
THE ADVANCED COMPUTING SYSTEMS ASSOCIATION

The following paper was originally published in the

Proceedings of the USENIX Annual Technical Conference
Monterey, California, USA, June 6-11, 1999

SBOX: Put CGI Scripts in a Box
_

Lincoln D. Stein
Cold Spring Harbor Laboratory

© 1999 by The USENIX Association
All Rights Reserved

Rights to individual papers remain with the author or the author's employer. Permission is granted for noncommercial
reproduction of the work for educational or research purposes. This copyright notice must be included in the reproduced paper.
USENIX acknowledges all trademarks herein.

For more information about the USENIX Association:
Phone: 1 510 528 8649 FAX: 1 510 548 5738
Email: office@usenix.org WWW: http://www.usenix.org

SBOX: Put CGI Scripts in a Box

Lincoln D. Stein

Cold Spring Harbor Laboratory

Cold Spring Harbor, NY, 11724

lstein@cshl.org, http://stein.cshl.org

Abstract

sbox is a CGI wrapper script that allows

Web sites to safely grant CGI authoring

privileges to untrusted or naive authors. The

script increases security in several ways. It

changes the process privileges of CGI scripts

to match their owners, preventing one script

from interfering with another's data �les

or operations. It establishes con�gurable

ceilings on script resource usage, avoiding

intentional or unintentional denial of service

attacks. Most importantly, sbox can also be

used to run untrusted CGI scripts within

a chroot()-ed directory, thereby preventing

CGI scripts from accessing sensitive portions

of the �le system.

sbox can be used and redistributed freely.

The complete package is available for down-

load at

http:// stein.cshl.org/WWW/software/ sbox/

1 Introduction

Common Gateway Interface (CGI) scripts

were among the �rst techniques for creating

interactive Web pages and probably remain

the most popular [Stein97]. Perhaps the

main reason for the enduring popularity of

CGI scripts is their simplicity. To create a

dynamic Web page, a Web author writes a

program that prints a short HTTP header

followed by the contents of the desired Web

page. The author then moves the program

into a specially designated \CGI directory"

on the Web server host. When the program's

URL is requested, its output is displayed on

the Web page.

A CGI script can be written in any lan-

guage, compiled or interpreted. A fully func-

tional CGI script can be written in just three

lines of Bourne shell scripting code (including

the #! line):

#!/bin/sh

echo -e "Content-type: text/plain\n"

echo "Hello world!"

The full CGI protocol [Coar] provides

mechanisms for scripts to accept input from

web forms, get information about the current

operation of the server, learn the name and

IP address of the remote browser, and pass

back status information to the Web server.

Communication between script and server is

accomplished via environment variables and

standard input/output. Essentially, the CGI

protocol is a transient coshell system [Fowler]

in which the Web server delegates the respon-

sibility of producing the page content onto an

external program, the script.

1.1 Security Problems with CGI
Scripts

The simplicity and ease with which CGI

scripts can be created is also the protocol's

Achille's heel [Gar�nkle, Rubin, Stein98a].

It is so simple to write CGI scripts that

programming novices who have no prior

experience in network server software devel-

opment can readily create interactive Web

pages. And here's where the problem lies.

Novices, and sometimes even experienced

programmers, are prone to errors that

expose the Web server host to attack by

unscrupulous individuals.

As an example of the problems beginners

run into, consider the following CGI script

written in Perl. Its intent is to recover an

e-mail address from a submitted �ll-out form

and then mail a message to that address using

the mail program.

#!/usr/local/bin/perl

use CGI qw(:standard);

$mailto = param('mailto');

$subject = param('subject');

$contents = param('contents');

open (MAIL,"|mail -s $subject $mailto");

print MAIL $contents";

print MAIL ".\n";

close MAIL;

print "Content-type: text/plain\n\n"

print "Mail sent to $address.";

This script, which is intended to be

typical of a beginner's program rather

than illustrative of good style, begins by

using the param() function of the Perl CGI

module [Stein98b] to recover the contents

of three HTML form �elds named \mailto,"

\subject," and \contents." The values of

\mailto" and \subject" are used to open up

a pipe to the Unix mail command. The value

of \contents" is then printed to the mail

process, which is then closed. The script ends

by printing out a short con�rmation message.

This script has a number of problems, in-

cluding a reliance on the PATH environment

variable to resolve the mail command, a fail-

ure to examine the \contents" �eld for a line

beginning with a dot, which would terminate

the mail message prematurely, and a failure

to check for errors after the open and close()

calls. However the most egregious aw is

in the call to open(), whre the programmer

passes the contents of \subject" and \mail"

to the shell without having �rst checked them

for metacharacters. Consider what happens

when the wiley hacker provides the following

text as the value of the \mailto" �eld:

hackers_r_us@hackers.com</etc/passwd

The piped open() transforms this into the

following call:

mail hackers_r_us@hackers.com</etc/passwd

with the result that the system password

�le is inadvertently mailed out to a potential

attacker.

Other common problems in CGI scripts

include the failure to check the length of

strings before copying them into static

bu�ers, failure to check for the existence of

temporary �les before clobbering them, and

the failure to check user-provided pathnames

for the \.." characters before opening �les.

Possible CGI script exploits include a variety

of denial of service attacks. For example, a

CGI script that reads user-provided input

and spools it to a disk �le is vulnerable to the

mischievious hacker who uses a Web robot to

transmit an endless stream of random bits to

the script. Eventually the server's �le system

will �ll up, causing the host system to stall.

Experience has shown that CGI scripts are

a major source of vulnerability on the Web.

Over the past �ve years, dozens well-known

and widely distributed CGI scripts have

been found to contain exploitable security

holes [Stein98c, CERT]. Even experienced

developers get burned from time to time.

O�enders include freeware/public domain

scripts, such as count.cgi as well as commer-

cial products from such respected developers

as Microsoft and Silicon Graphics. Under-

standably, most Webmasters are extremely

cautious about installing new and untested

CGI scripts on their servers.

One way to limit the harm that poorly-

written CGI scripts can do is to run the

Web server with as few privileges as possible.

Most Web servers run as an unprivileged user

without login privileges, such as \nobody."

CGI script processes spawned by the server

will ordinarily run under the same privileges

as their parent, and by carefully controlling

�le and directory permissions, the Webmas-

ter can limit the scope of any potential dam-

age that errant CGI scripts can inict on the

server host. To increase safety even further,

the Webmaster could place the entire server

into a restricted directory using the chroot

command. Now any CGI scripts it spawns

will be limited to the portion of the �le sys-

tem that the server runs in.

1.2 User-Maintained CGI Scripts

Now consider a Web server run in an

academic environment or by an Internet

service provider (ISP). Such a system gen-

erally supports multiple Web authors of

varying levels of experience and aptitude. In

an academic environment, the authors are

students, faculty members, and support sta�

who are granted personal Web pages. In the

case of an ISP, the users are customers who

have paid for Web space, and can range from

individuals who maintain personal \vanity"

pages to large co-hosted corporations. If

users are allowed to write and install their

own CGI scripts, then the risk from user-

maintained scripts is magni�ed several fold.

First of all, a malicious author might

seek to break into the Web server host

by writing a CGI script that deliberately

probes the host for holes. In many Web

hosting environments, authors are not given

a login shell. Instead they are constrained

to uploading new and modi�ed HTML pages

via FTP or a Web publishing package such

as FrontPage [Microsoft]. If authors are

allowed to upload Perl scripts and compiled

binaries for use as CGI scripts, this policy is

easily circumvented.

Second, even if the host is protected by

running the Web server as an unprivileged

user and in a change-root directory, there is

nothing to protect authors from each others'

CGI scripts. Because all CGI scripts run

under the same user account and execute

in the same change-root directory, there is

nothing protecting one author's data from

another author's script. A student could

write a CGI script to peek at the answers

to a faculty member's online quiz, kill other

students' CGI processes, or �ll a user's

guestbook �le with obscene messages. In an

ISP environment, one corporate customer

could write a CGI script to spy on another

customer's order entry system and client

database.

Third, even if there is no active intent to

do evil on the part of an author, a single

poorly-written CGI script can still be used by

Internet intruders to compromise the security

of all authors on the system. For example, a

guestbook script that doesn't check for the

presence of \.." directories in the path to its

data �le can easily be exploited to view or

overwrite �les maintained by other authors.

Fourth, user-maintained CGI scripts are an

invitation to denial of service (DoS) attacks.

