
Incremental Linking on HP-UX

Dmitry Mikulin
Hewlett-Packard Company

mikulin@cup.hp.com

Murali Vijayasundaram
Hewlett-Packard Company

vm@cup.hp.com

Loreena Wong
Hewlett-Packard Company

loreena@cup.hp.com

Abstract

The linker is often a time bottleneck in the
development of large applications. Traditional linkers
process all input files, even if only one or two objects
have changed since the previous link. To shorten link
time, we have developed an incremental linker for HP-
UX which only processes modified files. Users can take
advantage of the performance gains without modifying
their usage patterns of the existing HP-UX linker since
the incremental linker is implemented on top of the
regular 64-bit linker. In addition to the tasks of the
normal linker, the incremental linker must save extra
information about input files, symbols and relocations,
allow for the expansion of existing files and addition of
new ones by allocating padding spaces in the output
file and use this information to perform in-place
updates. The results of several different design
considerations and tradeoffs are materialized in link-
time performance gains of up to thirteen times that of a
normal link for large applications.

1. Introduction

1.1 Motivation behind incremental linking

In recent years application sizes have grown
dramatically. This increase has been enabled by
significant advances in software development tools
such as object-oriented languages which shorten
development cycles and allow smaller groups of
developers to produce very complex applications with
hundreds of thousands or even millions of lines of
code. Understandably, these applications take longer
to compile and link. This increase becomes most
obvious during application debugging when multiple
edit-compile-link-debug cycles must be performed in a
short period of time. Most changes involve only a
small portion of an application source base, typically
one or two modules. The problem of long compile
times is partially solved by ‘make’ utilities that

recompile only modified source files. Unfortunately
there is no easy solution for traditional linkers—they
still need to process all object files and libraries to
resolve cross-module references and assign addresses
to all symbols. The linker becomes a bottleneck that
significantly affects a developer’s productivity.

The only way to shorten link time, apart from
making algorithmic improvements in the linker itself,
is to reduce the size of input processed by the linker.
Since only a few object files are typically modified
before a link is performed, it is possible to reduce the
input size by only processing modified objects and
replacing their contribution to the output files in place.
This fact is the motivation behind the incremental
linker.

An incremental linker should process only those
input files that have been modified since the last time a
link was performed. With meticulous planning and
saving of necessary data, all other input files that have
not changed should not need to be reprocessed.

1.2 Related work

Despite the great importance of fast link times and
the fact that several production systems have
implemented incremental linkers (IBM mainframes
had incremental linking capabilities since the 1960s;
Sun Microsystems offers this functionality which can
be optionally enabled on their Solaris systems;
Microsoft C/C++ Development Studio has it enabled
by default in debug links), very little has been written
on the subject.

An academic paper by Quong and Linton [1]
provided us with valuable analysis of padding space
allocation and reuse. It also contained important
performance data for programs of various sizes. Even
though the authors chose a different approach in their
implementation (a memory resident component which
maintains state information about the incremental
linker), the paper gave us insight into usage patterns as
well as performance and implementation trade-offs.

A paper by Hoffman and Curwen [2] described an
alternative way of solving the problem of long link
times based on dynamic linking. Object files

comprising the application are grouped into shared
libraries which are smaller and therefore can be linked
faster. Source changes cause only enclosing libraries to
be rebuilt. This approach primarily addresses linking
simple applications and will fail in cases with name
collisions between shared and archive libraries.
Dynamic linking is not always supported (e.g. in
embedded systems) and may require significant build
process changes which makes the scheme not very
practical.

1.3 The HP-UX standard linker

The main job of the linker is to merge several
relocatable object files into a single load module (a
shared library or an executable program file). In doing
this merge, the linker must resolve references across
the input objects, layout and assign addresses to the
resulting load module. In addition, the linker must be
able to handle references to symbols defined outside
the current load module. For example, if several object
files are linked together with a shared library, the
referenced code in the shared library is not copied into
the output file. Instead, the linker creates dynamic
symbols for these types of references and places
information in the output file so that when the proper
shared library is brought in at runtime by the dynamic
loader, the symbol reference can be bound based on the
load address of the program file and shared library.
Dynamic symbols are also created for all global
symbols which may be referenced outside the load
module.

Another key task of the linker is to perform symbol
resolution—the process of matching references to the
definition of a symbol. If a reference can be bound to a
definition within the load module, the linker can
simply replace the reference with the address of the
symbol. If the reference can not be bound to a
definition within the load module, the linker will
create a dynamic relocation. The dynamic relocations
will be processed by the dynamic loader at runtime.

