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Abstract 
Artemis is a modular application designed for analyzing 

and troubleshooting the performance of large clusters 

running datacenter services. Artemis is composed of four 

modules: (1) distributed log collection and data extraction, 

(2) a database storing the extracted data, (3) an interactive 

visualization tool for exploring the data, and (4) a plug-in 

interface (and a set of sample plug-ins) allowing users to 

implement data analysis tools including (a) the extraction 

and construction of new features from the basic 

measurements collected, and (b) the implementation and 

invocation of statistical and machine learning algorithms 

and tools.  In this paper we describe each of these 

components and then we illustrate the power of the plug-in 

architecture by presenting a case-study using Artemis to 

analyze a Dryad application running on a 240-machine 

cluster. 

1. Introduction 
The computer industry is in the midst of a new 

revolution: the emergence of cloud computing.  Many 

players in the industry are building cloud-based 

services using large clusters of commodity PCs.   

Key to the effectiveness of cluster computing is 

reduced resource management cost.  However, 

writing distributed software systems for large 

clusters, debugging, optimizing performance, 

monitoring, repairing, provisioning, and upgrading 

are difficult tasks.  One of the main tools used by 

software developers for cluster services is abundant 

logging information.  Since the use of debuggers on 

live server-side systems is most often impossible, 

logging is the tool of choice for understanding large-

scale system behavior.  Thus even live deployed 

systems contain copious amounts of logging. 

As a consequence, an important part of meeting the 

performance and dependability goals of clusters is the 

management and analysis of distributed logs.  

Understanding performance frequently requires the 

aggregation of log information across the machines in 

the cluster.  Debugging correctness problems requires 

the correlation of log information, to infer system 

interactions. Automated analysis using statistical 

machine learning algorithms requires performing 

tasks such as feature extraction and visualization. 

In this paper we describe Artemis, an application for 

the analysis of large-scale distributed logs, that 

incorporates all the elements mentioned above.  

Artemis has been designed to be modular, separating 

data collection from data analysis, and separating 

application-specific parts
1
 from generic application-

independent parts. We show how the flexibility of 

Artemis allows us to customize it for the domain of 

distributed Dryad applications (Dryad is described 

briefly in Section 3). In Section 5 we use this 

customized instance of Artemis for debugging a 

Dryad application running on a 240-machine cluster. 

We have also used Artemis to explore datasets 

produced by other distributed applications, such as 

telemetry performance data for the Windows 

operating system and performance measurements 

from a data center providing enterprise services. 

As an application focused on the analysis of 

distributed logs, Artemis presents the following 

unique combination of characteristics: 

 Artemis integrates in a single tool all the important 

tasks required for log analysis: collection, storage, 

visualization, analysis; it is designed to be a one-

stop shop for the programmer attempting to 

understand the performance of a distributed 

application.  The system architecture integrating all 

of these pieces is the subject of Section 4. 

 Artemis is modular and extensible in several 

dimensions: 

- Artemis can manipulate multiple data sources and 

data types. Our current data sources include log 

(text) files, performance counters data (stored in 

comma-separated files with headers), XML data 

sources, and binary (encoded) dumps from a 

variety of sources (application and system-level).  

We discuss data collection in Section 4.1. 

- Artemis performs both generic and user-defined 

data analyses.  A plug-in mechanism allows the 

data analyst to write (or invoke) additional 

domain-specific analyses.  In this paper we 

include a description of several plug-ins we wrote 

for the analysis of Dryad jobs: “machine usage”, 

“job critical path”, and “network utilization”. 

 Artemis is built around a Graphical User Interface 

(GUI), keeping the human in the data analysis loop.  

The GUI, described in Section 4.3 enables the 

analyst to quickly navigate data visualizing 

correlations and trends, and also to define 

interactively the features used for more 

                                                           
1
“Application-specific” parts depend on the specific 

distributed application that we are trying to analyze. 



sophisticated machine-learning data analyses. The 

visualization tool provides two basic primitives: 

histograms and time series.  

2. Related work 
There is a lot of prior work in (distributed) log 

collection, log visualization and log data analysis. We 

believe that Artemis is unique in integrating all these 

activities into a single tool in a generic (application-

independent) and extensible architecture.  We 

enumerate here only papers related to distributed log 

analysis and highlight the differences with Artemis. 

Pablo [10] is an early system with many similar 

goals, but a very different realization. 

LogSurfer and LoGS [8,9] focus on closing the feed-

back loop, using on-line corrective actions when 

faults are detected in the system.  