A malicious script writer can launch a DoS

attack on the Web server host with a Perl

script like the one shown below, which forks

itself forever until the server host runs out of

slots in its process table. It is possible that

the system administrator will be unable to

log in to kill the runaway process and may be

forced to reboot the machine:

#!/usr/local/bin/perl

fork() while 1;

Finally, it is di�cult to trace an attack

from a user-maintained CGI script back to its

owner. Since all scripts execute with the iden-

tity and privileges of the Web server, there is

no easy way to determine whose script is, for

example, leaving 40 megabyte scratch �les in

/tmp.

1.3 Wrappers

There are a number of approaches to the

problem of user-maintained CGI scripts.

One approach is to outlaw them completely.

The site's administrators can preinstall a

number of standard CGI scripts for users to

link to and con�gure the server so that no

additional scripts can be added. Another

solution is to submit all user-written scripts

to an exacting code review.

Neither of these approaches is particularly

appealing. The �rst solution is unlikely to be

popular in the competitive Web hosting mar-

ket where customers migrate to the service

that o�ers the most features for the least cost.

The second solution is only practical for sites

that have unusually generous administrative

resources or an unusually small number of

users who want to install custom CGI scripts.

A more practical solution is to use a

wrapper script. Instead of invoking user-

maintained CGI scripts directly, the web

server runs then indirectly via a wrapper pro-

gram. The wrapper modi�es the environment

in some way that make the execution of the

user-maintained script safer. The wrapper is

also a good place to enforce security policy

decisions. For example, the wrapper can keep

a log of the scripts it has run and can refuse

to run scripts whose permissions are insecure.

The �rst and still most widely-used wrap-

per program was cgiwrap, written by Nathan

Neulinger [Neulinger]. cgiwrap performs

several useful functions. Its main feature

is that it uses the Unix setuid() call to run

user-maintained CGI scripts under the user

and group ID of the script's owner rather

than the shared Web server account. This

prevents one user's scripts from writing to

data �les maintained by another, and makes

it easier to track down problems caused by

poorly written scripts. cgiwrap also allows

the Webmaster to place resource limitations

on user-maintained scripts using the Berkeley

setrlimit() call. This prevents a number of

deliberate and inadvertent DoS attacks.

The cgiwrap program is straightforward

to use. Once cgiwrap is installed in the

system CGI directory, URLs used to invoke

user-maintained scripts like this one:

http://www.site.com/~fred/ guestbook.cgi

are replaced by URLs that invoke cgiwrap:

http://www.site.com/ cgi-bin/ cgiwrap/ fred/

guestbook.cgi

More recently, the popular Apache Web

server has shipped with a built-in wrapper

program called suEXEC [Apache Group].

The operation of suEXEC is similar to

cgiwrap, but it is more tightly integrated

into the Web server, making it unecessary

to change any URLs in order to use it. In

addition to changing its user ID to match

that of the owner of the script, suEXEC

logs each script it executes along with the

user and group ID that it runs under. It

also performs a series of consistency checks

in order to detect unsafe practices. For

example, suEXEC will refuse to run a script

that is world writable or which is contained

within a world writable directory.

The main limitation of both cgiwrap and

suEXEC is that neither truly insulates scripts

written by one user from those written by an-

other. Naive users who store con�dential in-

formation in world readable �les and directo-

ries can still be attacked when another user's

CGI script is used to peek at that data. In

fact, although these scripts increase the se-

curity of the Web hosting service as a whole,

they decrease the security of the individual

user. Because the wrapped script runs with

the same privileges as the user, it has free ac-

cess to all the user's �les. A poorly written

script can be tricked into changing the user's

HTML documents or recursively deleting his

home directory. It can also impersonate the

user, for example by sending e-mail from the

user's account.

2 The sbox Wrapper

The sbox program is a CGI wrapper that

goes beyond cgiwrap and suEXEC to o�er the

following features:

1. sbox calls suid() to run the requested

script with the privileges of the owner of

the script or the script's containing di-

rectory.

2. It calls sgid() to run the requested script

under the privileges of the group that

owns the script or the script's contain-

ing directory.

3. It performs consistency checks on the

script �le and directory ownerships to

catch insecure situations such as world-

writable scripts.

4. It establishes limits on the script's use of

CPU, memory, processes, �les and other

resources.

5. It calls chroot() to run the target CGI

script in a restricted change-root direc-

tory locatated within the user's home di-

rectory.

6. It cleanses the environment of informa-

tion that is not germaine to CGI scripts.

7. It logs its actions and executes the target

script.

These features can be used together, or

can be switched on and o� selectively to

implement a variety of security policies.

Once installed, sbox is straightforward to

use. To run an untrusted CGI script, create

a composite URL consisting of the path

to sbox followed by the path to the target

CGI script. A typical URL for invoking a

user-supported script looks like this:

http://www.site.com/ cgi-bin/ sbox/ ~fred/

guestbook.cgi

sbox can also be used in conjunction with

the virtual hosts feature provided by Apache

and other servers. With some servers, it

is even possible to make sbox transparent,

so that its name doesn't appear in the

path. A scheme to do this using the Apache

mod rewrite module is presented later in this

paper.

The next sections describe each of sbox's

features in more detail and shows how they

can be used to increase the security of the

Web site.

2.1 suid()/sgid() Features

Before sbox launches a user-supported

CGI script, it can be con�gured to change

its UID and/or GID to match the script's

owner. There are two possible variants

of this feature. In the �rst variant, sbox

uses the script �le to determine which user

and group to run as. This functionality

is similar to the scheme implemented by

cgiwrap. In the second variant, the own-

ership of the script is ignored; instead

the ownership of the directory that contains

it is used to determine the user and/or group.

Allowing sbox to take on the identity of

the enclosing directory might seem a bit

obscure, but the rationale is that it gives the

Webmaster more exibility than just using

the script ownership does. For example, the

Webmaster could use this technique to create

a common cgi-bin directory for use by a

particular group of developers. The directory

would be owned by a pseudo-user and be

group writable by each of the developers,

allowing any user in the group to create

and edit CGI scripts. When the script runs,

it executes under the permissions of the

common pseudo-user account, preventing it

from modifying any of the author's �les or

databases unless he explicitly gives it permis-

sion to do so by setting the group writable bit.

Another strategy that the Webmaster

might want to adopt is to con�gure sbox so

that it performs an sgid() only. This will

cause the target script to be executed with

the group permissions of the script or enclos-

ing directory, but with the user permissions

of the Web server. By adopting a system-

wide user-private group strategy in which

each user is assigned a unique primary group,

the script's author can exactly control what

resources the script does and does not have

access to. This strategy also makes it possi-

ble to create scripts that cannot modify their

own source code �le or binary, a risk both

cgiwrap and suEXEC are subject to.

2.2 Consistency Checks

When sbox launches, it checks its environ-

ment for signs that it has been tampered

with or that it is being run in an unsafe

fashion. If any of the checks fail, sbox aborts

with an error message.

The following checks are performed:

1. sbox checks that it was launched by the

unprivileged user and group that the

Web server runs as, for example nobody

and nogroup. This check is to avoid the

possibility that some user or group is try-

ing to exploit the script's set-user-id fea-

tures from the command line.

2. It checks whether it was launched by the

root user, and aborts if so. This is often

a sign that the Web server is miscon�g-

ured.

3. It checks the target CGI script for set-

user-id and set-group-id bits and refuses

to run if so. Untrusted users shouldn't

be allowed to write suid or sgid scripts.

4. It checks that the target CGI script is ex-

ecutable by other, and aborts if not, as-

suming that the script's author had some

reason for turning o� the world execute

bit.

5. It checks that neither the target CGI

script nor its enclosing directory is owned

by unprivileged user and group that the

web server runs as. If the target is owned

by this user, it's possible that it is a tro-

jan horse created by a �le upload script.

6. It checks that neither the target �le nor

its enclosing directory is world writable.

7. If the chroot() feature is active, it checks

that the target script is located within

the directory that will become the new

root. This is a prerequisite for launching

the script after the chroot() call.

8. Lastly, sbox checks that the target and its

enclosing directory are owned by users

and/or groups in an approved range,

usually high-numbered IDs. This pre-

vents sbox from being tricked into run-

ning a script as a special user such as

bin.

These checks, along with the environment

sanitization performed later in the launch

process, go a long way toward preventing

many of the loopholes and con�guration er-

rors that are frequently exploited by intrud-

ers.

