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Abstract
Software Dynamic Translation (SDT) systems have been used for
program instrumentation, dynamic optimization, security policy
enforcement, intrusion detection, and many other uses. To be
widely applicable, the overhead (runtime, memory usage, and
power consumption) should be as low as possible. For instance, if
an SDT system is protecting a web server against possible attacks,
but causes 30% slowdown, a company may need 30% more
machines to handle the web traffic they expect. Consequently, the
causes of SDT overhead should be studied rigorously.
This work evaluates many alternative policies for the creation of
fragments within the Strata SDT framework. In particular, we
examine the effects of ending translation at conditional branches;
ending translation at unconditional branches; whether to use partial
inlining for call instructions; whether to build the target of calls
immediately or lazily; whether to align branch targets; and how to
place code to transition back to the dynamic translator. We find that
effective translation strategies are vital to program performance,
improving performance from as much as 28% overhead, to as little
as 3% overhead on average for the SPEC CPU2000 benchmark
suite. We further demonstrate that these translation strategies are
effective across several platforms, including Sun SPARC UltraS-
parc IIi, AMD Athlon Opteron, and Intel Pentium IV processors.
Categories and Subject Descriptors   B.m [Hardware]: Miscella-
neous, C.4 [Performance of Systems]: Performance attributes,
D.3.0 [Programming Languages]: General, D.3.4 [Program-
ming Languages]: Processors - Code Generation, Compilers,
Incremental Compilers, Interpreters, Optimization, Run-time Envi-
ronments
General Terms   Algorithms, Measurement, Performance, Design,
Experimentation. 
Keywords   Software Dynamic Translator, Low Overhead, Perfor-
mance, Dynamic Translation Performance
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1. Introduction
Over the years software dynamic translation (SDT)—the program-
matic modification of a running program’s binary instructions—
has become an increasingly useful technique in the system imple-
mentor’s repertoire. A wide variety of systems can be classified as
software dynamic translators, including dynamic optimizers,
dynamic binary translators, dynamic instrumentation systems,
dynamic software updaters, and certain emulators and simulators. 

SDT affords system designers unprecedented flexibility in control-
ling and modifying a program’s execution. This flexibility allows
software dynamic translation to be used to accomplish several
objectives not easily achieved via other means. For instance, SDT
may be used to overcome the barriers to entry associated with the
introduction of a new OS or CPU architecture. Transmeta’s Code
Morphing technology is used for this very purpose; i.e., allowing
unmodified Intel IA-32 binaries to run on the low-power, VLIW
Crusoe processor [7]. Similarly, the UQDBT system dynamically
translates Intel IA-32 binaries to run on SPARC-based processors
[23], and FX!32 dynamically translates x86 binaries to run on
Alpha processors [5].

In addition to allowing designers to overcome cost barriers to new
platform acceptance, the flexibility of SDT has proven useful for
other purposes. For instance, Shade uses SDT to implement high-
performance instruction set simulators [6]. Embra uses SDT to
implement a high-performance operating system emulator [24].
Dynamo and Mojo use SDT to improve the performance of native
binaries [1, 4], and DAISY uses software dynamic translation to
evaluate the performance of novel VLIW architectures and accom-
panying optimization techniques [9]. The Kerninst [22, 21] and
Vulcan [20] systems use SDT to insert program monitoring instru-
mentation into running programs. More recently SDT has been
used to ensure safe execution of untrusted binaries [11, 14, 15, 17].

Despite the many applications of SDT and the lively state of
research into novel uses of SDT, one major obstacle for more per-
vasive use of dynamic translators is the cost of applying transfor-
mations at runtime. When an SDT system adds too much overhead,
in the form of execution time, memory requirements, disk require-
ments, or network traffic, the system is less likely to be used. For
instance, an SDT system may be used to protect a web server from
malicious attackers trying to gain access to the system. However, if
the SDT system causes the web server to run 30% slower than
without the SDT system, a large web-hosting firm may need up to
30% more CPUs to handle the same amount of traffic during peri-
ods of peak demand. This increase corresponds to a 30% increase
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in initial hardware costs, but also up to a 30% increase in peak
electricity usage, a 30% increase in space required to store the
devices, and up to a 30% increase in peak cooling costs for the
building! With such significantly increased cost, the SDT system
may be an undesirable solution. Instead, if the SDT system intro-
duces only 1% overhead, it may well be worth the extra hardware
and utility costs to prevent malicious attacks. Consequently, we see
that reducing SDT overhead is of utmost importance for the perva-
sive use of SDT technology.