NetLogger [2] combines data from network, host and 

application events. It contains four components: an 

API for generating application-level events, a set of 

tools for collecting and sorting log, a set of host and 

network monitoring tools and a front-end 

visualization tool. It requires the analyzed application 

to use the special logging libraries. 

A lot of research has been dedicated to datamining 

distributed systems logs (MapReduce, Hadoop, 

and grid computing systems).  Recent examples 

include [5,6,12,14]. The work in [5,14,12] focuses 

on taking advantage of syntactic features in the 

logs. The work in [6] is built around machine 

learning techniques for performance debugging, 

yet it is not integrated with visualization, feature 

extraction, and it is not easily extendable (with 

new algorithms) as Artemis is. 

3. Dryad system architecture 
As discussed in the introduction, while Artemis can 

then be used for analyzing the performance of 

various distributed computing applications, in this 

paper we focus on the use of Artemis for analyzing 

Dryad-based distributed applications
2
. Dryad [3] is 

middleware for building data-parallel distributed 

batch applications.  The structure of a Dryad 

application (called a Dryad job) is depicted in Figure 

1. A job is composed from a set of stages; each stage 

is composed of an arbitrary number of replicas of a 

vertex (each operating on a different data partition).  

The edges of the graph are point-to-point 

                                                           
2
 From Wikipedia: Dryads are tree nymphs in Greek 

mythology. They are normally considered to be very shy 

creatures, except around the goddess Artemis, who was 

known to be a friend to most nymphs. Artemis is also the 

Hellenic goddess of the hunt.  

communication channels.  The job graph is required 

to be acyclic.  Communication channels are finite 

sequences of arbitrary data items. In general each 

vertex corresponds to a single process, but several 

vertices connected with shared-memory channels can 

be run as separate threads in the same process. 

 

Figure 1: structure of a Dryad job. 

This model is simple and powerful.  Despite the fact 

that the Dryad runtime is unaware of the semantics of 

the vertices (i.e., the vertices can run arbitrary 

binaries), the Dryad runtime can provide a great deal 

of functionality: generating the job graph, scheduling 

the processes on the available machines, handling 

transient failures in the cluster, collecting 

performance metrics, visualizing the job, invoking 

user-defined policies and dynamically updating the 

job graph in response to these policy decisions. 

 

Figure 2: Dryad system architecture. 

Figure 2 shows schematically how Dryad is 

implemented.  Each Dryad job is supervised by a 

centralized job manager process.  The job manager 

uses a small set of cluster services to control the 

execution of the vertices on the cluster.  The minimal 

set of services required for Dryad’s operation include 

a name service and a remote execution service.  All 

these components (JM, services, vertices) produce 

logging information. 

4. The Artemis log analysis toolkit 
Figure 3 shows the structure of the Artemis 

distributed log-analysis toolkit. Artemis attempts to 

cleanly separate the application-specific parts from 

the application-independent parts. Artemis can be 

adapted for analyzing a new distributed application 



by replacing or modifying the application-specific 

parts. 

 

Figure 3: Artemis architecture.  The application-

specific parts have been highlighted. 

The four main components of Artemis are: 

1. Log collection, persistence, filtering and 

summarization.  These are application-specific; their 

role is to collect log data about the application and to 

translate it to a uniform format. 

2. Data storage. The collected data is stored using a 

generic database.  Only the schema is application 

specific.  

3. Data visualization.  Interaction with the data is 

done by using an entirely generic GUI, which can 

display histograms and time series data.  The GUI is 

coupled to the database using a pair of (application-

specific) views: one providing data for the histograms 

and the other providing data for the time-series. 

4. Data analysis is implemented using a plug-in 

architecture. A plug-in is an object implementing a 

specified .Net interface; the inputs and outputs of 

plug-ins are views of the database.  Some plug-ins are 

generic (e.g., computing the area under a curve), 

while other are application-specific (e.g., computing 

the critical path of a Dryad job).  The data generated 

by running a plug-in is merged back into the 

database, and thus can be visualized with the GUI or 

used by other plug-ins. 

We proceed to describe each of these components. 

4.1. Log collection and filtering 
The data-collection front-end for analyzing Dryad 

jobs aggregates data from the following sources: (a) 

the job manager logs, (b) the logs of the vertices, 

generated by the Dryad runtime library (linked to 

each vertex), (c) logs from the remote execution 

cluster services, which fork vertices and collect 

statistics about them, (d) performance counters from 

the Windows performance monitoring service 

(Perfmon) and (e) logs from the cluster name server 

describing the cluster network topology. Some of 

these logs are text files (a, b, d above), while other 

are XML (e) or binary-encoded (c). It is 

straightforward to add additional sources of 

information; for example, we plan to add SNMP logs 

from cluster routers.   

