
THE ADVANCED COMPUTING SYSTEMS ASSOCIATION

The following paper was originally published in the

Proceedings of the USENIX Annual Technical Conference
Monterey, California, USA, June 6-11, 1999

Why Does File System Prefetching Work?
_

Elizabeth Shriver, Christopher Small
 Bell Labs, Lucent Technologies

Keith A. Smith
Harvard University

© 1999 by The USENIX Association
All Rights Reserved

Rights to individual papers remain with the author or the author's employer. Permission is granted for noncommercial
reproduction of the work for educational or research purposes. This copyright notice must be included in the reproduced paper.
USENIX acknowledges all trademarks herein.

For more information about the USENIX Association:
Phone: 1 510 528 8649 FAX: 1 510 548 5738
Email: office@usenix.org WWW: http://www.usenix.org



Why does �le system prefetching work?

Elizabeth Shriver

Information Sciences Research Center

Bell Labs, Lucent Technologies

shriver@research.bell-labs.com

Christopher Small

Information Sciences Research Center

Bell Labs, Lucent Technologies

chris@research.bell-labs.com

Keith A. Smith

Harvard University

keith@eecs.harvard.edu

Abstract

Most �le systems attempt to predict which disk

blocks will be needed in the near future and prefetch

them into memory; this technique can improve ap-

plication throughput as much as 50%. But why?

The reasons include that the disk cache comes into

play, the device driver amortizes the �xed cost of an

I/O operation over a larger amount of data, total

disk seek time can be decreased, and that programs

can overlap computation and I/O. However, intu-

ition does not tell us the relative bene�t of each of

these causes, or techniques for increasing the e�ec-

tiveness of prefetching.

To answer these questions, we constructed an ana-

lytic performance model for �le system reads. The

model is based on a 4.4BSD-derived �le system, and

parameterized by the access patterns of the �les,

layout of �les on disk, and the design characteris-

tics of the �le system and of the underlying disk.

We then validated the model against several simple

workloads; the predictions of our model were typ-

ically within 4% of measured values, and di�ered

at most by 9% from measured values. Using the

model and experiments, we explain why and when

prefetching works, and make proposals for how to

tune �le system and disk parameters to improve

overall system throughput.

1 Introduction

Previous work has shown that most �le reads are

sequential [Baker91]. Optimizing for the common

case, modern �le systems take advantage of this fact

and prefetch blocks from disk that have not yet been

requested, but are likely to be needed in the near fu-

ture. This technique is e�ective for several reasons:

� There is a �xed cost associated with performing

a disk I/O operation. By increasing the amount

of data transfered on each I/O, the overhead is

amortized over a larger amount of data, im-

proving overall performance.

� Modern disks contain a disk cache, which con-

tains some number of disk blocks from the

cylinders of recent requests. If multiple blocks

are read from the same track, all but the �rst

may, under certain circumstances, be satis�ed

by the disk cache without accessing the disk

surface.

� The device driver or disk controller can sort

disk requests to minimize the total amount of

disk head positioning done. With a larger list

of disk requests, the driver or controller can do

a better job of ordering them to minimize disk

head motion. Additionally, the blocks of a �le

are often clustered together on the disk; when

this is so, multiple blocks of the �le can be read

at once without an intervening seek.

� If the application performs substantial compu-

tation as well as I/O, prefetching may allow

the application to overlap the two, which would

increase the application's throughput. For ex-

ample, an MPEG player may spend as much

time computing as it does waiting for I/O; if

the �le system can run ahead of the MPEG

player, loading data into memory before they

are needed, the player will not block on I/O.



If an application spends as much time per-

forming I/O as it does computing|successfully

prefetching data will allow overlapping the two

and the application's throughput will double.

This paper presents and validates an analytic �le

system performance model that allows us to explain

why and when prefetching works, and makes rec-

ommendations for how to improve the bene�t of �le

prefetching. The model described here is restricted

in two ways.

First, it addresses only �le read tra�c, and does not

capture �le writes or �le name lookup. Although

this restricts the applicability of the model, we be-

lieve that there are many interesting workloads cov-

ered by the model. For example, many workloads

consist almost entirely of reads, such as web servers,

read-mostly database systems, and �le systems that

store programs, libraries, and con�guration �les

(e.g., /, /etc, and /usr). Additionally, studies have

shown that, for some engineering workloads, 80% of

�le requests are reads [Baker91, Hartman93].

It has long been the case that in order to im-

prove performance, �le systems use a write-back

cache, delaying writes for some period of time

[Feiertag72, Ritchie78, McKusick84]. The results

of the study by Baker and associates showed that

with a 30-second write-back delay, 36% to 63% of

the bytes written to the cache do not survive, and by

increasing the write-back delay size to 1000 seconds,

60% to 95% do not survive.

Second, although our model includes multiple con-

current programs accessing the �le system, we limit

it to workloads where each �le is read from start

to �nish with little or no think time between read

requests. Although this does not cover workloads

such as the MPEG player discussed above, we be-

lieve that, given the relative speed of modern pro-

cessors and I/O devices, in the common case think

time is immeasurable. The Baker study showed that

75% of �les were open less than a quarter of a second

[Baker91]. This study was done on a collection of

machines running at around 25 MHz (SPARCSta-

tion 1, Sun 3, DECStation 3100, DECStation 5000);

on modern machines, with clock speeds an order of

magnitude faster, think time should be substantially

lower.

Outline of paper. Section 2 discusses in detail

the modeled �le system (the 4.4BSD Fast File Sys-

tem) and disk. Section 3 presents previous work in

�le systems and prefetching policies. The analytic

model of �le system response time and its valida-

tion are presented in Section 4 and Appendix A.

Section 5 explains why and when prefetching works.

We summarize our work and discuss future work in

Section 6.

2 Background

In this section we describe in detail the behavior of

the �le system we model, and discuss the character-

istics of modern disks.

2.1 The �le system

The �le system that we used as the basis for our

model is the 4.4BSD implementation of the Berke-

ley Fast File System that ships with BSD/OS 3.1

[McKusick96].

Reading �les. An application can make a request

for an arbitrarily large amount of data from a �le.

To process an application-level read request, the �le

system divides the request into one or more block-

sized (and block-aligned) requests, each of which the

�le system services separately. A popular �le system

block size is 8 KB, although other block sizes can

be speci�ed when the �le system is initialized.