The linker also supports a –r option to merge
multiple object files into a single relocatable object.
When the –r option is specified, the linker will retain
the symbol and relocation information in the output
file, making it suitable for subsequent re-linking.

2. Overview of incremental linking

Incremental linking support on HP-UX is
implemented as part of the standard 64-bit linker.
Aside from a few exceptions, the vast majority of
linker options and functionality is available with
incremental linking as well, enabling users to take
advantage of the performance gains without sacrificing

linker functionality when building shared libraries and
executables.

The 64-bit linker now has three operating modes:
q Normal link mode: Normal linker operation.

This is the default mode.
q Initial incremental link mode: This mode is

entered when the +ild option is specified and
the output load module (executable or shared
library) does not exist or the output load
module is not an incrementally linked
executable. In this mode, the linker will create
an output load module that is suitable for
incremental linking.

q Incremental link mode: This mode is entered
when the +ild options is specified and the
incrementally linked output load module exists.
In this mode, the linker will make incremental
updates to the output load module. It is in this
mode that the great performance gains can be
realized.

This paper focuses only on the latter two modes.
In initial incremental links, the linker processes all

input object files and libraries the same as it does for
normal links. In addition to this basic functionality,
the incremental linker must do additional work to
enable subsequent incremental links. The linker must
store extra information about the input files processed,
all global symbols, as well as relocations. Also, the
incremental linker must allocate proper padding space
for text, data, bss, and other sections in the output file
in order to allow room for future expansion from
additional input files, definitions, references, etc.
Because of this added functionality required for initial
incremental links, the time spent in initial links is
slightly higher than that of a normal link.

Once all the proper information has been stored in
an initial incremental link, subsequent incremental
links can be performed. The linker uses timestamps on
individual input files to determine which files have
changed and only reprocesses modified files during
incremental links. The linker uses saved relocation
information to patch the symbolic references in the rest
of the output file. These tasks are described in greater
detail in the rest of this paper.

The incremental linker is intended for use by
programmers during developmental stages only, and
should not be used for release builds of products.
Because the incremental linker pads sections for future
expansion, programs are bloated in size and contain
information not necessary for execution of the
program. In addition, the incremental linker is
incompatible with most compile- and link-time
optimization techniques and thus cannot produce
optimized executables. The incremental linker,
however, is an excellent timesaving tool for use during
development when programmers are constantly adding

and modifying small portions of code and rebuilding
programs for testing. In addition, incrementally linked
programs are still source-level debuggable in the same
manner as normally linked executables.

The remainder of this document describes design
considerations and implementation details, and
performance results of the incremental linker for HP-
UX.

3. Command line, file and library
processing

Because our incremental linker is implemented as
an extension of the regular system linker, practically all
options are allowed when building incrementally
linked executables and shared libraries. The use of the
mapfile option, which allow users to change the layout
of the output load module through a mapping file, is
also supported, as long as the specified mapfile doesn’t
change between incremental links; if it does, we fall
back to an initial incremental link. The only options
incompatible with incremental linking are link time
performance and optimization options. Some linker
options significantly influence the resulting output
module and if added to or removed from the command
line, may make the executable difficult or impossible
to incrementally update. For this reason, we decided
not to allow any command line option changes in
incremental links with the exception of tracing and
verbose options; these can be freely added, removed or
changed since they have no effect on the resulting
output file.

In an initial incremental link, file names, types and
time stamps for all object files, shared libraries, archive
libraries and their processed members are saved in the
output file. In subsequent incremental links, this
information is used to detect which files need to be
reprocessed. For object files, the logic is simple: if a
file’s time stamp has changed, that file needs to be
reprocessed.

If an archive library is modified, we need to check
each individual member processed in previous links for
time stamp changes and reprocess only the ones that
were actually modified. In some cases, we may need
to reprocess an archive library even if the archive itself
was not modified. If any of the modified object files
introduces a new unresolved symbol reference, we
need to scan archive library symbol tables and extract
members that define that symbol. However,
contributions of archive members are never removed
from the output file, even if there are no more
references to any of the symbols defined in those
members.

Since symbols from shared libraries are not
propagated into the output file, we do not reprocess

shared libraries during incremental links. Instead, it is
the dynamic loader's responsibility to catch unresolved
symbols at runtime.