A single Dryad job composed of tens of thousands of 

processes and running on a large cluster for tens of 

minutes can emit in excess of 1TB of  logs. Each 

Dryad vertex process runs in a sandbox, having a 

private home directory where the vertex maintains its 

working space, and where the vertex dumps logs. 

Each vertex produces around 1 MB/s/process. 

Following the completion of a Dryad job, the cluster-

level job scheduler garbage-collects the sandboxes of 

the job vertices after a configurable time interval. 

We have built an additional application-specific GUI 

front-end for interfacing Artemis with the Dryad 

cluster scheduler.  This GUI enables the data analyst 

to browse the jobs residing on the cluster and to 

choose which ones to copy and analyze. Artemis first 

parses the job manager logs which contain global 

per-job information, including pointers to the location 

of all the vertex logs.  This information is used to 

prepare the input for a distributed DryadLINQ [15] 

computation, which locates, copies, reads, parses, and 

summarizes all the distributed data sources which 

reside on the machines in the cluster
3
.  

Using DryadLINQ enables the Artemis data 

collection to take advantage of the parallelism 

available in the very cluster under study for the data-

intensive parts of the analysis. The DryadLINQ 

computation spawns a vertex on each machine which 

contains interesting logs.  On our 240-machine 

cluster filtering several hundred gigabytes of log data 

requires just a couple of minutes of wall-clock time.   

The cluster services and the performance counter 

collection tasks are running and logging continuously 

on each machine in the cluster; in contrast, a Dryad 

vertex uses a machine for a bounded time. The 

Artemis log collector extracts only the relevant 

portions of the service logs for each machine.  Data 

extraction involves, in essence, performing a giant 

distributed join. 

The information extracted from vertex logs includes 

the I/O rate for each Dryad channel. The performance 

counters include over 80 entries describing global 

(per-machine) and local (per-process) measurements 

(e.g., virtual memory usage, I/O rate, garbage 

collections, processor utilization, etc). The counters 

include information about the .NET runtime. The 

remote execution daemons provide statistics about all 

the Dryad channels. 

                                                           
3 If some of the cluster machines are unavailable, the data 

collection will still succeed, but produce incomplete data. 



4.2. Data storage 
The filtered data from all these sources is extracted 

and aggregated in a database accessible from the 

local workstation.  In principle any relational engine 

could be used, and we plan to use a commercial 

database in the future.   

The most important part of the database is the data 

schema.  The schema is generated by the data 

collection process.  The schema can categorize each 

table column as one of: numerical data (e.g., CPU 

utilization), category (e.g., machine name), string 

(e.g., channel URI), or timestamp or time offset (e.g., 

time when record was collected).  This approach is 

similar the one used by the Polaris [13] data 

visualization tool. 

4.3. Data visualization and exploration 
The data visualization part of Artemis is completely 

generic (i.e., it is not tied to the application), and is 

not tied to the data semantics (the only data semantics 

is conveyed by the schema).  We have focused on 

displaying two types of magnitudes: 

 Scalar-valued measurements, which can be of type 

either numeric or category (e.g., starting time, total 

I/O, machine where a vertex has run, number of 

garbage collections);  

 Time series data (e.g., I/O in each 2 second interval, 

CPU utilization in each interval, etc).  By 

definition, a time-series is composed of data items 

tagged with timestamps. 

In order to interface the database with the 

visualization a domain expert must create two 

application-specific database views.  The first view is 

a relation containing all database columns that 

contain scalar data; the “primary key” of this table is 

the main entity which is analyzed (in our case study 

the key is the ID of a Dryad job process). 

The second view is a relation that must contain at 

least two columns: one column is a foreign key 

pointing to the primary key of the first view; the 

second column is a timestamp (absolute or relative).  

The other columns of this view contain time-series 

data.  In our case, all performance data collected by 

Perfmon maps directly into this view. 

The data from the first view (scalar data) is browsed 

and displayed using histograms and distributions 

(shown in Figure 4); and the data from the second 

view is displayed with line-plots (shown in Figure 6). 