For each block in the request, the �le system �rst

determines whether the block is already in the op-

erating system's in-memory cache. If it is, then the

block is copied from the cache to the application. If

the block is not already in memory, the �le system

issues a read request to the disk device driver.

Regardless of whether the desired block is already

in memory, the �le system may prefetch one or more

subsequent blocks from the �le. The amount of data

the �le system prefetches is determined by the �le

system's prefetch policy, and is a function of the

current �le o�set and whether or not the application

has been accessing the �le sequentially. A read of

block x from a �le is sequential if the last block read

from that �le was either x or x � 1. By treating



successive reads of the same block as \sequential,"

applications are not penalized for using a read size

that is less than the �le system's block size.

As read requests are synchronous, the operating sys-

tem blocks the application until all of the data it has

requested are available. Note that a single disk re-

quest may span multiple blocks and include both the

requested data and prefetch data, in which case the

application can not continue until the entire request

completes.

Data placement on disk. A cluster is a group

of logically sequential �le blocks that are stored se-

quentially on disk; the cluster size is the number of

bytes in the cluster. Depending on the �le system

parameters, the �le system may place successive al-

locations of clusters contiguously on the disk. This

can result in contiguous allocations of hundreds of

kilobytes in size.

The blocks of a �le are indexed by a tree structure

on disk; the root of the tree is an inode. The inode

contains the disk addresses to the �rst few blocks of

a �le (i.e., the �rst DirectBlocks blocks of the �le); in

the case of the modeled system, the inode contains

pointers to the �rst twelve blocks. The remaining

blocks are referenced by indirect blocks.

The �rst block referenced from an indirect block is

always the start of a new cluster. This may cause

the preceding cluster to be smaller than the �le sys-

tem's cluster size. For example, if DirectBlocks is

not a multiple of the cluster size, the last cluster of

direct blocks may be smaller than the cluster size.

The �le system divides the disk into cylinder groups,

which are used as allocation pools. Each cylin-

der group contains a �xed sized number of blocks

(2048 blocks, or 16 MB on the modeled system).

The �le system exploits expected patterns of local-

ity of reference by co-locating related data in the

same cylinder group.

The �le system usually attempts to allocate clus-

ters for the same �le in the same cylinder group.

Each cluster is allocated in the same cylinder group

as the previous cluster. The �le system attempts

to space clusters according to the value of the rota-

tional delay parameter which is set using the newfs

or tunefs command. The �le system can always

achieve this spacing on an empty �le system. If the

free space on the �le system is fragmented, however,

this spacing may vary. The �le system allocates the

�rst cluster of a �le from the same cylinder group

as the �le's inode. Whenever an indirect block is al-

located to a �le, allocation for the �le switches to a

di�erent cylinder group. Thus an indirect block and

the clusters it references are allocated in a di�erent

cylinder group than the previous part of the �le.

Prefetching in the �le system cache. If the re-

quested data are not in cache, the �le system issues

a disk request for the desired block. If the applica-

tion is accessing the �le sequentially, the �le system

may prefetch one or more additional data blocks.

The amount of data prefetched is doubled on each

disk read, up to a maximum of the cluster size. The

last block of a �le may be allocated to a fragment

rather than a full size block. When this happens,

the �nal fragment of the �le is not prefetched.

It is possible for a block to be prefetched and then

evicted before it is requested. If the user subse-

quently requests such a block, the �le system as-

sumes that it is prefetching too aggressively and cuts

the prefetch size in half.

2.2 The disk

When a disk request is issued from the �le system,

it enters the device driver. If the disk is busy, the

request is put on a queue in the device driver; the

queue is sorted by a scheduling algorithm that at-

tempts to improve response times. One commonly-

used class of scheduling algorithms are the elevator

algorithms, where the requests are serviced in the

order that they appear on the disk tracks. CLOOK

and CSCAN are examples of elevator algorithms.

Once the request reaches the head of the queue, the

request is sent to the bus controller which gains con-

trol of the bus. The request is then sent to the disk,

and might be queued there if the disk mechanism is

busy. This queue is also sorted to improve response

time; one commonly-used scheduling algorithm is

Shortest Positioning Time First, which services re-

quests in an order intended to minimize the sum of

the seek time (i.e., the time to move the head from

the current track to the desired track) and the rota-

tional latency (i.e., the time needed for the disk to

rotate to the correct sector once the desired track is

reached).



Seek time. Seek is the time for the actuator to

move the disk arm to the desired cylinder. A seek

operation can be decomposed into:

� speedup, where the arm is accelerated until it

reaches half of the seek distance or a �xed max-

imum velocity,

� coast for long seeks, where the arm is moving

at maximum velocity,

� slowdown, where the arm is brought to rest

close to the desired track, and

� settle, where the disk controller adjusts the

head to access the desired location.

Very short seeks (2{4 cylinders) are dominated by

the settle time. Short seeks (less than 200{400 cylin-

ders) are dominated by the speedup, which is pro-

portional to the square root of seek distance. Long

seeks are dominated by the coast time, which is pro-

portional to the seek distance. Thus, the seek time

can be approximated by a function such as

Seek Time[dis] =

8
<
:

0 dis = 0

a+ b
p
dis 0 < dis � e

c+ d dis dis > e

(1)

where a, b, c, d, and e are device-speci�c parameters

and dis is the number of cylinders to be traveled.

Single cylinder seeks are often treated specially.

The disk cache. When the request reaches the

head of the queue, the disk checks its cache to see

if the data are in cache. If not, the disk mechanism

moves the disk head to the desired track (seeking)

and waits until the desired sector is under the head

(rotational latency). The disk then reads the desired

data into the disk cache. The disk controller then

contends for access to the bus, and transfers the

data to the host from the disk cache at a rate deter-

mined by the speed of the bus controller and the bus

itself. Once the host receives the data and copies

them into the memory space of the �le system, the

system awakens any processes that are waiting for

the read to complete.

The disk cache is used for multiple purposes. One

is as a pass-through speed-matching bu�er between

the disk mechanism and the bus. Most disks do not

retain data in the cache after the data have been

sent to the host. A second purpose is as a readahead

bu�er. Data can be readahead into the disk cache to

service future requests. Most frequently, this is done

by the disk saving in a cache segment the data that

comes after the requested data. Modern disks such

as the Seagate Cheetah only readahead data when

the requested addresses suggest that a sequential

access pattern is present.

