4 is an example of this group merge.

The technique of reusing materialized views in
database systems addresses a similar problem. One im-
portant difference is that a database typically does not
maintain views for multiple versions of a table, which
would prevent it from reusing results computed on old
incarnations of the table. For example, suppose we have
a materialized view V on D. When D is changed to
D + Dy, the view is also updated to V’. So for any fu-
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ture computation on D + Ds, V' is no longer available
for use. In contrast, Nectar maintains both V and V', and
automatically tries to reuse them for any computation, in
particular the ones on D + Ds.

Cache Insertion Policy

We consider every prefix sub-expression of an expres-
sion to be a candidate for caching. Adding a cache entry
incurs additional cost if the entry is not useful. It requires
us to store the result of the computation on disk (instead
of possibly pipelining the result to the next stage), incur-
ring the additional disk IO and space overhead. Obvi-
ously it is not practical to cache everything. Nectar im-
plements a simple strategy to determine what to cache.

First of all, Nectar always creates a cache entry for
the final result of a computation as we get it for free: it
does not involve a break of the computation pipeline and
incurs no extra IO and space overhead.

For sub-expression candidates, we wish to cache them
only when they are predicted to be useful in the future.
However, determining the potential usefulness of a cache
entry is generally difficult. So we base our cache inser-
tion policy on heuristics. The caching decision is made
in the following two phases.

First, when the rewriter rewrites an expression, it de-
cides on the places in the expression to insert AddEntry
calls. This is done using the usage statistics maintained
by the cache server. The cache server keeps statistics for
a sub-expression based on request history from clients.
In particular, it records the number of times it has been
looked up. On response to a cache lookup, this number
is included in the return value. We insert an AddEntry
call for an expression only when the number of lookups
on it exceeds a predefined threshold.

Second, the decision made by the rewriter may still be
wrong because of the lack of information about the sav-
ing of the computation. Information such as execution
time and disk consumption are only available at run time.
So the final insertion decision is made based on the run-
time information of the execution of the sub-expression.
Currently, we use a simple benefit function that is propor-
tional to the execution time and inversely proportional to
storage overhead. We add the cache entry when the ben-
efit exceeds a threshold.

We also make our cache insertion policy adaptive to
storage space pressure. When there is no pressure, we
choose to cache more aggressively as long as it saves
machine time. This strategy could increase the useless
cache entries in the cache. But it is not a problem because
it is addressed by Nectar’s garbage collection, discussed
further below.

3.2 Managing Derived Data

Derived datasets can take up a significant amount of stor-
age space in a datacenter, and a large portion of it could
be unused or seldom used. Nectar keeps track of the us-
age statistics of all derived datasets and deletes the ones
of the least value. Recall that Nectar permanently stores
the program of every derived dataset so that a deleted de-
rived can be recreated by re-running its program.

Data Store for Derived Data

As mentioned before, Nectar stores all derived
datasets in a data store inside a distributed, fault-tolerant
file system. The actual location of a derived dataset is
completely opaque to programmers. Accessing an ex-
isting derived dataset must go through the cache server.
We expose a standard file interface with one important
restriction: New derived datasets can only be created as
results of computations.

P = q.ToTable(“lenin/foo.pt”)
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Figure 5: The creation of a derived dataset. The actual
dataset is stored in the Nectar data store. The user file
contains only the primary key of the cache entry associ-
ated with the derived.

Our scheme to achieve this is straightforward. Fig-
ure 5 shows the flow of creating a derived dataset by a
computation and the relationship between the user file
and the actual derived dataset. In the figure, P is a user
program that writes its output to lenin/foo.pt. Af-
ter applying transformations by Nectar and DryadLINQ,
it is executed in the datacenter by Dryad. When the ex-
ecution succeeds, the actual derived dataset is stored in
the data store with a unique name generated by Nectar. A
cache entry is created with the fingerprint of the program
(FP (P)) as the primary key and the unique name as a
field. The content of 1enin/foo.pt just contains the
primary key of the cache entry.

To access lenin/foo.pt, Nectar simply uses
FP (P) to look up the cache to obtain the location of
the actual derived dataset (A31E4 .pt). The fact that all
accesses go through the cache server allows us to keep
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track of the usage history of every derived dataset and
to implement automatic garbage collection for derived
datasets based on their usage history.

Garbage Collection

When the available disk space falls below a thresh-
old, the system automatically deletes derived datasets
that are considered to be least useful in the future. This
is achieved by a combination of the Nectar cache server
and garbage collector.

A derived dataset is protected from garbage collection
if it is referenced by any cache entry. So, the first step
is to evict from the cache, entries that the cache server
determines to have the least value.

The cache server uses information stored in the cache
entries to do a cost-benefit analysis to determine the use-
fulness of the entries. For each cache entry, we keep
track of the size of the resulting derived dataset (.5), the
elapsed time since it was last used (AT'), the number of
times (V) it has been used and the cumulative machine
time (M) of the computation that created it. The cache
server uses these values to compute the cost-to-benefit
ratio

CBRatio = (S x AT)/(N x M)

of each cache entry and deletes entries that have the
largest ratios so that the cumulative space saving reaches
a predefined threshold.

Freshly created cache entries do not contain informa-
tion for us to compute a useful cost/benefit ratio. To give
them a chance to demonstrate their usefulness, we ex-
clude them from deletion by using a lease on each newly
created cache entry.

The entire cache eviction operation is done in the
background, concurrently with any other cache server
operations. When the cache server completes its evic-
tion, the garbage collector deletes all derived datasets
not protected by a cache entry using a simple mark-and-
sweep algorithm. Again, this is done in the background,
concurrently with any other activities in the system.

Other operations can run concurrently with the
garbage collector and create new cache entries and de-
rived datasets. Derived datasets pointed to by cache en-
tries (freshly created or otherwise) are not candidates for
garbage collection. Notice however that freshly created
derived datasets, which due to concurrency may not yet
have a cache entry, also need to protected from garbage
collection. We do this with a lease on the dataset.

With these leases in place, garbage collection is quite
straightforward. We first compute the set of all derived
datasets (ignoring the ones with unexpired leases) in our
data store, exclude from it the set of all derived datasets
referenced by cache entries, and treat the remaining as
garbage.

Our system could mistakenly delete datasets that are
subsequently requested, but these can be recreated by re-
executing the appropriate program(s) from the program
store. Programs are stored in binary form in the pro-
gram store. A program is a complete Dryad job that can
be submitted to the datacenter for execution. In particu-
lar, it includes the execution plan and all the application
DLLs. We exclude all system DLLs, assuming that they
are available on the datacenter machines. For a typical
datacenter that runs 1000 jobs daily, our experience sug-
gests it would take less than 1TB to store one year’s pro-
gram (excluding system DLLs) in uncompressed form.
With compression, it should take up roughly a few hun-
dreds of gigabytes of disk space, which is negligible even
for a small datacenter.

4 Experimental Evaluation

We evaluate Nectar running on our 240-node research
cluster as well as present analytic results of execution
logs from 25 large production clusters that run jobs sim-
ilar to those on our research cluster. We first present our
analytic results.

4.1 Production Clusters

We use logs from 25 different clusters to evaluate the
usefulness of Nectar. The logs consist of detailed execu-
tion statistics for 33182 jobs in these clusters for a recent
3-month period. For each job, the log has the source pro-
gram and execution statistics such as computation time,
bytes read and written and the actual time taken for ev-
ery stage in a job. The log also gives information on the
submission time, start time, end time, user information,
and job status.

Programs from the production clusters work with mas-
sive datasets such as click logs and search logs. Programs
are written in a language similar to DryadLINQ in that
each program is a sequence of SQL-like queries [6]. A
program is compiled into an expression tree with various
stages and modeled as a DAG with vertices representing
processes and edges representing data flows. The DAGs
are executed on a Dryad cluster, just as in our Nectar
managed cluster. Input data in these clusters is stored as
append-only streams.

Benefits from Caching

We parse the execution logs to recreate a set of DAGs,
one for each job. The root of the DAG represents the
input to the job and a path through the DAG starting at
the root represents a partial (i.e., a sub-) computation of
the job. Identical DAGs from different jobs represent an
opportunity to save part of the computation time of a later
job by caching results from the earlier ones. We simulate

USENIX Association

9th USENIX Symposium on Operating Systems Design and Implementation (OSDI *10) 83



the effect of Nectar’s caching on these DAGs to estimate
cache hits.

Our results show that on average across all clusters,
more than 35% of the jobs could benefit from caching.
More than 30% of programs in 18 out of 25 clusters
could have at least one cache hit, and there were even
some clusters where 65% of programs could have cache
hits.

The log contains detailed computation time informa-
tion for each node in the DAG for a job. When there is
a cache hit on a sub-computation of a job, we can there-
fore calculate the time saved by the cache hit. We show
the result of this analysis in two different ways: Figure 6
shows the percentage of computing time saved and Ta-
ble 1 shows the minimum number of hours of computa-
tion saved in each cluster.

Figure 6 shows that significant percentage of computa-
tion time can be saved in each cluster with Nectar. Most
clusters can save a minimum of 20% to 40% of com-
putation time and in some clusters the savings are up to
50%. Also, as an example, Table 1 shows a minimum of
7143 hours of computation per day can be saved using
Nectar in Cluster C5. This is roughly equivalent to say-
ing that about 300 machines in that cluster were doing
wasteful computations all day that caching could elimi-
nate. Across all 25 clusters, 35078 hours of computation
per day can be saved, which is roughly equivalent to sav-
ing 1461 machines.
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Figure 6: Fraction of compute time saved in each cluster

Ease of Program Development

Our analysis of the caching accounted for both sub-
computation as well as incremental/sliding window hits.
We noticed that the percentage of sliding window hits in
some production clusters was minimal (under 5%). We
investigated this further and noticed that many program-
mers explicitly structured their programs so that they can
reuse a previous computation. This somewhat artificial
structure makes their programs cumbersome, which can
be alleviated by using Nectar.

Computation Computation
Cluster | Time Saved | Cluster | Time Saved
(hours/day) (hours/day)

Cl 3898 Cl4 753
Cc2 2276 Cl15 755
C3 977 Cl6 2259
C4 1345 Cl17 3385
C5 7143 C18 528
C6 62 C19 4
C7 57 C20 415
C8 590 C21 606
c9 763 C22 2002
C10 2457 C23 1316
Cl1 1924 C24 291
C12 368 C25 58
C13 105

Table 1: Minimum Computation Time Savings

There are anecdotes of system administrators manu-
ally running a common sub-expression on the daily input
and explicitly notifying programmers to avoid each pro-
gram performing the computation on its own and tying
up cluster resources. Nectar automatically supports in-
cremental computation and programmers do not need to
code them explicitly. As discussed in Section 2, Nectar
tries to produce the best possible query plan using the
cached results, significantly reducing computation time,
at the same time making it opaque to the user.

An unanticipated benefit of Nectar reported by our
users on the research cluster was that it aids in debugging
during program development. Programmers incremen-
tally test and debug pieces of their code. With Nectar the
debugging time significantly improved due to cache hits.
We quantify the effect of this on the production clusters.
We assumed that a program is a debugged version of an-
other program if they had almost the same queries ac-
cessing the same source data and writing the same de-
rived data, submitted by the same user and had the same
program name.

Table 2 shows the amount of debugging time that can
be saved by Nectar in the 90 day period. We present
results for the first 12 clusters due to space constraints.
Again, these are conservative estimates but shows sub-
stantial savings. For instance, in Cluster C1, a minimum
of 3 hours of debugging time can be saved per day. No-
tice that this is actual elapsed time, i.e., each day 3 hours
of computation on the cluster spent on debugging pro-
grams can be avoided with Nectar.

84

9th USENIX Symposium on Operating Systems Design and Implementation (OSDI ’10)

USENIX Association



Debugging Debugging
Cluster | Time Saved | Cluster | Time Saved
(hours) (hours)
Cl 270 C7 3
C2 211 C8 35
C3 24 C9 84
C4 101 C10 183
C5 94 Cl1 121
C6 8 Cl12 49

Table 2: Actual elapsed time saved on debugging in 90
days.

Managing Storage

Today, in datacenters, storage is manually managed.’
We studied storage statistics in our 240-node research
cluster that has been used by a significant number of
users over the last 2 to 3 years. We crawled this clus-
ter for derived objects and noted their last access times.
Of the 109 TB of derived data, we discovered that about
50% (54.5 TB) was never accessed in the last 250 days.
This shows that users often create derived datasets and
after a point, forget about them, leaving them occupying
unnecessary storage space.

We analyzed the production logs for the amount of de-
rived datasets written. When calculating the storage oc-
cupied by these datasets, we assumed that if a new job
writes to the same dataset as an old job, the dataset is
overwritten. Figure 7 shows the growth of derived data
storage in cluster C1. It show an approximately linear
growth with the total storage occupied by datasets cre-
ated in 90 days being 670 TB.
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Figure 7: Growth of storage occupied by derived datasets
in Cluster C1

"Nectar’s motivation in automatically managing storage partly
stems from the fact that we used to get periodic e-mail messages from
the administrators of the production clusters requesting us to delete our
derived objects to ease storage pressure in the cluster.

Cluster | Projected unreferenced
derived data (in TB)
Cl 2712
C5 368
C8 863
C13 995
CI15 210

Table 3: Projected unreferenced data in 5 production
clusters

Assuming similar trends in data access time in our lo-
cal cluster and on the production clusters, Table 3 shows
the projected space occupied by unreferenced derived
datasets in 5 production clusters that showed a growth
similar to cluster C1. Any object that has not been refer-
enced in 250 days is deemed unreferenced. This result is
obtained by extrapolating the amount of data written by
jobs in 90 days to 2 years based on the storage growth
curve and predicting that 50% of that storage will not be
accessed in the last 250 days (based on the result from
our local cluster). As we see, production clusters cre-
ate a large amount of derived data, which if not properly
managed can create significant storage pressure.

4.2 System Deployment Experience

Each machine in our 240-node research cluster has two
dual-core 2.6GHz AMD Opteron 2218 HE CPUs, 16GB
RAM, four 750GB SATA drives, and runs Windows Ser-
ver 2003 operating system. We evaluate the comparative
performance of several programs with Nectar turned on
and off.

We use three datasets to evaluate the performance of
Nectar:

WordDoc Dataset. The first dataset is a collection of
Web documents. Each document contains a URL and its
content (as a list of words). The data size is 987.4 GB
. The dataset is randomly partitioned into 236 partitions.
Each partition has two replicas in the distributed file sys-
tem, evenly distributed on 240 machines.

ClickLog Dataset. The second dataset is a small sam-
ple from an anonymized click log of a commercial search
engine collected over five consecutive days. The dataset
is 160GB in size, randomly partitioned into 800 parti-
tions, two replicas each, evenly distributed on 240 ma-
chines.

SkyServer Dataset. This database is taken from the
Sloan Digital Sky Survey database [11]. It contains two
data files: 11.8 and 41.8 GBytes of data. Both files were
manually range-partitioned into 40 partitions using the
same keys.
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Sub-computation Evaluation

We have four programs: WordAnalysis, TopWord,
MostDoc, and TopRatio that analyze the WordDoc
dataset.

WordAnalysis parses the dataset to generate the num-
ber of occurrences of each word and the number of doc-
uments that it appears in. TopWord looks for the top ten
most commonly used words in all documents. MostDoc
looks for the top ten words appearing in the largest num-
ber of documents. TopRatio finds the percentage of oc-
currences of the top ten mostly used words among all
words. All programs take the entire 987.4 GB dataset as
input.

Data Size(GB) Time (m) Saving
Total | Update | On Off
Day3 | 68.20 | 40.50 | 93.0 | 107.5 | 13.49%
Day4 | 111.25 | 43.05 | 112.9 | 194.0 | 41.80%
Day5 | 152.19 | 40.94 | 164.6 | 325.8 | 49.66%

Program Name Cumulative Time Saving
Nectar on | Nectar off

TopWord 16.1m 21h44m | 98.8%

MostDoc 17.5m 21h46m | 98.6%

TopRatio 21.2m 43h30m | 99.2%

Table 4: Saving by sharing a common sub-computation:
Document analysis

With Nectar on, we can cache the results of executing
the first program, which spends a huge amount of com-
putation analyzing the list of documents to output an ag-
gregated result of much smaller size (12.7 GB). The sub-
sequent three programs share a sub-computation with the
first program, which is satisfied from the cache. Table 4
shows the cumulative CPU time saved for the three pro-
grams. This behavior is not isolated, one of the programs
that uses the ClickLog dataset shows a similar pattern; we
do not report the results here for reasons of space.

Incremental Computation

We describe the performance of a program that stud-
ies query relevance by processing the ClickLog dataset.
When users search a phrase at a search engine, they click
the most relevant URLs returned in the search results.
Monitoring the URLSs that are clicked the most for each
search phrase is important to understand query relevance.
The input to the query relevance program is the set of all
click logs collected so far, which increases each day, be-
cause a new log is appended daily to the dataset. This
program is an example where the initial dataset is large,
but the incremental updates are small.

Table 5 shows the cumulative CPU time with Nectar
on and off, the size of datasets and incremental updates
each day. We see that the total size of input data increases
each day, while the computation resource used daily in-
creases much slower when Nectar is on. We observed
similar performance results for another program that cal-
culates the number of active users, who are those that
clicked at least one search result in the past three days.
These results are not reported here for reasons of space.

Table 5: Cumulative machine time savings for incremen-
tal computation.

Debugging Experience: Sky Server

Here we demonstrate how Nectar saves program de-
velopment time by shortening the debugging cycle. We
select the most time-consuming query (Q18) from the
Sloan Digital Sky Survey database [11]. The query iden-
tifies a gravitational lens effect by comparing the loca-
tions and colors of stars in a large astronomical table,
using a three-way Join over two input tables contain-
ing 11.8 GBytes and 41.8 GBytes of data, respectively.
The query is composed of four steps, each of which is
debugged separately. When debugging the query, the
first step failed and the programmer modified the code.
Within a couple of tries, the first step succeeded, and ex-
ecution continued to the second step, which failed, and
SO on.

Table 6 shows the average savings in cumulative time
as each step is successively debugged with Nectar. To-
wards the end of the program, Nectar saves as much 88%
of the time.

Cumulative Time Saving
Nectar on | Nectar off
Step 1 47.4m 47.4m 0%
Steps 1-2 26.5m 62.5m 58%
Steps 1-3 35.5m 122.7m 71%
Steps 14 15.0m 129.3m 88%

Table 6: Debugging: SkyServer cumulative time

5 Related Work

Our overall system architecture is inspired by the Vesta
system [15]. Many high-level concepts and techniques
(e.g., the notion of primary and derived data) are directly
taken from Vesta. However, because of the difference in
application domains, the actual design and implementa-
tion of the main system components such as caching and
program rewriting are radically different.