2.3 Resource Controls

After applying its consistency checks, sbox

applies resource limitations to the current

process using the BSD-derived setrlimit()

system call. Limits include the size of the

CGI process, its resident (virtual) size, the

number of �le descriptors it can open, the

size of the largest single �le it can create,

and the number of subprocesses it can spawn.

sbox uses both \hard" resource limits

and \soft" ones. The soft limits, which

can be adjusted upwards by the CGI script

simply by calling setrlimit() itself, are set

at low, stringent values by default. The

hard limits, which once set cannot be in-

creased during the lifetime of the process,

use more liberal values. For example, the

maximum �le size that the user-supported

CGI script has a soft limit of 100K, and

a hard limit of 2 megabytes. These values

can be adjusted at sbox compile time. The

exception to this rule is the hard ceiling on

core dumps, which is set to size zero. This

prevents the user's CGI script from creating

core �les and closes various exploits that

make use of core dumps to recover con�-

dential information or to overwrite other �les.

The net result of this design is that

user-supported CGI scripts will, by default,

be executed in an environment with strict

resource controls. If a CGI script requires

more of a particular resource than the soft

limits provide, it can increase the resource

up to the preset hard limit by calling setr-

limit() itself. This design limits problems

caused by resource hogging scripts written

by naive users without unduly restricting the

options of sophisticated users who need more

resources than the soft limits allow.

In addition to setting resource limits, sbox

also nices its own process to a priority of 10.

This helps keep CGI scripts from becoming

too much of a drain on a loaded system.

Unlike setrlimit() values, a priority level,

once increased, can never be decreased.

The priority level and the soft and hard

limits on all system resources are set at sbox

compile time. The system administrator can

change the default values, or choose not to

set a particular limit at all.

2.4 Changing the Root Directory

The crux of sbox security is its change-root

function. If con�gured to do so, sbox will use

the chroot() system call to change its root

directory to some subdirectory enclosing

the target CGI script. When the target

CGI script runs, it will be unable to access

parts of the �lesystem outside the new root

directory. This closes a large number of CGI

exploits, including unauthorized access to

the system password �le, the modi�cation

of user's .rhosts �les, the creation of hard

links to system �les in /tmp, and many more.

It also provides a way to control exactly

which system binaries and other resources

that user-maintained CGI scripts have access

to.

Administrator-con�gurable options de-

termine how sbox chooses which directory

to make the new root. In order for the

target CGI script to be executed, it must

live within the subdirectory selected for the

new root. However, most CGI scripts will

also need access to copies of system �les

such as interpreters and shared libraries in

order to function correctly. Because it is

inconvenient for the user to intermix his

CGI scripts with system �les, these �les

are usually stored in directories parallel

to the directory that contains the target

script. Another consideration is the user's

\document root", the directory that contains

his static HTML �les. A number of popular

CGI scripts, including guestbook scripts and

page counters, require access to the user's

HTML pages. In order for these scripts

to work under the sbox system, the user's

document root, or a portion of it at least,

must also be located within the new root

directory.

The locations of the new root directory

and the target CGI script itself are controlled

by the con�guration variables ROOT and

CGI BIN respectively. Both variables are

pathnames relative to the user's document

root. A typical con�guration will use the fol-

lowing values:

ROOT ".."

CGI_BIN "../cgi-bin"

This con�guration tells sbox to look for the

target CGI script inside a directory named

cgi-bin on the same level as the user's doc-

ument root directory. The new root direc-

tory will be the parent of both the cgi-bin

directory and the user's document root. To

see how this works in practice, consider a

Web site in which user-supported directo-

ries are located in /u/username/pub/html,

where \username" is substituted with the lo-

gin name of the user. In Apache, this setup

could be accomplished using the con�gura-

tion directive UserDir pub/html.

A typical listing for /u/username/pub

might look like the example shown in Table

1.

When sbox starts up, it determines the

user's document root by looking at the

Apache settings, which reveals the directory

/u/fred/pub/html. It applies the CGI BIN

relative path, to give /u/fred/pub/cgi-bin

as the directory in which to search for

the CGI executable, and then applies the

ROOT relative path to give /u/fred/pub

as the directory that will become the new

root. When sbox makes the chroot() call,

/u/fred/pub becomes the top of the direc-

tory tree, creating a directory hierarchy with

a structure similar to a Unix root �lesystem.

Files and directories above pub, which might

include the user's private �les, are o� limits.

A drawback to this scheme is that it makes

the user's entire document tree visible to his

CGI scripts, which might not always be desir-

able. However a slight modi�cation improves

the scheme by making only a selected portion

of the user's document tree visible. In this im-

proved scheme, the Web server is con�gured

so that the user's document tree is found, for

example, in /u/username/public html, and

sbox is con�gured to change its root to a di-

rectory named sbox that is completely outside

the public html document tree:

ROOT "../sbox"

CGI_BIN "../sbox/cgi-bin"

For this con�guration to work seamlessly,

the user's directory should be set up some-

thing like this:

% ls -F /u/fred

public html/ doc root

public html/sbox/->../sbox/html/ link

sbox/bin/

sbox/cgi-bin/ scripts

sbox/etc/

sbox/lib/

sbox/html/

sbox/tmp/

...

The user's CGI scripts will now execute

within the restricted sbox subdirectory and

have no access, by default, to the user's

HTML document tree. However the user can

grant access to selected HTML documents

by placing them into public html/sbox/,

which is connected via a symbolic link to

sbox/html/. This allows CGI-accessible �les

to be accessed directly with a URL like this

one:

http://www.site.com/~fred/ sbox/ index.html

while sbox-controlled CGI scripts are ac-

cessed with a URL like this one:

http://www.site.com/ cgi-bin/ sbox/ ~fred/

guestbook

and CGI scripts that need to read or ma-

nipulate static HTML �les are passed the

additional path information in URLs like

this one:

% ls /u/username/pub

total 10

drwxr-xr-x 2 fred users 1024 Oct 23 06:27 bin/ system binaries

drwxr-xr-x 3 fred users 1024 Oct 19 20:44 cgi-bin/ CGI scripts

drwxr-xr-x 2 fred users 1024 Oct 12 16:59 dev/ device special files

drwxr-xr-x 2 fred users 1024 Oct 19 17:57 etc/ configuration files

drwxr-xr-x 2 fred users 1024 Oct 22 19:14 html/ HTML document root

drwxr-xr-x 3 fred users 1024 Oct 19 20:35 lib/ shared libraries

drwxr-xr-x 2 fred users 1024 Oct 23 05:48 tmp/ temporary files

Table 1: Typical directory listing for a user-supported Web directory

http://www.site.com/ cgi-bin/ sbox/ ~fred/

guestbook/ html/ index.html

If the Apache web server is being used,

these URLs can be simpli�ed signi�cantly

with URL rewriting rules. An example of this

is shown below.

2.5 Environment Cleansing

Before executing the target CGI script,

sbox sets up a clean environment to run

the target in. Depending on how the Web

server was launched, there may be residual

information in the environment that is not

germaine to the CGI protocol or may in

fact divulge sensitive information, such as

database authentication information, or

private PATH directories.

sbox �lters the current environment, allow-

ing through only those environment variables

that are speci�ed by the CGI/1.1 protocol,

such as REMOTE ADDR, or which contain

�elds from the incoming HTTP request

header, such as HTTP USER AGENT. In

addition, sbox recognizes and permits a small

number of common extensions to the CGI/1.1

protocol, such as the DOCUMENT ROOT

and SERVER ADMIN variables.

Other variables are not automatically

copied into the target script's environment.

In particular the PATH environment vari-

able, because of its history of exploitation

is not passed through. Instead PATH is

set up using a constant \safe path" set

at compile time. By default, the safe

path is /bin:/usr/bin:/usr/local/bin.

Because the target script will be running

in a change-root directory, it is likely that

only /bin will be available to the target script.

When possible, sbox adjusts path-related

environment variables so that they correctly

reect the change-rooted �lesystem seen by

the user's CGI scripts. Among the envi-

ronment variables that are adjusted are the

DOCUMENT ROOT variable, which should

point to the top of the user's document tree

and PATH TRANSLATED, which points to

the �le passed to the user's CGI script as ad-

ditional path information.

2.6 Logging

Before passing control to the user's CGI

script, sbox logs its actions. It prints out

a timestamp, the name of the CGI script

being executed, and the UID and GID of

the process that it will execute the script

as. Diagnostic information is also logged

when sbox's consistency checks fail, or when

an error occurs during the processing or

execution of the target CGI script.

By default, sbox sends its log entries to

standard error, which on most web servers

becomes incorporated into the shared server

error log �le. However sbox can instead be

con�gured to write entries into a private log

�le. There's there's a performance penalty

in keeping a private log �le, since sbox must

open the �le for appending every time it runs.