4. Padding and reuse of space

The incremental linker re-links programs by
inserting modified object code into the existing output
file. During the initial incremental link various output
file sections such as text, data, bss etc., are padded with
additional space for future expansion. The output file
data structures like symbol table, section table and
linkage tables are also padded with additional space.

During incremental links, the linker will vacate the
space occupied by modified object files. The vacated
space in the output file will be reused when the
contents of the modified object files are copied over to
the output file. The incremental linker always tries to
fit the modified object file's contributions into their
previous location. After several incremental links, the
padding space may become exhausted. When this
occurs, the incremental linker will fall back to
performing a full initial incremental link during which
additional padding space will be allocated.

4.1 Padding space allocation

The incremental linker allocates two kinds of
padding spaces:
q File specific padding space. Each section in the

output file consists of contributions from all
object files. The Figure 1 shows the layout of
an output section created during normal link.
The incremental linker allocates a padding
space after contributions form each object file.
These file specific padding spaces are allocated
to allow for possible growth in the object file's
contributions. Figure 2 shows the layout of an
output section with file specific padding.

q Generic padding space. During incremental
links new object files may be added to the link.
To accommodate contributions from new
object files, a large padding area (as shown in
Figure 2) is allocated at the end of each output
section.

contributions from a.o
contributions from b.o

.

.

.

Figure 1. Layout of an output section by
the normal linker

contributions from a.o
file specific padding for a.o
contributions from b.o
file specific padding for b.o
.
.
.

generic padding space
Figure 2. Layout of an output section by
the incremental linker

4.2 Keeping track of section layout

To enable the incremental linker to efficiently locate
and replace a modified object file’s old contributions,
we maintain a data structure called a linkmap in the
output file. The linkmap consists of two sections: a
file table and a section map.
q File table. The file table contains a mapping of

file identifiers to path names of object files.
The file identifier is a unique number assigned
to each object file present in the link. The
contributions from each object file are laid out
in the output sections in sorted order based on
the file identifiers of the object files.

q Section map. The section map records the
layout of the output section. For each output
section we maintain an array of section
mappings. Each mapping consists of the
following information:
• File identifier of the contributing object file.
• Section relative offset of the location where

the object file’s contributions are copied
over.

• Size of object file’s contributions.
• Size of file specific padding space.
Just as the output section contents are sorted on
file identifiers of contributing object files, the
section mapping data is sorted on file
identifiers.

4.3 Replacing old contributions

During incremental links we perform the following
steps to copy contributions from modified object files
to the output file:
q Locate the modified object file’s old

contributions in the output section by searching
through the section mapping data. Since the
section mappings are sorted on file identifiers, a
binary search can be performed to locate the
object file’s contributions.

q Check if the object file’s old contributions and
file specific padding space is sufficient to fit the

new contributions. If the contributions fit, they
are copied into the existing space in the output
file. The file specific padding increases the
chance that the modified file’s contributions
will fit into their previous location.

q If the contributions no longer fit in their
pervious location, fall back to a full initial
incremental link.

If there are any new object files in the incremental
link, their contributions are copied over to the generic
padding area. We also assign increasing unique
numeric values as file identifiers to new object files.
This keeps the section layout sorted on file identifiers.
The file table and section mapping data in the linkmap
are consistently updated during incremental links.

5. Symbols

One of the main responsibilities of the linker is to
maintain information about symbols, resolve undefined
and multiply defined symbols, and assign symbol
values. Even though basic rules to maintain both static
(.symtab) and dynamic (.dynsym) symbol tables are the
same, more information is needed to deal with symbol
resolution and assigning symbol values in incremental
links. The linker generates various data structures for
every symbol—linkage table entries, dynamic
relocations, etc. To avoid inefficient use of file space
and reuse these structures in incremental links we need
a means of keeping track of them. Also, resolving
symbols with multiple definitions, some modified and
others unchanged, is a non-trivial task. A 100%
solution for these challenges would require a
substantial amount of additional information to be
saved, maintained, and processed on every link, which
could negate all advantages of the incremental linker.
We had to find a solution acceptable in a vast majority
of cases, yet very lightweight both in terms of space
and processing time.

5.1 Symbol table management

The existing symbol table structure intermingled
local and global symbols without distinction as to
which input file defined each symbol. For incremental
links, that structure was not sufficient. We needed a
structure that allowed us to modify only those entries
in the symbol table that pertained to the modified
file(s) in an incremental link. In addition, padding
areas must be allocated in the correct places to allow
for additional symbol definitions, if any, from
modified files.

local symbols from a.o
padding for a.o

local symbols from b.o
padding for b.o

.