Many aspects of query rewriting and caching in our
work are closely related to incremental view mainte-
nance and materialized views in the database litera-
ture [2, 5, 13, 19]. However, there are some important
differences as discussed in Section 3.1. Also, we are not
aware of the implementation of these ideas in systems
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at the scale we describe in this paper. Incremental view
maintenance is concerned with the problem of updating
the materialized views incrementally (and consistently)
when data base tables are subjected to random updates.
Nectar is simpler in that we only consider append-only
updates. On the other hand, Nectar is more challenging
because we must deal with user-defined functions written
in a general-purpose programming language. Many of
the sophisticated view reuses given in [13] require anal-
ysis of the SQL expressions that is difficult to do in the
presence of user-defined functions, which are common
in our environment.

With the wide adoption of distributed execution
platforms like Dryad/DryadLINQ, MapReduce/Sawzall,
Hadoop/Pig [18, 29, 7, 25, 12, 24], recent work has in-
vestigated job patterns and resource utilization in data
centers [1, 14, 22, 23, 26]. These investigation of real
work loads have revealed a vast amount of wastage in
datacenters due to redundant computations, which is
consistent with our findings from logs of a number of
production clusters.

DryadInc [26] represented our early attempt to elim-
inate redundant computations via caching, even before
we started on the DryadLINQ project. The caching ap-
proach is quite similar to Nectar. However, it works at
the level of Dryad dataflow graph, which is too general
and too low-level for the system we wanted to build.

The two systems that are most related to Nectar are the
stateful bulk processing system described by Logothetis
et al. [22] and Comet [14]. These systems mainly fo-
cus on addressing the important problem of incremental
computation, which is also one of the problems Nectar
is designed to address. However, Nectar is a much more
ambitious system, attempting to provide a comprehen-
sive solution to the problem of automatic management
of data and computation in a datacenter.

As a design principle, Nectar is designed to be trans-
parent to the users. The stateful bulk processing sys-
tem takes a different approach by introducing new prim-
itives and hence makes state explicit in the programming
model. It would be interesting to understand the trade-
offs in terms of performance and ease of programming.

Comet, also built on top of Dryad and DryadLINQ,
also attempted to address the sub-computation problem
by co-scheduling multiple programs with common sub-
computations to execute together. There are two inter-
esting issues raised by the paper. First, when multiple
programs are involved in caching, it is difficult to de-
termine if two code segments from different programs
are identical. This is particularly hard in the presence
of user-defined functions, which is very common in the
kind of DryadLINQ programs targeted by both Comet
and Nectar. It is unclear how this determination is made
in Comet. Nectar addresses this problem by building a

sophisticated static program analyzer that allows us to
compute the dependency of user-defined code. Second,
co-scheduling in Comet requires submissions of multi-
ple programs with the same timestamp. It is therefore
not useful in all scenarios. Nectar instead shares sub-
computations across multiple jobs executed at different
times by using a datacenter-wide, persistent cache ser-
vice.

Caching function calls in a functional programming
language is well studied in the literature [15, 21, 27].
Memoization avoids re-computing the same function
calls by caching the result of past invocations. Caching
in Nectar can be viewed as function caching in the con-
text of large-scale distributed computing.

6 Discussion and Conclusions

In this paper, we described Nectar, a system that auto-
mates the management of data and computation in dat-
acenters. The system has been deployed on a 240-node
research cluster, and has been in use by a small number
of developers. Feedback has been quite positive. One
very popular comment from our users is that the system
makes program debugging much more interactive and
fun. Most of us, the Nectar developers, use Nectar to
develop Nectar on a daily basis, and found a big increase
in our productivity.

To validate the effectiveness of Nectar, we performed
a systematic analysis of computation logs from 25 pro-
duction clusters. As reported in Section 4, we have seen
huge potential value in using Nectar to manage the com-
putation and data in a large datacenter. Our next step is
to work on transferring Nectar to Microsoft production
datacenters.

Nectar is a complex distributed systems with multi-
ple interacting policies. Devising the right policies and
fine-tuning their parameters to find the right trade-offs is
essential to make the system work in practice. Our eval-
uation of these tradeoffs has been limited, but we are ac-
tively working on this topic. We hope we will continue to
learn a great deal with the ongoing deployment of Nectar
on our 240-node research cluster.

One aspect of Nectar that we have not explored is that
it maintains the provenance of all the derived datasets
in the datacenter. Many important questions about data
provenance could be answered by querying the Nectar
cache service. We plan to investigate this further in future
work.

What Nectar essentially does is to unify computation
and data, treating them interchangeably by maintaining
the dependency between them. This allows us to greatly
improve the datacenter management and resource utiliza-
tion. We believe that it represents a significant step for-
ward in automating datacenter computing.
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Intrusion Recovery Using Selective Re-execution

Taesoo Kim, Xi Wang, Nickolai Zeldovich, and M. Frans Kaashoek
MIT CSAIL

ABSTRACT

RETRO repairs a desktop or server after an adversary com-
promises it, by undoing the adversary’s changes while
preserving legitimate user actions, with minimal user in-
volvement. During normal operation, RETRO records
an action history graph, which is a detailed dependency
graph describing the system’s execution. RETRO uses re-
finement to describe graph objects and actions at multiple
levels of abstraction, which allows for precise dependen-
cies. During repair, RETRO uses the action history graph
to undo an unwanted action and its indirect effects by
first rolling back its direct effects, and then re-executing
legitimate actions that were influenced by that change.
To minimize user involvement and re-execution, RETRO
uses predicates to selectively re-execute only actions that
were semantically affected by the adversary’s changes,
and uses compensating actions to handle external effects.

An evaluation of a prototype of RETRO for Linux with
2 real-world attacks, 2 synthesized challenge attacks, and
6 attacks from previous work, shows that RETRO can
often repair the system without user involvement, and
avoids false positives and negatives from previous so-
lutions. These benefits come at the cost of 35-127% in
execution time overhead and of 4—-150 GB of log space per
day, depending on the workload. For example, a HotCRP
paper submission web site incurs 35% slowdown and gen-
erates 4 GB of logs per day under the workload from 30
minutes prior to the SOSP 2007 deadline.

1 INTRODUCTION

Despite our best efforts to build secure computer systems,
intrusions are nearly unavoidable in practice. When faced
with an intrusion, a user is typically forced to reinstall
their system from scratch, and to manually recover any
documents and settings they might have had. Even if the
user diligently makes a complete backup of their system
every day, recovering from the attack requires rolling back
to the most recent backup before the attack, thereby losing
any changes made since then. Since many adversaries go
to great lengths to prevent the compromise from being
discovered, it can take days or weeks for a user to discover
that their machine has been broken into, resulting in a loss
of all user work from that period of time.

This paper presents RETRO, a system for retroactively
undoing past attacks and their indirect effects on a single
machine. With RETRO, an administrator specifies offend-

ing actions from the past, such as a TCP connection or
an HTTP request from an adversary, that they want to
undo. RETRO then repairs the system’s state (the file sys-
tem) by selectively undoing the offending actions—that
is, constructing a new system state, as if the offending
actions never took place, but all legitimate actions re-
mained. Thus, by selectively undoing the adversary’s
changes while preserving user data, RETRO makes intru-
sion recovery more practical.

To illustrate the challenges facing RETRO, consider the
following attack, which we will use as a running example
in this paper. Eve, an evil adversary, compromises a Linux
machine, and obtains a root shell. To mask her trail, she
removes the last hour’s entries from the system log. She
then creates several backdoors into the system, including
a new account for eve, and a PHP script that allows her to
execute arbitrary commands via HTTP. Eve then uses one
of these backdoors to download and install a botnet client.
To ensure continued control of the machine, Eve adds a
line to the /usr/bin/texi2pdf shell script (a wrapper
for IATEX) to restart her bot. In the meantime, legitimate
users log in, invoke their own PHP scripts, use texi2pdf,
and root adds new legitimate users.

To undo attacks, RETRO provides a system-wide ar-
chitecture for recording actions, causes, and effects in
order to identify all the downstream effects of a compro-
mise. The key challenge is that a compromise in the past
may have effects on subsequent legitimate actions, espe-
cially if the administrator discovers an attack long after it
occurred. RETRO must sort out this entanglement auto-
matically and efficiently. In our running example, Eve’s
changes to the password file and to texi2pdf are entan-
gled with legitimate actions that modified or accessed the
password file, or used texi2pdf. If legitimate users ran
texi2pdf, their output depended on Eve’s actions, and
so did any programs that used that output in turn.

As described in §2, most previous systems require user
input to disentangle such actions. Typical previous solu-
tions are good at detecting a compromise and allow a user
to roll the system back to a check point before the com-
promise, but then ask the user to incorporate legitimate
changes from after the compromise manually; this can
be quite onerous if the attack has happened a long time
ago. Some solutions reduce the amount of manual work
for special cases (e.g., known viruses). The most recent
general solution for reducing user assistance (Taser [17])
incurs many false positives (undoing legitimate actions),
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or, after white-listing some actions to minimize false posi-
tives, it incurs false negatives (missing parts of the attack).

How can RETRO disentangle unwanted actions from le-
gitimate operations, and undo all effects of the adversary’s
actions that happened in the past, while preserving every
legitimate action? RETRO addresses these challenges with
four ideas:

First, RETRO models the entire system using a new
form of a dependency graph, which we call an action his-
tory graph. Like any dependency graph, the action history
graph represents objects in the system (such as files and
processes), and the dependencies between those objects
(corresponding to actions such as a process reading a file).
To record precise dependencies, the action history graph
supports refinement, that is, representing the same object
or action at multiple levels of abstraction. For example,
a directory inode can be refined to expose individual file
names in that directory, and a process can be refined into
function calls and system calls. The action history graph
also captures the semantics of each dependency (e.g., the
arguments and return values of an action).

Second, RETRO re-executes actions in the graph, such
as system calls or process invocations, that were influ-
enced by the offending changes. For example, undoing
undesirable actions may indirectly change the inputs of
later actions, and thus these actions must be re-executed
with their repaired inputs.

Third, RETRO uses predicates to do selective re-
execution of just the actions whose dependencies are
semantically different after repair, thereby minimizing
cascading re-execution. For example, if Eve modified
some file, and that file was later read by process P, we
may be able to avoid re-executing P if the part of the file
accessed by P is the same before and after repair.

Finally, to selectively re-execute existing applications,
RETRO uses shepherded re-execution to monitor the re-
execution of processes (§5.2.3), and stops re-execution
when the process state converges to the original execution
(such as when a process issues an identical exec call).

Using a prototype of RETRO for Linux, we show that
RETRO can recover from both real-world and synthetic
attacks, including our running example, while preserving
legitimate user changes. Out of ten experiment scenarios,
six required no user input to repair, two required user
confirmation that a conflicting login session belonged to
the attacker, and two required the user to manually redo
affected operations. We also show that RETRO’s ideas of
refinement, shepherded re-execution, and predicates are
key to repairing precisely the files affected by the attack,
and to minimizing user involvement. A performance eval-
uation shows that, for extreme workloads that issue many
system calls (such as continuously recompiling the Linux
kernel), RETRO imposes a 89—127% runtime overhead
and requires 100—150 GB of log space per day. For a

more realistic application, such as a HotCRP [23] confer-
ence submission site, these costs are 35% and 4 GB per
day, respectively. RETRO’s runtime cost can be reduced
by using additional cores, amounting to 0% for HotCRP
when one core is dedicated to RETRO.

The rest of the paper is organized as follows. The next
section compares RETRO with related work. §3 presents
an overview of RETRO’s architecture and workflow. §4
discusses RETRO’s action history graph in detail, and
§5 describes RETRO’s repair managers. Our prototype
implementation is described in §6, and §7 evaluates the
effectiveness and performance of RETRO. Finally, §8 dis-
cusses the limitations and future work, and §9 concludes.

2 RELATED WORK

This section relates RETRO to industrial and academic
solutions for recovery after a compromise, and prior tech-
niques that RETRO builds on.

2.1 Repair solutions

One line of industrial solutions is anti-virus tools, which
can revert changes made by common malware, such as
Windows registry keys and files comprising a known virus.
For example, tools such as [34] can generate remediation
procedures for a given piece of malware. While such
techniques work for known malware that behaves in pre-
dictable ways, they incur both false positives and false
negatives, especially for new or unpredictable malware,
and may not be able to recover from attacks where some
information is lost, such as file deletions or overwrites.
They also cannot repair changes that were a side-effect of
the attack, such as changes made by a trojaned program,
or changes made by an interactive adversary, whereas
RETRO can undo such changes.

Another line of industrial solutions is systems that help
users roll back unwanted changes to system state. These
solutions include Windows System Restore [18], Win-
dows Driver Rollback [30], Time Machine [4], and numer-
ous backup tools. These tools perform coarse-grained re-
covery, and require the user to identify what files were af-
fected. RETRO uses the action history graph to track down
all effects of an attack, repairs precisely those changes,
and repairs all side-effects of the attack, without requiring
the user to guess what files were affected.

A final line of popular solutions is using virtual ma-
chines as a form of whole-system backup. Using Re-
Virt [14] or Moka5 [11, 31], an administrator can roll
back to a checkpoint before an attack, losing both the
attacker’s changes and any legitimate changes since that
point. One could imagine a system that replays recorded
legitimate network packets to the virtual machine to re-
apply legitimate changes. However, if there are even
subtle dependencies between omitted and replayed pack-
ets, the replayed packets will result in conflicts or external
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Figure 1: Overview of RETRO’s architecture, including major components and their interactions. Shading indicates components introduced by
RETRO. Striped shading of checkpoints indicates that RETRO reuses existing file system snapshots when available.

dependencies, requiring user input to proceed. By record-
ing dependencies and re-executing actions at many levels
of abstraction using refinement, RETRO avoids such con-
flicts and can preserve legitimate changes without user
input.

Academic research has tried to improve over the in-
dustrial solutions by attempting to make solutions more
automatic. Brown’s undoable email store [10] shows how
an email server can recover from operator mistakes, by
turning all operations into verbs, such as SMTP or IMAP
commands. Unlike RETRO, Brown’s approach is limited
to recovering from accidental operator mistakes. As a
result, it cannot deal with an adversary that goes outside
of the verb model and takes advantage of a vulnerability
in the IMAP server software, or guesses root’s password
to log in via ssh. Moreover, it cannot recover from actions
that had system-wide effects spanning multiple applica-
tions, files, and processes.

The closest related work to RETRO is Taser [17], which
uses taint tracking to find files affected by a past attack.
Taser suffers from false positives, erroneously rolling back
hundreds or thousands of files. To prevent false positives,
Taser uses a white-list to ignore taint for some nodes or
edges. This causes false negatives, so an attacker can
bypass Taser altogether. While extensions of Taser catch
some classes of attacks missed due to false negatives [40],
RETRO has no need for white-listing. RETRO recovers
from all attacks presented in the Taser paper with no
false positives or false negatives. RETRO avoids Taser’s
limitations by using a design based on the action history
graph, and techniques such as predicates and re-execution,
as opposed to Taser’s taint propagation.

Polygraph [29] uses taint tracking to recover from com-
promised devices in a data replication system, and incurs
false positives like Taser. Unlike RETRO, Polygraph can
recover from compromises in a distributed system.

2.2 Related techniques

The use of dependency information for security has been
widely explored in many contexts, including informa-

tion flow control [25, 45], taint tracking [44], data prove-
nance [9], forensics [21], system integrity [8], and so
on. A key difference in RETRO’s action history graph
is the use of exact dependency data to decide whether a
dependency has semantically changed at repair time.

RETRO assumes that intrusion detection and analysis
tools, such as [7, 12, 14, 15, 19-22, 24, 40, 43], detect
attacks and pinpoint attack edges. RETRO’s intrusion de-
tection is based on BackTracker [21]. A difference is that
RETRO’s action history graph records more information
than BackTracker, which RETRO needs for repair (but
doesn’t use yet for detection).

Transactions [33, 36] help revert unwanted changes
before commit, whereas RETRO can selectively undo
“committed” actions. Database systems use compensating
transactions to revert committed transactions, including
malicious transactions [3, 27]; RETRO similarly uses com-
pensating actions to deal with externally-visible changes.

3 OVERVIEW

RETRO consists of several components, as shown in Fig-
ure 1. During normal execution, RETRO’s kernel module
records a log of system execution, and creates periodic
checkpoints of file system state. When the system ad-
ministrator notices a problem, he or she uses RETRO to
track down the initial intrusion point. Given an intrusion
point, RETRO reverts the intrusion, and repairs the rest
of the system state, relying on the system administrator
to resolve any conflicts (e.g., both the adversary and a
legitimate user modified the same line of the password
file). The rest of this section describes these phases of
operation in more detail, and outlines the assumptions
made by RETRO about the system and the adversary.

Normal execution. As the computer executes, RETRO
must record sufficient information to be able to revert
the effects of an attack. To this end, RETRO records
periodic checkpoints of persistent state (the file system),
so that it can later roll back to a checkpoint. RETRO
does not require any specialized format for its file system
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checkpoints; if the file system already creates periodic
snapshots, such as [26, 32, 37, 38], RETRO can simply
use these snapshots, and requires no checkpointing of its
own. In addition to rollback, RETRO must be able to re-
execute affected computations. To this end, RETRO logs
actions executed over time, along with their dependencies.
The resulting checkpoints and actions comprise RETRO’s
action history graph, such as the one shown in Figure 2.

The action history graph consists of two kinds of ob-
jects: data objects, such as files, and actor objects, such
as processes. Each object has a set of checkpoints, rep-
resenting a copy of its state at different points in time.
Each actor object additionally consists of a set of actions,
representing the execution of that actor over some period
of time. Each action has dependencies from and to other
objects in the graph, representing the objects accessed
and modified by that action. Actions and checkpoints of
adjacent objects are ordered with respect to each other, in
the order in which they occurred.!

RETRO stores the action history graph in a series of log
files over time. When RETRO needs more space for new
log files, it garbage-collects older log files (by deleting
them). Log files are only useful to RETRO in conjunction
with a checkpoint that precedes the log files, so log files
with no preceding checkpoint can be garbage-collected.
In practice, this means that RETRO keeps checkpoints
for at least as long as the log files. By design, RETRO
cannot recover from an intrusion whose log files have
been garbage collected; thus, the amount of log space
allocated to logs and checkpoints controls RETRO’s re-
covery “horizon”. For example, a web server running the
HotCRP paper review software [23] logs 4 GB of data per
day, so if the administrator dedicates a 2 TB disk ($100)
to RETRO, he or she can recover from attacks within the
past year, although these numbers strongly depend on the
application.