The main rationale for having a log entry

for each CGI script executed is that it pro-

vides an audit trail in the case of a CGI-based

attack. The time of the attack can be corre-

lated with the sbox log, and possibly lead to

the identi�cation of the script that was ex-

ploited. The sbox log could also be used to

monitor CGI script usage for patterns sug-

gestive of probing activity.

3 Practical Considerations

Con�guring the sbox executable and

preparing user-supported directories are the

most tedious parts of using the sbox system.

In order to reduce dependencies on the

external environment, sbox does not use a

con�guration �le. Instead, all its operational

parameters are determined at compile time

via a series of preprocessor #defines. About

three dozen de�nes are contained in a single

include �le, sbox.h, which the system ad-

ministrator must edit before compiling the

executable. Fortunately, the vast majority of

the de�nes are boilerplate values which will

not need to be changed by most sites. Only

about a half dozen are truly site-speci�c.

System administrators used to modern

con�guration scripts will probably be dis-

appointed by this primitive con�guration

process, even though it is simple and straight-

forward. For this reason, a GNU con�gure

style con�guration script [Friesenhalm] is

currently in preparation.

A more onerous task is setting up user-

supported directories so that their CGI

scripts run correctly in a change-root envi-

ronment. On most modern Unices, compiled

programs need one or more shared libraries

in order to execute. Either the user's CGI

scripts must be compiled statically, or the

new root directory must contain a /lib

subdirectory (or the dialect's equivalent)

containing the shared libraries the user needs.

Other system support �les may needed

as well. CGI scripts that require ac-

cess to the DNS system for hostname

resolution will need an /etc subdirec-

tory containing resolv.conf. Scripts

that perform time calculations may need

access to the compiled timezone �le,

/usr/lib/zoneinfo/localtime. Programs

that need access to device special �les, such

as /dev/null and /dev/zero will need the

appropriate �les created with the mknod

program. Scripts written in interpreted

languages such as Perl will require a /bin di-

rectory containing the interpreter executable,

and any support �les that the interpreter

needs, such as code libraries.

Clearly there are drawbacks to replicating

a good chunk of the root �lesystem for each

user-supported web directory. For one thing,

the disk storage requirements may become

prohibitive on a system with many users.

One solution is to limit the type of CGI

scripts that users can write to a particular

development system, such as Perl. Then

only those �les needed to support the Perl

interpreter will have to be copied into the

user's scripting directory.

Another solution to this problem is to use

NFS to mount a trimmed set of /lib, /bin,

and /etc directories in each user-supported

directory. Even after the chroot() operation,

the contents of these directories will continue

to remain available to the user's CGI scripts.

Although this technique creates a lot of

mount points, the overhead for unused

NFS mounts is minimal [Stern], and an

automount daemon can be further used to

reduce the load [Crosby]. However if this

technique is used, care must be taken not

to mount directories that contain sensitive

information, such as an /etc directory that

contains a live password �le. This would

defeat the purpose of the change-root system.

A minor drawback to using sbox is that

it is not completely transparent to the

user. Instead of writing natural-looking CGI

URLs, users have to be trained to interpose

/cgi-bin/sbox in front of any URL that

points to a CGI script. On Apache servers,

an elegant solution to this problem is to use

the mod rewrite URL rewriting module to

automatically add the /cgi-bin/sbox pre�x

to users' CGI URLs.

For example, one could use a mod rewrite

URL rewrite rule to transform URLs of the

form:

/~fred/ cgi/ guestbook

into URLs of the form:

/cgi-bin/ sbox/ ~fred/ guestbook

by adding these directives to Apache's con�g-

uration �le:

RewriteEngine On

RewriteRule ^/~(.+)/cgi/(.+) \

/cgi-bin/sbox/~$1/$2 [PT,NS]

Neither the remote user nor the the

script's author ever sees the longer URL.

The name transformation is completely

transparent. As a bonus, this rewrite expres-

sion also correctly handles additional path

information appended to the end of the URL.

In order to perform its suid(), sgid(), and

chroot() functions, sbox must run with supe-

ruser privileges. This means that, like cgi-

wrap and suEXEC, it must be installed set-

user-id to root. This fact should give any cau-

tious Unix system administrator pause. How-

ever, sbox consists of only 700 lines of C code,

all of which are available for public scrutiny.

sbox is careful to avoid using static bu�ers

and string copy operations that could cause

a bu�er overow. It also checks its environ-

ment at startup time to con�rm that it was

invoked by the web server and not some other

local user.

4 Conclusions

The sbox wrapper increases the security of

web sites that need to run untrusted CGI

scripts. It prevents di�erent users' CGI

scripts from interfering with each other by

running each user's program under distinct

user and group IDs. It prevents user-

maintained scripts from accessing sensitive

parts of the �le system by running each

script in a change-root directory. It lessens

the impact of denial of service attacks by

establishing per-process resource limits, and

it avoids certain common miscon�gurations

by checking the environment for consistency

before it launches the target CGI script.

Lastly, it creates an audit trail that can

be used to track down malicious or poorly

implemented CGI scripts.

sbox is not a panacea for CGI woes. There

are a variety of CGI-based attacks that

sbox cannot prevent. Chief among these are

network-based attacks. For example, if a CGI

script can be tricked into probing a �rewall

system from within the protected network,

there is nothing that sbox can do to prevent

this type of attack. To completely insulate

the user's environment from that of the host,

you need to step out of the Unix domain and

use a partitioned operating system, such as

Hewlett Packward's VirtualVault technology

[Hewlett Packard].

Finally, it is important to remember that

the sbox wrapper alone won't make a Web site

secure. CGI script precautions are just one

component of a carefully considered site secu-

rity policy that includes attention to operat-

ing system security, web server con�guration,

operating and backup procedures, and user

education. While nothing is ever going to

completely eliminate the risk of running un-

trusted CGI scripts on a Web server, the sbox

wrapper does go a long way towards limiting

the potential damage that poorly-written or

malicious scripts can inict.

5 Acknowledgments

Many thanks to Nathan Neulinger for the

original cgiwrap program which inspired this

work. I also wish to thank the members of

the Apache Project, whose web server has

proven that open source projects can provide

the same power and stability as conventional

products { if not more so.

6 Availability

sbox is written in ANSI C and compiles on

multiple avors of Unix. It can be used and

redistributed freely. The complete package is

available for download at

http:// stein.cshl.org/WWW/software/ sbox/

References

[Apache Group] The Apache Group (1998).

Apache suEXEC Support, http://www.

apache.org/ docs/ suexec.html

[Coar] Coar K and Robinson D (1998).

The WWW Common Gateway In-

terface, Version 1.1 Internet Draft.

ftp:// ftp.ietf.org/ internet-drafts/

draft-coar-cgi-v11-00.txt .

[CERT] Computer Emergency Re-

sponse Team (CERT) (1996-1998).

Multiple CGI-related advisories.

ftp:// ftp.cert.org/ pub/ cert_advisories/

[Crosby] Crosby M (1997). AMD { Au-

toMount Daemon. The Linux Journal

35, March 1997. http://www.ssc.com/LJ/

issue35/ amd.html .

[Fowler] Fowler G. (1993). The Shell

as a Service. Usenix Summer

1993 Technical Conference Pro-

ceedings, Cincinnati, Ohio. http:

//www.usenix.org/ publications/ library

[Friesenhalm] Friesenhalm B (1997). Auto-

conf Makes for Portable Software. Byte,

November 1997.

[Hewlett Packard] Hewlett Packard Inc.

(1998). HP Internet Security Virtual-

Vault Home Page. http://www.hp.com/

security/ products/ virtualvault/

[Gar�nkle] Gar�nkle S with Spa�ord G

(1997). Web Security & Commerce.,

O'Reilly & Associates, Sebastopol CA.

[Microsoft] Microsoft Corporation

(1998). FrontPage 98 - Overview.

http://www.microsoft.com/products/

prodref/ 571_ov.htm.

[Neulinger] Neulinger N (1996-1998). cgi-

wrap. http://www.umr.edu/~cgiwrap/

[Rubin] Rubin A, Geer D, and Ranum M

(1997). Web Security Sourcebook. John

Wiley & Sons, New York.

[Stein97] Stein L, How to Set Up and Main-

tain a Web Site, Chapters 8-9. Addison-

Wesley Longman, Boston.

[Stein98a] Stein L (1998). Web Security: A

Step-by-Step Reference Guide. Addison

Wesley Longman, Boston.