The user can choose using drop-down boxes the 

metrics to display (in essence performing a relational 

algebra projection of the view on a selected column), 

and the number of buckets of the histogram.  In 

Figure 4 the user has displayed the running time of 

the Dryad job processes in a particular stage, and she 

has used a histogram with 10 buckets; only the first 4 

and the last buckets contain any elements. Once a 

histogram has been displayed, each primary key 

value is associated with a color (the color of the 

bucket of the histogram). For example, the leftmost 

(fastest) 45 processes become red, and the next 157 

processes become orange, while the lone outlier at 

the right is magenta. 

 

Figure 4: Displaying a set of scalar values using a 

histogram.  The horizontal axis is the value being 

histogramed, in this case running time. 

 

The GUI preserves these colors across different 

displays; Figures 5, 6, 10 and 11 use the same color 

assignment.  For example, in Figure 5 we display the 

distribution and histogram of another scalar value, 

the peak number of page faults (measured across 15-

second intervals).  For each process the same color as 

in Figure 4 is used.  This makes it easy for the user to 

identify for example, whether misbehaved instances 

are also outliers with respect to other metrics. In 

Figure 5 below we note that the outlier from Figure 4 

continues to be an outlier with respect to the “peak 

number of page faults”. Each histogram bucket can 

be “selected” with a checkbox; only the data from the 

selected buckets is used in further analyses (in 

essence performing a relational algebra select 

operation visually).   

 

Figure 5: Peak number of page faults; this histogram 

uses the same color coding as in Figure 4. 



The second type of data that can be visualized is the 

time-series.  Time series are drawn with lines using 

the colors inherited from a histogram (using the 

foreign key). For example, in Figure 6 we display the 

“disk read rate” (number of bytes read from disk in 

each 15-second interval) for 3 selected buckets: red, 

green and magenta.  We can see that with respect to 

this metric the magenta process is not an outlier, 

since its line is right in the middle of the pack. 

 

Multiple time series can be aligned (to start all at the 

same time) or unaligned (they are displayed in 

absolute time).  Figure 6 is an aligned view, while 

Figure 8 is unaligned. 

 

Figure 6: Time series of the disk I/O rate for selected 

processes.  The horizontal axis is always time when 

displaying a time-series, while the vertical axis is the 

magnitude being plotted (disk rate).  

The displays allow the user to click on points or 

buckets or to use a rubber-band to select data.  The 

GUI identifies the selected data using a tabular 

display shown in Figure 7.  The tabular display can 

be used to make further projections and selections, 

and to export data directly to Excel. For example, 

using the tabular display we can find out which one is 

the outlier process from Figure 4. 

 

Figure 7: Data from plots displayed in a tabular view. 

We can interpret the data displayed by a GUI window 

as (yet another) relational view of the data (obtained 

from the projection of the input view on selected 

columns followed by selection of the chosen 

buckets).   This is important because the displayed 

data can be fed to plug-ins for further analysis. 

4.4. Plug-ins and statistical analyses 
Each GUI window contains a “Run plug-ins” button 

which can be used to invoke computations on the 

current data view. 

Data analysis in Artemis is performed with plug-ins. 

The plug-ins are used for (1) computing meaningful 

features from the data, for driving the statistical 

analyses; (2) for invoking statistical analysis and 

machine learning packages, and (3) for performing 

application-specific data analyses, including running 

“scripts” invoking other plug-ins.  We give examples 

of each of these analyses for the case of Dryad jobs. 

4.4.1 Feature computation 

We provide a library of generic plug-ins for 

computing simple data transformations which can be 

composed to compute new metrics from existing 

data.  For time-series data we have min, max, range, 

average, integral, derivative, anti-derivative, and 

variance plug-ins.  Some of these plug-ins generate 

new time-series (e.g., derivative), while other 

generate scalar data (e.g., average).  Since the GUI 

has no knowledge of data semantics, the data analyst 

has to use application-specific knowledge to decide 

which of these transformations are meaningful (e.g., 

you can integrate CPU time to obtain work, but you 

cannot integrate the machine-usage time-series 

described in Section 4.4.3.)   

The plug-ins can be invoked either interactively from 

the GUI or as batch computations from other plug-

ins. The data computed by the plug-ins is merged into 

the database for immediate visualization or further 

analyses. 

4.4.2. Statistical analyses and machine learning 

When analyzing Dryad jobs we combine the scalar 

metrics extracted from the logs with the computed 

features to generate new features for each Dryad 

process; these features can be used by the statistical 

machine learning plug-ins. We chose not to prune the 

collected metrics, but instead we use automated 

statistical approaches [1] to decide which features are 

important. 