Intrusion detection. At some point after an adversary
compromises the system, the system administrator learns
of the intrusion, perhaps with the help of an intrusion
detection system. To repair from the intrusion, the system
administrator must first track down the initial intrusion
point, such as the adversary’s network connection, or
a user accidentally running a malware binary. RETRO
provides a tool similar to BackTracker [21] that helps
the administrator find the intrusion point, starting from
the observed symptoms, by leveraging RETRO’s action
history graph. In the rest of this paper, we assume that an
intrusion detection system exists, and we do not describe
our BackTracker-like tool in any more detail.

Repair. Once the administrator finds the intrusion point,
he or she reboots the system, to discard non-persistent

1For simplicity, our prototype globally orders all checkpoints and
actions for all objects.

state, and invokes RETRO’s repair controller, specifying
the name of the intrusion point determined in the previous
step.? The repair controller undoes the offending action,
A, by rolling back objects modified by A to a previous
checkpoint, and replacing A with a no-op in the action
history graph. Then, using the action history graph, the
controller determines which other actions were poten-
tially influenced by A (e.g., the values of their arguments
changed), rolls back the objects they depend on (e.g.,
their arguments) to a previous checkpoint, re-executes
those actions in their corrected environment (e.g., with
the rolled-back arguments), and then repeats the process
for actions that the re-executed actions may have influ-
enced. This process will also undo subsequent actions
by the adversary, since the action that initially caused
them, A, has been reverted. Thus, after repair, the system
will contain the effects of all legitimate actions since the
compromise, but none of the effects of the attack.

To minimize re-execution and to avoid potential con-
flicts, the repair controller checks whether the inputs to
each action are semantically equivalent to the inputs dur-
ing original execution, and skips re-execution in that case.
In our running example, if Alice’s sshd process reads a
password file that Eve modified, it might not be necessary
to re-execute sshd if its execution only depended on Al-
ice’s password entry, and Eve did not change that entry. If
Alice’s sshd later changed her password entry, then this
change will not result in a conflict during repair because
the repair controller will determine that her change to the
password file could not have been influenced by Eve.

RETRO’s repair controller must manipulate many kinds
of objects (e.g., files, directories, processes, etc.) and
re-execute many types of actions (e.g., system calls and
function calls) during repair. To ensure that RETRO’s de-
sign is extensible, RETRO’s action history graph provides
a well-defined API between the repair controller and in-
dividual graph objects and actions. Using this API, the
repair controller implements a generic repair algorithm,
and interacts with the graph through individual repair
managers associated with each object and action in the
action history graph. Each repair manager, in turn, tracks
the state associated with their respective object or action,
implements object/action-specific operations during re-
pair, and efficiently stores and accesses the on-disk state,
logs, and checkpoints.

External dependencies. During repair, RETRO may
discover that changes made by the adversary were ex-
ternally visible. RETRO relies on compensating actions to
deal with external dependencies where possible. For ex-
ample, if a user’s terminal output changes, RETRO sends

2Each object and action in the action history graph has a unique
name, as described in §5.
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a diff between the old and new terminal sessions to the
user in question.

In some cases, RETRO does not have a compensat-
ing action to apply. If Eve, from our running example,
connected to her botnet client over the network, RETRO
would not be able to re-execute the connection during
repair (the connection will be refused since the botnet
will no longer be running). When such a situation arises,
RETRO’s repair controller pauses re-execution and asks
the administrator to manually re-execute the appropriate
action. In the case of Eve’s connection, the administra-
tor can safely do nothing and tell the repair controller to
resume.

Assumptions. RETRO makes three significant assump-
tions. First, RETRO assumes that the system administrator
detects intrusions in a timely manner, that is, before the
relevant logs are garbage-collected. An adversary that is
aware of RETRO could compromise the system and then
try to avoid detection, by minimizing any activity until
RETRO garbage-collects the logs from the initial intru-
sion. If the initial intrusion is not detected in time, the
administrator will not be able to revert it directly, but this
strategy would greatly slow down attackers. Moreover,
the administrator may be able to revert subsequent actions
by the adversary that leveraged the initial intrusion to
cause subsequent notable activity.

Second, RETRO assumes that the administrator
promptly detects any intrusions with wide-ranging effects
on the execution of the entire system. If such intrusions
persist for a long time, RETRO will require re-execution
of large parts of the system, potentially incurring many
conflicts and requiring significant user input. However,
we believe this assumption is often reasonable, since the
goal of many adversaries is to remain undetected for as
long as possible (e.g., to send more spam, or to build up a
large botnet), and making pervasive changes to the system
increases the risk of detection.

Third, for this paper, we assume that the adversary com-
promises a computer system through user-level services.
The adversary may install new programs, add backdoors
to existing programs, modify persistent state and con-
figuration files, and so on, but we assume the adversary
doesn’t tamper with the kernel, file system, checkpoints,
or logs. RETRO’s techniques rely on a detailed under-
standing of operating system objects, and our assumptions
allow RETRO to trust the kernel state of these objects. We
rely on existing techniques for hardening the kernel, such
as [16, 28, 39, 41], to achieve this goal in practice.

4 ACTION HISTORY GRAPH

RETRO’s design centers around the action history graph,
which represents the execution of the entire system over
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Figure 2: A simplified view of the action history graph depicting Eve’s
attack in our running example. In this graph, attacker Eve adds an
account for herself to /etc/passwd, after which root adds an account
for Alice, and Alice logs in via ssh. As an example, we consider Eve’s
write to the password file to be the attack action, although in reality,
the attack action would likely be the network connection that spawned
Eve’s process in the first place. Not shown are intermediate data objects,
and system call actors, described in §4.3 and Figure 4.

time. The action history graph must address four require-
ments in order to disentangle attacker actions from le-
gitimate operations. First, it must operate system-wide,
capturing all dependencies and actions, to ensure that
RETRO can detect and repair all effects of an intrusion.
Second, the graph must support fine-grained re-execution
of just the actions affected by the intrusion, without hav-
ing to re-execute unaffected actions. Third, the graph
must be able to disambiguate attack actions from legiti-
mate operations whenever possible, without introducing
false dependencies. Finally, recording and accessing the
action history graph must be efficient, to reduce both run-
time overheads and repair time. The rest of this section
describes the design of RETRO’s action history graph.

4.1 Repair using the action history graph

RETRO represents an attack as a set of attack actions. For
example, an attack action can be a process reading data
from the attacker’s TCP connection, a user inadvertently
running malware, or an offending file write. Given a set
of attack actions, RETRO repairs the system in two steps,
as follows.

First, RETRO replaces the attack actions with benign
actions in the action history graph. For example, if the
attack action was a process reading a malicious request
from the attacker’s TCP connection, RETRO removes the
request data, as if the attacker never sent any data on that
connection. If the attack action was a user accidentally
running malware, RETRO changes the user’s exec system
call to run /bin/true instead of the malware binary.
Finally, if the attack action was an unwanted write to a
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Function or variable

Semantics

set{checkpt)
void

object.checkpts
object.rollback(c)

Set of available checkpoints for this object.
Roll back this object to checkpoint c.

set{action) actor_object.actions

set{action) data_object.readers

set{action) data_object.writers
set{data_object) data_object.parts

Set of actions that comprise this actor object.

Set of actions that have a dependency from this data object.
Set of actions that have a dependency to this data object.
Set of data objects whose state is part of this data object.

actor_object action.actor
set{data_object) action.inputs
set{data_object) action.outputs

bool action.equiv()
bool action.connect()
void action.redo()

Actor containing this action.

Set of data objects that this action depends on.

Set of data objects that depend on this action.

Check whether any inputs of this action have changed.

Add dependencies for new inputs and outputs, based on new inputs.
Re-execute this action, updating output objects.

Figure 3: Object (top) and action (bottom) repair manager API.

file, as in Figure 2, RETRO replaces the action with a zero-
byte write. RETRO includes a handful of such benign
actions used to neutralize intrusion points found by the
administrator.

Second, RETRO repairs the system state to reflect the
above changes, by iteratively re-executing affected ac-
tions, starting with the benign replacements of the at-
tack actions themselves. Prior to re-executing an action,
RETRO must roll back all input and output objects of that
action, as well as the actor itself, to an earlier checkpoint.
For example, in Figure 2, RETRO rolls back the output of
the attack action—namely, the password file object—to
its earlier checkpoint.

RETRO then considers all actions with dependencies to
or from the objects in question, according to their time
order. Actions with dependencies fo the object in question
are re-executed, to reconstruct the object. For actions
with dependencies from the object in question, RETRO
checks whether their inputs are semantically equivalent
to their inputs during original execution. If the inputs
are different, such as the useradd command reading the
modified password file in Figure 2, the action will be
re-executed, following the same process as above. On
the other hand, if the inputs are semantically equivalent,
RETRO skips re-execution, avoiding the repair cascade.
For example, re-executing sshd may be unnecessary, if
the password file entry accessed by sshd is the same
before and after repair. We will describe shortly how
RETRO determines this (in §4.4 and Figure 5).

4.2 Graph API

As described above, repairing the system requires three
functions: rolling back objects to a checkpoint, re-
executing actions, and checking an action’s input depen-
dencies for semantic equivalence. To support different
types of objects and actions in a system-wide action his-
tory graph, RETRO delegates these tasks, as well as track-
ing the graph structure itself, to repair managers associ-
ated with each object and action in the graph.

A manager consists of two halves: a runtime half, re-
sponsible for recording logs and checkpoints during nor-
mal execution, and a repair-time half, responsible for
repairing the system state once the system administrator
invokes RETRO to repair an intrusion. The runtime half
has no pre-defined API, and needs to only synchronize
its log and checkpoint format with the repair-time half.
On the other hand, the repair-time half has a well-defined
API, shown in Figure 3.

Object manager. During normal execution, object
managers are responsible for making periodic checkpoints
of objects. For example, the file system manager takes
snapshots of files, such as a copy of /etc/passwd in Fig-
ure 2. Process objects also have checkpoints in the graph,
although in our prototype, the only supported process
checkpoint is the initial state of a process immediately
prior to exec.

During repair, an object manager is responsible for
maintaining the state represented by its object. For per-
sistent objects, the manager uses the on-disk state, such
as the actual file for a file object. For ephemeral objects,
such as processes or pipes, the manager keeps a temporary
in-memory representation to help action managers redo
actions and check predicates, as we describe in §5.

An object manager provides one main procedure in-
voked during repair, o.rollback(v), which rolls back ob-
ject o’s state to checkpoint v. For a file object, this means
restoring the on-disk file from snapshot v. For a pro-
cess, this means constructing an initial, paused process in
preparation for redoing exec, as we will discuss in §5.2.3;
since there is only one kind of process checkpoint, v is
not used. If the object was last checkpointed long ago,
RETRO will need to re-execute all subsequent actions that
modified the data object, or that comprise the actor object.

Action manager. During normal execution, action man-
agers are responsible for recording all actions executed
by actors in the system. For each action, the manager
records enough information to re-execute the same action
at repair time, as well as to check whether the inputs are
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semantically equivalent (e.g., by recording the data read
from a file).

At repair time, an action manager provides three proce-
dures. First, a.redo() re-executes action a, reading new
data from a’s input objects and modifying the state of
a’s output objects. For example, redoing a file write ac-
tion modifies the corresponding file in the file system; if
the action was not otherwise modified, this would write
the same data to the same offset as during original ex-
ecution. Second, a.equiv() checks whether a’s inputs
have semantically changed since the original execution.
For instance, equiv on a file read action checks whether
the file contains the same data at the same offset (and,
therefore, whether the read call would return the same
data). Finally, a.connect() updates action a’s input and
output dependencies, in case that changed inputs result in
the action reading or modifying new objects. To ensure
that past dependencies are not lost, connect only adds,
and never removes, dependencies (even if the action in
question does not use that dependency).

4.3 Refining actor objects:
Finer-grained re-execution

An important goal of RETRO’s design is minimizing re-
execution, so as to avoid the need for user input to handle
potential conflicts and external dependencies. It is of-
ten necessary to re-execute a subset of an actor’s actions,
but not necessarily the entire actor. For example, after
rolling back a file like /etc/passwd to a checkpoint that
was taken long ago, RETRO needs to replay all writes
to that file, but should not need to re-execute the pro-
cesses that issued those writes. Similarly, in Figure 2,
RETRO would ideally re-execute only a part of sshd that
checks whether Alice’s password entry is the same, and
if so, avoid re-executing the rest of sshd, which would
lead to an external dependency because cryptographic
keys would need to be re-negotiated. Unfortunately, re-
executing a process from an intermediate state is difficult
without process checkpointing.

To address this challenge, RETRO refines actors in the
action history graph to explicitly denote parts of a pro-
cess that can be independently re-executed. For example,
RETRO models every system call issued by a process by a
separate system call actor, comprising a single system call
action, as shown in Figure 4. The system call arguments,
and the result of the system call, are explicitly represented
by system call argument and return value objects. This
allows RETRO to re-execute individual system calls when
necessary (e.g., to re-construct a file during repair), while
avoiding re-execution of entire processes if the return
values of system calls remain the same.

The same technique is also applied to re-execute spe-
cific functions instead of an entire process. Figure 5 shows
a part of the action history graph for our running example,

Figure 4: An illustration of the system call actor object and arguments
and return value data objects, for Eve’s write to the password file from
Figure 2. Legend is the same as in Figure 2.
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Figure 5: An illustration of refinement in an action history graph, de-
picting the use of additional actors to represent a re-executable call to
getpwnam from sshd. Legend is the same as in Figure 2.

in which sshd creates a separate actor to represent its call
to getpwnam("alice"). While getpwnam’s execution
depends on the entire password file, and thus must be
re-executed if the password file changes, its return value
contains only Alice’s password entry. If re-execution
of getpwnam produces the same result, the rest of sshd
need not be re-executed. §5 describes such higher-level
managers in more detail.

The same mechanism helps RETRO create benign re-
placements for attack actions. For example, in order
to undo a user accidentally executing malware, RETRO
changes the exec system call’s arguments to invoke
/bin/true instead of the malware binary. To do this,
RETRO synthesizes a new checkpoint for the object repre-
senting exec’s arguments, replacing the original malware
binary path with /bin/true, and rolls back that object to
the newly-created “checkpoint”, as illustrated in Figure 6
and §4.5.
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4.4 Refining data objects:
Finer-grained data dependencies

While OS-level dependencies ensure completeness, they
can be too coarse-grained, leading to false dependencies,
such as every process depending on the /tmp directory.
RETRO’s design addresses this problem by refining the
same state at different levels of abstraction in the graph
when necessary. For instance, a directory manager creates
individual objects for each file name in a directory, and
helps disambiguate directory lookups and modifications
by recording dependencies on specific file names.

The challenge in supporting refinement in the action
history graph lies in dealing with multiple objects repre-
senting the same state. For example, the state of a single
directory entry is a part of both the directory manager’s
object for that specific file name, as well as the file man-
ager’s node for that directory’s inode. On one hand, we
would like to avoid creating dependencies to and from the
underlying directory inode, to prevent false dependencies.
On the other hand, if some process does directly read the
underlying directory inode’s contents, it should depend
on all of the directory entries in that directory.

To address this challenge, each object in RETRO keeps
track of other objects that represent parts of its state. For
example, the manager of each directory inode keeps track
of all the directory entry objects for that directory. The ob-
ject manager exposes this set of parts through the o.parts
property, as shown in Figure 3. In most cases, the man-
ager tracks its parts through hierarchical names, as we
discuss in §5.

RETRO’s OS manager records all dependencies, even
if the same dependency is also recorded by a higher-level
manager. This means that RETRO can determine trust
in higher-level dependencies at repair time. If the appro-
priate manager mediated all modifications to the larger
object (such as a directory inode), and the manager was
not compromised, RETRO can safely use finer-grained
objects (such as individual directory entry objects). Oth-
erwise, RETRO uses coarse-grained but safe OS-level
dependencies.

4.5 Repair controller

RETRO uses a repair controller to repair system state with
the help of object and action managers. Figure 6 sum-
marizes the pseudo-code for the repair controller. The
controller, starting from the REPAIR function, creates a
parallel “repaired” timeline by re-executing actions in the
order that they were originally executed. To do so, the
controller maintains a set of objects that it is currently
repairing (the nodes hash table), along with the last action
that it performed on that object. REPAIRLOOP continu-
ously attempts to re-execute the next action, until it has
considered all actions, at which point the system state is
fully repaired.

function ROLLBACK(node, checkpt)
node.rollback(checkpt)
state[node] := checkpt

function PREPAREREDO(action)

if —action.connect() then return FALSE

if state[action.actor] > action then
cps = action.actor.checkpts
cp := max(c € cps |c < action)
ROLLBACK(action.actor, cp)
return FALSE

for all o € (action.inputs U action.outputs) do
if state[o] < action then continue
ROLLBACK(0, max(c € o.checkpts | c < action))
return FALSE

return TRUE

function PICKACTION()

actions =)
for all o0 € state | ois actor object do

actions += min(a € o.actions | a > state[o])
for all o € state | oisdataobject do

actions += min(a € o.readersU

o.writers | a > state[o])

return min(actions)

function REPAIRLOOP()
while a := PICKACTION() do
if a.equiv() and state[o] > a,
Yo € a.outputs U a.actor then
for all i € a.inputs N keys(state) do
stateli] := a

continue > skip semantically-equivalent action

if PREPAREREDO(a) then

a.redo()
for all o € a.inputs U a.outputs U a.actor do
statelo] :==a

function REPAIR(repair_obj, repair_cp)
ROLLBACK(repair_obj, repair_cp)
REPAIRLOOP( )

Figure 6: The repair algorithm.

To choose the next action for re-execution, REPAIR-
LoopP invokes PICKACTION, which chooses the earliest
action that hasn’t been re-executed yet, out of all the ob-
jects being repaired. If the action’s inputs are the same
(according to equiv), and none of the outputs of the ac-
tion need to be reconstructed, REPAIRLOOP does not
re-execute the action, and just advances the state of the
action’s input nodes. If the action needs to be re-executed,
REPAIRLOOP invokes PREPAREREDO, which ensures
that the action’s actor, input objects, and output objects
are all in the right state to re-execute the action (by rolling
back these objects when appropriate). Once PREPARE-
REDO indicates it is ready, REPAIRLOOP re-executes the
action and updates the state of the actor, input, and output
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objects. Finally, REPAIR invokes REPAIRLOOP in the
first place, after rolling back repair_obj to the (newly-
synthesized) checkpoint repair_cp, as described in §4.3.

Not shown in the pseudo-code is handling of refined
objects. When the controller rolls back an object that has
a non-empty set of parts, it must consider re-executing
actions associated with those parts, in addition to actions
associated with the larger object. Also not shown is the
checking of integrity for higher-level dependencies, as
described in §4.4.

5 OBJECT AND ACTION MANAGERS

This section describes RETRO’s object and action man-
agers, starting with the file system and OS managers that
guarantee completeness of the graph, and followed by
higher-level managers that provide finer-grained depen-
dencies for application-specific parts of the graph.