[Stein98b] Stein L (1998). The O�cal Guide

to Programming with CGI.pm. John

Wiley & Sons, New York.

[Stein98c] Stein L (1998). The Web Security

FAQ. http://www.w3.org/Security/Faq

[Stern] Stern H (1991). Managing NFS and

NIS. O'Reilly & Associates, Sebastopol,

CA.

SBOX: Put CGI Scripts in a Box

Lincoln D. Stein

Cold Spring Harbor Laboratory

Cold Spring Harbor, NY, 11724

lstein@cshl.org, http://stein.cshl.org

Abstract

sbox is a CGI wrapper script that allows

Web sites to safely grant CGI authoring

privileges to untrusted or naive authors. The

script increases security in several ways. It

changes the process privileges of CGI scripts

to match their owners, preventing one script

from interfering with another's data �les

or operations. It establishes con�gurable

ceilings on script resource usage, avoiding

intentional or unintentional denial of service

attacks. Most importantly, sbox can also be

used to run untrusted CGI scripts within

a chroot()-ed directory, thereby preventing

CGI scripts from accessing sensitive portions

of the �le system.

sbox can be used and redistributed freely.

The complete package is available for down-

load at

http:// stein.cshl.org/WWW/software/ sbox/

1 Introduction

Common Gateway Interface (CGI) scripts

were among the �rst techniques for creating

interactive Web pages and probably remain

the most popular [Stein97]. Perhaps the

main reason for the enduring popularity of

CGI scripts is their simplicity. To create a

dynamic Web page, a Web author writes a

program that prints a short HTTP header

followed by the contents of the desired Web

page. The author then moves the program

into a specially designated \CGI directory"

on the Web server host. When the program's

URL is requested, its output is displayed on

the Web page.

A CGI script can be written in any lan-

guage, compiled or interpreted. A fully func-

tional CGI script can be written in just three

lines of Bourne shell scripting code (including

the #! line):

#!/bin/sh

echo -e "Content-type: text/plain\n"

echo "Hello world!"

The full CGI protocol [Coar] provides

mechanisms for scripts to accept input from

web forms, get information about the current

operation of the server, learn the name and

IP address of the remote browser, and pass

back status information to the Web server.

Communication between script and server is

accomplished via environment variables and

standard input/output. Essentially, the CGI

protocol is a transient coshell system [Fowler]

in which the Web server delegates the respon-

sibility of producing the page content onto an

external program, the script.

1.1 Security Problems with CGI
Scripts

The simplicity and ease with which CGI

scripts can be created is also the protocol's

Achille's heel [Gar�nkle, Rubin, Stein98a].

It is so simple to write CGI scripts that

programming novices who have no prior

experience in network server software devel-

opment can readily create interactive Web

pages. And here's where the problem lies.

Novices, and sometimes even experienced

programmers, are prone to errors that

expose the Web server host to attack by

unscrupulous individuals.

As an example of the problems beginners

run into, consider the following CGI script

written in Perl. Its intent is to recover an

e-mail address from a submitted �ll-out form

and then mail a message to that address using

the mail program.

#!/usr/local/bin/perl

use CGI qw(:standard);

$mailto = param('mailto');

$subject = param('subject');

$contents = param('contents');

open (MAIL,"|mail -s $subject $mailto");

print MAIL $contents";

print MAIL ".\n";

close MAIL;

print "Content-type: text/plain\n\n"

print "Mail sent to $address.";

This script, which is intended to be

typical of a beginner's program rather

than illustrative of good style, begins by

using the param() function of the Perl CGI

module [Stein98b] to recover the contents

of three HTML form �elds named \mailto,"

\subject," and \contents." The values of

\mailto" and \subject" are used to open up

a pipe to the Unix mail command. The value

of \contents" is then printed to the mail

process, which is then closed. The script ends

by printing out a short con�rmation message.

This script has a number of problems, in-

cluding a reliance on the PATH environment

variable to resolve the mail command, a fail-

ure to examine the \contents" �eld for a line

beginning with a dot, which would terminate

the mail message prematurely, and a failure

to check for errors after the open and close()

calls. However the most egregious aw is

in the call to open(), whre the programmer

passes the contents of \subject" and \mail"

to the shell without having �rst checked them

for metacharacters. Consider what happens

when the wiley hacker provides the following

text as the value of the \mailto" �eld:

hackers_r_us@hackers.com</etc/passwd

The piped open() transforms this into the

following call:

mail hackers_r_us@hackers.com</etc/passwd

with the result that the system password

�le is inadvertently mailed out to a potential

attacker.

Other common problems in CGI scripts

include the failure to check the length of

strings before copying them into static

bu�ers, failure to check for the existence of

temporary �les before clobbering them, and

the failure to check user-provided pathnames

for the \.." characters before opening �les.

Possible CGI script exploits include a variety

of denial of service attacks. For example, a

CGI script that reads user-provided input

and spools it to a disk �le is vulnerable to the

mischievious hacker who uses a Web robot to

transmit an endless stream of random bits to

the script. Eventually the server's �le system

will �ll up, causing the host system to stall.

Experience has shown that CGI scripts are

a major source of vulnerability on the Web.

Over the past �ve years, dozens well-known

and widely distributed CGI scripts have

been found to contain exploitable security

holes [Stein98c, CERT]. Even experienced

developers get burned from time to time.

O�enders include freeware/public domain

scripts, such as count.cgi as well as commer-

cial products from such respected developers

as Microsoft and Silicon Graphics. Under-

standably, most Webmasters are extremely

cautious about installing new and untested

CGI scripts on their servers.

One way to limit the harm that poorly-

written CGI scripts can do is to run the

Web server with as few privileges as possible.

Most Web servers run as an unprivileged user

without login privileges, such as \nobody."

CGI script processes spawned by the server

will ordinarily run under the same privileges

as their parent, and by carefully controlling

�le and directory permissions, the Webmas-

ter can limit the scope of any potential dam-

age that errant CGI scripts can inict on the

server host. To increase safety even further,

the Webmaster could place the entire server

into a restricted directory using the chroot

command. Now any CGI scripts it spawns

will be limited to the portion of the �le sys-

tem that the server runs in.

1.2 User-Maintained CGI Scripts

Now consider a Web server run in an

academic environment or by an Internet

service provider (ISP). Such a system gen-

erally supports multiple Web authors of

varying levels of experience and aptitude. In

an academic environment, the authors are

students, faculty members, and support sta�

who are granted personal Web pages. In the

case of an ISP, the users are customers who

have paid for Web space, and can range from

individuals who maintain personal \vanity"

pages to large co-hosted corporations. If

users are allowed to write and install their

own CGI scripts, then the risk from user-

maintained scripts is magni�ed several fold.

First of all, a malicious author might

seek to break into the Web server host

by writing a CGI script that deliberately

probes the host for holes. In many Web

hosting environments, authors are not given

a login shell. Instead they are constrained

to uploading new and modi�ed HTML pages

via FTP or a Web publishing package such

as FrontPage [Microsoft]. If authors are

allowed to upload Perl scripts and compiled

binaries for use as CGI scripts, this policy is

easily circumvented.

Second, even if the host is protected by

running the Web server as an unprivileged

user and in a change-root directory, there is

nothing to protect authors from each others'

CGI scripts. Because all CGI scripts run

under the same user account and execute

in the same change-root directory, there is

nothing protecting one author's data from

another author's script. A student could

write a CGI script to peek at the answers

to a faculty member's online quiz, kill other

students' CGI processes, or �ll a user's

guestbook �le with obscene messages. In an

ISP environment, one corporate customer

could write a CGI script to spy on another

customer's order entry system and client

database.

Third, even if there is no active intent to

do evil on the part of an author, a single

poorly-written CGI script can still be used by

Internet intruders to compromise the security

of all authors on the system. For example, a

guestbook script that doesn't check for the

presence of \.." directories in the path to its

data �le can easily be exploited to view or

overwrite �les maintained by other authors.

Fourth, user-maintained CGI scripts are an

invitation to denial of service (DoS) attacks.

A malicious script writer can launch a DoS

attack on the Web server host with a Perl

script like the one shown below, which forks

itself forever until the server host runs out of

slots in its process table. It is possible that

the system administrator will be unable to

log in to kill the runaway process and may be

forced to reboot the machine:

#!/usr/local/bin/perl

fork() while 1;

Finally, it is di�cult to trace an attack

from a user-maintained CGI script back to its

owner. Since all scripts execute with the iden-

tity and privileges of the Web server, there is

no easy way to determine whose script is, for

example, leaving 40 megabyte scratch �les in

/tmp.