Currently we have implemented plug-ins interfacing 

Artemis with two off-the-shelf statistics packages 

(developed at Microsoft):  data clustering and  

statistical pattern classification and feature selection. 

The plug-ins write data to files as expected by each 

analysis package and then invoke external processes 

to perform the analysis.  One such plug-in is written 

in roughly 100 lines of code, so we expect it would 



be easy to interface Artemis with other statistics 

packages. 

The clustering analysis attempts to uncover 

differences in performance among the analyzed 

entities (e.g., Dryad processes) and to determine 

which of the available features correlate with those 

differences. When applied in the context of Dryad, 

this analysis relies on the assumption that all vertices 

in a stage exhibit similar behavior.  The differences 

between vertices in a stage provide evidence for 

either: a) faulty hardware, b) bad data distribution, c) 

uneven data sizes, and d) interference with other 

processes running on the same machine. The 

clustering analysis uses a standard k-means algorithm 

with automated model selection (the number of 

clusters
4
). The model selection is done by evaluating 

the change in distortion when increasing the number 

of clusters. The clustering algorithm groups vertices 

according to their similarity in performance while 

pointing to outliers.  

The pattern classification analysis is directed at 

explaining differences in the performance of the 

vertices belonging to different clusters.  The analysis 

automatically induces a model that discriminates 

between the vertices according to their cluster. The 

analysis uses logistic regression with L1-

regularization [4]. This is an effective method for 

feature selection in classification, especially when the 

number of features is comparable to the number of 

samples [4].  We rely on a tool called HiLighter [1] 

which was designed for diagnosing performance 

problems in systems ranging from enterprise cloud 

computing to test-bed software debugging.  

4.4.3. Application-specific data analyses 

The most powerful kinds of Artemis plug-ins have 

access to the entire measurement database. These  

plug-ins can implement complex data analyses by 

joining information from multiple tables in an 

application-specific way.  We give three examples of 

plug-ins we have developed specifically for 

analyzing Dryad jobs. 

a) Machine usage. This plug-in computes machine 

usage for an entire job and represents it using time-

series data, enabling visualization with the existing 

GUI.  For each process it creates a time series with 

four points, corresponding to the essential state-

transitions of the process: “ready to run”, “scheduled 

to run”, “starts running”, “terminated”.  The x axis is 

time, while the y axis is the home machine of each 

process. Figure 8 shows the machine usage for the 
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 In this context “cluster” refers to a data cluster – a 

grouping of data according to a clustering algorithm. 

distributed sorting application that we discuss in 

Section 5. 

 

Figure 8: Machine usage data displayed as a time-series. 

The machine usage plug-in enables the fast visual 

identification of which stages carry the weight of the 

computation (i.e. take the longest time to finish), 

which are the longer running vertices, and where are 

the scheduling bottlenecks.  The execution shown in 

Figure 8 has poor cluster utilization due to some late-

scheduled vertices (all stages in this application are 

blocking, requiring the previous stage to complete 

before starting). 

b) Critical path. The critical path shows the longest 

chain of dependent processes in a Dryad job graph 

execution.  When overlaid with the machine usage 

plot, the critical path shows where the bottleneck of a 

particular computation is. 

c) Network utilization. This plug-in combines 

several database tables to compute the network traffic 

distribution.  It uses the cluster topology database 

(describing machine assignment to racks) and the 

description of all job channels (input URI, destination 

process, machine mapping of processes) to determine 

how the job data traffic is distributed on the network. 

5. Usage scenario 
We have used Artemis to diagnose problems for 

several DryadLINQ computations running in a 

research cluster comprising 240 machines.  The 

machines are all running Dryad; they all have 4 CPU 

cores, 4 striped disks and 16 GB of memory.  In this 

section we choose a representative Dryad application, 

written in DryadLINQ: distributed sorting.  The 

DryadLINQ compiler generates a plan comprised of 

4 stages, shown in Figure 9.  The input is stored in a 

1Tb file partitioned into 240 pieces. 

The first stage of the application reads the whole file 

in parallel using 240 vertices and samples uniformly 

from the input.  The second stage aggregates the 

samples and computes the distribution of the sampled 

input.  It also computes the boundaries of 240 equal-

sized buckets which will be used to redistribute the 

input.  The third stage reads the whole input again 



and performs a hash-distribution using the buckets 

computed by stage 2.  Finally, each vertex in the 

fourth stage performs an in-memory multi-threaded 

sort and writes the output to its local disk.    