The causes of overhead in SDT systems need to be thoroughly and
rigorously evaluated. A fundamental operation done by an SDT
system is to translate and cache code fragments (the basic code
granularity of translation). To this end, we examine a variety of
fragment construction policies, their possible benefits and draw-
backs. In particular, we study and evaluate some of the design deci-
sions that were made within Strata [14], a publicly available,
retargetable SDT system supporting three instruction sets: IA-32,
SPARC, and MIPS. 

We find that several of Strata’s initial design decisions were ineffi-
cient and caused overhead in several ways. Some decisions caused
extra instructions to be executed, while other decisions hurt the
performance of the processor and memory hierarchy, including
branch prediction accuracy and cache locality.

The major contributions of this paper are:
• It describes several decisions that must be made when build-

ing a dynamic translation system for low overhead.
• The paper empirically determines the best set of fragment cre-

ation policies to use when building a low overhead SDT sys-
tem.

• The paper demonstrates significant overhead reduction on
three machines, reducing overhead to as little as 3% on aver-
age for an AMD Athlon Opteron 244.

• This work presents evidence that the fragment creation tech-
niques described are efficient at reducing overhead across a
variety of architectures, not just a single architecture used for
initial experimentation.

• This work explains the remaining causes of overhead that we
were unable to remove.

• Finally, it puts forth the notion that the causes of overhead can
be due to inhibiting the underlying hardware from peak per-
formance rather than due to increases in instruction counts or
time spent within the SDT system.

The remainder of this paper is organized as follows: Section 2
describes Strata, the SDT system used in this work. Section 3 pre-
sents our findings using experiments designed to find the lowest
overhead option of many different translations strategies. Section 4
highlights other research to reduce SDT overhead, and finally Sec-
tion 5 summarizes our findings.

2. Strata
Strata is an SDT system designed for high retargetability and low
overhead translation. Strata has been used for a variety of applica-
tions including system call monitoring, dynamic download of code
from a server, and enforcing security policies [12, 25]. This section
describes some of the basic features of Strata which are important
to understanding the experiments presented later. For an in depth

discussion of Strata, please refer to previous publications [14, 16,
17].

2.1 Overview
Strata operates as a co-routine with the program binary it is trans-
lating, as shown in Figure 1. As the figure shows, each time Strata
encounters a new instruction address (i.e., PC), it first checks to see
if the address has been translated into the fragment cache. The
fragment cache is a software instruction cache that stores portions
of code that have been translated from the native binary. The frag-
ment cache is made up of fragments, which are the basic unit of
translation. If Strata finds that a requested PC has not been previ-
ously translated, Strata allocates a fragment and begins translation.
Once a termination condition is met, Strata emits any trampolines
that are necessary. Trampolines are pieces of code emitted into the
fragment cache to transfer control back to Strata. Most control
transfer instructions (CTIs) are initially linked to trampolines
(unless its target previously exists in the fragment cache). Once a
CTI’s target instruction becomes available in the fragment cache,
the CTI is linked directly to the destination, avoiding future uses of
the trampoline. This mechanism is called Fragment Linking and
avoids significant overhead associated with returning to Strata after
every fragment [14].

Strata’s translation process can be overriden to implement a new
SDT use. The basic Strata system includes several default behav-
iors that control the creation of code fragments. These default deci-
sions can be changed based on a particular SDT use. This paper
evaluates which choices are indeed the best as the default. 

2.2 Indirect Branches
Indirect branches1 require special handling. Since indirect branch
targets can change during each execution of the instruction, they
cannot be linked at translation-time to their target in the fragment
cache.   To handle indirect branch targets efficiently, Strata emits a
sequence of instructions that perform a table lookup. The table
lookup maps application PC’s to their fragment PC equivalents. On

Figure 1: High-level overview of how Strata operates.
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a table miss, control is transferred back to Strata which builds the
requested fragment if necessary, updates the lookup table and
finally transfers control to the destination fragment.