1.3 Wrappers

There are a number of approaches to the

problem of user-maintained CGI scripts.

One approach is to outlaw them completely.

The site's administrators can preinstall a

number of standard CGI scripts for users to

link to and con�gure the server so that no

additional scripts can be added. Another

solution is to submit all user-written scripts

to an exacting code review.

Neither of these approaches is particularly

appealing. The �rst solution is unlikely to be

popular in the competitive Web hosting mar-

ket where customers migrate to the service

that o�ers the most features for the least cost.

The second solution is only practical for sites

that have unusually generous administrative

resources or an unusually small number of

users who want to install custom CGI scripts.

A more practical solution is to use a

wrapper script. Instead of invoking user-

maintained CGI scripts directly, the web

server runs then indirectly via a wrapper pro-

gram. The wrapper modi�es the environment

in some way that make the execution of the

user-maintained script safer. The wrapper is

also a good place to enforce security policy

decisions. For example, the wrapper can keep

a log of the scripts it has run and can refuse

to run scripts whose permissions are insecure.

The �rst and still most widely-used wrap-

per program was cgiwrap, written by Nathan

Neulinger [Neulinger]. cgiwrap performs

several useful functions. Its main feature

is that it uses the Unix setuid() call to run

user-maintained CGI scripts under the user

and group ID of the script's owner rather

than the shared Web server account. This

prevents one user's scripts from writing to

data �les maintained by another, and makes

it easier to track down problems caused by

poorly written scripts. cgiwrap also allows

the Webmaster to place resource limitations

on user-maintained scripts using the Berkeley

setrlimit() call. This prevents a number of

deliberate and inadvertent DoS attacks.

The cgiwrap program is straightforward

to use. Once cgiwrap is installed in the

system CGI directory, URLs used to invoke

user-maintained scripts like this one:

http://www.site.com/~fred/ guestbook.cgi

are replaced by URLs that invoke cgiwrap:

http://www.site.com/ cgi-bin/ cgiwrap/ fred/

guestbook.cgi

More recently, the popular Apache Web

server has shipped with a built-in wrapper

program called suEXEC [Apache Group].

The operation of suEXEC is similar to

cgiwrap, but it is more tightly integrated

into the Web server, making it unecessary

to change any URLs in order to use it. In

addition to changing its user ID to match

that of the owner of the script, suEXEC

logs each script it executes along with the

user and group ID that it runs under. It

also performs a series of consistency checks

in order to detect unsafe practices. For

example, suEXEC will refuse to run a script

that is world writable or which is contained

within a world writable directory.

The main limitation of both cgiwrap and

suEXEC is that neither truly insulates scripts

written by one user from those written by an-

other. Naive users who store con�dential in-

formation in world readable �les and directo-

ries can still be attacked when another user's

CGI script is used to peek at that data. In

fact, although these scripts increase the se-

curity of the Web hosting service as a whole,

they decrease the security of the individual

user. Because the wrapped script runs with

the same privileges as the user, it has free ac-

cess to all the user's �les. A poorly written

script can be tricked into changing the user's

HTML documents or recursively deleting his

home directory. It can also impersonate the

user, for example by sending e-mail from the

user's account.

2 The sbox Wrapper

The sbox program is a CGI wrapper that

goes beyond cgiwrap and suEXEC to o�er the

following features:

1. sbox calls suid() to run the requested

script with the privileges of the owner of

the script or the script's containing di-

rectory.

2. It calls sgid() to run the requested script

under the privileges of the group that

owns the script or the script's contain-

ing directory.

3. It performs consistency checks on the

script �le and directory ownerships to

catch insecure situations such as world-

writable scripts.

4. It establishes limits on the script's use of

CPU, memory, processes, �les and other

resources.

5. It calls chroot() to run the target CGI

script in a restricted change-root direc-

tory locatated within the user's home di-

rectory.

6. It cleanses the environment of informa-

tion that is not germaine to CGI scripts.

7. It logs its actions and executes the target

script.

These features can be used together, or

can be switched on and o� selectively to

implement a variety of security policies.

Once installed, sbox is straightforward to

use. To run an untrusted CGI script, create

a composite URL consisting of the path

to sbox followed by the path to the target

CGI script. A typical URL for invoking a

user-supported script looks like this:

http://www.site.com/ cgi-bin/ sbox/ ~fred/

guestbook.cgi

sbox can also be used in conjunction with

the virtual hosts feature provided by Apache

and other servers. With some servers, it

is even possible to make sbox transparent,

so that its name doesn't appear in the

path. A scheme to do this using the Apache

mod rewrite module is presented later in this

paper.

The next sections describe each of sbox's

features in more detail and shows how they

can be used to increase the security of the

Web site.

2.1 suid()/sgid() Features

Before sbox launches a user-supported

CGI script, it can be con�gured to change

its UID and/or GID to match the script's

owner. There are two possible variants

of this feature. In the �rst variant, sbox

uses the script �le to determine which user

and group to run as. This functionality

is similar to the scheme implemented by

cgiwrap. In the second variant, the own-

ership of the script is ignored; instead

the ownership of the directory that contains

it is used to determine the user and/or group.

Allowing sbox to take on the identity of

the enclosing directory might seem a bit

obscure, but the rationale is that it gives the

Webmaster more exibility than just using

the script ownership does. For example, the

Webmaster could use this technique to create

a common cgi-bin directory for use by a

particular group of developers. The directory

would be owned by a pseudo-user and be

group writable by each of the developers,

allowing any user in the group to create

and edit CGI scripts. When the script runs,

it executes under the permissions of the

common pseudo-user account, preventing it

from modifying any of the author's �les or

databases unless he explicitly gives it permis-

sion to do so by setting the group writable bit.

Another strategy that the Webmaster

might want to adopt is to con�gure sbox so

that it performs an sgid() only. This will

cause the target script to be executed with

the group permissions of the script or enclos-

ing directory, but with the user permissions

of the Web server. By adopting a system-

wide user-private group strategy in which

each user is assigned a unique primary group,

the script's author can exactly control what

resources the script does and does not have

access to. This strategy also makes it possi-

ble to create scripts that cannot modify their

own source code �le or binary, a risk both

cgiwrap and suEXEC are subject to.

2.2 Consistency Checks

When sbox launches, it checks its environ-

ment for signs that it has been tampered

with or that it is being run in an unsafe

fashion. If any of the checks fail, sbox aborts

with an error message.

The following checks are performed:

1. sbox checks that it was launched by the

unprivileged user and group that the

Web server runs as, for example nobody

and nogroup. This check is to avoid the

possibility that some user or group is try-

ing to exploit the script's set-user-id fea-

tures from the command line.

2. It checks whether it was launched by the

root user, and aborts if so. This is often

a sign that the Web server is miscon�g-

ured.

3. It checks the target CGI script for set-

user-id and set-group-id bits and refuses

to run if so. Untrusted users shouldn't

be allowed to write suid or sgid scripts.

4. It checks that the target CGI script is ex-

ecutable by other, and aborts if not, as-

suming that the script's author had some

reason for turning o� the world execute

bit.

5. It checks that neither the target CGI

script nor its enclosing directory is owned

by unprivileged user and group that the

web server runs as. If the target is owned

by this user, it's possible that it is a tro-

jan horse created by a �le upload script.

6. It checks that neither the target �le nor

its enclosing directory is world writable.

7. If the chroot() feature is active, it checks

that the target script is located within

the directory that will become the new

root. This is a prerequisite for launching

the script after the chroot() call.

8. Lastly, sbox checks that the target and its

enclosing directory are owned by users

and/or groups in an approved range,

usually high-numbered IDs. This pre-

vents sbox from being tricked into run-

ning a script as a special user such as

bin.

These checks, along with the environment

sanitization performed later in the launch

process, go a long way toward preventing

many of the loopholes and con�guration er-

rors that are frequently exploited by intrud-

ers.

2.3 Resource Controls

After applying its consistency checks, sbox

applies resource limitations to the current

process using the BSD-derived setrlimit()

system call. Limits include the size of the

CGI process, its resident (virtual) size, the

number of �le descriptors it can open, the

size of the largest single �le it can create,

and the number of subprocesses it can spawn.

sbox uses both \hard" resource limits

and \soft" ones. The soft limits, which

can be adjusted upwards by the CGI script

simply by calling setrlimit() itself, are set

at low, stringent values by default. The

hard limits, which once set cannot be in-

creased during the lifetime of the process,

use more liberal values. For example, the

maximum �le size that the user-supported

CGI script has a soft limit of 100K, and

a hard limit of 2 megabytes. These values

can be adjusted at sbox compile time. The

exception to this rule is the hard ceiling on

core dumps, which is set to size zero. This

prevents the user's CGI script from creating

core �les and closes various exploits that

make use of core dumps to recover con�-

dential information or to overwrite other �les.