The disk cache is divided into cache segments. Each

segment contains data prefetched from the disk for

one sequential stream. The number of cache seg-

ments usually can be set on a per-disk basis; the

typical range of allowable values is between one and

sixteen.

Disk performance is covered in more detail by

Shriver [Shriver97] and by Ruemmler and Wilkes

[Ruemmler94].

3 Related work

Prefetching. Prefetching is not a new idea; in the

1970's, Multics supported prefetching [Feiertag72],

as did Unix [Ritchie78]. Earlier work has focused

on the bene�t of prefetching, either by allowing

applications to give prefetching hints to the op-

erating system [Cao94, Patterson95, Mowry96], or

by automatically discovering �le access patterns in

order to better predict which blocks to prefetch

[Gri�oen94, Lei97, Kroeger96]. Techniques stud-

ied have included neural networks [Madhyastha97a]

and hidden Markov models [Madhyastha97b]. Our

work di�ers from this work in three ways. First,

we address only common case workloads that have

sequential access patterns. Second, our model is

parameterized by the �le system's behavior such as

caching strategy and �le layout, and takes into ac-

count the behavioral characteristics of the disks used

to store �les. Third, our model predicts the perfor-

mance of the �le system.

Substantial work has been done studying the in-

teraction between prefetching and caching [Cao95,

Patterson95, Kimbrel96]. Others have examined

methods to work around the �le system cache to

achieve the desired performance (e.g., [Kotz95]).

The bene�t of prefetching is not limited to work-

loads where �les are read sequentially; Small stud-

ied the e�ect of prefetching on random-access, zero

think time workloads on the VINO operating sys-



tem, and showed that even with these workloads the

performance gain from prefetching was more than

20% [Small98].

Disk modeling. Much work has been done in

disk modeling. The usual approach to analyz-

ing detailed disk drive performance is to use sim-

ulation (e.g., [Hofri80, Seltzer90, Worthington94]).

Most early modeling studies (e.g., [Bastian82,

Wilhelm77]) concentrated on rotational position

sensing for mainframe disk drives, which had no

cache at the disk and did no readahead. Most

prior work has not been workload speci�c, and has,

for example, assumed that the workload has uni-

form random spatial distributions (e.g., [Seeger96,

Ng91, Merchant96]). Chen and Towsley, and Ku-

ratti and Sanders, modeled the probability that

no seek was needed [Chen93, Kuratti95]; Hospodor

reported that an exponential distribution of seek

times matched measurements well for three test

workloads [Hospodor95]. Shriver and colleagues,

and Barve and associates present analytic mod-

els for modern disk drives, representing readahead

and queueing e�ects across a range of workloads

[Shriver97, Shriver98, Barve99].

4 The analytic model

In this section, we present the �le system, disk, and

workload parameters that we need for our model.

As we present the needed �le system and disk pa-

rameters, we also give the values for the platforms

which we used to validate the model. We close this

section with presenting the details of the model.

We used two platforms; one with a slow bus (i.e.,

10 MB/s), and one with a fast bus (i.e., 20 MB/s).

Details of our test/experiment platforms are in Sec-

tion 5.

4.1 File system speci�cation

Based on our understanding of the �le system cache

policies, we determined a set of parameters that al-

low us to capture the performance of the �le system

cache; these can be found in Table 1. For our fast

machine, the SystemCallOverhead value was 5 �s and

the MemoryCopyRate was 5 �s/KB.

4.2 Disk speci�cation

To predict the disk response time, we need to know

several parameters of the disk being used.

� DiskOverhead includes the time to send the re-

quest down the bus and the processing time at

the controller, which is made up of the time re-

quired for the controller to parse the request,

check the disk cache for the data, and so on.

DiskOverhead can either be approximated us-

ing a complex disk model [Shriver97] or can

be measured experimentally. In this paper we

measured the disk overhead experimentally at

1.8 ms for a single �le and 1.2 ms for multiple

�les for our slow platform and 0.34 ms for our

fast platform.

� seek curve information is used to approximate

the seek time. The seek curve information we

use is a = 0:002, b = 0:173, c = 3:597, d =

0:002, and e = 801 as de�ned in equation (1).

� disk rotation speed is used to approximate the

time spent in rotational latency. The DiskTR is

the rate that data can be transfered from the

disk surface to the disk cache. The disk used to

validate our model spins at 10,000 RPM, giving

us a DiskTR of close to 18 MB/s.

� BusTR gives us the rate at which data can be

transfered from the disk cache to the host; we

are bounded by the slower of the BusTR and

DiskTR. On the slow platform, the transfer rate

was limited to 9.3 MB/s; on the fast platform,

the transfer rate was 18.2 MB/s.

� CacheSegments is the number of di�erent data

streams the disk can concurrently cache, and

hence the number of streams for which it can

perform read-ahead. The disk used to validate

our model was con�gured for three cache seg-

ments; this model of disk can be con�gured for

between one and sixteen cache segments.

� CacheSize is the size of the disk cache. From

this value and the CacheSegments, the size of

each cache segment can be computed. The disk

used to validate our model has a 512 KB cache.

� Max Cylinder is the number of cylinders in the

disk. The disk used to validate our model has

6526 cylinders.



Table 1: File system parameters and values for validated platform.

parameter de�nition validated platform

BlockSize the amount of data which the �le system processes at once 8 KB

DirectBlocks the number of blocks that can be accessed before the indirect

block needs to be accessed

12

ClusterSize the amount of a �le that is stored contiguously on disk 64 KB

CylinderGroupSize number of bytes on a disk that �le system treats as \close" 16 MB

SystemCallOverhead time needed to check the �le system cache for the requested

data

10 �s

MemoryCopyRate rate at which data are copied from the �le system cache to the

application memory

10 �s/KB

4.3 Workload speci�cation

The workload parameters that a�ect �le system

cache performance are the ones needed to predict

the disk performance and the �le layout on disk.

Table 2 presents this set of parameters; most of

these parameters were taken from earlier work on

disk modeling [Shriver98].
1

4.4 The model

Our approach has been to use the technique pre-

sented in our earlier work on disk modeling, which

models the individual components of the I/O path,

and then composes the models together [Shriver97].

We use some of the ideas presented in the disk cache

model to model the �le system cache.