.

.

generic local symbol padding
global symbols (all files)

generic global symbol padding
Figure 3. Symbol Table Layout

The symbol table structure is subdivided into two
main pieces (Figure 3), one for local symbols and one
for global symbols. In addition, there is a parallel
secondary symbol table (.ild_symtab) which stores
incremental linking-specific information about
symbols. Since all local symbols for a given file will
be reprocessed in incremental links, information
regarding them is not stored in the .ild_symtab.
Instead, only information about global symbols is
stored there. The additional information is used mainly
for symbol resolution in incremental links, which is
described in the next section. During incremental
links, the symbol tables are reconstructed from the
original output file, and all modified global symbols
are updated in place. Any new symbols can be added
into the appropriate padding area. Once the link is
complete, only the modified sections of the symbol
tables are rewritten in the output file.

Unlike global symbols, local symbols are not
reconstructed in incremental links. Since these
symbols are local to the modified file only, the
resolution rules are much less complex, and there is no
reason to store any additional information about these
symbols in the .ild_symtab. The local symbols section
of the symbol table is sectioned by file identifier, one
section per file. Each file-specific section for local
symbols has its own padding space, and there is an
additional generic padding section at the end of the
locals for any additional files that may be added in
incremental links (see Figure 3). The linkmap stores
the mapping for the entire symbol table, including each
file-specific local symbol section. During incremental
links, the linkmap helps determine the symbol indexes
of local symbol definitions for modified files and the
local symbols are reprocessed, overwriting the old
definitions. This is different from the way global
symbols are processed in that they are not updated in
place, but rather they are completely reprocessed.

5.2 Resolving symbols

The linker resolves symbols based on their
definition types. This is a fairly easy task when there
is only one definition for a particular symbol in a
link—all references are resolved to that definition.
However, symbol resolution becomes more
complicated when a symbol has multiple definitions
such as common (storage request), weak, and strong
definitions. In a regular link a symbol with the
strongest definition type ‘wins’ over symbols with
lower precedence definition types. In incremental
links only new and modified files are processed, which
means that the linker only scans symbol tables from
those files. Situations when only one object file
contains a symbol definition are easy to handle. In
incremental links we need to update the symbol
definition in the output symbol table only if the object
containing the definition was modified. If the symbol
has multiple definitions it is sometimes difficult to pick
the new winner. To illustrate this problem, we will
look at a few examples.

Suppose we have two object files, a.o and b.o. One
file (a.o) contains a storage request for ‘data1’ integer;
the other (b.o) contains an initialized definition for
‘data1’. In a regular link the definition from b.o wins
symbol resolution. Suppose the user made changes to
remove `data1' from b.o altogether. The regular linker
would pick the definition from a.o as a winner. But in
an incremental link, if a.o was not modified, the linker
does not have enough information to pick the new
winner. Ideally, for every symbol we would need to
have a list of definitions we have seen in previous links
so that we can find a new winning definition and
resolve all references to the new symbol. This
approach would require us to store quite a bit of
additional symbol information in a form of symbol
definition lists. These lists, like all other data
structures, would need to be padded in case new
symbol definitions are added, and updated in
incremental links. This solution would add complexity
to the implementation, requiring more storage and
increasing processing time.

Instead we decided to go with a more lightweight
solution which resolves symbols correctly in the
majority of cases. In cases where the incremental
linker cannot determine the new winner, it will fall
back to an initial incremental link.

In an incremental link we maintain two copies of
every symbol: the old winner— a winning definition
from the previous link restored from the output file; the
current winner— a winning definition we have seen so
far while processing modified files. At the end of the
first pass over modified objects, the linker has to make
a decision for every symbol as to what version to pick
as the new symbol definition (See Figure 4).

If the object containing the old definition was not
modified we just follow regular logic to perform
symbol resolution between old and current definitions.
If the defining object was modified, there are two
possibilities as to which should be the current winner
with respect to the old winner. If both symbols come
from the same object file, we pick the current winner.
If they come from different files, we check which
version of the symbol would win regular symbol
resolution by the normal linker. If the current version
wins, we have no problem; we just take it as the new
winner. If the old version wins, we have to do an
initial incremental link because we do not have enough
information to declare any symbol a winner. If we had
a complete list of symbol definitions from the previous
link, we could find a symbol which would have won
symbol resolution had the old winner not been there at
all. But since we decided against maintaining this list,
the only available option to recover is to fall back to a
full initial incremental link.