Return instructions are a special kind of indirect branch that Strata
optimizes via a method called Fast Returns. Instead of emitting the
normal sequence of instructions to do a table lookup, it directly
emits the return instruction. Normally this would cause the transla-
tor to lose control of the running application after the first return
instruction is executed, since control would transfer back to an
application PC. Strata prevents this by translating call instructions
specially. Call instructions normally write their return address into
a specified location. Strata translates these instructions to write the
corresponding fragment cache return address.   Such translation
causes the return instruction to return to another fragment within
the fragment cache, and Strata can consequently maintain control.
We choose to enable this option as it provides for an aggressive
baseline in which to attempt to remove more overhead. Please see
previous publications for further detail about indirect branch han-
dling mechanisms [16].

3. Fragment Translation Policies
This section describes the translation strategies used within Strata,
and experimental evidence for changing some of Strata’s initial
design decisions. Section 3.1 first describes the setup used for
these experiments.

3.1 Experimental Setup
All performance experiments in Sections 3.2–3.7 are performed on
an AMD Athlon Opteron 244 (1.8GHz) running Fedora Core 4,
with Linux kernel 2.6.11. The kernel and all software is built using
the IA-32 instruction set. Benchmarks are compiled with the GNU
gcc compiler and the options -O3 -fomit-frame-pointer with
dynamic linking. The entire set of SPEC CPU2000 benchmarks are
used for performance analysis. Some graphs presented use the
PAPI statistic collection mechanisms to gather information about
processor events such as instruction cache misses via hardware
counters [2].1 Graphs are normalized to native execution time
when possible. In these graphs, smaller numbers represent better
performance. The fragment cache size is set to 255MB, so that
removing blocks from the fragment cache is never necessary. How-
ever, only 1 benchmark exceeded 10MB of fragments in the frag-
ment cache with the optimized configuration.

3.2 Normal Instructions
Normal instructions are simple instructions such as add or mov that
cause no control transfer. Such instructions are copied as-is from
the application text into the fragment cache and no special han-
dling is needed. Consequently, translation of these instructions
leaves little chance that overhead is created, and no design alterna-
tives to evaluate. 

3.3 Direct, Conditional CTIs
Direct, conditional CTIs, such as beq L1 or jecxz L2, require trans-
lating the target address from an application address to a fragment

cache address. They are also good points to consider ending frag-
ment construction. To understand why, consider that CTIs some-
times have a highly-biased outcome, they are either taken or not
taken for the entire run of the program. Branches that detect error
conditions are often of this form. If the translator were to continue
translating code at either the fall-through or target of the branch,
then the translator is performing extra work and creating extra
pressure in the fragment cache and hardware instruction cache. On
the other hand, if the translator stops translating at the branch and it
is not highly biased, extra instructions will be needed along the
fall-through path to link the branch’s fall-through to the fragment
for not taken code.

It is possible to conditionally stop the fragment build 1) if the tar-
get of the branch already exists in the fragment cache; 2) if the fall-
through of the branch already exists in the fragment cache; 3) if
both the fall-through and the target exist in the fragment cache; or
4) if either the target or the fall-through exist in the fragment cache.

Figure 2 shows the results when each of these possibilities is
implemented within Strata.2 The results indicate that always end-
ing the fragment at a conditional branch generally has a significant
performance penalty, especially in the integer benchmarks which
are less memory bound and more control-intensive. Performance is
generally improved over Strata’s baseline (always stop) by condi-
tionally ending the fragment, but the best performance comes from
unconditionally continuing to build the fragment. Over 5%
improvement can be seen on average. The only other fragment
building mechanism that comes close is ending if both the fall-
through and the target previously exist in the fragment cache. This
mechanism’s performance is close to unconditionally continuing
because the stopping condition is rarely met. 

Consequently, we believe that never ending a fragment at a condi-
tional branch is the best way to reduce overhead. All further exper-
iments will not end fragment building at conditional branches.

3.4 Handling Direct, Unconditional CTIs
Unconditional, direct CTIs, such as jmp L1, present an opportunity
for the translator to generate better code by eliminating the jump
instruction and continuing translation at the destination of the
jump, or eliding the instruction. Sometimes eliminating the CTI
helps program performance by reducing instruction count. In other
cases, eliminating jumps causes code to be duplicated in the frag-
ment cache, which in turn impacts instruction cache performance.