Disk response time. The mean disk response

time is the sum of disk overhead, disk head posi-

tioning time, and time to transfer the data from

disk to the �le system cache:

DRT = DiskOverhead+ PositionTime+

E[disk request size]=minfBusTR;DiskTRg:

(Note: E[x] denotes the expected, or average value

for x.) The amount of time spent positioning the

disk head, PositionTime, depends on the current lo-

cation of the disk head, which is determined by the

previous request. For example, if this is the �rst

request for a block in a given cluster, PositionTime

1The previous disk model includes additional workload pa-

rameters that support speci�cation of spatial locality; these

are not needed for our current model since we assume that

the �les are accessed sequentially. The earlier disk model

also supports a read fraction parameter; in this paper, we

only model �le reads.

will include both seek time and time for the rota-

tional latency. Let E[SeekTime] be the mean seek

time and E[RotLat] be the mean rotational latency

(1/2 the time for a full disk rotation). Thus, the

disk response time for the �rst request in a cluster

is

DRT[random request] = DiskOverhead+

E[SeekTime] +E[RotLat] +

E[disk request size]

minfBusTR;DiskTRg : (2)

If the previous request was for a block in the same

cylinder group, the seek distance will be small. This

will be the case if the previous read was to a por-

tion of the �le stored in the same cylinder group,

or to some other �le found in the same cylinder

group. If there are n �les being accessed concur-

rently, the expected seek distance will either be (a)

Max Cylinder/3, if the device driver and disk con-

troller request queues are empty, or (b) (assuming

the disk scheduler is using an elevator algorithm)

Max Cylinder=(n+ 2) [Shriver97].

The mean disk request size, E[disk request size], can

be computed by averaging the request sizes; these

can be computed by simulating the algorithm to de-

termine the amount of data prefetched, where the

simulation stops when the amount of accessed data

is equal to ClusterSize. If the �le system is servicing

more than one �le, the actual amount prefetched

can be smaller than expected due to blocks being

evicted before use. If the �le system is not prefetch-

ing data, the E[disk request size] is the �le system

block size, BlockSize.

Sometimes the requested data are in the disk cache

due to readahead; in these cases, the disk response

time is

DRT[cached request] = DiskOverhead+

E[disk request size]=BusTR: (3)



Table 2: Workload speci�cation.

parameter de�nition unit

temporal locality measures

request rate rate at which requests arrive at the storage device requests/second

cylinder group id cylinder group (location) of the �le integer

arrival process inter-request timing (constant [open, closed], Poisson, or

bursty)

|

spatial locality measures

data span the span (range) of data accessed bytes

request size length of a host read or write request bytes

run length length of a run, a contiguous set of requests bytes

File system response time. We �rst compute

the amount of time needed for all of the �le system

accesses TotalFSRT, and then compute the mean

response time for each access, FSRT, by averaging:

FSRT =
data span

request size
TotalFSRT: (4)

The rest of this section discusses approximating

TotalFSRT.

Let us �rst look at the simplest case: reading one

�le that resides entirely in one cluster, the mean

response time to read the cluster contains �le system

overhead plus the time needed to access the data

from disk:

ClusterRT = FSOverhead+

DRT[�rst request] +X
i

DRT[remaining requesti]

where the �rst request and remaining requests

are the disk requests for the blocks in

the cluster and DRT[�rst request] is from

equation (2). If n �les are being serviced

at once, the DRT[remaining requesti]'s each

contain E[SeekTime] + E[RotLat] if n is more

than CacheSegments, the number of disk cache

segments. If not, some of the data will be

in disk cache and equation (3) is used. The

FSOverhead can be measured experimently

or computed as SystemCallOverhead +

E[request size]=MemoryCopyRate. The number

of requests per cluster can be computed as

data span=disk request size.

If the �les span multiple clusters, we have

TotalFSRT = NumClusters � ClusterRT

where we approximate the number of clusters

as NumClusters = data span=ClusterSize. To

capture the \extra" cluster due to only the

�rst DirectBlocks blocks being stored on the

same cluster, this value is incremented by 1 if

(ClusterSize=BlockSize)=DirectBlocks is not 1 and

data span=BlockSize > DirectBlocks.

If the device driver or disk controller scheduling al-

gorithm is CLOOK or CSCAN and the queue is not

zero, then there is a large seek time (for CLOOK) or

a full stroke seek time (for CSCAN) for each group

of n accesses, when n is the number of �les be-

ing serviced by the �le system; we call this time

extra seek time.

If the n �les being read are larger than DirectBlocks,

we must include the time required to read the indi-

rect block:

TotalFSRT = n � NumClusters � ClusterRT+

num requests � extra seek time+

DRT[indirect block] (5)

where num requests is the number of disk requests

in a �le. Since the location of the indirect block is

on a random cylinder group, equation (2) is used to

compute DRT[indirect block]. Of course, if the �le

contains more blocks than can be referenced by both

the inode and the indirect block, multiple indirect

block terms are needed.

5 Discussion

In the introduction to this paper, we listed the rea-

sons that prefetching improves performance: the

disk cache comes into play, the device driver amor-

tizes the �xed cost of an I/O over a larger amount of

data, and total disk seek time can be decreased. In

this section we discuss the terms introduced by our



model and attempt to explain where the time goes,

and when and why prefetching works. To do this, we

collected detailed traces of a variety of workloads.

These traces allowed us to compute the �le system

and disk response times experienced by the test ma-

chines. These response times were also used in our

validations as discussed in Appendix A.

Hardware setup and trace gathering. We

performed experiments on two hardware con�gu-

rations: a 200 MHz Pentium Pro processor and

a 450 MHz Pentium II processor. Each machine

had 128 MB of main memory. We conducted all

of our tracing and measurements on a 4 GB Sea-

gate ST34501W (Cheetah) disk, connected via a

10 MB/second PCI SCSI controller (for the 200

MHz processor) or via a 20 MB/second PCI SCSI

controller (for the 450 MHz processor). Our test

machines were running version 3.1 of the BSD/OS

operating system. The �le system parameters for

our test �le systems are found in Table 1 and the

disk parameters are in Section 4.2.

We collected our traces by adding trace points to

the BSD/OS kernel. At each trace point the kernel

wrote a record to an in-memory bu�er describing

the type of event that had occurred and any related

data. The kernel added a time stamp to each trace

record, using the CPU's on-chip cycle counter. A

user-level process periodically read the contents of

the trace bu�er.

To document the response time for application-level

read requests, we used a pair of trace points at the

entry and exit of the FFS read routine. Similarly,

we measured disk-level response times using a pair

of trace points in the SCSI driver, one when a re-

quest is issued to the disk controller, and a second

when the disk controller indicates that the I/O has

completed. Additional trace points documented the

exact sequence (and size) of the prefetch requests is-

sued by the �le system, and the amount of time each

request spent on the operating system's disk queue.