The net result of this design is that

user-supported CGI scripts will, by default,

be executed in an environment with strict

resource controls. If a CGI script requires

more of a particular resource than the soft

limits provide, it can increase the resource

up to the preset hard limit by calling setr-

limit() itself. This design limits problems

caused by resource hogging scripts written

by naive users without unduly restricting the

options of sophisticated users who need more

resources than the soft limits allow.

In addition to setting resource limits, sbox

also nices its own process to a priority of 10.

This helps keep CGI scripts from becoming

too much of a drain on a loaded system.

Unlike setrlimit() values, a priority level,

once increased, can never be decreased.

The priority level and the soft and hard

limits on all system resources are set at sbox

compile time. The system administrator can

change the default values, or choose not to

set a particular limit at all.

2.4 Changing the Root Directory

The crux of sbox security is its change-root

function. If con�gured to do so, sbox will use

the chroot() system call to change its root

directory to some subdirectory enclosing

the target CGI script. When the target

CGI script runs, it will be unable to access

parts of the �lesystem outside the new root

directory. This closes a large number of CGI

exploits, including unauthorized access to

the system password �le, the modi�cation

of user's .rhosts �les, the creation of hard

links to system �les in /tmp, and many more.

It also provides a way to control exactly

which system binaries and other resources

that user-maintained CGI scripts have access

to.

Administrator-con�gurable options de-

termine how sbox chooses which directory

to make the new root. In order for the

target CGI script to be executed, it must

live within the subdirectory selected for the

new root. However, most CGI scripts will

also need access to copies of system �les

such as interpreters and shared libraries in

order to function correctly. Because it is

inconvenient for the user to intermix his

CGI scripts with system �les, these �les

are usually stored in directories parallel

to the directory that contains the target

script. Another consideration is the user's

\document root", the directory that contains

his static HTML �les. A number of popular

CGI scripts, including guestbook scripts and

page counters, require access to the user's

HTML pages. In order for these scripts

to work under the sbox system, the user's

document root, or a portion of it at least,

must also be located within the new root

directory.

The locations of the new root directory

and the target CGI script itself are controlled

by the con�guration variables ROOT and

CGI BIN respectively. Both variables are

pathnames relative to the user's document

root. A typical con�guration will use the fol-

lowing values:

ROOT ".."

CGI_BIN "../cgi-bin"

This con�guration tells sbox to look for the

target CGI script inside a directory named

cgi-bin on the same level as the user's doc-

ument root directory. The new root direc-

tory will be the parent of both the cgi-bin

directory and the user's document root. To

see how this works in practice, consider a

Web site in which user-supported directo-

ries are located in /u/username/pub/html,

where \username" is substituted with the lo-

gin name of the user. In Apache, this setup

could be accomplished using the con�gura-

tion directive UserDir pub/html.

A typical listing for /u/username/pub

might look like the example shown in Table

1.

When sbox starts up, it determines the

user's document root by looking at the

Apache settings, which reveals the directory

/u/fred/pub/html. It applies the CGI BIN

relative path, to give /u/fred/pub/cgi-bin

as the directory in which to search for

the CGI executable, and then applies the

ROOT relative path to give /u/fred/pub

as the directory that will become the new

root. When sbox makes the chroot() call,

/u/fred/pub becomes the top of the direc-

tory tree, creating a directory hierarchy with

a structure similar to a Unix root �lesystem.

Files and directories above pub, which might

include the user's private �les, are o� limits.

A drawback to this scheme is that it makes

the user's entire document tree visible to his

CGI scripts, which might not always be desir-

able. However a slight modi�cation improves

the scheme by making only a selected portion

of the user's document tree visible. In this im-

proved scheme, the Web server is con�gured

so that the user's document tree is found, for

example, in /u/username/public html, and

sbox is con�gured to change its root to a di-

rectory named sbox that is completely outside

the public html document tree:

ROOT "../sbox"

CGI_BIN "../sbox/cgi-bin"

For this con�guration to work seamlessly,

the user's directory should be set up some-

thing like this:

% ls -F /u/fred

public html/ doc root

public html/sbox/->../sbox/html/ link

sbox/bin/

sbox/cgi-bin/ scripts

sbox/etc/

sbox/lib/

sbox/html/

sbox/tmp/

...

The user's CGI scripts will now execute

within the restricted sbox subdirectory and

have no access, by default, to the user's

HTML document tree. However the user can

grant access to selected HTML documents

by placing them into public html/sbox/,

which is connected via a symbolic link to

sbox/html/. This allows CGI-accessible �les

to be accessed directly with a URL like this

one:

http://www.site.com/~fred/ sbox/ index.html

while sbox-controlled CGI scripts are ac-

cessed with a URL like this one:

http://www.site.com/ cgi-bin/ sbox/ ~fred/

guestbook

and CGI scripts that need to read or ma-

nipulate static HTML �les are passed the

additional path information in URLs like

this one:

% ls /u/username/pub

total 10

drwxr-xr-x 2 fred users 1024 Oct 23 06:27 bin/ system binaries

drwxr-xr-x 3 fred users 1024 Oct 19 20:44 cgi-bin/ CGI scripts

drwxr-xr-x 2 fred users 1024 Oct 12 16:59 dev/ device special files

drwxr-xr-x 2 fred users 1024 Oct 19 17:57 etc/ configuration files

drwxr-xr-x 2 fred users 1024 Oct 22 19:14 html/ HTML document root

drwxr-xr-x 3 fred users 1024 Oct 19 20:35 lib/ shared libraries

drwxr-xr-x 2 fred users 1024 Oct 23 05:48 tmp/ temporary files

Table 1: Typical directory listing for a user-supported Web directory

http://www.site.com/ cgi-bin/ sbox/ ~fred/

guestbook/ html/ index.html

If the Apache web server is being used,

these URLs can be simpli�ed signi�cantly

with URL rewriting rules. An example of this

is shown below.

2.5 Environment Cleansing

Before executing the target CGI script,

sbox sets up a clean environment to run

the target in. Depending on how the Web

server was launched, there may be residual

information in the environment that is not

germaine to the CGI protocol or may in

fact divulge sensitive information, such as

database authentication information, or

private PATH directories.

sbox �lters the current environment, allow-

ing through only those environment variables

that are speci�ed by the CGI/1.1 protocol,

such as REMOTE ADDR, or which contain

�elds from the incoming HTTP request

header, such as HTTP USER AGENT. In

addition, sbox recognizes and permits a small

number of common extensions to the CGI/1.1

protocol, such as the DOCUMENT ROOT

and SERVER ADMIN variables.

Other variables are not automatically

copied into the target script's environment.

In particular the PATH environment vari-

able, because of its history of exploitation

is not passed through. Instead PATH is

set up using a constant \safe path" set

at compile time. By default, the safe

path is /bin:/usr/bin:/usr/local/bin.

Because the target script will be running

in a change-root directory, it is likely that

only /bin will be available to the target script.

When possible, sbox adjusts path-related

environment variables so that they correctly

reect the change-rooted �lesystem seen by

the user's CGI scripts. Among the envi-

ronment variables that are adjusted are the

DOCUMENT ROOT variable, which should

point to the top of the user's document tree

and PATH TRANSLATED, which points to

the �le passed to the user's CGI script as ad-

ditional path information.

2.6 Logging

Before passing control to the user's CGI

script, sbox logs its actions. It prints out

a timestamp, the name of the CGI script

being executed, and the UID and GID of

the process that it will execute the script

as. Diagnostic information is also logged

when sbox's consistency checks fail, or when

an error occurs during the processing or

execution of the target CGI script.

By default, sbox sends its log entries to

standard error, which on most web servers

becomes incorporated into the shared server

error log �le. However sbox can instead be

con�gured to write entries into a private log

�le. There's there's a performance penalty

in keeping a private log �le, since sbox must

open the �le for appending every time it runs.

The main rationale for having a log entry

for each CGI script executed is that it pro-

vides an audit trail in the case of a CGI-based

attack. The time of the attack can be corre-

lated with the sbox log, and possibly lead to

the identi�cation of the script that was ex-

ploited. The sbox log could also be used to

monitor CGI script usage for patterns sug-

gestive of probing activity.