Figure 4. Symbol resolution algorithm.

This may not sound like a good option since it may
cause frequent re-links. However, it is not as bad as it
seems. There are only a couple of ways to create
multiple symbol definitions that do not cause a
duplicate symbol error. One is to use common
symbols; the other is to use weak definitions. System
libraries primarily use weak symbols to prevent user
name space pollution. Therefore the only way to get
into a situation when the linker has to perform an
initial incremental link caused by weak symbols is
when a user removes a strong definition overriding a
weak symbol from a system library. Under normal

circumstances this change will not be performed very
frequently. The situation is very similar with common
symbols. If a user has multiple commons and an
initialized (winning) definition for a symbol, and the
winning definition is removed, fall back to the initial
incremental link. Even though a change like this is
likely to be more frequent, it will only account for a
small percentage of code modifications and will not
cause an overwhelming number of re-links.

One more corner case involves common symbols
and can be handled without re-links. Suppose a user
has multiple common definitions with the same name
but different sizes. The definition with the biggest size
wins symbol resolution. If in an incremental link the
winning symbol is removed, we don’t have to do a full
initial incremental link. Since space has already been
allocated, we can always pick the current winner even
if it has smaller size.

5.3 Symbol resolution in libraries

The way shared and archive libraries are processed
slightly changes the behavior of the linker with respect
to reporting unresolved symbols. Since dependent
shared libraries are not processed in incremental links,
the linker is unable to tell whether a certain symbol is
unresolved because there is no definition for it at all, or
because its definition is in one of the dependent
libraries. In the latter case, there is no problem; the
dynamic loader will resolve the symbol at run time. To
enable this dynamic symbol resolution, the incremental
linker converts all potentially unresolved symbols into
dynamic symbols during all dynamic links and lets the
loader report errors in case these symbol cannot be
found in any of the dependent libraries at runtime.

Because archive members are never removed from
the link, run time behavior of some incrementally
linked programs may differ from that of programs
linked by a normal linker. Suppose you incrementally
linked a shared library, liba.sl. One (and only one) of
the objects (a.o) in the link referenced a global function
func() which was resolved by an archive member
func.o from lib.a. Now you remove the call to func()
from a.o, so func.o is no longer needed. But since it is
not removed in a subsequent incremental link, the
symbol ‘func’ will remain exported by liba.sl and
available for look-up. Thus, an application linked with
liba.sl and referencing func() will still be able to
successfully find it, even though it would have failed
if liba.sl had been linked by a regular linker.

In our experience, the cases described above are not
very frequent and there is a simple remedy to fix them
– perform an initial incremental link.

if (old copy not modified) {
do regular resolve(old, current)

}
else {

if (old and current are
 from the same file) {
resolve to current

}
else {

if (current wins resolve(old,
 current)){

keep current as new winner
}
else {

if (old and current are common){
resolve to current

}
else {

do initial incr. link
}

}
}

}

6. C++ compile-time template
instantiation

The HP-UX C++ compiler uses COMDAT to
support compile-time template instantiation.
COMDAT is a scheme that allows multiple, duplicate
copies of code and data to be merged together by the
linker into a single copy in the final executable. The
comdat allows the compiler to generate multiple copies
of a template function in separate object files. The
linker must identify sections containing duplicate
information and choose one of the copies for inclusion
in the output file. The content of a COMDAT section
is essentially a directory for the members of the
COMDAT set. The section consists of an array of
section indexes that point to the member section’s
entries in the object file section table. When object
files containing COMDAT groups are linked, there
may be more than one copy of a given COMDAT
group. The linker chooses one of these copies to
include in the final output file and discards the rest. If
the same COMDAT group is defined in multiple files,
they are assumed to be functionally equivalent.

In the context of incremental linking, the linker has
to handle three different situations: modification of an
object file containing a COMDAT group, addition of a
new COMDAT group, and removal of a COMDAT
group from an object file.