The numbers discussed in this section are for the

machine with the faster bus unless stated otherwise.

Disk cache. When an application makes a read

request of the �le system, the �le system checks to

see if the requested data are in its cache, and if not,

issues an I/O request to the disk. The data will be

found in the �le system cache if they were prefetched

��
��
��
��

��
��
��

��
��
��

���
���
���
���
���

���
���
���
���
���

��
��
��
��
��

��
��
��
��
��

��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��

���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���

���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���

�
�
�

�
�
�

�
�
�
�

0

5

10

15

20

fi
le

 s
ys

te
m

 r
es

po
ns

e 
tim

e 
(m

s)

6432168 

readahead

no readahead

request size (KB)

Figure 1: File system response times for a 64 KB �le

with and without the disk cache performing reada-

head. The readahead values are measured; the no-

readahead values are predicted by the model.

and have not been evicted. If the data are not in

the �le system's cache, the �le system must read it

from the disk. There are two possible scenarios:

1. The data are in the disk cache as a result of

readahead for a previous command, so the disk

does not need to read the data again. The disk

sends the data directly from the disk cache.

2. The data are not in the disk cache and must be

read from the disk surface.

In an attempt to quantify the e�ect of the disk

cache, Figures 1 and 2 contain the �le system

response time measurements with the disk cache

performing readahead and �le system response

time predictions without the disk cache perform-

ing readahead. The percent improvement in the

response time when the disk cache is performing

readahead is 17{23%.

Modern disks are capable of caching data for con-

current workloads, where each workload is reading

a region of the disk sequentially. If there are enough

cache segments for the current number of sequential

workloads, the disk will readahead for each work-

load, and each workload will bene�t. However, if

there are more sequential workloads than cache seg-

ments, depending on the cache replacement algo-

rithm used by the disk, the disk's ability to prefetch

may have little or no positive e�ect on performance.

In addition, disk readahead is only valuable when

the �le system prefetch size is less than the cluster



��
��
��

��
��
��

��
��
��
��

��
��
��
��

���
���
���
���
���
���

���
���
���
���
���
���

��
��
��
��
��
��
��

��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��

���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���

���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���

�
�
�

�
�
�

�
�
�
�

0

10

15

20
fi

le
 s

ys
te

m
 r

es
po

ns
e 

tim
e 

(m
s)

6432168 

readahead

no readahead

5

request size (KB)

Figure 2: File system response times for a 128 KB

�le with and without the disk cache performing

readahead. The readahead values are measured; the

no-readahead values are predicted by the model.

size, since, after that, the entire cluster is fetched

with one disk access. In the case of our �le system

parameters, this occurred when the �le was 128 KB

or smaller.

I/O cost amortization. On our slow bus con�g-

uration, we measured the disk overhead of perform-

ing an I/O operation at 1.2 to 1.8 ms, which is on

the same order as the time to perform a half-rotation

(3 ms). The measured transfer rate of the bus is 9.3

MB/s; by saving an I/O operation, we can transfer

an additional 11 to 16 KB. As an example, assume

that 64 KB of data will be used by the application.

If the requested data are in the disk cache, using a

�le block of 8 KB will take at least 14.1 ms (1.8 ms

overhead four times + 6.9 ms for data transfer);
2
a

�le block of 64 KB will take 8.7 ms (1.8 ms overhead

+ 6.9 ms for data transfer), just a little over half the

I/O time.

The impact of I/O cost amortization can be seen

when comparing the measured �le system response

time when servicing one �le, with and without

prefetching. Figure 3 show these times for the slower

hardware con�guration. With prefetching disabled,

the �le system requests data in BlockSize units, in-

creasing the number of requests, and the amount

of disk and �le system overhead. The additional

overheads increase the resulting performance by 13{

29%.

2With the �le system performing prefetching, there will

be 4 disk requests having a mean disk request size of 16 KB.

��
��
��
��

��
��
��
��

��
��
��
��
��

��
��
��
��
��

���
���
���
���
���
���

���
���
���
���
���
���

��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��

���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���

���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���

�
�
�

�
�
�

�
�
�
�

0

5

10

15

20

fi
le

 s
ys

te
m

 r
es

po
ns

e 
tim

e 
(m

s)

6432168 

prefetching

no prefetching

request size (KB)

Figure 3: Measured �le system response times for

a 64 KB �le with and without the �le system per-

forming prefetching.

When we ran our tests on the machine with the

faster bus, we noted anomalous disk behavior that

we do not yet understand. According to our mea-

surements, it should (and does, in most cases) take

roughly 0.78 ms to read an 8 KB block from the

disk cache over the bus on this machine. However,

under certain circumstances, 8 KB reads from the

disk cache complete more quickly, taking roughly

0.56 ms.
3

This happened only when �le system

prefetching is disabled, i.e., when the �le system re-

quests multiple consecutive 8 KB blocks, and when

there is only one application reading from the disk.

The net result is that, in these rare situations, per-

formance is slightly better with �le system prefetch-

ing disabled. This behavior also was displayed with

the slower bus, but as you can see in Figure 3, the

bus is slow enough so that the response time with

prefetching is smaller than the response time with-

out prefetching.

Seek time reduction. As the number of active

workloads increases, the latency for each workload

will increase, but the disk throughput can, paradox-

ically, increase as well. Due to the type of scheduling

algorithms used for the device driver queue, more

elements in the read queue can mean smaller seeks

between each read, and hence greater disk through-

put. On the other hand, a longer queue means that

each request will, on average, spend more time in the

queue, and thus the read latency will be greater.

3We are in communication with Seagate in an attempt to

determine why we are seeing this behavior.



��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��
��
��
��

��
��
��
��
��
��
��

���
���
���
���
���
���
���

���
���
���
���
���
���
���

���
���
���
���
���
���
���
���
���
���
���

���
���
���
���
���
���
���
���
���
���
���

���
���
���
���
���
���
���
���
���
���
���
���

���
���
���
���
���
���
���
���
���
���
���
���

���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���

���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���

���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���

���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���

�
�
�

�
�
�

�
�
�
�

0

50

100

150

200

250

300

350
fi

le
 s

ys
te

m
 r

es
po

ns
e 

tim
e 

(m
s)

6432168 

FCFS

CLOOK

request size (KB)

Figure 4: Measured �le system response times for 8

64 KB �les with the device driver using a CLOOK

scheduling algorithm with a FCFS scheduling algo-

rithm.