3 Practical Considerations

Con�guring the sbox executable and

preparing user-supported directories are the

most tedious parts of using the sbox system.

In order to reduce dependencies on the

external environment, sbox does not use a

con�guration �le. Instead, all its operational

parameters are determined at compile time

via a series of preprocessor #defines. About

three dozen de�nes are contained in a single

include �le, sbox.h, which the system ad-

ministrator must edit before compiling the

executable. Fortunately, the vast majority of

the de�nes are boilerplate values which will

not need to be changed by most sites. Only

about a half dozen are truly site-speci�c.

System administrators used to modern

con�guration scripts will probably be dis-

appointed by this primitive con�guration

process, even though it is simple and straight-

forward. For this reason, a GNU con�gure

style con�guration script [Friesenhalm] is

currently in preparation.

A more onerous task is setting up user-

supported directories so that their CGI

scripts run correctly in a change-root envi-

ronment. On most modern Unices, compiled

programs need one or more shared libraries

in order to execute. Either the user's CGI

scripts must be compiled statically, or the

new root directory must contain a /lib

subdirectory (or the dialect's equivalent)

containing the shared libraries the user needs.

Other system support �les may needed

as well. CGI scripts that require ac-

cess to the DNS system for hostname

resolution will need an /etc subdirec-

tory containing resolv.conf. Scripts

that perform time calculations may need

access to the compiled timezone �le,

/usr/lib/zoneinfo/localtime. Programs

that need access to device special �les, such

as /dev/null and /dev/zero will need the

appropriate �les created with the mknod

program. Scripts written in interpreted

languages such as Perl will require a /bin di-

rectory containing the interpreter executable,

and any support �les that the interpreter

needs, such as code libraries.

Clearly there are drawbacks to replicating

a good chunk of the root �lesystem for each

user-supported web directory. For one thing,

the disk storage requirements may become

prohibitive on a system with many users.

One solution is to limit the type of CGI

scripts that users can write to a particular

development system, such as Perl. Then

only those �les needed to support the Perl

interpreter will have to be copied into the

user's scripting directory.

Another solution to this problem is to use

NFS to mount a trimmed set of /lib, /bin,

and /etc directories in each user-supported

directory. Even after the chroot() operation,

the contents of these directories will continue

to remain available to the user's CGI scripts.

Although this technique creates a lot of

mount points, the overhead for unused

NFS mounts is minimal [Stern], and an

automount daemon can be further used to

reduce the load [Crosby]. However if this

technique is used, care must be taken not

to mount directories that contain sensitive

information, such as an /etc directory that

contains a live password �le. This would

defeat the purpose of the change-root system.

A minor drawback to using sbox is that

it is not completely transparent to the

user. Instead of writing natural-looking CGI

URLs, users have to be trained to interpose

/cgi-bin/sbox in front of any URL that

points to a CGI script. On Apache servers,

an elegant solution to this problem is to use

the mod rewrite URL rewriting module to

automatically add the /cgi-bin/sbox pre�x

to users' CGI URLs.

For example, one could use a mod rewrite

URL rewrite rule to transform URLs of the

form:

/~fred/ cgi/ guestbook

into URLs of the form:

/cgi-bin/ sbox/ ~fred/ guestbook

by adding these directives to Apache's con�g-

uration �le:

RewriteEngine On

RewriteRule ^/~(.+)/cgi/(.+) \

/cgi-bin/sbox/~$1/$2 [PT,NS]

Neither the remote user nor the the

script's author ever sees the longer URL.

The name transformation is completely

transparent. As a bonus, this rewrite expres-

sion also correctly handles additional path

information appended to the end of the URL.

In order to perform its suid(), sgid(), and

chroot() functions, sbox must run with supe-

ruser privileges. This means that, like cgi-

wrap and suEXEC, it must be installed set-

user-id to root. This fact should give any cau-

tious Unix system administrator pause. How-

ever, sbox consists of only 700 lines of C code,

all of which are available for public scrutiny.

sbox is careful to avoid using static bu�ers

and string copy operations that could cause

a bu�er overow. It also checks its environ-

ment at startup time to con�rm that it was

invoked by the web server and not some other

local user.

4 Conclusions

The sbox wrapper increases the security of

web sites that need to run untrusted CGI

scripts. It prevents di�erent users' CGI

scripts from interfering with each other by

running each user's program under distinct

user and group IDs. It prevents user-

maintained scripts from accessing sensitive

parts of the �le system by running each

script in a change-root directory. It lessens

the impact of denial of service attacks by

establishing per-process resource limits, and

it avoids certain common miscon�gurations

by checking the environment for consistency

before it launches the target CGI script.

Lastly, it creates an audit trail that can

be used to track down malicious or poorly

implemented CGI scripts.

sbox is not a panacea for CGI woes. There

are a variety of CGI-based attacks that

sbox cannot prevent. Chief among these are

network-based attacks. For example, if a CGI

script can be tricked into probing a �rewall

system from within the protected network,

there is nothing that sbox can do to prevent

this type of attack. To completely insulate

the user's environment from that of the host,

you need to step out of the Unix domain and

use a partitioned operating system, such as

Hewlett Packward's VirtualVault technology

[Hewlett Packard].

Finally, it is important to remember that

the sbox wrapper alone won't make a Web site

secure. CGI script precautions are just one

component of a carefully considered site secu-

rity policy that includes attention to operat-

ing system security, web server con�guration,

operating and backup procedures, and user

education. While nothing is ever going to

completely eliminate the risk of running un-

trusted CGI scripts on a Web server, the sbox

wrapper does go a long way towards limiting

the potential damage that poorly-written or

malicious scripts can inict.

5 Acknowledgments

Many thanks to Nathan Neulinger for the

original cgiwrap program which inspired this

work. I also wish to thank the members of

the Apache Project, whose web server has

proven that open source projects can provide

the same power and stability as conventional

products { if not more so.

6 Availability

sbox is written in ANSI C and compiles on

multiple avors of Unix. It can be used and

redistributed freely. The complete package is

available for download at

http:// stein.cshl.org/WWW/software/ sbox/

References

[Apache Group] The Apache Group (1998).

Apache suEXEC Support, http://www.

apache.org/ docs/ suexec.html

[Coar] Coar K and Robinson D (1998).

The WWW Common Gateway In-

terface, Version 1.1 Internet Draft.

ftp:// ftp.ietf.org/ internet-drafts/

draft-coar-cgi-v11-00.txt .

[CERT] Computer Emergency Re-

sponse Team (CERT) (1996-1998).

Multiple CGI-related advisories.

ftp:// ftp.cert.org/ pub/ cert_advisories/

[Crosby] Crosby M (1997). AMD { Au-

toMount Daemon. The Linux Journal

35, March 1997. http://www.ssc.com/LJ/

issue35/ amd.html .

[Fowler] Fowler G. (1993). The Shell

as a Service. Usenix Summer

1993 Technical Conference Pro-

ceedings, Cincinnati, Ohio. http:

//www.usenix.org/ publications/ library

[Friesenhalm] Friesenhalm B (1997). Auto-

conf Makes for Portable Software. Byte,

November 1997.

[Hewlett Packard] Hewlett Packard Inc.

(1998). HP Internet Security Virtual-

Vault Home Page. http://www.hp.com/

security/ products/ virtualvault/

[Gar�nkle] Gar�nkle S with Spa�ord G

(1997). Web Security & Commerce.,

O'Reilly & Associates, Sebastopol CA.

[Microsoft] Microsoft Corporation

(1998). FrontPage 98 - Overview.

http://www.microsoft.com/products/

prodref/ 571_ov.htm.

[Neulinger] Neulinger N (1996-1998). cgi-

wrap. http://www.umr.edu/~cgiwrap/

[Rubin] Rubin A, Geer D, and Ranum M

(1997). Web Security Sourcebook. John

Wiley & Sons, New York.

[Stein97] Stein L, How to Set Up and Main-

tain a Web Site, Chapters 8-9. Addison-

Wesley Longman, Boston.

[Stein98a] Stein L (1998). Web Security: A

Step-by-Step Reference Guide. Addison

Wesley Longman, Boston.

[Stein98b] Stein L (1998). The O�cal Guide

to Programming with CGI.pm. John

Wiley & Sons, New York.

[Stein98c] Stein L (1998). The Web Security

FAQ. http://www.w3.org/Security/Faq

[Stern] Stern H (1991). Managing NFS and

NIS. O'Reilly & Associates, Sebastopol,

CA.