5.1 File system manager

The file system manager is responsible for all file objects.
To uniquely identify files, the manager names file objects
by (device, part, inode). The device and part components
identify the disk and partition holding the file system.
Our current prototype disallows direct access to partition
block devices, so that file system dependencies are always
trusted. The inode number identifies a specific file by in-
ode, without regard to path name. To ensure that files can
be uniquely identified by inode number, the file system
manager prevents inode reuse until all checkpoints and
logs referring to the inode have been garbage-collected.

During normal operation, the file system manager must
periodically checkpoint its objects (including files and
directories), using any checkpointing strategy. Our im-
plementation relies on a snapshotting file system to make
periodic snapshots of the entire file system tree (e.g., once
per day). This works well for systems which already cre-
ate daily snapshots [26, 32, 37, 38], where the file system
manager can simply leverage existing snapshots. Upon
file deletion, the file system manager moves the deleted
inode into a special directory, so that it can reuse the same
exact inode number on rollback. The manager preserves
the inode’s data contents, so that RETRO can undo an
unlink operation by simply linking the inode back into a
directory (see §5.3).

During repair, the file system manager’s rollback
method uses a special kernel module to open the check-
pointed file as well as the current file by their inode num-
ber. Once the repair manager obtain a file descriptor for
both inodes, it overwrites the current file’s contents with
the checkpoint’s contents, or re-constructs an identical set
of directory entries, for directory inodes. On rollback to a
file system snapshot where the inode in question was not
allocated yet, the file system manager truncates the file to
zero bytes, as if it was freshly created. As a precaution,

the file system manager creates a new file system snapshot
before initiating any rollback.

5.2 OS manager

The OS manager is responsible for process and system
call actors, and their actions. The manager names each
process in the graph by (bootgen, pid, pidgen, execgen).
bootgen is a boot-up generation number to distinguish
process IDs across reboots. pid is the Unix process
ID, and pidgen is a generation number for the pro-
cess ID, used to distinguish recycled process IDs. Fi-
nally, execgen counts the number of times a process
called the exec system call; the OS manager logically
treats exec as creating a new process, albeit with the
same process ID. The manager names system calls by
(bootgen, pid, pidgen, execgen, sysid), where sysid is a
per-process unique ID for that system call invocation.

5.2.1 Recording normal execution

During normal execution, the OS manager intercepts
and records all system calls that create dependencies to
or from other objects (i.e., not getpid, etc), recording
enough information about the system calls to both re-
execute them at repair time, and to check whether the
inputs to the system call are semantically equivalent. The
OS manager creates nominal checkpoints of process and
system call actors. Since checkpointing of processes mid-
execution is difficult [13, 35], our OS manager check-
points actors only in their “initial” state immediately prior
to exec, denoted by L. The OS manager also keeps
track of objects representing ephemeral state, including
pipes and special devices such as /dev/null. Although
RETRO does not attempt to repair this state, having these
objects in the graph helps track and check dependen-
cies using equiv during repair, and to perform partial
re-execution.

5.2.2  Action history graph representation

In the action history graph, the OS manager represents
each system call by two actions in the process actor, two
intermediate data objects, and a system call actor and ac-
tion, as shown in Figure 4. The first process action, called
the syscall invocation action, represents the execution of
the process up until it invokes the system call. This action
conceptually places the system call arguments, and any
other relevant state, into the system call arguments object.
For example, the arguments for a file write include the
target inode, the offset, and the data. The arguments for
exec, on the other hand, include additional information
that allows re-executing the system call actor without hav-
ing to re-execute the process actor, such as the current
working directory, file descriptors not marked O_CLOEXEC,
and so on.
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The system call action, in a separate actor, conceptually
reads the arguments from this object, performs the system
call (incurring dependencies to corresponding objects),
and writes the return value and any returned data into
the return value object. For example, a write system
call action, shown in Figure 4, creates a dependency to
the modified file, and stores the number of bytes written
into the return value object. Finally, the second process
action, called the syscall return action, reads the returned
data from that object, and resumes process execution. In
case of fork or exec, the OS manager creates two return
objects and two syscall return actions, representing return
values to both the old and new process actors. Thus, every
process actor starts with a syscall return action, with a
dependency from the return object for fork or exec.

In addition to system calls, Unix processes interact
with memory-mapped files. RETRO cannot re-execute
memory-mapped file accesses without re-executing the
process. Thus, the OS manager associates dependencies
to and from memory-mapped files with the process’s own
actions, as opposed to actions in a system call actor. In par-
ticular, every process action (either syscall invocation or
return) has a dependency from every file memory-mapped
by the process at that time, and a dependency fo every file
memory-mapped as writable at that time.

5.2.3 Shepherded re-execution

During repair, the OS manager must re-execute two types
of actors: process actors and system call actors. For sys-
tem call actors, when the repair controller invokes redo,
the OS manager reads the (possibly changed) values from
the system call arguments object, executes the system call
in question, and places return data into the return object.
equiv on a system call action checks whether the input
objects have the same values as during the original ex-
ecution. Finally, connect reads the (possibly changed)
inputs, and creates any new dependencies that result. For
example, if a stat system call could not find the named
file during original execution, but RETRO restores the file
during repair, connect would create a new dependency
from the newly-restored file.

For process actors, the OS manager represents the
state of a process during repair with an actual process
being shepherded via the ptrace debug interface. On
p.rollback(L), the OS manager creates a fresh process
for process object p under ptrace. When the repair
controller invokes redo on a syscall return action, the
OS manager reads the return data from the correspond-
ing system call return object, updates the process state
using PTRACE_POKEDATA and PTRACE_SETREGS, and al-
lows the process to execute until it’s about to invoke the
next system call. equiv on a system call return action
checks if the data in the system call return object is the
same as during the original execution. When the repair

controller invokes redo on the subsequent syscall invo-
cation action, the OS manager simply marshals the argu-
ments for the system call invocation into the correspond-
ing system call arguments object. This allows the repair
controller to separately schedule the re-execution of the
system call, or to re-use previously recorded return data.
Finally, connect does nothing for process actions.

One challenge for the OS manager is to deal with pro-
cesses that issue different system calls during re-execution.
The challenge lies in matching up system calls recorded
during original execution with system calls actually is-
sued by the process during re-execution. The OS manager
employs greedy heuristics to match up the two system
call streams. If a new syscall does not match a previously-
recorded syscall in order, the OS manager creates new
system call actions, actors, and objects (as shown in Fig-
ure 4). Similarly, if a previously-recorded syscall does not
match the re-executed system calls in order, the OS man-
ager replaces the previously-recorded syscall’s actions
with no-ops. In the worst case, the only matches will be
the initial return from fork or exec, and the final syscall
invocation that terminates the process, potentially leading
to more re-execution, but not a loss of correctness.

In our running example, Eve trojans the texi2pdf
shell script by adding an extra line to start her botnet
worker. After repairing the texi2pdf file, RETRO re-
executes every process that ran the trojaned texi2pdf.
During shepherded re-execution of texi2pdf, exec sys-
tem calls to legitimate IZTEX programs are identical to
those during the original execution; in other words, the
system call argument objects are equivalent, and equiv on
the system call action returns true. As a result, there is no
need to re-execute these child processes. However, exec
system calls to Eve’s bot are missing, so the manager
replaces them with no-ops, which recursively undoes any
changes made by Eve’s bot.

5.3 Directory manager

The directory manager is responsible for exposing finer-
grained dependency information about directory entries.
Although the file system manager tracks changes to di-
rectories, it treats the entire directory as one inode, caus-
ing false dependencies in shared directories like /tmp.
The directory manager names each directory entry by
(device, part, inode, name). The first three components
of the name are the file system manager’s name for the
directory inode. The name part represents the file name
of the directory entry.

During normal operation, the directory manager must
record checkpoints of its objects, conceptually consist-
ing of the inode number for the directory entry (or L to
represent non-existent directory entries). However, since
the file system manager already records checkpoints of
all directories, the directory manager relies on the file
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system manager’s checkpoints, and does not perform any
checkpointing of its own. The directory manager simi-
larly relies on the OS manager to record dependencies
between system call actions and directory entries accessed
by those system calls, such as name lookups in namei
(which incur a dependency from every directory entry
traversed), or directory modifications by rename (which
incur a dependency to the modified directory entries).
During repair, the directory manager’s sole responsibil-
ity is rolling back directory entries to a checkpoint; the
OS manager handles redo of all system calls. To roll back
a directory entry to an earlier checkpoint, the directory
manager finds the inode number contained in that direc-
tory entry (using the file system manager’s checkpoint),
and changes the directory entry in question to point to
that inode, with the help of RETRO’s kernel module. If
the directory entry did not exist in the checkpoint, the
directory manager similarly unlinks the directory entry.

5.4 System library managers

Every user login on a typical Unix system accesses sev-
eral system-wide files. For example, each login attempt
accesses the entire password file, and successful logins
update both the utmp file (tracking currently logged in
users) and the lastlog file (tracking each user’s last
login). In a naive system, these shared files can lead to
false dependencies, making it difficult to disambiguate
attacker actions from legitimate changes. To address this
problem, RETRO uses a libc system library manager to
expose the semantic independence between these actions.

One strawman approach would be to represent such
shared files much as directories (i.e., creating a separate
object for each user’s password file entry). However, un-
like the directory manager, which mediates all accesses to
a directory, a manager for a function in /ibc cannot guar-
antee that an attacker will not bypass it—the manager,
libc, and the attacker can be in the same address space.
Thus, the 1ibc manager does not change the representa-
tion of data objects, and instead simplifies re-execution,
by creating actors to represent the execution of individual
libc functions. For example, Figure 5 shows an actor for
the getpwnam function call as part of sshd.

During normal operation, the library manager cre-
ates a fresh actor for each function call to one of the
managed functions, such as getpwnam, getspnam, and
getgrouplist. The library manager names function
call actors by (bootgen, pid, pidgen, execgen, callgen);
the first four parts name the process, and callgen is a
unique ID for each function call. Much as with system
call actors, the arguments object contains the function
name and arguments, and the return object contains the
return value. Like processes, function call actors have
only one checkpoint, |, representing their initial state
prior to the call.

The library manager requires the OS manager’s help to
associate system calls issued from inside library functions
with the function call actor, instead of the process actor.
To do this, the OS manager maintains a “call stack” of
function call actors that are currently executing. On every
function call, the library manager pushes the new function
call actor onto the call stack, and on return, it pops the
call stack. The OS manager associates syscall invocation
and return actions with the last actor on the call stack, if
any, instead of the process actor.

During repair, the library manager’s rollback and redo
methods allow the repair controller to re-execute individ-
ual functions. For example, in Figure 5, the controller
will re-execute getpwnam, because its dependency on
/etc/passwd changed due to repair. However, if equiv
indicates the return value from getpwnam did not change,
the controller need not re-execute the rest of sshd.

RETRO’s trust assumption about the library manager
is that the function does not semantically affect the rest
of the program’s execution other than through its return
value. If an attacker process compromises its own libc
manager, this does not pose a problem, because the pro-
cess already depended on the attacker in other ways, and
RETRO will repair it. However, if an attacker exploits a
vulnerability in the function’s input parsing code (such as
a buffer overflow in getpwnam parsing /etc/passwd),
it can take control of getpwnam, and influence the ex-
ecution of the process in ways other than getpwnam’s
return value. Thus, RETRO trusts /ibc functions wrapped
by the library manager to safely parse files and faithfully
represent their return values.

5.5 Terminal manager

Undoing attacker’s actions during repair can result in
legitimate applications sending different output to a user’s
terminal. For example, if the user ran 1s /tmp, the output
may have included temporary files created by the attacker,
or the 1s binary was trojaned by the attacker to hide
certain files. While RETRO cannot undo what the user
already saw, the terminal manager helps RETRO generate
compensating actions.

The terminal manager is responsible for objects repre-
senting pseudo-terminal, or pty, devices (/dev/pts/N in
Linux). During normal operation, the manager records
the user associated with each pty (with help from sshd),
and all output sent to the pty. During repair, if the output
sent to the pty differs from the output recorded during
normal operation, the terminal manager computes a text
diff between the two outputs, and emails it to the user.

5.6 Network manager

The network manager is responsible for compensating
for externally-visible changes. To this end, the network
manager maintains objects representing the outside world
(one object for each TCP connection, and one object for
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each IP address/UDP port pair). During normal operation,
the network manager records all traffic, similar to the
terminal manager.

During repair, the network manager compares repaired
outgoing data with the original execution. When the
network manager detects a change in outgoing traffic, it
flags an external dependency, and presents the user or
administrator with three choices. The first choice is to
ignore the dependency, which is appropriate for network
connections associated with the adversary (such as Eve’s
login session in our running example, which will generate
different network traffic during repair). The second choice
is to re-send the network traffic, and wait for a response
from the outside world. This is appropriate for outgoing
network connections and idempotent protocols, such as
DNS. Finally, the third choice is to require the user to
manually resolve the external dependency, such as by
manually re-playing the traffic for incoming connections.
This is necessary if, say, the response to an incoming
SMTP connection has changed, the application did not
provide its own compensating action, and the user does
not want to ignore this dependency.

6 IMPLEMENTATION

We implemented a prototype of RETRO for Linux,® com-
ponents of which are summarized in Figure 7. During
normal execution, a kernel module intercepts and records
all system calls to a log file, implementing the runtime
half of the OS, file system, directory, terminal, and net-
work managers. To allow incremental loading of log
records, RETRO records an index alongside the log file
that allows efficient lookup of records for a given process
ID or inode number. The file system manager implements
checkpoints using subvolume snapshots in btrfs [37]. The
libc manager logs function calls using a new RETRO sys-
tem call to add ordered records to the system-wide log.
The repair controller, and the repair-time half of each
manager, are implemented as Python modules.

RETRO implements three optimizations to reduce log-
ging costs. First, it records SHA-1 hashes of data read
from files, instead of the actual data. This allows checking
for equivalence at repair time, but avoids storing the data
twice. Second, it does not record data read or written
by white-listed deterministic processes (in our prototype,
this includes gcc and 1d). This means that, if any of the
read or write dependencies to or from these processes are
suspected during repair, the entire process will have to
be re-executed, because individual read and write system
calls cannot be checked for equivalence or re-executed.
Since all of the dependency relationships are preserved,
this optimization trades off repair time for recording time,

3While our prototype is Linux-specific, we believe that RETRO’s
approach is equally applicable to other operating systems.

Lines of code
3,300 lines of C
5,000 lines of Python
700 lines of C
500 lines of Python

Component

Logging kernel module

Repair controller, manager modules
System library managers
Backtracking GUI tool

Figure 7: Components of our RETRO prototype, and an estimate of
their complexity, in terms of lines of code.

Objects repaired Objects repaired User
Attack with predicates without predicates | input
Proc Func File | Proc Func File
Password change 1 2 4 430 20 274 1
Log cleaning 59 0 40 60 0 40 0
Running example 58 57 75 513 61 300 1
sshd trojan 530 47 303 530 47 303 3

Figure 8: Repair statistics for the two honeypot attacks (top) and two
synthetic attacks (bottom). The repaired objects are broken down into
processes, functions (from libc), and files. Intermediate objects such as
syscall arguments are not shown. The concurrent workload consisted of
1,261 process, function, and file objects (both actor and data objects),
and 16,239 system call actions. RETRO was able to fully repair all
attacks, with no false positives or false negatives. User input indicate the
number of times RETRO asked for user assistance in repair; the nature
of the conflict is reported in §7.

but does not compromise completeness. Third, RETRO
compresses the resulting log files to save space.

7 EVALUATION

This section answers three questions about RETRO, in
turn. First, what kinds of attacks can RETRO recover
from, and how much user input does it require? Second,
are all of RETRO’s mechanisms necessary in practice?
And finally, what are the performance costs of RETRO,
both during normal execution and during repair?

7.1 Recovery from attack

To evaluate how RETRO recovers from different attacks,
we used three classes of attack scenarios. First, to make
sure we can repair real-world attacks, we used attacks
recorded by a honeypot. Second, to make sure RETRO
can repair worst-case attacks, we used synthetic attacks
designed to be particularly challenging for RETRO, in-
cluding the attack from our running example. For both
real-world and synthetic attacks, we perform user activity
described in the running example after the attack takes
place—namely, root logs in via ssh and adds an account
for Alice, who then also logs in via ssh to edit and build a
KTgX file. Finally, we compare RETRO to Taser, the state-
of-the-art attack recovery system, using attack scenarios
from the Taser paper [17].

Honeypot attacks. To collect real-world attacks, we
ran a honeypot [1] for three weeks, with a modified sshd
that accepted any password for login as root. Out of
many root logins, we chose two attacks that corrupted
our honeypot’s state in the most interesting ways.* In the
first attack, the attacker changed the root password. In the
second attack, the attacker downloaded and ran a Linux

4Most of the attackers simply ran a botnet binary or a port scanner.
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. Taser . .
Scenario Snapshot NoI NoIAN NoIANC RETRO  User input required
Illegal storage FP FP FN FN v None.
Content destruction FP v v FN v None. (Generates terminal diff compensating action.)
Unhappy student FP FP v FN v None. (Generates terminal diff compensating action.)
Compromised database FP FP FP FN v None.
Software installation FP FP v v v Re-execute browser (or ignore browser state changes).
Inexperienced admin FP FP FP v v Skip re-execution of attacker’s login session.

Figure 9: A comparison of Taser’s four policies and RETRO against a set of scenarios used to evaluate Taser [17]. Taser’s snapshot policy tracks all
dependencies, Nol ignores IPC and signals, NoIAN also ignores file name and attributes, and NoIANC further ignores file content. FP indicates a
false positive (undoing legitimate actions), FN indicates a false negative (missing parts of the attack), and v indicates no false positives or negatives.

binary that scrubbed system log files of any mention of
the attacker’s login attempt.

For both of these attacks, RETRO was able to repair
the system while preserving all legitimate user actions, as
summarized in Figure 8. In the password change attack,
root was unable to log in after the attack, immediately
exposing the compromise, although we still logged in
as Alice and ran texi2pdf£. In the second attack, all 59
repaired processes were from the attacker’s log cleaning
program, whose effects were undone.

For these real-world attacks, RETRO required minimal
user input. RETRO required one piece of user input to
repair the password change attack, because root’s login
attempt truly depended on root’s entry in /etc/passwd,
which was modified by the attacker. In our experiment,
the user told the network manager to ignore the conflict.
RETRO required no user input for the log cleaning attack.