Figure 4 displays the �le system response time

with the device driver implementing the CLOOK

scheduling algorithm (the standard algorithm), and

implementing FCFS, which will not reduce the seek

time. The performance gain from using CLOOK

over FCFS is 14%.

I/O / computation overlap. As was discussed

in Section 1, if an application performs substantial

computation as well as I/O, prefetching may allow

the application to overlap the two, increasing ap-

plication throughput and decreasing �le system re-

sponse time. For example, on our test hardware,

computing the MD5 checksum of a 10 KB block of

data takes approximately one millisecond. A pro-

gram reading data from the disk and computing the

MD5 checksum will exhibit delays between succes-

sive read requests, giving the �le system time to

prefetch data in anticipation of the next read re-

quest. Figure 5 shows the �le system response times

with a request size of 10 KB for �les of varying

lengths. The �gure shows the response time given

no delay (representing the application having no I/O

/ computation overlap), with an application delay

of 0.5 ms, and with an application delay of 1.0 ms

(as with MD5). As the �le size increases, so do

the savings due to prefetching. With a 64 KB �le

there is a 36% improvement, compared to a 114%

improvement when reading a 512 KB �le.

��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��

���
���
���
���
���
���
���
���
���
���
���

���
���
���
���
���
���
���
���
���
���
���

���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���

���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���

���
���
���
���
���
���
���
���
���
���
���
���

���
���
���
���
���
���
���
���
���
���
���
���

���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���

���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���

���
���
���
���
���
���
���
���
���
���
���

���
���
���
���
���
���
���
���
���
���
���

���
���
���
���
���
���
���
���
���
���
���

���
���
���
���
���
���
���
���
���
���
���

���
���
���
���
���
���
���
���
���
���
���
���

���
���
���
���
���
���
���
���
���
���
���
���

�
�
�

�
�
�

�
�
�
�

�
�
�
�

0

0.5

1

1.5

2

2.5

fi
le

 s
ys

te
m

 r
es

po
ns

e 
tim

e 
(m

s)

file size (KB)

64 128 256 512

0.5 ms think time

0 think time

1 ms think time

Figure 5: Measured �le system response times with

the application think time of 0 ms, 0.5 ms, and 1

ms.

Summary. In this section we showed how the

components of prefetching combine to improve per-

formance. In our tests, disk caching provided a 17{

23% boost, I/O cost amortization yielded, 13{29%,

seek time reduction (CLOOK vs. FCFS) 14%, and

overlapping computation and I/O can save as much

as 50%. Depending on the behavior of the speci�c

application, these components can have a greater or

lesser bene�t; added together, the performance gain

is signi�cant.

6 Conclusions

We developed an analytic model that predicts the

response time of the �le system with a maximum

relative error of 9% (see Appendix A). Given the

wide range of conceivable �le system layouts and

prefetching policies, an accurate analytic model sim-

pli�es the task of setting system parameters that

may improve performance enough to be worth im-

plementing and studying in more detail.

Our model has allowed us to develop two suggestions

for decreasing the �le system response time. If it

is reasonable to assume that the prefetched data

will be used, and we have room in the �le system

cache, once the disk head has been positioned over a

cluster, the entire cluster should be read. This will

decrease the �le system and disk overheads.

The number of disk cache segments restricts the

number of sequential workloads for which the disk



��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��

���
���
���
���
���

���
���
���
���
���

���
���
���
���
���
���
���
���
���
���
���
���
���

���
���
���
���
���
���
���
���
���
���
���
���
���

���
���
���
���
���
���
���
���
���
���

���
���
���
���
���
���
���
���
���
���

���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���

���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���

���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���

���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���

�
�
�

�
�
�

�
�
�
�

0

50

100

150

200

250

300
fi

le
 s

ys
te

m
 r

es
po

ns
e 

tim
e 

(m
s)

6432168 

3 cache segments

8 cache segments

request size (KB)

Figure 6: File system response times for 8 64 KB

�les with 3 and 8 segments. 3-segment values are

measured and 8-segment values are predicted by the

model.

cache can perform readahead, which means that if

the number of disk cache segments is smaller than

the number of concurrent workloads, it can be as

if the disk had no cache at all. One enhancement

that we suggest is for the �le system to dynamically

modify the number of disk cache segments to be

the number of �les being concurrently accessed from

that disk. This is a simple and inexpensive SCSI op-

eration, and can mean the di�erence between hav-

ing the disk cache work e�ectively and having it not

work at all. Figure 6 compares the measured �le

system response time when servicing 8 workloads

with 3 cache segments and the predicted response

time with 8 cache segments. This shows us a 44{

46% decrease in the response time when the number

of cache segments is set to the number of concurrent

workloads.

Our current model does not handle �le system

writes; we would like to extend it to support writes.

We would like to use our analytic model to compare

di�erent �le system prefetching polices and param-

eter settings to determine the \best" setting for a

particular workload. Workloads which seem promis-

ing are web server, scienti�c workloads [Miller91],

and database benchmarking workloads.

Acknowledgments. Many thanks to Bruce

Hillyer for many interesting conversations.

References

[Baker91] Mary G. Baker, John H. Hartman,

Michael D. Kupfer, Ken W. Shirri�, and

John K. Ousterhout. Measurements of a dis-

tributed �le system. Proceedings of the Thir-

teenth ACM Symposium on Operating Systems

Principles (Asilomar (Paci�c Grove), CA),

pages 198{212. ACM Press, October 1991.

[Barve99] Rakesh Barve, Elizabeth Shriver,

Phillip B. Gibbons, Bruce K. Hillyer, Yossi

Matias, and Je�rey Scott Vitter. Modeling

and optimizing I/O throughput of multiple

disks on a bus. Proceedings of the 1999 ACM

SIGMETRICS Conference on the Measure-

ment and Modeling of Computer Systems

(Atlanta, GA), May 1999. Available at

http://www.bell-labs.com/�shriver/.

[Bastian82] A. L. Bastian. Cached DASD per-

formance prediction and validation. Proceed-

ings of 13th International Conference on Man-

agement and Performance Evaluation of Com-

puter Systems (San Diego, CA), pages 174{177,

Mel Boksenbaum, George W. Dodson, Tom

Moran, Connie Smith, and H. Pat Artis, edi-

tors, December 1982.