To support full functionality, the incremental linker
has to keep track of the list of COMDAT groups
contributed by each object file. For each COMDAT
group in a modified object file, the incremental linker
must check if the COMDAT group was chosen from
this object file in the previous link. If so, it should
invalidate the COMDAT group in the output file and
replace it with the modified COMDAT group. When a
new COMDAT group is added to an object file, the
linker has to check whether the COMDAT group is
already present in the output file. If it is, the
COMDAT group should be invalidated and replaced
with the new COMDAT group from the modified
object file. If the COMDAT group is not already
present, it should be added to the output file. Ideally
when a COMDAT group is removed from a file, the
linker should decide whether to physically remove the
group from the output file or replace it from another
object file. This scheme would require an extensive
amount of bookkeeping. Also the additional
information would need to be updated during
incremental links. In a big C++ application there may
be thousands of COMDAT groups. For example, in
one of the test programs we analyzed, there were
approximately 130,000 incoming COMDAT groups of
which about 40,000 were unique. This scheme would
greatly increase the complexity of the implementation,

requiring more storage and potentially increasing the
incremental link time.

Instead we decided to implement a simplified
scheme that does not require maintaining any
additional information. In our simplified scheme, the
linker chooses a COMDAT group from one of the
modified objects and discards the rest. If the
COMDAT group is already present in the output file, it
will be invalidated and updated with the new version.
It is more difficult to handle the case when a
COMDAT group is removed from an object that
contributed it in the previous link. There are two cases
to consider: either the same COMDAT group is
defined in another object file or no other object file
defines the same COMDAT group. Since we don’t
keep the list of all COMDAT groups defined by object
files, we cannot determine whether the original
COMDAT group has been replaced by the next
available COMDAT group from a different file. In the
second case, if the linker does not remove the
COMDAT group, it is possible for the linker to miss a
potential unsatisfied symbol error or report duplicate
symbol definition that it wouldn’t have in a normal
link. Instead of implementing a complicated scheme
and sacrificing performance, we fall back to a full
initial incremental link when a COMDAT group is
removed from an object file that contributed it in the
previous link.

7. Linkage tables

Linkage tables (LTs) are generated by the linker to
enable position independent code and data accesses.
Our linker creates three kinds of linkage tables: PLT—
procedure linkage table, DLT—data linkage table, and
OPD—official procedure label descriptor table.

Each linkage table type is maintained in a similar
fashion. As runtime components, LT entries are not
allowed to change their position from one incremental
link to another. Symbols contain indexes of these
entries in order to have access to their corresponding
LT entries. These indexes are assigned once for every
symbol and after that never change in incremental
links. It is very hard to come up with meaningful
criteria to group LT entries. DLT and PLT entries are
driven by symbol references. With multiple references
in multiple objects, it is impossible to attribute an LT
entry to any particular file. OPDs are driven by
definitions, but in incremental links, definitions may
move from object to object. So we decided not to
group them at all. Instead we update them in place and
rely on our underlying I/O buffering to capture any
locality. Linkage tables only use generic padding for
all new entries.

8. Import stubs

PLT entries are created in response to direct
function calls that are potentially outside the load
module we are currently building. These calls are
redirected to an import stub that loads a procedure
address and the target module’s global pointer (GP)
from a PLT entry and branches to that address. Calls
to local functions can be relocated at link time and do
not normally require import stubs. This means that in
incremental links, all call sites to modified local
functions would have to be relocated. To avoid saving
all PC-relative relocations in an output file, we decided
to use a different approach. In incremental links all
PC-relative calls are directed to go through import
stubs. This way we only need to update PLT entries
for modified functions to insure that call site and target
are connected correctly. One may argue that we added
extra overhead for direct calls which slows down the
application at run time, but since incremental linker is
intended for debugging purposes only, runtime
performance is rarely an issue.

Another problem we encountered was how to
handle fixing up call sites to import stubs themselves.
Normally, a single stub is created to service all PC-
relative calls to a particular function. These stubs are
attached to text contributions of objects for which they
were generated. This makes them impossible to locate
in incremental links. Also, if an object for which an
import stub was created changes, we need to adjust
references to this import stub for all unmodified files as
well. This operation can be costly in terms of space
(we would need to save information to keep track of
import stubs) and, more importantly, link time (we
would need to apply relocations for unmodified files).
To make the operation simple and fast we decided to
generate one import stub per symbol per input object
file. The stubs are recreated in incremental links only
for modified files and only direct calls from modified
files need to be relocated.

9. Static and dynamic relocations

Another key linker functionality is to resolve
external symbol references. In an object file these
references are expressed as relocation records.
Relocations from object files are processed and applied
at link time if possible; if not, they are transformed into
dynamic relocations applied by the dynamic loader at
run time. Correctness of incremental links largely
depends on our ability to maintain and process
relocations.