Figure 3 compares performance when Strata eliminates jump
instructions with emitting unconditional jump instructions into the
fragment cache (when the target fragment already exists in the
fragment cache). The figure shows that some benchmarks benefit
slightly from the reduction in instruction count of eliminating the
branch instructions. Other benchmarks, however, have a dramatic
degradation due to excessive code duplication. On average, keep-
ing the jump instructions yield a 0.5% improvement. Thus, we con-

1. These graphs, due to software integration issues, are collected from
a Intel Pentium IV Xeon machine, running Red Hat Linux 7.3 2.96-
110, with kernel version 2.6.11perfctr-2.6.

2. Reported SPEC results represent three runs of SPEC. Average, int
ave, and fp ave are the geometric mean of the SPEC numbers
reported for all benchmarks, integer benchmark, and floating-point
benchmarks, respectively. Performance results may vary from previ-
ous publications due to bug fixes, upgrades to machines and differ-
ent operating systems and architectures.
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clude that keeping the jump instructions is wise, and will use that
policy for all experiments in the remainder of the paper.

3.5 Direct, Call Instructions
Direct call instructions, while not as common as direct branches,
are still an integral part of most programs. Programs written in
object-oriented languages promote the use of the direct calls to
invoke the many small functions often found in these types of pro-
grams. Consequently, it is important for a dynamic translator to
handle direct call instructions efficiently. Sections 3.5.1–3.5.2 dis-
cuss alternatives when translating direct call instructions.

3.5.1 Partial Inlining
Strata (and other SDT systems) often implement partial inlining.
Partial inlining refers to translating a call instruction into a write of
the return address (a push instruction in an IA-32 instruction set)
and continuing instruction translation at the destination of the call
instruction. Partial inlining was believed to help performance by
eliminating unnecessary CTIs and reducing instruction count.   

Figure 4 shows the performance of applications run under Strata
with and without partial inlining enabled. As the figure shows, par-
tial inlining is actually a loss for most programs. In fact, the perfor-
mance loss is over 14% on average for the integer benchmarks, and
over 30% on two benchmarks! We believe that the primary reason
for the loss of performance is that the branch predictor’s return
address stack is not yielding proper predictions because call
instructions are eliminated when partial inlining is used. There are
also negative affects from code duplication. Figure 5 shows that
partial inlining results in more branch mispredictions. On average,
with partial inlining, there are 2.47 times more mispredictions than
native execution, while there are only 1.24 times more mispredic-
tions without partial inlining. 

Although partial inlining has significant performance penalties by
negatively impacting the branch predictor, it may yield more
opportunities for dynamic optimization. As baseline Strata per-
forms no dynamic optimizations, it is impossible to overcome the
performance loss of partial inlining. However, any work striving to
gain performance based on the increased context of partial inlining
must first overcome the negative impacts of using partial inlining
before performance gains can be realized. 

For our work, we conclude that not using partial inlining is the best
translation policy, and all remaining experiments do not use it. 
3.5.2 Lazy Translation of Call Targets 
Since the target of a direct call is known at translation time, it is
possible to speculatively translate the target into the fragment
cache when the call site is translated. Speculatively translating the

Figure 2: Performance of Strata as the fragment termination condition of conditional CTIs is changed.
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Figure 3: Performance of Strata as the fragment termination condi-
tion of unconditional CTIs is changed.
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target can potentially save a context switch back to the SDT sys-
tem. Unfortunately, speculative translation can also increase pres-
sure on the fragment and instruction caches and waste translation
time. An alternative is lazy call translation that translates the call
target once the call instruction actually executes. Although the
final code that is materialized is the same, the placement of the
code can be dramatically different. Figure 6 shows how speculative
and lazy call translation affect the performance of applications run
with Strata.  

The figure shows that translating calls speculatively generally
yields little performance gain. In fact, several benchmarks (lucas,
art, and perlbmk) have significantly worse performance. We
believe this is due to decreased instruction cache locality. To con-
firm this belief, examine results from PAPI in Figure 7. The figure
shows the reduction in the instruction cache misses when calls are

lazily instead of speculatively translated. The figure indicates that
some benchmarks have dramatically reduced instruction cache
miss rates. On average, over 14% of instruction cache misses are
eliminated. Unfortunately, the reduction in misses does not always
translate to increased performance, as some benchmarks are not
limited by instruction cache fetch rates. 