[Cao94] Pei Cao, Edward W. Felten, and Kai

Li. Implementation and performance of

application-controlled �le caching. Proceedings

of the First USENIX Symposium on Operating

Systems Design and Implementation (Seattle,

WA), pages 165{178, November 1994.

[Cao95] Pei Cao, Edward W. Felten, Anna Karlin,

and Kai Li. A study of integrated prefetch-

ing and caching strategies. Proceedings of the

ACM SIGMETRICS Conference on Measure-

ment and Modelling of Computer Systems (Ot-

tawa, Canada), pages 188{197, May 1995.

[Chen93] Shenze Chen and Don Towsley. The de-

sign and evaluation of RAID 5 and parity strip-

ing disk array architectures. Journal of Paral-

lel and Distributed Computing, 17(1{2):58{74,

January{February 1993.

[Feiertag72] R. J. Feiertag and E. I. Organick. The

Multics input/output system. Proceedings of

the Third Symposium on Operating Systems

Principles (Palo Alto, CA), pages 35{41, Oc-

tober 1972.



[Gri�oen94] James Gri�oen and Randy Appleton.

Reducing �le system latency using a predic-

tive approach. Proceedings of the 1994 Summer

USENIX Technical Conference (Boston, MA),

pages 197{207, June 1994.

[Hartman93] John Hartman and John Ousterhout.

Letter to the editor. Operating Systems Review,

27(1):7{9, January 1993.

[Hofri80] M. Hofri. Disk scheduling: FCFS vs.

SSTF revisited. Communications of the ACM,

23(11):645{653, November 1980.

[Hospodor95] Andy Hospodor. Mechanical access

time calculation. Advances in Information

Storage Systems, 6:313{336, 1995.

[Kimbrel96] Tracy Kimbrel and Anna R. Karlin.

Near-optimal parallel prefetching and caching.

Proceedings of the 37th Annual Symposium on

Foundations of Computer Science (Burlington,

VT), pages 540{549, October 1996.

[Kotz95] David Kotz. Disk-directed I/O for an

out-of-core computation. Proceedings of the

Fourth IEEE International Symposium on High

Performance Distributed Computing (Pentagon

City, VA), pages 159{166, August 1995.

[Kroeger96] Thomas Kroeger. Predicting �le sys-

tem actions from reference patterns. Depart-

ment of Computer Engineering, University of

California, Santa Cruz, Santa Cruz, CA, De-

cember 1996. Master's thesis.

[Kuratti95] Anand Kuratti and William H.

Sanders. Performance analysis of the RAID

5 disk array. Proceedings of International

Computer Performance and Dependability

Symposium (Erlangen, Germany), pages

236{245, April 1995.

[Lei97] Hui Lei and Dan Duchamp. An analyti-

cal approach to �le prefetching. Proceedings

of the USENIX 1997 Annual Technical Con-

ference (Anaheim, CA), January 1997.

[Madhyastha97a] Tara M. Madhyastha and

Daniel A. Reed. Exploiting global in-

put/output access pattern classi�cation.

Proceedings of Supercomputing '97 (San Jose,

CA), November 1997.

[Madhyastha97b] Tara M. Madhyastha and

Daniel A. Reed. Input/output access pattern

classi�cation using hidden Markov mod-

els. Proceedings of the Fifth Workshop on

Input/Output in Parallel and Distributed

Systems (IOPADS) (San Jose, CA), pages

57{67. ACM Press, November 1997.

[McKusick84] Marshall K. McKusick, William N.

Joy, Samuel J. Le�er, and Robert S. Fabry.

A fast �le system for UNIX. ACM Transac-

tions on Computer Systems, 2(3):181{197, Au-

gust 1984.

[McKusick96] Marshall Kirk McKusick, Keith

Bostic, Michael J. Karels, and John S. Quar-

terman. The Design and Implementation of

the 4.4BSD Operating System. Addison-Wesley

Publishing, 1996.

[Merchant96] Arif Merchant and Philip S. Yu. An-

alytic modeling of clustered RAID with map-

ping based on nearly random permutation.

IEEE Transactions on Computers, 45(3):367{

373, March 1996.

[Miller91] Ethan L. Miller and Randy H. Katz. In-

put/output behavior of supercomputing appli-

cations. Proceedings of Supercomputing '91

(Albuquerque, NM), pages 567{576, November

1991.

[Mowry96] Todd C. Mowry, Angela K. Demke, and

Orran Krieger. Automatic compiler-inserted

I/O prefetching for out-of-core applications.

Proceedings of the 1996 Symposium on Operat-

ing Systems Design and Implementation (Seat-

tle, WA), pages 3{17. USENIX Association,

October 1996.

[Ng91] Spencer W. Ng. Improving disk performance

via latency reduction. IEEE Transactions on

Computers, 40(1):22{30, January 1991.

[Patterson95] R. Hugo Patterson, Garth A. Gibson,

Eka Ginting, Daniel Stodolsky, and Jim Ze-

lenka. Informed prefetching and caching. Pro-

ceedings of the Fifteenth ACM Symposium on

Operating Systems Principles (Copper Moun-

tain, CO), pages 79{95. ACM Press, December

1995.

[Ritchie78] D. M. Ritchie and K. Thompson.

The UNIX time-sharing system. The Bell

System Technical Journal, 57(6):1905{1930,

July/August 1978. Part 2.

[Ruemmler94] Chris Ruemmler and John Wilkes.

An introduction to disk drive modeling. IEEE

Computer, 27(3):17{28, March 1994.



[Seeger96] B. Seeger. An analysis of schedules for

performing multi-page requests. Information

Systems, 21(5):387{407, July 1996.

[Seltzer90] Margo Seltzer, Peter Chen, and John

Ousterhout. Disk scheduling revisited. Pro-

ceedings of Winter 1990 USENIX Conference

(Washington, DC), pages 313{323, January

1990.

[Shriver97] Elizabeth Shriver. Performance model-

ing for realistic storage devices. PhD thesis. De-

partment of Computer Science, New York Uni-

versity, New York, NY, May 1997. Available at

http://www.bell-labs.com/�shriver/.

[Shriver98] Elizabeth Shriver, Arif Merchant, and

John Wilkes. An analytic behavior model for

disk drives with readahead caches and request

reordering. Joint International Conference on

Measurement and Modeling of Computer Sys-

tems (Sigmetrics '98/Performance '98) (Madi-

son, WI), pages 182{191, June 1998. Available

at http://www.bell-labs.com/�shriver/.