Synthetic attacks. To check if RETRO can recover
from more insidious attacks, we constructed two synthetic
attacks involving trojans; results for both are summarized
in Figure 8. For the first synthetic attack, we used the
running example, where the attacker adds an account for
eve, installs a botnet and a backdoor PHP script, and tro-
jans the /usr/bin/texi2pdf shell script to restart the
botnet. Legitimate users were unaware of this attack, and
performed the same actions. Once the administrator de-
tected the attack, RETRO reverted Eve’s changes, includ-
ing the eve account, the bot, and the trojan. As described
in §5.2.3, RETRO used shepherded re-execution to undo
the effects of the trojan without re-running the bulk of the
trojaned application. As Figure 8 indicates, RETRO re-
executed several functions (getpwnam) to check if remov-
ing eve’s account affected any subsequent logins. One
login session was affected—Eve’s login—and RETRO’s
network manager required user input to confirm that Eve’s
login need not be re-executed.

One problem we discovered when repairing the running
example attack is that the UID chosen for Alice by root’s
useradd alice command depends on whether eve’s ac-
count is present. If RETRO simply re-executed useradd
alice, useradd would pick a different UID during re-
execution, requiring RETRO to re-execute Alice’s entire
session. Instead, we made the useradd command part of

the system library manager, so that during repair, it first
tries to re-execute the action of adding user alice under
the original UID, and only if that fails does it re-execute
the full useradd program. This ensures that Alice’s UID
remains the same even after RETRO removes the eve
account (as long as Alice’s UID is still available).

A second synthetic attack we tried was to trojan
/usr/sbin/sshd. In this case, users were able to log
in as usual, but undoing the attack required re-executing
their login sessions with a good sshd binary. Because
RETRO cannot rerun the remote ssh clients (and a new key
exchange, resulting in different keys, makes TCP-level
replay useless), RETRO’s network manager asks the ad-
ministrator to redo each ssh session manually. Of course,
this would not be practical on a real system, and the ad-
ministrator may instead resort to manually auditing the
files affected by those login sessions, to verify whether
they were affected by the attack in any way. However, we
believe it is valuable for RETRO to identify all connections
affected by the attack, so as to help the administrator lo-
cate potentially affected files. In practice, we hope that an
intrusion detection system can notice such wide-reaching
attacks; after a few user logins, the dependency graph
indicates that unrelated user logins are all dependent on a
previous login session, which an IDS may be able to flag.

Taser attacks. Finally, we compare RETRO to the state-
of-the-art intrusion recovery system, Taser, under the
attack scenarios that were used to originally evaluate
Taser [17]. Figure 9 summarizes the results.

In the first scenario, illegal storage, the attacker creates
a new account for herself, stores illegal content on the
system, and trojans the 1s binary to mask the illegal
content. RETRO rolls back the account, illegal files, and
the trojaned 1s binary, and uses the legitimate 1s binary to
re-execute all 1s processes from the past. Even though the
trojaned 1s binary hid some files, the legitimate 1s binary
produces the same output, because RETRO removes the
hidden files during repair. As a result, there is no need
to notify the user. If 1s’s output did change, the terminal
manager would have sent a diff to the affected users.

In the content destruction scenario, an attacker deletes
a user’s files. Once the user notices the problem, he
uses RETRO to undo the attack. After recovering the
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Workload ‘ Without RETRO With RETRO ‘ Log size  Snapshot size | # of objects  # of actions
1 core 1 core 2 cores

Kernel build 295 sec 557 sec 351 sec 761 MB 308 MB 87,405 5,698,750

Web server 7260 req/s 3195 req/s 5453 req/s 98 MB 272 KB 508 185,315

HotCRP 20.4 req/s 15.1req/s  20.0 req/s 81 MB 27 MB 19,969 939,418

Figure 10: Performance and storage costs of RETRO for three workloads: building the Linux kernel, serving files as fast as possible using Apache [2]
for 1 minute, and simulating requests to HotCRP [23] from the 30 minutes before the SOSP 2007 deadline, which averaged 2.1 requests per
second [44] (running as fast as possible, this workload finished in 3—4 minutes). “# of objects” reflects the number of files, directory entries, and

processes; not included are intermediate objects such as system call arguments. “# of actions” reflects the number of system call actions.

files, RETRO generates a terminal output diff for the login
session during which the user noticed the missing files
(after repair, the user’s 1s command displays those files).

In the unhappy student scenario, a student exploits an
ftpd bug to change permissions on a professor’s grade
file, then modifies the grade file in another login session,
and finally a second accomplice user logs in and makes a
copy of the grade file. In repairing the attack, RETRO rolls
back the grade file and its permissions, re-executes the
copy command (which now fails), and uses the terminal
manager to generate a diff for the attackers’ sessions,
informing them that their copy command now failed.

In the compromised database scenario, an attacker
breaks into a server, modifies some database records (in
our case we used SQLite), and subsequently a legitimate
user logs in and runs a script that updates database records
of its own. RETRO rolls back the database file to a state
before the attack, and re-executes the database update
script to preserve subsequent changes, with no user input.

In the software installation scenario, the administrator
installs the wrong browser plugin, and only detects this
problem after running the browser and downloading some
files. During repair, RETRO rolls back the incorrect plu-
gin, and attempts to repair the browser using re-execution.
Since RETRO encounters external dependencies in re-
executing network applications, it requests the user to
manually redo any interactions with the browser. In our
experiment, the user ignored this external dependency,
because he knew the browser made no changes to local
state worth preserving.

In the inexperienced admin scenario, root selects a
weak password for a user account, and an attacker guesses
the password and logs in as the user. Undoing root’s pass-
word change affects the attacker’s login session, requiring
one user input to confirm to the network manager that it’s
safe to discard the attacker’s TCP connection.

In summary, RETRO correctly repairs all six attack
scenarios posed by Taser, requiring user input only in two
cases: to re-execute the browser, and to confirm that it’s
safe to drop the attacker’s login session. Taser requires
application-specific policies to repair these attacks, and
some attacks cannot be fully repaired under any policy.
Taser’s policies also open up the system to false negatives,
allowing an adversary to bypass Taser altogether.

7.2 Technique effectiveness

In this subsection, we evaluate the effectiveness of
RETRO’s specific techniques, including re-execution,
predicate checking, and refinement.

Re-execution is key to preserving legitimate user ac-
tions. As described in §7.1 and quantified in Figure 8,
RETRO re-executes several processes and functions to pre-
serve and repair legitimate changes. Without re-execution,
RETRO would have to conservatively roll back any files
touched by the process in question, much like Taser’s
snapshot policy, which incurs false positives.

Without predicates, RETRO would have to perform
conservative dependency propagation in the dependency
graph. As in Taser, dependencies on attack actions
quickly propagate to most objects in the graph, requir-
ing re-execution of almost every process. This leads
to re-execution of sshd, which requires user assistance.
Figure 8 shows that many of the objects repaired with-
out predicates were not repaired with predicates enabled.
Taser would roll back all of these objects (false positives).
Thus, predicates are an important technique to minimize
user input due to re-execution.

Without refinement of actor and data objects,
RETRO would incur false dependencies via /tmp and
/etc/passwd. As Figure 8 shows, several functions
(such as getpwnam) were re-executed in repairing from
attacks. If RETRO was unable to re-execute just those
functions, it would have re-executed processes like sshd,
forcing the network manager to request user input. Thus,
refinement is important to minimizing user input due to
false dependencies.

7.3 Performance

We evaluate RETRO’s performance costs in two ways.
First, we consider costs of RETRO’s logging during nor-
mal execution. To this end, we measure the CPU overhead
and log size for several workloads. Figure 10 summarizes
the results. We ran our experiments on a 2.8GHz Intel
Core 17 system with 8 GB RAM running a 64-bit Linux
2.6.35 kernel, with either one or two cores enabled.

The worst-case workload for RETRO is a system that
uses 100% of CPU time and spends most of its time com-
municating between small processes. One such extreme
workload is a system that continuously re-builds the Linux
kernel; another example is an Apache server continuously
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serving small static files. For such systems, RETRO in-
curs a 89—127% CPU overhead using a single core, and
generates about 100-150 GB of logs per day. A 2 TB
disk ($100) can store two weeks of logs at this rate before
having to garbage-collect older log entries. If a spare
second core is available, and the application cannot take
advantage of it, it can be used for logging, resulting in
only 18-33% CPU overhead.

For a more realistic application, such as a HotCRP [23]
paper submission web site, RETRO incurs much less
overhead, since HotCRP’s PHP code is relatively CPU-
intensive. If we extrapolate the workload from the 30
minutes before the SOSP 2007 deadline [44] to an entire
day, HotCRP would incur 35% CPU overhead on a single
core (and almost no overhead if an additional unused core
were available), and use about 4 GB of log space per day.
We believe that these are reasonable costs to pay to be
able to recover integrity after a compromise of a paper
submission web site.

Second, we consider the time cost of repairing a sys-
tem using RETRO after an attack. As Figure 8 illustrated,
RETRO is often effective at repairing only a small subset
of objects and actions in the action history graph, and for
attacks that affect the entire system state, such as the sshd
trojan, user input dominates repair costs. To illustrate the
costs of repairing a subset of the action history graph,
we measure the time taken by RETRO to repair from a
micro-benchmark attack, where the adversary adds an
extraneous line to a log file, which is subsequently mod-
ified by a legitimate process. When only this attack is
present in RETRO’s log (consisting of 10 process objects,
126 file objects, and 399 system call actions), repair takes
0.3 seconds. When this attack runs concurrently with a
kernel build (as shown in Figure 10), repair of the attack
takes 4.7 seconds (10x longer), despite the fact that the
log is 10,000 x larger. This shows that RETRO’s log in-
dexing makes repair time depend largely on the number
of affected objects, rather than the overall log size.

8 DISCUSSION AND FUTURE WORK

An important assumption of RETRO is that the attacker
does not compromise the kernel. Unfortunately, security
vulnerabilities are periodically discovered in the Linux
kernel [5, 6], making this assumption potentially danger-
ous. One solution may be to use virtual machine based
techniques [14, 21], although it is difficult to distinguish
kernel objects after a kernel compromise. We plan to
explore ways of reducing trust in future work.

In our current prototype, if attackers compromise the
kernel and obtain access to RETRO’s log files, they may
be able to extract sensitive information, such as user pass-
words or keys, that would not have been persistently
stored on a system without RETRO. One possible so-
lution may be to encrypt the log files and checkpoints,

so that the administrator must reboot the system from a
trusted CD and enter the password to initiate recovery.

Our current prototype can only repair the effects of an
attack on a single machine, and relies on compensating
actions to repair external state. In future work, we plan
to explore ways to extend automated repair to distributed
systems, perhaps based on the ideas from [29, 42].

RETRO requires the system administrator to specify
the initial intrusion point in order to undo the effects
of the attack, and finding the initial intrusion point can
be difficult. In future work, we hope to leverage the
extensive data available in RETRO’s dependency graph
to build intrusion detection tools that can better pin-point
intrusions. Alternatively, instead of trying to pinpoint
the attack, we may be able to use RETRO to retroactively
apply security patches into the past, and re-execute any
affected computations, thus eliminating any attacks that
exploited the vulnerability in question.

We did not have space to address several practical as-
pects of using RETRO, such as performing multiple re-
pairs or undoing a repair. These operations translate into
making additional checkpoints, and updating the graph
accordingly after repair. Also, as hinted at in §5, we plan
to explore the use of more specialized repair managers,
such as managers for a language runtime, a database, or
an application like a web server or web browser. Finally,
while RETRO’s performance and storage overheads are
already acceptable for some workloads, we plan to further
reduce them by not logging intermediate dependencies
that can be reconstructed at repair time.

9 CONCLUSION

RETRO repairs system integrity from past attacks by using
an action history graph to track system-wide dependen-
cies, roll back affected objects, and re-execute legitimate
actions affected by the attack. RETRO minimizes user
input by avoiding re-execution whenever possible, and
by using compensating actions for external dependencies.
RETRO’s key techniques for minimizing re-execution in-
clude predicates, refinement, and shepherded re-execution.
A prototype of RETRO for Linux recovers from a mix of
ten real-world and synthetic attacks, repairing all side-
effects of the attack in all cases. Six attacks required no
user input to repair, and RETRO required significant user
input in only two cases involving trojaned network-facing
applications.
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Static Checking of Dynamically-Varying Security Policies in
Database-Backed Applications

Adam Chlipala
Impredicative LLC

Abstract

We present a system for sound static checking of security
policies for database-backed Web applications. Our tool
checks a combination of access control and information
flow policies, where the policies vary based on database
contents. For instance, one or more database tables may
represent an access control matrix, controlling who may
read or write which cells of these and other tables. Us-
ing symbolic evaluation and automated theorem-proving,
our tool checks these policies statically, requiring no pro-
gram annotations (beyond the policies themselves) and
adding no run-time overhead. Specifications come in the
form of SQL queries as policies: for instance, an appli-
cation’s confidentiality policy is a fixed set of queries,
whose results provide an upper bound on what infor-
mation may be released to the user. To provide user-
dependent policies, we allow queries to depend on what
secrets the user knows. We have used our prototype im-
plementation to check several programs representative of
the data-centric Web applications that are common today.

1 Introduction

Much of today’s most important software exists as
Web applications, and many of these applications are
thin interface layers for relational databases. Real-
world requirements impel developers to implement many
application-specific schemes for access control (“who
can do what?”’) and information flow (“who can learn
what?”). To reason about correctness of these implemen-
tations, the programmer must consider all possible flows
of control through a program.

This task is hard enough if a security policy can be
expressed statically, as, for instance, a list of which of
a fixed set of principals is allowed to perform each of a
fixed set of actions. However, the needs of real applica-
tions tend to force use of evolving security policies, and
usually the most convenient place to store a policy is in

the same database where the rest of application data re-
sides. For instance, a database often encodes some kind
of access control matrix, where entries reference rows of
other tables. The peculiar structure of an organization
may require access control based on customized schema
design and checking code. An effective security valida-
tion tool must be able to “understand” these policies.
Many program analysis and instrumentation schemes
have been applied to provide some automatic assurance
of security properties. In this space, the traditional di-
chotomy is between dynamic and static tools, based on
whether checking happens at run time or compile time.
The two extremes have their characteristic advantages.

e Dynamic analysis can often be implemented with-
out requiring any program annotations included
solely to make analysis easier.

e Real developers have an easier time writing spec-
ifications compatible with dynamic analysis, since
these specifications can often be arbitrary code for
inspecting program states.

e Static analysis can provide strong guarantees that
hold for all possible program executions, even those
exercising weird corner cases that may not have
been considered.

e Static analysis adds no run-time overhead.

In this paper, we present a tool UrFlow for static anal-
ysis of database-backed Web applications. We have tried
to reap some of all of the advantages just described. Our
tool requires no program annotations and provides fully
sound static assurance about all possible executions of a
program, and it requires no changes to the run-time be-
havior of programs. We take advantage of the fact that
it is already common for Web applications to be imple-
mented at quite a high level, relying on an SQL engine
to implement the key data structures. Our tool models
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the semantics of SQL faithfully, at a level that makes for-
mal, automated analysis quite practical. We use popular
ideas from symbolic execution and automated theorem-
proving to build detailed models of program behavior
automatically, which saves developers the trouble of ex-
plaining these models with code annotations.

It is natural for developers to write specifications that
look much like the program code they are already writ-
ing. Traditional assertions (e.g., with the C assert
macro) fall under this heading. In an application that de-
pends on an SQL engine to manage its main data struc-
tures, it seems similarly natural to express security poli-
cies using SQL. Our tool is based on that model, allowing
developers to write detailed statically-checkable specifi-
cations without learning a new language. Queries can
express confidentiality properties by selecting which in-
formation the user may learn, and queries can express
database update properties by selecting allowable state
transitions. We need only one extension to the standard
SQL syntax and semantics: to allow policies to vary by
user, we introduce explicit consideration of which secrets
(e.g., passwords) the user knows.

UrFlow is integrated with the compiler for Ur/Web [3],
a domain-specific language for Web application develop-
ment. Ur/Web presents a very high-level view of the do-
main, with explicit language support for the key elements
of Web applications. For instance, the SQL interface uses
an expressive type system to ensure that any code that
type-checks accesses the SQL database correctly. In the
present project, we have used the first-class SQL support
to avoid the need for program analysis to recover a high-
level view of how an application uses the database.

We begin by introducing our policy model and demon-
strating its versatility. After that, we present our pro-
gram analysis, including its symbolic evaluation and au-
tomated theorem-proving aspects. Next, we discuss the
scope and limitations of our analysis, describe some
case-study applications that we have checked with Ur-
Flow, and compare with related work.

2  SQL Queries as Policies

Consider a simple application that maintains a database
of users and per-user secret strings. We can declare our
schema to Ur/Web with table declarations. Following
standard practice in relational databases, each table in-
cludes a unique integer ID, which provides a convenient
handle to pass to row-specific operations. Besides an ID,
a user record contains a username and password, and
a secret record contains the owning user ID and the
data value.

{ Id
Pass

int, Nam
string }

table user string,

table secret : { Id
Data

int, User int,

string }

We also declare an HTTP cookie, which acts like a
typed global variable which exists separately on each
Web browser. This cookie tracks the authentication in-
formation for the currently logged-in user. While a more
realistic program would probably rely on unique session
IDs, here we adopt the less secure strategy of storing a
user ID and password pair in each cookie, to simplify the
example.

cookie login : { Id int, Pass string }

We can write a function that checks this cookie and
returns its user ID if the password is correct. The code
is written in a functional style, where we collapse “ex-
pressions” and “statements” into a single syntactic class.
Thus, instead of determining the function return value
with explicit return statements, we just say that the
function result is the value of the single expression that
is the function body.

Ur/Web code makes a lot of use of tagged unions, a
safe analogue to C unions that is popular in functional
programming languages. A tagged union value is either a
simple tag, which is like an enum value in C; or a pairing
of a tag and another value, which is like a C union, but
with a convention to ensure that it is always possible to
inspect a value and determine which union alternative is
being used. For tag T, a simple tag expression is written
like T, while the pairing of that tag with expression e is
written T (e). For instance, instead of allowing every
object type to be inhabited by a special value null, we
instead represent null with an explicit tag None, and
we represent non-null object o as Some (o) . A pattern-
matching construct case is used to deconstruct tagged
union values.

Here is the code for a function to check the correct-
ness of the information in the 1ogin cookie. It is writ-
ten in a compiler intermediate language in which some
higher-order functional programming idioms have been
replaced with more standard imperative code.

fun userId() =
case getCookie (login) of
None => None

| Some (1i) =>

let b = query
(SELECT COUNT (*) > 0 AS B
FROM user
WHERE user.Id = {1i.Id}

AND user.Pass = {li.Pass})

(r acc => r.B) False in

if b then
Some (1i.1Id)

else

error ("Wrong user ID or password!")
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Our userId function begins by retrieving the current
value of the 1ogin cookie. This will either be None,
if no value of the cookie is set; or Some (11i), if the
ID/password record 1i has been set as the cookie value.
If the cookie is not set, there is no user ID to return. Oth-
erwise, we must consult the database to see if the pass-
word is correct.