Thus, we believe that call target should be lazily translated, and all
remaining experiments use lazy translation for call targets. 

3.6 Fragment Alignment 
Fragments are almost always the destination of a branch instruc-
tion. By forcing the fragment to start on a cache line boundary, or
aligning the fragment, the processor can fetch more useful instruc-
tions the cycle after fetching a branch that is predicted taken. How-
ever, forcing the alignment of fragments also leaves a useless hole
in the fragment cache between the two fragments. These holes
potentially cause extra conflicts in the instruction cache and
increased pressure in the fragment cache.

To better understand the tradeoffs between using fragment align-
ment and not using it, consider Figure 8. The figure shows the per-
formance with and without fragment alignment. The benchmarks
generally show an improvement with fragment alignment,
although some have no gain or even a performance loss. The most
telling indicator that the fragment alignment is beneficial is that the
integer benchmarks have nearly 2% improvement. These programs
are also the most control-intensive, where alignment is most help-
ful. Although the overall benefit it slight, we believe that fragment
alignment is generally good for performance and should be used.
Subsequent experiments use fragment alignment. 

3.7 Trampoline Placement 
A trampoline is a portion of code emitted into the fragment cache
that helps perform a context switch and transfer control from the
application into the translator. Trampolines are typically small, on
the order of 10 instructions. However, any CTI whose destination
is not already in the fragment cache needs a unique trampoline.
Consequently, a single fragment with 10 branches may need 10
trampolines. Initially Strata placed the trampolines for a fragment

Figure 4: Performance of Strata when partial inlining is used compared to no partial inlining. 
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into the fragment cache immediately after the fragment. However,
since most trampolines are used only once (once a trampoline is
used, Strata translates the requested destination, and fixes direct
control transfer instructions to branch directly to their intended
fragment destination), it may be desirable to move the trampoline
into a separate area of the fragment cache. Moving trampolines to
their own area keeps the frequently used application code closer
together in the fragment cache. This can potentially reduce the con-
flicts in the instruction cache. 

Figure 9 shows the results of placing trampolines in a separate area
of the fragment cache, called the “trampoline pool”. The first bar
shows the performance when a fragment’s trampolines are placed
immediately after a fragment. The second bar shows the perfor-
mance when trampolines are placed in the pool. As the figure

shows, most applications differ little, however, the applications
with higher instruction cache pressure do show some improve-
ment. Figure 10 confirms this by plotting the reduction in instruc-
tion cache misses when a trampoline pool is used. In fact, over
18% of the cache misses are eliminated by moving trampolines to
their own area. Consequently, we believe that keeping fragment
trampolines in a pool is worthwhile, and we use this policy for the
remainder of the experiments. 

3.8 Cross Platform Verification
All previously described experiments were run on an AMD Athlon
Opteron 244. However, the construction strategies used to maxi-
mize performance for this machine work well for other machines.
In particular, finite-sized instruction caches and hardware return
address stacks are common features of most desktop and server
machines. Unfortunately, fully exploring all possible design com-
binations on a wide variety of architectures is prohibitively expen-
sive. Instead, we examine the performance of Strata’s initial
configuration compared to the configuration optimized for the
AMD machine. Figure 11 and Figure 12 show results for an Ultra-
sparc IIi1 and an Intel Pentium IV Xeon2. The first bar in each fig-
ure shows the application performance for Strata’s initial
configuration: End construction at a conditional CTI, always elide
unconditional CTIs, always use partial inlining, speculative trans-
lation of call instruction targets, do not align branch targets, and
keep fragment trampolines with the fragment. The second bar
shows the application’s performance with the revised configura-
tion: Never end construction on a conditional CTI, emit uncondi-
tional CTI’s when possible, avoid partial inlining, translate call

Figure 6: Results comparing lazy call target translation versus speculative translation.
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are translated lazily.
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sites lazily, align fragments on instruction cache line boundaries,
and place trampolines in a pool.

The figure shows that the optimized fragment building techniques
greatly improve the performance of both machines; thus, our tech-
niques are sound across a variety of architectures. Furthermore,
machines with deeper pipelines and higher memory latencies
(compared to CPU cycle times) will benefit more from these pro-
posed translation strategies. This is particularly true because
branch mispredictions and cache misses have a higher performance
penalty in this case. 