Relocations can be broken up into several major
categories. The first category is relocations applied to
text sections. These relocations must be applied at link

time and do not generate dynamic relocations because
at run time text is not writable and cannot be relocated.
The second category of relocations is those applied to
linkage tables. These relocations are generated by the
linker itself and may or may not require dynamic
relocations depending on symbol types, output module
type (executable or shared library), link type (static or
dynamic), etc. And finally, there are relocations that
are applied to data sections. These mostly deal with
static data initializations and can generate dynamic
relocations.

9.1 Text segment relocations

All relocations on text sections are in one way or
another converted into linkage table relative
relocations. Therefore if linkage table updates are
done correctly, we do not need to worry about saving
static relocations for these sections and reapplying
them in incremental links. However, for error
reporting purposes, we need to know what symbols
were referred in all LT-relative relocations.

Suppose a.o defines a function foo() and b.o calls
that function. If in an incremental link the definition is
removed from a.o and b.o remains unchanged, we need
a way to tell that foo() was referenced from b.o and
issue an unresolved symbol message. If the definition
for foo() was modified (it’s address changed) we just
need to update the OPD and the PLT entries for it.
Since we don’t actually need to apply relocations of
this sort for unmodified files, we decided not to save
them in their entirety, but rather save symbol indexes:
one entry per referenced symbol per object file. In
incremental links we scan entries from unmodified
files and issue appropriate warnings if corresponding
symbols are no longer defined. Unresolved references
from modified objects will be detected as part of
regular symbol and relocation processing. For locality,
all entries are grouped by file and use both file specific
and generic padding to accommodate expansion.

9.2 Linkage table relocations

Linkage table entries may require dynamic
relocations. Changes of symbol attributes in
incremental links may require new dynamic relocations
to be generated for entries that did not have them in
previous links. Some entries that had dynamic
relocations in previous links may not need them any
more. This means we must maintain a correspondence
between linkage table entries and dynamic relocations
for those entries to be able to perform updates. We
decided that the easiest and the most efficient way to
deal with this problem is to keep linkage tables and LT
dynamic relocations in parallel tables. We avoid
maintaining any additional information to help us find

relocations for LT entries as well as using potentially
costly look-up schemes.

9.3 Data segment relocations

Unlike linkage table relocations, we could not avoid
saving input relocation records for data segment
relocations. We need to reapply these relocations in
incremental links for symbols that were modified even
though files containing these relocations remained
unchanged. We also need to update dynamic
relocations if symbol attributes change. For these
cases, we extended the standard relocation record to
contain an index of the corresponding dynamic
relocation. These relocations are grouped by file for
better locality of updates and use both file specific and
generic padding to accommodate expansion. In
incremental links, all records from unmodified objects
are scanned. If a symbol is modified, the relocation is
applied; a corresponding dynamic relocation is updated
if needed.

9.4 Runtime behavior

One of the initial design requirements of the
incremental linker was to ensure that the runtime
behavior of programs remained the same for
incrementally linked programs versus normally linked
programs. This meant that there could be no changes
to the format, layout, and semantics of any dynamic
structures, including dynamic relocations. But as
mentioned earlier, we needed to pad dynamic
relocation sections for expansion. Also, in incremental
links, symbol attribute changes may no longer require
dynamic relocations for structures that required them in
previous links; these relocations have to be wiped out.
We had to use meaningful relocations that would be
understood by the dynamic loader without changing
the runtime behavior of programs. Consequently, in
incremental links we create a dummy common symbol
and fill all padding areas with relocations for this
symbol. As a result, application start-up time is
slightly slower, but since the target use of the
incremental linker is for debugging, runtime
performance is rarely an issue.

10. Performance

We measured the performance of the incremental
linker using the following four programs of varying
sizes: bison, the GNU parser generator; gcc, the GNU
C compiler, and a large C++ customer application.

Table 1 shows the parameter for each of these
sample test programs. All measurements were taken on
a HP N4000 server with eight PA-8500 440Mhz CPUs.

The system has 16 gigabytes of RAM and runs HP-UX
11.00 operating system.

of
objects

Source
language

#of
symbols

Size of
output

file
(Mb)

bison 23 C 517 0.24
gcc 261 C 7423 2.93
customer
program

1717 C++ 389444 118.71

Table 1. Sample Test Programs

Normal
link

Initial
incremental

link

Incremental
link

sec sec % of
normal

link

sec #times
faster
than

normal
link

bison 0.5 0.6 120 0.15 3.3
gcc 3.5 4.1 117 0.41 8.5
 customer
 program

131.0 158.0 120 11.70 11.2

Table 2. Link Time Measurements

Table 2 shows the link time data. We measured and
compared the normal and initial incremental link times.
The initial incremental link is generally slower than the
normal link due to the extra work done in these links.
For each of the sample programs we measured, we
found that the initial incremental link takes about 17%
to 20% more time than a normal link with the same
sources.