We have literal SQL syntax embedded in the code,
with splicing of variable values using curly braces. The
query checks if there are any rows in the user table
matching the cookie contents. In this intermediate lan-
guage, every database read is expressed as a loop over
the results of a query. The body of the loop is written as
an expression with two explicitly-named new local vari-
ables: r, the latest row to process; and acc, an accu-
mulator that is modified as we process rows. The body
expression after the => determines the new accumulator
value after every iteration. We give False as the initial
accumulator value. In our example here, the loop body
ignores the accumulator, and we simply project the one
field of any result row to save as the accumulator. The
error function aborts program execution with an error
message, which we do here when the user provides in-
valid credentials.

We can write the main entry point of our application
to display all of the logged-in user’s secrets.

fun main() =
case userId() of
None => write("You’re not logged in.")
| Some (u) =>
query (SELECT secret.Id, secret.Data
FROM secret
WHERE secret.User = {u})
(r acc =>
write ("<1i> <i>");
write (toString(r.Secret.Id));

(
write ("</i>: ");
write (escape(r.Secret.Data));
write ("</1i>")) ()

In this query loop, the accumulator is still ignored, and
in fact we execute the function body solely for its side
effects, which involve writing HTML to be sent to the
client.

We would like to verify that this application satisfies
a reasonable confidentiality policy. Intuitively, every cell
of the database belongs to a particular user. We want to
ensure that no user is able to read cells belonging to a
different user. This simple policy expresses our intent
for the cells of the user table.

policy sendClient (SELECT =
FROM user
WHERE known (user.Pass))

The informal meaning of this policy is that the user
may learn any value that could be returned from this
query. Every policy statement is followed by a key-
word naming a kind of policy. In this case, that keyword
is sendClient, which is used for confidentiality poli-
cies. Specifically, the user may learn anything about any
row of user whose password he knows. The new pred-
icate known models which information the client is al-
ready aware of. We assume the client knows the text of
the program and the text of the HTTP request it sent. In
our example, when we disclose any secret information,
we know that the user’s own password is known because
it came from the 1ogin cookie, which was part of the
incoming HTTP request.

A more complicated policy allows the release of infor-
mation about secrets.

policy sendClient (SELECT =
FROM secret, user
WHERE secret.User = user.Id
AND known (user.Pass))

We use a join between the secret and user tables,
requiring that the client demonstrate knowledge of the
password for the user who owns the secret.

Our tool verifies that the application satisfies these se-
curity policies. That is, every cell of the database whose
value might be disclosed could have been selected by one
of these queries, based on an interpretation of known
drawn from the HTTP request that prompted an execu-
tion.

There are several opportunities for mistakes in imple-
menting the policy. Consider what would happen if we
had implemented userId to always return 17. When
we run the compiler, we get an error message. The com-
piler tells us which secret may be leaked, and (in addition
to the location of the offending write) we are given a first-
order logic characterization of the state of the program at
the time when the leak might occur.

User learns: r.Secret.Data
Hypotheses: secret (x1),
r = {Secret =
{Id = x1.Id, Data = x1l.Data}l},
x1.User = 17

The hypotheses are generated directly from the SQL
query in main. The first hypothesis tells us that row x1
is in the secret table. Our row variable r is equated
with a record built by projecting the requested fields from
x1, and the last hypothesis represents the WHERE clause.

In the correct implementation, UrFlow explores every
static path through the program, maintaining a logical
state at each point. When the analysis reaches the point
that triggered the error above, we have this more infor-
mative state.
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known (c),
user (x1),

x1.Pass = c2.Pass,
c2.1d,
x2.1Id, Data =

c = cookie/login,
c Some (c2),
x1.Id = c2.1d,
secret (x2),
{Secret =

x2 .User =

r = {Id =

The variable c stands for the cookie value, which is
asserted to be known to the user. The SQL query from
userIdisreflected with assertions about a variable x1,
which is the row of user that must have matched the
query for execution to reach this point. The confiden-
tiality policy used a join between secret and user to
describe when information on secrets may be released.
The program code, on the other hand, contains no joins.
UrFlow understands join semantics to the point where it
is able to deduce that the above logical state implies that
a join, performed as in the policy, would authorize the
release of everything included in the record r.

2.1 What is Being Checked?

We can give a simple characterization of exactly what
confidentiality property the analyzer enforces, as a func-
tion of the policy the user specifies. First, we need to
define exactly what we mean by the known predicate. In-
formally, a known piece of data is something that the user
is already aware of, so that no confidentiality require-
ment is violated by echoing back that value or another
value derived from it in a predictable way. More for-
mally, known is the most restrictive predicate satisfying
the following rules:

1. Any constant appearing in the program text is
known.

2. The initial value of every cookie is known. These
cookies may have arbitrary structured types, as in
the record type given to the 1login cookie in the
last example.

3. The value of every explicit parameter to the appli-
cation is known. For page requests generated by
submission of HTML forms, this includes all form
field values.

4. A record is known iff all of its fields are known.

5. For any union tag T (e.g., Some in our example), a
value v is known iff T (v) is known.

We say that a value v is allowed in a specific database
state D if there exists a sendClient policy that, when
executed in state D, would return v as one of its outputs.
We say that a value v is built from a set S if v is in S
or can be constructed out of the elements of .S by com-
bining a subset of them with record and tagged union
operations.

x2 .Data}}

Now we can give a concise description of exactly what
UrFlow checks. For any execution of a program that the
analysis approved:

1. Whenever a write command sends some value v
to the client, v is built from the set of values that are
known or allowed.

2. Whenever the program branches based on the value
v of some test expression, such that the branch cho-
sen influences what might be sent to the client later,
v is built from the set of values that are known or
allowed. This prevents some implicit flows, where
the very fact that a program reaches a particular line
of code may reveal secret information. Since im-
plicit flows are a notorious source of false alarms in
information flow analysis, programmers might want
to turn off this piece of checking, which would be
easy to do via a compiler flag.

The same kind of characterization does not work well
for ruling out implicit flows induced by SQL WHERE
clauses, so we leave additional checking of that kind for
future work. This means that a checked program may
leak information about the existence of rows, based on
tests against arbitrary SQL expressions, but the contents
of those rows will not be leaked directly.

2.2 Authorizing Database Writes

UrFlow also checks every database modification. For
example, consider this page generation function, which
would be given as the action to run upon submission of
an HTML form for adding a new secret.

fun addSecret (fields) =
case userId() of
None => write ("You’re not logged in.")
| Some u =>

let id = nextId() in

dml (INSERT INTO secret (Id, User, Data)
VALUES ({id}, {u}, {fields.Data}));

main ()

If we do not assert an explicit database update policy,
then UrFlow rejects this program. Here is one policy that
would allow the insertion:

policy mayInsert (SELECT =
FROM secret AS New,
WHERE New.User = user.Id
AND known (user.Pass)
AND known (New.Data))

user

We reuse the same SQL query notation for modifica-
tion policies, though the choice of SELECT clause is ig-
nored, so we will always write SELECT *. One of the
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tables in the FROM clause must be given the name New;
this is the table for which we are authorizing insertion.

UrFlow only allows a row insertion if the new row
could be returned by one of the mayInsert queries,
in a certain sense. In checking against a particular policy
query, we interpret the New relation as the universal rela-
tion, containing all possible tuples. The policy may join
it with other, real database tables and perform filtering
with WHERE, leading to a result set of rows that may be
infinite. The insertion is permitted if the New part of one
of these rows matches the values being inserted.

Our insertion policy lets any user add secrets if he as-
sociates them with his own user. We can also authorize
deletions and updates, based on similar criteria.

policy mayDelete (SELECT =

FROM secret AS 01d, user

WHERE Old.User = user.Id
AND known (user.Pass))

policy mayUpdate (SELECT =
FROM secret AS 0l1ld, secret AS New, user
WHERE Old.User = user.Id
AND New.User = 0ld.User
AND New.Id = 01d.Id
AND known (user.Pass)
AND known (New.Data))

A mayDelete policy must tag a FROM table as O1d,
to stand for the table being deleted from. A mayUpdate
policy needs both 01d and New tables, standing for the
part of a table being updated and the new data being writ-
ten into it. Both new policies retain the logic for checking
that the client knows the password for the user whose se-
cret is affected, and the update policy also requires that
the secret ID is not changed. The insertion and update
policies require that the new data value is known, which
provides a simple guard against inadvertent leaking of
privileged information into a part of the database that is
considered to be less privileged.

3 Flexibility of Query-Based Policies

We have found that this approach to writing specifica-
tions leads to natural descriptions of many natural poli-
cies. For instance, we have implemented a simple Web
message forum system. Our implementation contains a
table representing an access-control list. Each entry gives
a user permissions in a specific forum, at a particular nu-
meric level of access.

table acl { Forum

User

forumId,

userId, Level int }

One policy allows release of information about any
message in a forum that the current user has been granted
any kind of access to.

policy sendClient (SELECT =
FROM message, acl, user
WHERE acl.Forum = message.Forum
AND acl.User = user.Id
AND known (user.Pass))

Posting a new message requires access at level 2 or
higher.

policy mayInsert (SELECT =
FROM message AS New, user, acl
WHERE New.User = user.Id
AND New.Forum = acl.Forum
AND user.Id = acl.User
AND known (user.Pass)
AND acl.Level >= 2
AND known (New.Subject)
AND known (New.Body) )

Regular users may not delete messages from forums.
This right is only granted to admins, who have access
level 3 or higher. The following policy formalizes the
deletion rule.

policy mayDelete (SELECT «*
FROM message AS 01ld, user, acl
WHERE Old.Forum = acl.Forum
AND user.Id = acl.User
AND known (user.Pass)
AND acl.Level >= 3)

Our implementation allows forums to be marked as
public, in which case any visitor may read their contents.
There is also another ACL table which grants users ad-
min access to all forums. Additional policies allow in-
formation flows and updates based on these rules.

The UrFlow policy language supports access control
techniques besides user accounts with passwords. For
example, we have implemented a simple Web-based poll
system without user accounts. Anyone may create a new
poll; at that time, the creator learns a secret code that
grants admin rights to the poll. That code allows him to
add poll questions. After adding all of the questions, the
poll creator may mark the poll as live. After that time,
no further changes to the poll are allowed, and the poll
is added to a list on the application’s front page. Anyone
may vote in a live poll, but no one may vote on a poll that
is not yet live. After submitting his votes, a user receives
a code that allows him to view the results of the poll.
Results should never be released without first checking
that the user has provided a code that matches the poll
admin code or a code associated with a vote that has been
cast.

The policy below controls the conditions under which
a new question may be added to a poll. In particular,
the question must be linked to a valid poll, the user must
know the admin code for the poll, and the poll must not
be live yet.
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policy mayInsert (SELECT «x
FROM question AS New, poll
WHERE New.Poll = poll.Id

AND known (poll.Code)
AND NOT poll.Live
AND known (New.Text))

Anyone with a poll’s admin code may update the poll
only to mark it as live. This policy expresses that re-
quirement with equality assertions between old and new
values of every column besides Live.

policy mayUpdate (SELECT =«
FROM poll AS New, poll AS 0Old
WHERE New.Id = 01ld.Id
AND New.Nam = Old.Nam
AND New.Code = 0ld.Code
AND New.Live
AND known (Old.Code))

We allow release of information about answers to a
poll, whenever the user proves he already voted in that
poll by providing a code associated with an appropriate
answer set.

policy sendClient (SELECT =
FROM answer, answers AS Other,
answers AS Self
WHERE answer.Answers = Other.Id
AND Other.Poll = Self.Poll
AND known (Self.Code))

We believe that this specification approach is very
general, while being much more accessible to the av-
erage developer than most specification languages are.
To investigate the potential for static analysis based on
these specifications, we implemented the UrFlow pro-
totype, which handles a restricted subset of all SQL
queries. In particular, in both policies and programs,
we only process queries containing just SELECT, FROWM,
and WHERE clauses, where the FROM clauses must be
simple comma-separated lists of tables. We also have
not implemented any analysis optimizations like proce-
dure summaries [19], and the analysis only succeeds at
understanding loops and recursion following a few sim-
ple patterns.

Perhaps surprisingly, this is enough to enable sound
checking of a variety of paradigmatic Web applications.
We will now describe the analysis and then argue for its
effectiveness with statistics about a set of representative
applications that it has validated.

4 An Outline of the Analysis

Sound program checking requires considering all possi-
ble paths of execution. Since most any non-trivial Web

application can effectively follow infinitely many paths,
we must apply some abstraction. In implementing Ur-
Flow, we adopted the strategy associated with tools like
ESC [10], the Extended Static Checker family.

While concrete program evaluation involves program
states consisting of variable values, memory states, and
so on, the kind of symbolic evaluation that we apply
involves program states consisting of formulas of first-
order logic. Such a formula can be thought of as describ-
ing concrete states, so that each abstract state may stand
for infinitely many concrete states. Every basic program
operation can be modeled as a predicate transformer.
Some operations may not always be safe. In the classical
setting, this may be an array dereference, where the in-
dex might be out of bounds. In our case, possibly-unsafe
operations include write commands and database up-
dates. No matter which setting we are in, the safety of
operations is checked by associating each operation with
a logical condition that implies its safety.

This gives us the outline of a sound checking proce-
dure: Start with the abstract state “true.” Explore all pro-
gram paths, extending the abstract state as we go. Each
time we reach an operation with safety condition C' while
in state S, ask an automated theorem prover whether
S = C. The ESC projects used the Simplify prover [8]
for this purpose. Today, the functionality provided by
Simplify is most commonly known by the name SMT,
for satisfiability modulo theories, and there is a rich base
of tools and users in the domain of static program check-
ing.

Our outline omits a critical element of the problem:
Even after abstracting program states with formulas,
there are probably still infinitely many feasible program
paths. The ESC approach requires additional program
annotations that can be used to finitize the path space. In
the design of UrFlow, we have instead taken advantage of
the control-flow simplicity of the average Web applica-
tion. Many interesting applications can be implemented
with just one kind of loop: iteration over writing some
output for every row returned by an SQL query. Such
loops effect no state changes that must be taken into ac-
count in the remainder of the program, so in a sense they
have trivially inferable “loop invariants.” Since loop iter-
ation does not accumulate side effects, it is sound to tra-
verse each loop body just once, which ensures that each
program can be broken into a finite set of finite analysis
paths.

UrFlow thus works by literal exploration of all con-
trol flow paths through a program. The next section goes
into more detail on the exploration strategy, pointing out
the theorem prover operations that will be required. The
following section presents our implementation of those
prover primitives, in an engine that extends the standard
SMT approach with a few new features.
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5 Symbolic Evaluation

The abstract states of UrFlow are defined in terms of a
simple language of logical expressions and predicates.
We write ¢ for constants (drawn from integer, floating
point, and string literals), 7" for union tags, x for logi-
cal variables, X for program variables, F' for record field
names, and I for SQL table names. The following gram-
mar describes the syntax of program states. For a token
sequence t, we write ¢ for a comma-separated list of zero
or more ¢s.

Expression e == c|z|T(e)|{F =c¢}]|e.F
Predicate p := known(e) | R(e)|e=¢e]...
State S = (p,X —e)

A state is a pair of a variable assignment and a set
of predicates. For a particular program point, a variable
assignment maps every in-scope program variable into a
logical expression. The predicates are expressed only in
terms of logical variables, not the program variables.

Since we inline all function calls, every execution path
to analyze begins at the entry point of some function
that has been registered to be called in response to a
particular URL pattern. The arguments to this func-
tion stand for explicit parameters and form field val-
ues, extracted from an HTTP request. Where the func-
tion arguments are named X;, we create an initial state
(known(z;), X; — «;), for fresh, distinct variables x;.
At many other points in path exploration, we will gen-
erate fresh logical variables, which we always assume to
be distinct from any previously-chosen variables.

For each function, we explore all paths through it.
Most program expression forms are easy to process, as
they admit direct translation into logical expressions.
The more interesting cases come from branching and
database interaction.

Our single branching construct is case expressions,
which test a value against a number of patterns, which
may bind new variables if they match. We model if
expressions as a special case of case expressions, where
the patterns to match against are t rue and false.

As an example, consider an expression like the follow-
ing:

case e of None => el | Some (X) => e2

If e is just the tag None, then we continue with eval-
uating e1. Otherwise, e is Some v for some v, and we
evaluate e2 with X set to v. To capture this with sym-
bolic evaluation, we consider both el and e2 as starts of
separate execution paths. For the el case, we extend the
state with the predicate v = None, where v is the result
of evaluating e. For the e2 case, we choose a fresh vari-
able x, add the variable mapping X +— z, and add the
predicate v = Some(x).

With case, it is easy to write code with exponentially
many control-flow paths, but where all but a few are log-
ically impossible. For instance, we can sequence several
case expressions that analyze the same program vari-
able with the same patterns. Variables are immutable, so
each case must choose the same pattern, reducing the
number of feasible paths to the number of patterns. We
want our automated theorem prover to detect the infeasi-
bility of the other paths as early as possible. Concretely,
this will happen on a path where two cases lead to as-
sertions like v = None and v = Some(z), on a path
that assumes matching of a None pattern the first time
and a Some pattern the second time. The prover knows
that values built with different union tags are disjoint, so
it can signal a contradiction here. Whenever a contra-
diction is detected at some point on a path, we can skip
exploring the rest of that path.

A number of primitive operations send output to the
client. The simplest of these is write, which appends a
piece of HTML to the page being generated. UrFlow en-
forces that the value being sent can be constructed from
known and allowable pieces of data. Recall that allow-
able values are those that could be produced by execut-
ing sendClient policies in the current database state.
Consider this line of our earlier example program:

write (escape (r.Secret.Data));

The record r has come out of a database query. To
verify that this write conforms to the policy, we must
check that r.Secret .Data is known, allowable, or
built from such values out of record and union opera-
tions. At this point in symbolic execution, the variable
mapping will map the program variable r to some logi-
cal variable 7, and our predicate set will be:

¢ = cookie/login, known(c), ¢ = Some(c’), user(x1),
z1.1d = ¢'.Id, z1.Pass = ¢ .Pass,

secret(x2), 2.User = ¢'.Id,

r = {Secret = {ld = x5.1d, Data = z5.Data}}

The state tells us that we know of two rows that must
exist in the database: x1 from table user and z5 from
table secret. Each of our declared confidentiality poli-
cies is phrased as a SELECT query whose FROM clause
mentions one or more tables. To check if a value may be
written, we need to consider ways of matching the pol-
icy queries with the logical state. The same table may
be mentioned multiple times in one policy or one state,
S0, in general, there may be many ways to match a pol-
icy’s FROM clause with the table predicates of a state. In
UrFlow, we apply the heuristic of considering at most
one matching per policy. The analysis enumerates every
matching of policies with row variables, subject to that
constraint.