3.9 Remaining Causes of Overhead
By choosing the fragment building strategies outlined in previous
sections, the overhead that Strata introduces to native applications
has been greatly reduced: From 16% to 3% for an Opteron, 13% to
4% for an UltraSparc, and 28% to 11% for a Pentium IV Xeon. In
fact, many of the programs have little or no overhead. Some pro-

grams stand out as an exception, namely gcc, crafty, perlbmk,
mesa, and gap. We believe the overhead for these benchmarks are
from three primary causes: Extra instructions executed, extra
instruction cache misses, and extra branch mispredictions. 
3.9.1 Extra Instructions
Figure 13 shows the instruction count of the benchmarks when run
under Strata with optimized fragment building on a Pentium IV
Xeon. As the figure shows, the benchmarks that have no overhead
also do execute extra instructions. In these benchmarks, most of
the time is spent executing within the fragment cache and the trans-
lation time is minimal. The remaining benchmarks execute 5–20%
more instructions. With the optimized fragment building mecha-
nisms, Strata only adds extra instructions to the fragment cache
when translating indirect branches or other infrequent special
cases. Unfortunately, as shown in Figure 14, the poor performing
benchmarks all have a significant number of (non-return) indirect
branches executed. Furthermore, the two figures together show the

Figure 8: Performance of applications under Strata when fragment alignment is used.

Figure 9: Performance of applications under Strata with fragment trampolines are adjacent to fragments versus a separate trampoline pool.

0.8
0.9

1
1.1
1.2
1.3
1.4
1.5
1.6
1.7
1.8

16
8.w

upw
ise

17
1.s

wim

17
2.m

gri
d

17
3.a

pp
lu

17
7.m

es
a

17
8.g

alg
el

17
9.a

rt

18
3.e

qu
ak

e

18
7.f

ac
ere

c

18
8.a

mmp

18
9.l

uc
as

19
1.f

ma3
d

20
0.s

ixt
rac

k

30
1.a

ps
i

16
4.g

zip

17
5.v

pr

17
6.g

cc

18
1.m

cf

18
6.c

raf
ty

19
7.p

ars
er

25
2.e

on

25
3.p

erl
bm

k

25
4.g

ap

25
5.v

ort
ex

25
6.b

zip
2

30
0.t

wolf

av
era

ge
int a

ve

fp 
av

e

R
un

tim
e 

(n
or

m
al

iz
ed

)

no frag align frag align

0.8
1.0
1.2
1.4
1.6
1.8

16
8.

w
up

w
is

e

17
1.

sw
im

17
2.

m
gr

id

17
3.

ap
pl

u

17
7.

m
es

a

17
8.

ga
lg

el

17
9.

ar
t

18
3.

eq
ua

ke

18
7.

fa
ce

re
c

18
8.

am
m

p

18
9.

lu
ca

s

19
1.

fm
a3

d

20
0.

si
xt

ra
ck

30
1.

ap
si

16
4.

gz
ip

17
5.

vp
r

17
6.

gc
c

18
1.

m
cf

18
6.

cr
af

ty

19
7.

pa
rs

er

25
2.

eo
n

25
3.

pe
rlb

m
k

25
4.

ga
p

25
5.

vo
rte

x

25
6.

bz
ip

2

30
0.

tw
ol

f

av
er

ag
e

in
t a

ve

fp
 a

ve

R
un

tim
e 

(n
or

m
al

iz
ed

)

tramps w /frag special tramp area
128



number of indirect branches is related to the number of extra
instructions, providing strong evidence that nearly all extra instruc-
tions executed come from handling indirect branches.
3.9.2 Hardware Interactions 
Although it is interesting to note that the extra instructions exe-
cuted are related to indirect branch handling, it is also important to
understand why the execution time of benchmarks with significant
overhead is not proportional to the number of indirect branches
executed per instruction. We believe the disproportionately high
overhead (especially on the Pentium IV machine) of mesa, gcc,
perlbmk and gap are related to extra instruction cache pressure and
extra branch mispredictions. Figure 15 provides evidence to sup-
port this theory. The graph plots:

  
Figure 10: Percent reduction in instruction cache misses with 

trampoline pool.
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Figure 11: Performance on Strata with initial configuration and optimized configuration for UltraSparc IIi.