We next measured the incremental link times after
making changes to two object files. For large
programs, the incremental link is on average ten times
faster than the normal link. The time taken by the
incremental linker depends on the amount of code
modified. Regardless of the amount of code modified,
the time spent on extracting information from the
output file will always be the same. We measured the
link time on the largest test program (customer
program)—after changing up to 30 large object
members in an archive library. The link times are
shown in Table 3. Even when large number of objects
are modified, the incremental link is significantly faster
than the normal link. For example, re-linking after
changing 30 objects takes about 16.7 seconds which it
about 8 times faster than the normal link.

 #of
objects
changed

Incremental
link time
(sec)

 2 11.3
 4 11.8
 6 13.0
 8 13.1
 10 13.9
 30 16.7

 Table 3. Incremental link times

The Table 4 shows the increase in size of the
sample programs due to incremental linking. The size
increase is due to two reasons: additional incremental
linking data stored in the executable and the padding
space.

% increase
in size

% increase due
to padding

bison 185 152
gcc 76 65
customer
program

 57 29

 Table 4. Program size increase

11. Current status and future work

The implementation was completed only a few
months ago and the general HP-UX developer
community hasn’t had a chance to use the incremental
linking capabilities. However, a few internal partners
successfully used the incremental linker and provided
us with valuable feedback on its correctness, usabily
and performance.

Even though a tremendous amount of work has
been done to design and implement the incremental
linker, there are still a few areas that could use
improvement. Currently our linker does not handle
removal of symbols and objects very well. Symbols
are never removed from either the static or dynamic
symbol tables. This may cause undefined behavior of
dynamic programs which reference removed symbols.
Also, removal of object files from the link line is not
handled the way it should be and causes an initial
incremental link. Shared libraries are not processed at
all in incremental links. Even though this reduces link
time, the runtime behavior of programs may be
confusing for less advanced users and they might want
to have an option for the incremental linker to handle
shared libraries the way regular linkers do.

Currently we don’t handle padding space very
efficiently, particularly in the area of accommodating
file expansion. When a file’s contribution to an output
section uses up all file specific padding, we do a full

initial incremental link even though there may be
enough space in the generic padding area to store it.

The linker has all the information it needs to deal
with these situations, and we will implement these
improvements in the near future to reduce the number
of limitations and differences between applications and
libraries produced by the regular and the incremental
linkers. These enhancements will also improve
efficiency of file space reuse and shorten incremental
link time.

12. Conclusions

We have developed an incremental linker for HP-
UX that significantly shortens the edit-compile-link-
debug cycle by substantially improving the link time.
For large programs, our incremental linker is an order
of magnitude faster than the normal linker is, allowing
developers faster turnaround after simple bug fixes.

In our design we have chosen to forgo complex
schemes that require vast amounts of bookkeeping in
an attempt to guarantee incremental linking 100
percent of the time. Instead, we chose lightweight
schemes that address the majority of situations that
occur in practice. When rare corner cases are
encountered, we fall back to performing a full initial
incremental link. This choice has significantly reduced
the complexity of the incremental linker and maintains
the excellent performance gains achieved by the
incremental linker. While there are still some
enhancements that can be made, the incremental linker
has already proven to be an extremely useful
developer’s tool with significant performance gains.

References

[1] Linking Programs Incrementally. Russel W. Quong,
Mark A. Linton. ACM Transactions on Programming
Languages and Systems, Vol. 13, No. 1. January 1991.
[2] Pseudo-Incremental Linking for C/C++. William A.
Hoffman, Rupert W. Curwen. Dr. Dobb’s Journal, October
1999.
[3] 64-Bit Run-Time Architecture for PA-RISC 2.0
http://www.software.hp.com/STK/partner/pa64rt.pdf
[4] ELF-64 Object File Format
http://www.software.hp.com/STK/partner/elf-64-hp.pdf
[5] HP-UX Linker and Libraries User's Guide
http://docs.hp.com/dynaweb/hpux11/dtdcen1a/lnkuen1a