Our running example included these two policies:
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policy sendClient
FROM user
WHERE known (user.Pass))

(SELECT «*

policy sendClient (SELECT =
FROM secret, user
WHERE secret.User = user.Id
AND known (user.Pass))

They can be expressed in logical form, where each is
a set of predicates that, if all are true, implies the allowa-
bility of a set of values.

Predicates: user(r ), known(ry.Pass)
Values: ry.ld,r1.Nam, r;.Pass
Predicates: user(ry), secret(ra), known(r;.Pass),
ro.User = r1.1d
Values: ry.ld,r1.Nam, r;.Pass, ro.ld,

ro.User, ro.Data

Matching a policy against a state is a two-step process.
First, we consider a mapping of the policy’s r; row vari-
ables to variables appearing in the state. For any table
predicate R(r;) appearing in the policy, we try setting ;
to x, for any R(x) appearing in the state. Once we have
found a plausible mapping for every policy row variable,
we apply that mapping to the remaining predicates in the
policy. If the theorem prover verifies that the state im-
plies every one of these predicates, then we have found a
viable policy instantiation, and we can continue match-
ing the remaining policies. We repeat the process to try
every combination of instantiating every policy at most
once.

For every set of policy instantiations, we compute the
set of expressions that those policies say are fair game
to write. Our running example has exactly one feasible
instantiation per policy: every policy variable in user
unifies with x1, and every policy variable in secret
unifies with z5. The remaining predicates are all implied
by the state. Most interestingly, we must verify that the
state implies known(z1.Pass), which follows by reason-
ing from this subset of the state predicates:

known(c),c = Some(c’), z1.Pass = ¢’ .Pass

The reasoning goes like this: Because the union value
c is known, its contents ¢’ are known, too. Because the
record ¢’ is known, its field Pass is known. That field is
asserted equal to the value 1 .Pass that we want to prove
known, so we are done. The theorem prover provides a
complete decision procedure for reasoning chains of this
kind.

Having verified correct instantiation of each policy, we
arrive at this set of allowable expressions:

x1.1d, z1.Nam, z1.Pass, z5.1d, z5.User, x5.Data

We are trying to prove that the expression
r.Secret.Data is allowable, which requires proving
that it is equal to one of the above expressions. It turns
out that our state implies that the written value equals
x9.Data, because the state contains this predicate:

r = {Secret = {ld = z5.1d, Data = z5.Data}}

That completes the check for this write operation.
The procedure scales to handling much more compli-
cated cases, and we also apply the same procedure to any
expression used in a branching construct, such that the
result of the test influences what is written to the client.
Especially in this latter case, we need to be able to rea-
son about values that are neither known nor allowable,
but that are built from such values via record and union
operations. Our theorem prover handles the automation
of that kind of reasoning, too.

The heart of symbolic evaluation is the treatment of
database queries. Recall the form of queries, as illus-
trated by the main output loop of our example applica-
tion.

(SELECT secret.Id, secret.Data
FROM secret

WHERE secret.User =
(r acc => ...) ()

query

{ul)

We execute an SQL query, which may contain injected
program values, and loop over the result rows. An accu-
mulator is initialized to some specified value, which here
is the dummy value (), since we execute this loop body
only for side effects. Every iteration runs the loop body
with r bound to the latest result row and acc bound to
the current accumulator. After an iteration, the accumu-
lator is replaced with the value of the . . . body expres-
sion.

Traditional verification tools require manual annota-
tion of loops with invariants, to help tame the unde-
cidability of the program analysis problem. To avoid
that cost, we designed UrFlow around some observations
about the loops that appear in practice in Web applica-
tions. Most are run solely for their side effects of writ-
ing content to the client, so that there is no need to track
state changes from iteration to iteration. Ur/Web vari-
ables are all immutable, so it is not even possible for
them to change across iterations. Side effects are re-
stricted to database tables and cookies, which tend not
to be used in the same way that variables are used in tra-
ditional imperative languages. All this implies that a sim-
ple loop traversal strategy can be very effective: traverse
each loop body only once.

Concretely, when we reach a query in a symbolic ex-
ecution path, we consider two possible sub-paths. First,
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the query may return no results, in which case we pro-
ceed taking the initial accumulator as the final value.

More interestingly, the loop may execute one or more
times. We perform a quick linear pass over the body

. to see which cookies it might set and which tables
it might modify with SQL UPDATE or DELETE com-
mands. All references to those cookies and tables are
deleted from the symbolic state. Since all other aspects
of concrete state are immutable, this new logical state is
guaranteed to be an accurate description of the concrete
state at the beginning of any iteration of the loop. Thus,
by running the loop body with its local variables set to
fresh logical variables, we consider all possible behav-
iors of the loop. We can continue execution afterward as
if we had just executed the loop body once as normal,
non-loop code. The symbolic state at loop exit can just
as well stand for the last iteration of the loop as for any
other iteration.

At the beginning of a loop iteration, we must enrich
the logical state with predicates capturing the behavior of
the query. This is best illustrated by example. Consider
again the main loop of our example application. We ex-
ecute its loop body with variable r set to r and acc set
to some arbitrary value (since the accumulator is not ref-
erenced in the body). Assume that program variable u is
mapped to logical variable u. We add these predicates to
the logical state:

secret(xz), x9.User = u,
r = {Secret = {ld = x5.ld, Data = z5.Data}}

Queries with joins just add more table predicates, as
we have seen in the modeling of queries as policies.
Larger WHERE conditions add additional non-table pred-
icates. A SELECT clause determines which fields to
project from the tables, in building the record expression
to equate with 7.

This basic algorithm works for most of the queries that
we support. In general, UrFlow does not yet support SQL
grouping or aggregation. We include one special case for
queries selecting just the aggregate function COUNT ().
Here, we consider that the loop body always iterates ex-
actly once. Either the query result is 0, and we do not
enrich the state with any new table information; or the
result is greater than 0, and we assert that there exists
some set of rows matching the conditions of the query.

To check database updates, we use a hybrid of the
query and write checking. Any modification must match
with an update policy, using the same matching proce-
dure as for writes, but without the need to check al-
lowability of a value. After an UPDATE or DELETE,
we delete any state predicates mentioning the affected
tables.

UrFlow also has basic support for simple recursive
functions. Calls to recursive functions are effectively in-

Figure 1: E-graph for the state from the write example

lined like regular function calls, with further self-calls
skipped. To make this omission sound, we analyze each
recursive function to find all effects it might have on the
database and cookies, and every self-call is treated as a
nondeterministic modification of those parts of the state,
followed by generation of an unknown return value. Fur-
ther analysis allows us to abstract the initial state so that
it can stand for any set of arguments that might be used at
any recursion depth, such that we only preserve state in-
formation that can be shown not to vary across calls. As
a result, just like for query loops, a single pass over the
function body suffices to consider all possible behaviors.

We want to emphasize some useful consequences of
the way that our analysis handles SQL. First, unlike in
some related work [14], despite the fact that our poli-
cies are themselves SQL queries, the analysis does not
require that program code use exactly those queries. Se-
mantic modeling of queries makes it possible for one
policy query to justify infinitely many possible program
queries. Second, the soundness of our analysis depends
on knowledge of the database schema, but not knowl-
edge of database contents. Schema changes can invali-
date analysis results by, for example, redefining data in-
tegrity constraints that the theorem-prover might have re-
lied on. However, arbitrary changes to the database rows,
by arbitrary programs with no relation to UrFlow, cannot
invalidate past analysis results.

6 The Theorem Prover

The last section highlighted the key theorem-prover op-
erations that symbolic evaluation depends on. We can
summarize them like this:

e Assert a predicate p. If p contradicts the predicates
already asserted, raise an exception indicating so.

e Check if a predicate is implied by those already as-
serted.

e Determine if a logical expression can be constructed
from members of a set of allowable expressions.
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The first two points are supported by the classic model
of first-order logic theorem-proving that is embodied in
tools like Simplify [8]. The third point is new and not di-
rectly supported by usual prover interfaces, but the usual
implementation techniques can support it very directly.

Provers like Simplify are based on the Nelson-Oppen
architecture. We do not use many of the elements of that
architecture, since our prototype implementation omits
features like reasoning about arithmetic. Instead, we just
adopt the key data structure, the E-graph. An E-graph
is a directed graph representation of the possible worlds
that are consistent with a set of predicates. Nodes stand
for objects, and, for function symbol f, an edge labeled
with f goes from node u to node v if, in any compatible
world, the object associated with v equals the result of
applying f to the object associated with u. A node is
labeled with logical variables and constants to indicate
that any compatible world must assign this node to an
object equal to those variables and constants.

In UrFlow, we only use two kinds of function sym-
bols: union tags and record field names. For tag T, there
is a T-labeled edge from u to v if v must be u tagged
with T (i.e., “v = T'(u)”). For field name F, there is
an F'-labeled edge from u to v if w is a record whose F
component equals v. For each node that came from a lit-
eral record expression, we mark that node as complete,
in the sense that the field edges coming out of it provide
a complete description of the available fields. An exam-
ple of an incomplete record node is one representing a
row selected in an SQL query; the state will only men-
tion those columns relevant to the query, and it would be
unsound to treat this row as if it had no further columns.

Figure 1 shows an E-graph representing the
logical state given earlier for checking the code
write (escape (r.Secret.Data)). Nodes are
boxes when the state implies that they are known; other
nodes may not be known. Complete record nodes are
diamonds. We abbreviate cookie/login as C.

The basic prover algorithm understands two kinds of
predicates: e; = ez and known(e). When either kind is
asserted, its expressions are first evaluated into nodes of
the E-graph, adding new nodes as necessary. A variable
or constant is evaluated to the node labeled with it. A
union tag application T'(e) is evaluated by following the
T edge from the node that e evaluates to, and a field pro-
jection e.F' is evaluated analogously. A record expres-
sion {F| = ey,..., F, = e,} is evaluated by checking
for existing complete nodes whose F; edges point to the
nodes to which the ¢;s evaluate.

When a fact e; = e5 is asserted, the nodes u; and us
standing for e; and e, are merged, taking the unions of
their sets of labels and incoming and outgoing edges. Al-
ternatively, this fact might trigger a contradiction. That
happens when u; and us are labeled with different con-

stants or have incoming tag edges labeled with different
tags.

When a fact known(e) is asserted, and e evaluates to
u, we “change u to a box,” and we propagate this known-
ness information across edges. That propagation follows
record field edges in the forward direction only and tag
edges in either direction. The same propagation is im-
plied when merging a known node with a not-known
node for an equality assertion.

The heart of the procedure is in this handling of as-
sertion. E-graphs have nice properties which make im-
plication checking very efficient. To check if e; = ea,
we only check if e; and es evaluate to the same node.
To check if known(e), we only check if e evaluates to a
boxed node.

One useful addition, implemented outside of the theo-
rem prover core, takes advantage of key information for
SQL tables, where, for instance, an ID column is as-
serted not to be duplicated across rows of a table, and
the SQL engine maintains this invariant with dynamic
checks. Whenever a new predicate asserts that some row
r is in table R, we check, for every pre-existing predicate
R(r"), if r and 7’ agree on the values of R’s key columns.
These checks can be implemented by querying the prover
core with the appropriate equality predicates. Whenever
a matching r and ’ pair is found, we can skip adding the
new predicate R(r) to the state, instead asserting r = r’.
This enrichment of the prover is useful in analyzing ap-
plications that, for example, query a user/password table
multiple times, where correctness relies on the fact that
the query always returns the same result.

The last ingredient is checking if the value of expres-
sion e can be constructed out of the values of expressions
€1,...,€En, using only record and union operations. To
implement the check, we evaluate each e; in turn, mark-
ing its node as allowable. Next, we evaluate e to a node
w. If v is marked as allowable, we are done. Otherwise,
if w has an incoming union tag edge from a node v, we re-
peat the procedure for v. If u is a complete record node,
we repeat the procedure for each target of a field edge
out of u, returning success only if the check is successful
for each of these new nodes. In any other case, we return
failure.

7 Discussion

We can get a sense for the breadth of UrFlow by con-
sidering how it helps with the most common Web appli-
cation security flaws. The OWASP Top 10 Web Appli-
cation Security Risks project! is a popular reference for
security-conscious Web developers. Based on analysis

"http://www.owasp.org/index.php/Category:
OWASP_Top_Ten_Project

114

9th USENIX Symposium on Operating Systems Design and Implementation (OSDI *10)

USENIX Association



of databases of real vulnerabilities, the OWASP team has
identified which classes of security flaw pose the greatest
risks. The Ur/Web compiler rules out injection (ranked
#1) and cross-site scripting (#2) vulnerabilities and par-
tially mitigates cross-site request forgery (#5) and unval-
idated redirects and forwards (#10) using techniques un-
related to UrFlow. Risk #6, security misconfiguration, is
a whole-system property that cannot really be addressed
by any single tool, and UrFlow’s lack of integrated rea-
soning about cryptography prevents it from helping to
avoid insecure cryptographic storage (#7). UrFlow can
contribute to the mitigation of the remaining risk cate-
gories.

Risk #3, broken authentication and session manage-
ment, is helped by the ability to use UrFlow policies to
specify exactly which secure tokens may be sent to which
clients. It is still possible to make mistakes in the poli-
cies, but these policies should be significantly easier to
audit than programs, with the many possible control-flow
paths of the latter. The next two risk categories, insecure
direct object references (#4) and failure to restrict URL
access (#8), are very similar, as both involve the omission
of access control checks for particular system objects.
UrFlow can enforce that appropriate checks are always
performed whenever database objects are used in par-
ticular ways. Insufficient transport layer protection (#9)
could be avoided by adding a variant of sendClient
policies which specifies values that may only be sent to
clients over SSL connections.

Comparing against the pros and cons of security
types [16], we find some interesting trade-offs. UrFlow
uses high-level knowledge of programs to provide more
sound reasoning without program annotations. Security-
typed languages generally rely on declassification tech-
niques where trust is granted to particular spans of code.
This creates a contrast between the security-typed ap-
proach, requiring trusted code but granting soundness
with respect to implicit flows; and the UrFlow approach,
which requires no trusted Ur/Web functions but ignores
some implicit flows. Security type annotations tend to be
required throughout a program, while UrFlow avoids the
need to mark up program code. However, SQL queries as
policies involve some gotchas that would be less applica-
ble to security types. For instance, it is easy to forget all
or part of a policy WHERE clause, which has the unfortu-
nate consequence of allowing behaviors by default.

The problem of implicit flow checking is a serious one
in all kinds of information flow analysis. Where Ur-
Flow checks implicit flows, the checking is not particu-
larly clever, and implicit flows caused by WHERE clauses
are ignored. Future work may be able to plug part of
this hole statically, and we suspect there will also be a
large role for dynamic monitoring systems, for detecting
brute-force password cracking attempts and other attacks

that involve many HTTP requests.

Many different logical languages have been used for
specification-writing in static verification tools. We
found SQL to be a convenient choice, because it is ex-
pressive enough to allow direct expression of interesting
policies, and declarative enough to enable effective auto-
mated reasoning. We do not mean to claim that SQL
has great expressivity or succinctness advantages over
more traditional specification languages. Rather, most
Web programmers are accustomed to SQL, which should
help in overcoming some of the social obstacles faced in
the past by attempts to get programmers to write logical
specifications.

Our implementation today only handles a subset of the
common SQL features. We omit support for outer joins.
These should be easy to model via disjunctive formulas,
covering all the possible cases of whether a row match-
ing the join condition exists in a table, though a naive
realization of this idea would probably have poor perfor-
mance consequences for the theorem-prover. Grouping
and aggregation are harder to encode in the quantifier-
free first-order logic that we are employing. We sus-
pect that most real programs can be checked with con-
servative encodings of aggregation, where we model ag-
gregate function values as unknowns. Alternatively, we
can restrict reasoning about aggregate functions to sim-
ple syntactic pattern-matching against policies. That ap-
proach also seems most practical for handling of the SQL
EXCEPT operator, which implements a kind of negative
reasoning about which rows do not exist. This is needed
to write down policies like (for a conference manage-
ment system) “reviewer A may see the reviews for paper
B only if A does not have a conflict with B.”

More advanced policies might also need to include
non-trivial program code. For instance, a custom hash-
ing or encryption scheme might be used. Here we en-
counter a common situation for static verification, where
it is always possible to expand the reach of your theorem-
prover to handle new program features. No single imple-
mentation will ever be able to handle all realistic pro-
grams, but we suspect that very good coverage will be
possible, after the incorporation of significant practical
experience with the tool.

8 Evaluation

The UrFlow prototype is implemented in about 2200
lines of Standard ML code. We have used the analy-
sis to check a number of Ur/Web applications. There
is a live demo of the applications, with links to syntax-
highlighted source code, at:

http://www.impredicative.com/ur/scdv/
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Application Program Policies Check
(LoC) (LoC) (sec)

Secret 138 24 0.02
Poll 196 50 0.035
User DB 84 8 -
Calendar 255 46 0.28
Forum 412 134 17.68
Gradebook 342 61 1.49

Figure 2: Lines-of-code breakdown in case studies, with
time required to check the code with UrFlow

Our case studies include Secret, a minimal applica-
tion for storing secrets that may later be retrieved via
password authentication, which was used as the model
for this paper’s first set of running examples; the Forum
and Poll applications from which Section 3’s examples
were drawn; a Gradebook application, for managing a
database of student grades in courses; and a reimplemen-
tation of the Calendar application from the paper [5] that
introduced the SIF system for combined static and dy-
namic checking of information flow in Web applications.
Calendar, Forum, and Gradebook share a common user
authentication component.

The Calendar application lets users save details of
their schedules on the Web, with controlled sharing of in-
formation. By default, no one may learn anything about
an event. The creator of an event may learn everything
about it, and the creator may add invitees who inherit
the same read privileges. The creator may also authorize
users to know only the time of an event, so that those
users see that time slot only as “busy” on the creator’s
calendar. Only event creators may modify any state re-
lated to their events.

The Gradebook application is based on a database of
courses and assignments of users to be instructors, teach-
ing assistants (TAs), or students in courses. Each student
membership record contains an optional grade. Only sys-
tem administrators may create courses and modify in-
structor lists. Instructors may set grades and control TA
assignments. A TA may view all of the state associated
with a course, but may not modify it. A student may view
his own grades, and a student in a course may only affect
that course’s part of the database by dropping the course.