   

Figure 9: Distributed sorting: an application analyzed 

using Artemis. 

The machine usage during one execution of this 

application is in Figure 8. Stage 2 (histogram) is 

extremely fast and barely visible. All the other 

figures in this paper show just data related to the 

sorting stage
5
. 

In Figure 8 we notice two anomalies in the sorting 

stage: one vertex starts much later than the other 

ones, and the running time of one vertex is much 

longer.   The late vertex is due to scheduling conflicts 

on the cluster: this vertex and another one have been 

run sequentially on the same machine.  This 

information tells us that even in the absence of the 

long-running outlier this stage would have taken a 

long time to complete. 

 

Figure 10: CPU utilization time series for selected 

vertices in the sorting stage. 

Now we focus our attention on the magenta outlier 

from Figure 4, which is the long-running vertex in 

Figure 8.  In Figure 10 we display the CPU time; we 

notice immediately that the outlier has much lower 

average CPU utilization.  Integrating the CPU 
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 In order to process just the sorting stage we first use a 

histogram of stages (one bucket per stage – projecting the 

view on stage), and then we select just the sorting stage 

(selecting the suitable checkbox). 

utilization (using the integration plug-in) we discover 

that the total amount of CPU used (work) is about the 

same for the outlier (not shown). 

We then attempt to diagnose the problem by looking 

at the I/O rate time series, shown in Figure 11.  The 

magenta vertex immediately stands out, since it has a 

much lower I/O read rate than any other vertex in the 

stage.  Figure 6 shows that its disk I/O rate is not 

abnormal.  But focusing on the network I/O (not 

shown here) we discover that the vertex is indeed 

reading much slower over the network compared to 

all its neighbors.  After identifying the machine 

which ran this vertex we confirmed with the cluster 

administrator (after running some tests) that the 

network card on this machine was broken (the same 

machine is not a problem in the other stages of the 

sorting job, since they are not network-intensive). 

 

Figure 11: I/O Read bytes/second time series. 

Having diagnosed the outlier, we try to understand 

what influences the running time in the sorting stage 

and what explains the difference between the 

“normal” sorting vertices (red and green vertices in 

Figure 4).  We invoke the HiLighter plug-in, which 

runs the logistic regression to find a subset of features 

that predict the running time distribution (i.e., which 

vertices are “red” and which ones are “green”).  

HiLighter determines that four features related to 

memory management and garbage-collection predict 

with 92% accuracy the vertex placement in a buckets.  

(We confirmed this diagnosis by performing least 

square fitting (linear regression) with L1 to predict 

computation time). These four features together with 

one of the synthesized features -- time to reach peak 

CPU utilization -- predict within 5% the response 

time of the computation of every vertex, except for 3 

outliers (out of 240 vertices). In summary, the 

statistical analysis indicates a strong correlation 

between the running time in the sorting stage and 

various metrics related to data size (number of 

garbage collection cycles, number of page faults, 

input size).  We did not expect the input size to these 

vertices to have a large variance, since the data is 



partitioned automatically in the second job stage by 

the distributed sorting algorithm exactly with the 

purpose of load-balancing the work.  By plotting the 

histogram of input size distribution we note that 

there’s a spread of 10% between the lowest and the 

highest input size.  Since sorting is an n×log(n) 

algorithm, this input size difference causes a 

significant difference in running time.  This suggests 

that the sampling rate of the vertices in the first 

computation stage in Figure 9 is too low to produce a 

balanced partitioning. 

6. Conclusions 
Artemis is appropriate (a) for executing long term 

studies of statistical properties of a large system, such 

as the ones in [7,11] and also (b) as a tool for 

diagnosing the performance of single run of an 

algorithm on a large cluster of computers.  Our 

example in this paper illustrated its benefits in the 

second context.  

In designing and deploying Artemis we have focused 

on building an extensible tool which addresses the 

end-to-end process of distributed log analysis, 

including:  (a) collecting, persisting, and cleaning the 

raw logs; (b) computing, correlating, preprocessing 

and extracting features; and (c) visualizing and 

analyzing the data.  We have relied on techniques 

from distributed computing, databases, visualization 

and statistical analysis, and machine learning.  

The end-goal of this research is to provide to the end-

user automatic application-specific diagnosis of 

performance problems.  At this point Artemis handles 

raw data management, feature extraction and data 

summarization, and statistical analyses. We are 

currently focusing our efforts towards designing and 

building diagnosis plug-ins layered on the existing 

foundation. 
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