Figure 12: Performance of Strata with initial configuration and optimized configuration for Pentium IV.
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In essence, this formula calculates the difference in instruction
cache misses per instruction between native execution and Strata
execution. The figure also plots the difference in branch mispredic-
tions per instruction and data cache misses per instruction. The
well-behaved benchmarks not only have no extra instructions, they
also show very few extra cache misses or mispredictions per
instruction. The benchmarks with higher overhead show a different
pattern. Instead, they show significant increases in cache misses
and branch mispredictions, accounting for the significant extra
overhead seen in these benchmarks. The poorest performing
benchmark, gap, has the greatest increase in branch misprediction
rates. This poor branch predictor performance is because the
majority of call instructions in gap are indirect calls, resulting in
extremely poor use of the hardware return address stack when
Strata is performing dynamic translation.

Also, in deeper pipelines and as pressure on caches increases, these
effects are more pronounced. This is evidenced by the fact that the
overhead is higher for the 30-stage pipeline of the Pentium IV than
for the 15-stage pipeline in the AMD Athlon Opteron.

4. Related Work
Smith and Nair describe dynamic basic blocks, which are the most
straightforward method of handling code cache layout [18]. With
dynamic basic blocks, the dynamic translator continues code lay-
out until it reaches a branch instruction. At that point a trampoline
is inserted that returns control of the application back to the
dynamic translator. Strata's original fragment layout scheme
behaved similarly to dynamic basic block creation [14, 17]. How-
ever, it would terminate a fragment after every conditional or indi-
rect branch, but continue decoding unconditional branches and
calls, eliding them. HDTrans performs code layout slightly differ-
ently [19]. They elide unconditional branches, but they continue
translating the fall through instructions after direct calls. This cre-
ates basic blocks that more closely match original layout of the
program text. 

More advanced tracing is implemented in DynamoRIO [3] and Pin
[13]. DynamoRIO creates a sharp divide between its basic block
cache and its trace cache. DynamoRIO selects traces to optimize-
based on next executing tail, or NET [8]. Under this scheme, once
a trace head becomes hot, the trace is created by following the exe-
cution of the path tail, assuming that the path taken is a frequently
executed path. Alternately, Pin builds traces without first profiling
them as frequently executed. Pin ends traces on unconditional
branches, or if it has translated too many conditional branches or
too many total instructions. Recently, Pin has been extended to use
the last-executed iteration (LEI) to better select traces for optimi-
zation [10]. Table 1 summarizes how different translators end frag-
ments. 

All of these code cache layout implementations have intuitive
arguments for their benefits, however each must translate and exe-
cute fragments (at least until hot paths have been selected for opti-
mization). Unfortunately, no previous studies have quantified the
effects of the initial fragment construction techniques have on SDT
performance. The work presented here differs from previous work
in that it attempts to quantify and select the best fragment construc-
tion methods for overhead reduction.  

Figure 13: Instruction count of benchmarks with Strata, normal-
ized to native execution.
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Figure 14: Indirect branches executed per second under native execution on AMD Athlon.
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5. Conclusions
Software dynamic translation (SDT) has been used extensively in
the past and has a wide variety of interesting opportunities for
future use. In order for SDT to be more pervasively used, SDT sys-
tems must add as little extra processor time, memory usage, disk
usage and network traffic as possible. This paper has examined
methods for fragment creation in SDT systems and evaluated their
effectiveness within the Strata SDT framework. We have found
that fragment creation should not end at conditional branches, and
should end only at unconditional branches when the target frag-
ment already exists within the fragment cache. We have further
found that translating call instructions using a partial inlining tech-
nique negatively affects the hardware branch predictor and lazily
translating call site targets improves instruction cache locality.

Instruction cache locality is also improved by placing fragment
trampolines into a special area of the fragment cache that is disjoint
from the application’s instructions. In addition to evaluating the
fragment building techniques on an AMD Athlon Opteron 244, the
paper further validates the findings on two other machines, an Intel
Pentium IV Xeon and a Sun UltraSparc IIi. We find that overhead
can be reduced from 16%, 13%, and 28% to 3%, 4%, and 11% for
these Opteron, UltraSparc, and Xeon, respectively on the entire
SPEC2000 benchmark suite. Lastly, we examine the remaining
causes of overhead and find that it is directly related to the han-
dling of indirect branches, partially due to executing extra instruc-
tions, but also due to decreased hardware performance on the
transformed program. 
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