Figure 2 gives the number of lines in code in each
of these components. An application’s code is sepa-
rated into the program itself and the policies. The fig-
ures here make “policy overhead” appear bigger than it
would probably be in production applications, since our
case studies include minimal code dedicated to provid-
ing fancy user interfaces. Still, these numbers compare
favorably to those for systems like SIF, where Calendar

requires 1779 lines of code. While we have a similar
ratio of program to annotation, our annotations are of a
different kind. 443 lines of the SIF version include an-
notations, in the form of security types [20] and explicit
downgradings. The latter involve annotations that effec-
tively say “the owner of a piece of information trusts this
span of code, so let that span release derived information
that would not otherwise be allowed.” The SIF Calendar
case study includes 17 such downgrades.

The UrFlow approach is very different. As no annota-
tions are required in programs, there is no need to accept
any part of a program as trusted. All checking is with
respect to the declarative specification provided by the
policy queries.

Our analysis detects flaws similar to those that occur
frequently in real deployed systems. For instance, we
examined reports for July 2010 in the National Vulner-
ability Database?. Among the relevant issues, we found
CVE-2009-4927, involving privilege escalation via a sur-
prising setting of a specific cookie; and CVE-2010-2685
and CVE-2009-4929, which allow administrative actions
to be taken without proper credentials, via hand-crafted
HTTP requests. UrFlow makes it easy to catch these
problems, since it is not necessary to enumerate all pos-
sible attack vectors, thanks to policies that talk directly
about underlying resources. For instance, we introduced
a bug in the Gradebook application to mimic the cookie
bug above, where we allow anyone to set any student’s
grade if a particular cookie is set to 1. The compiler com-
plains that the database update policy may be violated,
referencing the exact span of source code where the of-
fending UPDATE statement occurs. The same output ap-
pears if we simulate a forgotten access control check, in
the style of the second two issues above, by commenting
out an important i f test.

UrFlow also requires no change to the runtime behav-
ior of a program, and this baseline performance level
is greater than for most popular Web languages and
frameworks, thanks to the general-purpose and domain-
specific optimizations performed by the Ur/Web com-
piler. We present the performance of the UrFlow anal-
ysis itself in Figure 2, for runs on a Linux machine with
dual 1 GHz AMD64 processors with 2 GB of RAM. Of
our case studies, only Forum takes much longer than a
second to check. This is because Forum has a compli-
cated main function, with many security checks. Many
different actions call the main function after perform-
ing some database modification. Every such call is an-
alyzed afresh, as if the main function had been inlined.
Techniques like procedure summaries [19] should make
it possible to reduce this time significantly.

’http://nvd.nist.gov/
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Very precise, logic-based program analyses often ex-
hibit bad scaling behavior. There is no theoretical rea-
son that UrFlow would not run into the same problems.
Many programs with exponentially many feasible paths
will indeed trigger exponential behavior in any realiza-
tion of our algorithm. Simple experiments with param-
eterized families of programs also show that our current
implementation produces exponential running time (with
small constant factors) even on some examples that can
probably be reduced to linear running time with more op-
timization. For instance, we tested programs made up of
i f-trees that perform the same SQL query at each of the
tree’s exponentially-many nodes. Primary key informa-
tion implies that the 1 f test always goes the same way,
ruling out all but two paths through the tree. Still, expo-
nential time usage results from our heuristic of consid-
ering two execution paths starting at each query, for the
cases of zero or more than zero result rows. Much future
work remains in smarter detection of redundant paths.

9 Related Work

The BAN logic [2] is a formal system for reasoning about
knowledge in distributed system protocols. The rules of
the logic model important aspects like transitive trust and
cryptography. The spi calculus [1] pursues similar goals,
introducing an explicit formalization of programs, rather
than just of the knowledge that principals have at points
throughout a protocol. Our known predicate is modeled
on notions introduced in that line of work.

Security types [20] are a technique for static checking
of information flow based on explicit data labels such
as “high security” and “low security.” The JFlow [15]
and Jif [16] systems are realistic implementations of se-
curity typing for Java. SIF [5] extends Jif for the Web
application domain. This line of work enables check-
ing of a much broader range of applications than UrFlow
can handle. By focusing on a narrow domain that nat-
urally supports declarative implementation techniques,
UrFlow is able to do sound checking without requir-
ing any program annotations. Jif-based systems require
many annotations, including explicit granting of trust
to particular spans of code. The Swift system [4] ex-
tends this approach to do automatic, secure partitioning
of Web application code across client and server, based
on information-flow constraints.

Li and Zdancewic [14] presented a system for static
checking of information-flow properties for database-
backed Web applications. Their design requires that
the application be programmed in terms of fixed sets of
query templates with holes to be filled with different val-
ues on different invocations. Every template is annotated
with security typing information for each input and out-
put. In contrast, UrFlow infers the security-relevant char-

acteristics of queries from a declarative policy. One pol-
icy may be enough to imply the sensitivity of outputs
from many different query forms. UrFlow also applies
theorem-proving technology to allow sound checking of
more programs, including those where policies vary dy-
namically based on database contents.

Asbestos [9] and HiStar [23] are operating systems
with support for dynamic enforcement of the Decentral-
ized Information Flow Control model, which specifies
which run-time flows between sensitive objects to allow.
The Flume system [13] implements similar functionality
on top of standard UNIX abstractions. All of these sys-
tems can support complex system architectures that fall
outside the specialized orientation of UrFlow. Flume has
been used to build a secured version of the MoinMoin
wiki application. This port to Flume required about 1000
lines of new code and 1000 lines of modifications, and a
performance cost between 34% and 43% was measured,
against the baseline of interpreted Python code. Our Fo-
rum case study demonstrates that UrFlow can check poli-
cies based on access control lists, which are the main
property enforced in the Flume case study.

The Resin system [22] implements a much lighter-
weight approach to Web application security. Instead of
relying on a fixed label model, Resin allows program-
mers to implement their own property checks in the lan-
guage in which the application is written. Policy code
may tag values with policy objects, and the Resin system
takes care of flowing these policies through the system
and checking them at points where the application inter-
acts with its environment. Compared to the other systems
we have mentioned, including UrFlow, Resin makes it
much easier to add security checking to existing appli-
cations written in popular scripting languages like PHP
and Python. Resin’s lightweight policy approach can
also express policies that UrFlow’s policy queries can-
not. On the other hand, once a programmer has learned
Ur/Web and used it to implement his application, UrFlow
requires little annotation and brings the standard bene-
fits of static analysis, compared to Resin and the systems
mentioned in the previous paragraph: we get once-and-
for-all security guarantees, without the possibility of the
application being aborted because a problem is detected
at run-time; and we avoid extra run-time costs, such as
the 33% CPU overhead reported for a representative PHP
application instrumented with Resin.

Much work on Web application security focuses on
injection attacks, where bugs allow untrusted user input
to be passed to run-time program interpreters. Solutions
have employed both static [12, 21] and dynamic [11, 17]
analysis. Ur/Web rules out these problems by construc-
tion, by encoding the syntax of HTML and SQL with
richly-typed objects.

Rizvi et al. [18] present a technique for fine-grained
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access control over SQL queries, based on the concept
of authorization views, which are much like UrFlow’s
policy queries. The key difference is that authorization
views are phrased in terms of variables like $user—-id
that must be filled in by some out-of-band mechanism.
With UrFlow, the correctness of authentication may itself
be verified, through reasoning about the known predi-
cate. The technique of Rizvi et al. is applied dynami-
cally to individual queries, where an allowability check
against the current database must be run for each query.
In contrast, UrFlow can prove statically that an appli-
cation never uses query results inappropriately, with no
modification to run-time database operation.

The SELinks system [7] extends the Links [6] Web
programming language with support for static tracking
of labels through trusted functions that enforce custom
policies. The natural way of expressing some queries
in SELinks involves mixing customized access control
checks with code that should be compiled into SQL
queries. The SELinks compiler handles the translation
of the custom checks into stored procedures that the
database engine can run during query evaluation. Ur-
Flow follows the alternate approach of letting the pro-
grammer be explicit about the interaction of checks and
queries, such that the static analysis verifies that all this
has been done correctly. In general, SELinks provides a
type system that makes certain types of security proofs
easier, though the SELinks compiler does not carry out
those proofs itself.

10 Conclusion

We have presented UrFlow, a static program analysis
that verifies adherence of database-backed Web applica-
tions to security policies. These policies may vary by
database state, and they are expressed as SQL queries, a
convenient format for most Web programmers. UrFlow
requires no program annotations and adds no run-time
overhead. A key direction for future work is adaptation
of UrFlow to more traditional languages, where database
access is granted less of a first-class status, so that pro-
gram analysis must be run to recover some information
that UrFlow depends on.
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Abstract

In this paper, we introduce accountable virtual ma-
chines (AVMs). Like ordinary virtual machines, AVMs
can execute binary software images in a virtualized copy
of a computer system; in addition, they can record
non-repudiable information that allows auditors to sub-
sequently check whether the software behaved as in-
tended. AVMs provide strong accountability, which is
important, for instance, in distributed systems where dif-
ferent hosts and organizations do not necessarily trust
each other, or where software is hosted on third-party
operated platforms. AVMs can provide accountability
for unmodified binary images and do not require trusted
hardware. To demonstrate that AVMs are practical, we
have designed and implemented a prototype AVM mon-
itor based on VMware Workstation, and used it to detect
several existing cheats in Counterstrike, a popular online
multi-player game.

1 Introduction

An accountable virtual machine (AVM) provides users
with the capability to audit the execution of a software
system by obtaining a log of the execution, and compar-
ing it to a known-good execution. This capability is par-
ticularly useful when users rely on software and services
running on machines owned or operated by third par-
ties. Auditing works for any binary image that executes
inside the AVM and does not require that the user trust
either the hardware or the accountable virtual machine
monitor on which the image executes. Several classes of
systems exemplify scenarios where AVMs are useful:

e in a competitive system, such as an online game
or an auction, users may wish to verify that other
players do not cheat, and that the provider of the
service implements the stated rules faithfully;

e nodes in peer-to-peer and federated systems may
wish to verify that others follow the protocol and
contribute their fair share of resources;

e cloud computing customers may wish to verify that
the provider executes their code as intended.

Rodrigo Rodrigues Peter Druschel

Max Planck Institute for Software Systems (MPI-SWS)

In these scenarios, software and hardware faults, mis-
configurations, break-ins, and deliberate manipulation
can lead to an abnormal execution, which can be costly
to users and operators, and may be difficult to detect.
When such a malfunction occurs, it is difficult to estab-
lish who is responsible for the problem, and even more
challenging to produce evidence that proves a party’s
innocence or guilt. For example, in a cloud computing
environment, failures can be caused both by bugs in the
customer’s software and by faults or misconfiguration of
the provider’s platform. If the failure was the result of a
bug, the provider would like to be able to prove his own
innocence, and if the provider was at fault, the customer
would like to obtain proof of that fact.

AVMs address these problems by providing users
with the capability to detect faults, to identify the faulty
node, and to produce evidence that connects the fault
to the machine that caused it. These properties are
achieved by running systems inside a virtual machine
that 1) maintains a log with enough information to re-
produce the entire execution of the system, and that 2)
associates each outgoing message with a cryptographic
record that links that action to the log of the execution
that produced it. The log enables users to detect faults
by replaying segments of the execution using a known-
good copy of the system, and by cross-checking the ex-
ternally visible behavior of that copy with the previously
observed behavior. AVMs can provide this capability for
any black-box binary image that can be run inside a VM.

AVMs detect integrity violations of an execution
without requiring the audited machine to run hardware
or software components that are trusted by the auditor.
When such trusted components are available, AVMs can
be extended to detect some confidentiality violations as
well, such as private data leaking out of the AVM.

This paper makes three contributions: 1) it introduces
the concept of AVMs, 2) it presents the design of an
accountable virtual machine monitor (AVMM), and 3)
it demonstrates that AVMs are practical for a specific
application, namely the detection of cheating in multi-
player games. Cheat detection is an interesting example
application because it is a serious and well-understood
problem for which AVMs are effective: they can detect
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a large and general class of cheats. Out of 26 existing
cheats we downloaded from the Internet, AVMs can de-
tect every single one—without prior knowledge of the
cheat’s nature or implementation.

We have built a prototype AVMM based on VMware
Workstation, and used it to detect real cheats in Coun-
terstrike, a popular multi-player game. Our evaluation
shows that the costs of accountability in this context are
moderate: the frame rate drops by 13%, from 158 fps on
bare hardware to 137 fps on our prototype, the ping time
increases by about 5 ms, and each player must store or
transmit a log that grows by about 148 MB per hour af-
ter compression. Most of this overhead is caused by log-
ging the execution; the additional cost for accountabil-
ity is comparatively small. The log can be transferred
to other players and replayed there during the game (on-
line) or after the game has finished (offline).

While our evaluation in this paper focuses on games
as an example application, AVMs are useful in other
contexts, e.g., in p2p and federated systems, or to verify
that a cloud platform is providing its services correctly
and is allocating the promised resources [18]. Our pro-
totype AVMM already supports techniques such as par-
tial audits that would be useful for such applications, but
a full evaluation is beyond the scope of this paper.

The rest of this paper is structured as follows. Sec-
tion 2 discusses related work, Section 3 explains the
AVM approach, and Section 4 presents the design of our
prototype AVMM. Sections 5 and 6 describe our imple-
mentation and report evaluation results in the context of
games. Section 7 describes other applications and pos-
sible extensions, and Section 8 concludes this paper.

2 Related work

Deterministic replay: Our prototype AVMM relies on
the ability to replay the execution of a virtual machine.
Replay techniques have been studied for more than two
decades, usually in the context of debugging, and ma-
ture solutions are available [6, 15, 16, 39]. However,
replay by itself is not sufficient to detect faults on a re-
mote machine, since the machine could record incorrect
information in such a way that the replay looks correct,
or provide inconsistent information to different auditors.
Improving the efficiency of replay is an active re-
search area. Remus [11] contributes a highly efficient
snapshotting mechanism, and many current efforts seek
to improve the efficiency of logging and replay for
multi-core systems [13, 16, 28, 29]. AVMMs can di-
rectly benefit from these innovations.
Accountability: Accountability in distributed systems
has been suggested as a means to achieve practical se-
curity [26], to create an incentive for cooperative be-
havior [14], to foster innovation and competition in the
Internet [4, 27], and even as a general design goal for

dependable networked systems [43]. Several prior sys-
tems provide accountability for specific applications, in-
cluding network storage services [44], peer-to-peer con-
tent distribution networks [31], and interdomain rout-
ing [2, 20]. Unlike these systems, AVMs are application
independent. PeerReview [21] provides accountability
for general distributed systems. However, PeerReview
must be closely integrated with the application, which
requires source code modifications and a detailed under-
standing of the application logic. It would be impracti-
cal to apply PeerReview to an entire VM image with
dozens of applications and without access to the source
code of each. AVMs do not have these limitations; they
can make software accountable ‘out of the box’.
Remote fault detection: GridCop [42] is a compiler-
based technique that can be used to monitor the progress
and execution of a remotely executing program by in-
specting periodic beacon packets. GridCop is designed
for a less hostile environment than AVMs: it assumes a
trusted platform and self-interested hosts. Also, Grid-
Cop does not work for unmodified binaries, and it can-
not produce evidence that would convince a third party
that a fault did or did not happen.

A trusted computing platform can be used to detect if
a node is running modified software [17, 30]. The ap-
proach requires trusted hardware, a trusted OS kernel,
and a software and hardware certification infrastructure.
Pioneer [36] can detect such modifications using only
software, but it relies on recognizing sub-millisecond
delay variations, which restricts its use to small net-
works. AVMs do not require any trusted hardware and
can be used in wide-area networks.
Cheat detection: Cheating in online games is an impor-
tant problem that affects game players and game oper-
ators alike [24]. Several cheat detection techniques are
available, such as scanning for known hacks [23, 35] or
defenses against specific forms of cheating [7, 32]. In
contrast to these, AVMs are generic; that is, they are ef-
fective against an entire class of cheats. Chambers et
al. [9] describe another technique to detect if players
lie about their game state. The system relies on a form
of tamper-evident logs; however, the log must be inte-
grated with the game, while AVMs work for unmodified
games.

3 Accountable Virtual Machines
3.1 Goals

Figure 1 depicts the basic scenario we are concerned
with in this paper. Alice is relying on Bob to run some
software .S on a machine M, which is under Bob’s con-
trol. However, Alice cannot observe M directly, she can
only communicate with it over the network. Our goal
is to enable Alice to check whether M behaves as ex-
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Figure 1: Basic scenario. Alice is relying on software
S, which is running on a machine that is under Bob’s
control. Alice would like to verify that the machine is
working properly, and that Bob has not modified S.

pected, without having to trust Bob, M, or any software
running on M.

To define the behavior Alice expects M to have, we
assume that Alice has some reference implementation of
M called Mg, which runs S. We say that M is correct
iff M r can produce the same network output as M when
it is started in the same initial state and given precisely
the same network inputs. If M is not correct, we say
that it is faulty. This can happen if M differs from M g,
or Bob has installed software other than S. Our goal is
to provide the following properties:

e Detection: If M is faulty, Alice can detect this.

e Evidence: When Alice detects a fault on M, she
can obtain evidence that would convince a third
party that M is faulty, without requiring that this
party trust Alice or Bob.

We are particularly interested in solutions that work for
any software S that can execute on M and M p. For
example, S could be a program binary that was com-
piled by someone other than Alice, it could be a complex
application whose details neither Alice nor Bob under-
stand, or it could be an entire operating system image
running a commodity OS like Linux or Windows.

In the rest of this paper, we will omit explicit refer-
ences to S when it is clear from the context which soft-
ware M is expected to run.

3.2 Approach

To detect faults on M, Alice must be able to answer
two questions: 1) which exact sequence of network mes-
sages did M send and receive, and 2) is there a correct
execution of M g that is consistent with this sequence of
messages? Answering the former is not trivial because
a faulty M —or a malicious Bob—could try to falsify
the answer. Answering the latter is difficult because the
number of possible executions for any nontrivial soft-
ware is large.

Alice can solve this problem by combining two seem-
ingly unrelated technologies: tamper-evident logs and
virtual machines. A tamper-evident log [21] requires
each node to record all the messages it has sent or re-
ceived. Whenever a message is transmitted, the sender

and the receiver must prove to each other that they have
added the message to their logs, and they must commit
to the contents of their logs by exchanging an authenti-
cator — essentially, a signed hash of the log. The authen-
ticators provide nonrepudiation, and they can be used to
detect when a node tampers with its log, e.g., by forging,
omitting, or modifying messages, or by forking the log.

Once Alice has determined that M’s message log is
genuine, she must either find a correct execution of M p
that matches this log, or establish that there isn’t one. To
help Alice with this task, M can be required to record
additional information about nondeterministic events in
the execution of S. Given this information, Alice can
use deterministic replay [8, 15] to find the correct exe-
cution on M g, provided that one exists.

Recording the relevant nondeterministic events seems
difficult at first because we have assumed that neither
Alice nor Bob have the expe