[Small98] Christopher Small. Building an extensible

operating system. PhD thesis. Division of En-

gineering and Applied Sciences, Harvard Uni-

versity, Boston, MA, October 1998.

[Wilhelm77] Neil C. Wilhelm. A general model for

the performance of disk systems. Journal of the

ACM, 24(1):14{31, January 1977.

[Worthington94] Bruce L. Worthington, Gregory R.

Ganger, and Yale N. Patt. Scheduling algo-

rithms for modern disk drives. Proceedings

of ACM SIGMETRICS Conference on Mea-

surement and Modeling of Computer Systems

(Santa Clara, CA), pages 241{251, May 1994.

A Validation of the model

To validate the model, we ran a set of simple mi-

crobenchmark workloads, collecting traces of both

�le system and disk events. From these traces, we

determined the mean disk and application-level re-

sponse times for a variety of synthetic and real work-

loads. The results in this section are presented for

the machine with the slower bus.

The workloads. We created simple workloads

which opened �les, read them sequentially, and

closed them. We recorded only the reads, i.e., not

the open and close operations. We varied the re-

quest size and size of the �le (which, in turn, var-

ied data span and run length). Our workloads have

a closed arrival process; �les greater than 96 KB

spanned at least two cylinder groups.

Single �les accessed. We ran our workloads us-

ing one process to access a single �le; we repeated

the experiments 100 times and averaged to compute

the measured FSRT. Table 3 includes the measured

and model-computed FSRT using equations (4) and

(5), as well as the relative errors of the model. In

all but one case the model's estimate is within 4%

of the measured result; when reading 32 KB of a

64 KB �le the model error is 9%, which is higher,

but still quite good for an analytic model of this

type.

Multiple �les accessed. We then reran our ex-

periments with multiple concurrent processes, each

accessing a di�erent �le with the same workload

speci�cation (i.e., same request size and same �le

size). All of the �les were opened at the beginning

of the experiment; the �les which were used during

one experiment run were randomly chosen among a

set of �les that spanned the 4 GB disk. We ushed

the disk cache between each of the 50 experiment

runs. Table 4 presents our results using equations

(4) and (5). We see that the model's error is 6% or

less in all cases.

Prefetching disabled. We modi�ed the �le sys-

tem to disable prefetching and reran our single �le

experiments. Table 5 contains our results using

equations (4) and (5) with E[disk request size] =

BlockSize. The maximum relative error is 7%.



Table 3: Relative errors with one �le accessed.

request size �le size measured E[FSRT] computed E[FSRT] error

(KB) (KB) (ms) (ms)

8 64 2.16 2.16 0%

16 4.15 4.31 4%

32 7.88 8.62 9%

64 17.41 17.24 1%

8 128 2.70 2.69 1%

16 5.41 5.37 1%

32 10.74 10.74 0%

64 21.08 21.48 2%

Table 4: Relative errors with multiple �les accessed.

number of �les request size �le size measured E[FSRT] computed E[FSRT] error

(KB) (KB) (ms) (ms)

2 8 64 8.80 8.80 0%

16 17.27 17.61 2%

32 34.89 35.22 1%

64 68.96 70.43 2%

3 8 64 12.82 12.90 1%

16 25.60 25.81 1%

32 50.85 51.61 1%

64 99.98 103.23 3%

4 8 64 24.61 23.09 6%

16 49.16 46.17 6%

32 98.10 92.35 6%

64 193.86 184.70 5%

8 8 64 43.83 43.52 1%

16 87.54 87.04 1%

32 174.06 174.08 0%

64 344.04 348.16 1%

16 8 64 77.96 79.50 2%

16 155.48 159.00 2%

32 308.20 318.01 3%

64 604.90 636.01 5%

Table 5: Relative errors with one �le accessed and prefetching disabled.

request size �le size measured E[FSRT] computed E[FSRT] error

(KB) (KB) (ms) (ms)

8 64 2.64 2.46 7%

16 64 5.22 4.93 6%

32 64 10.21 9.86 3%

64 64 19.80 19.72 0%

8 128 3.26 3.07 6%

16 128 6.59 6.14 7%

32 128 13.21 12.28 7%

64 128 26.19 24.56 6%



Why does �le system prefetching work?

Elizabeth Shriver

Information Sciences Research Center

Bell Labs, Lucent Technologies

shriver@research.bell-labs.com

Christopher Small

Information Sciences Research Center

Bell Labs, Lucent Technologies

chris@research.bell-labs.com

Keith A. Smith

Harvard University

keith@eecs.harvard.edu

Abstract

Most �le systems attempt to predict which disk

blocks will be needed in the near future and prefetch

them into memory; this technique can improve ap-

plication throughput as much as 50%. But why?

The reasons include that the disk cache comes into

play, the device driver amortizes the �xed cost of an

I/O operation over a larger amount of data, total

disk seek time can be decreased, and that programs

can overlap computation and I/O. However, intu-

ition does not tell us the relative bene�t of each of

these causes, or techniques for increasing the e�ec-

tiveness of prefetching.

To answer these questions, we constructed an ana-

lytic performance model for �le system reads. The

model is based on a 4.4BSD-derived �le system, and

parameterized by the access patterns of the �les,

layout of �les on disk, and the design characteris-

tics of the �le system and of the underlying disk.

We then validated the model against several simple

workloads; the predictions of our model were typ-

ically within 4% of measured values, and di�ered

at most by 9% from measured values. Using the

model and experiments, we explain why and when

prefetching works, and make proposals for how to

tune �le system and disk parameters to improve

overall system throughput.

1 Introduction

Previous work has shown that most �le reads are

sequential [Baker91]. Optimizing for the common

case, modern �le systems take advantage of this fact

and prefetch blocks from disk that have not yet been

requested, but are likely to be needed in the near fu-

ture. This technique is e�ective for several reasons:

� There is a �xed cost associated with performing

a disk I/O operation. By increasing the amount

of data transfered on each I/O, the overhead is

amortized over a larger amount of data, im-

proving overall performance.

� Modern disks contain a disk cache, which con-

tains some number of disk blocks from the

cylinders of recent requests. If multiple blocks

are read from the same track, all but the �rst

may, under certain circumstances, be satis�ed

by the disk cache without accessing the disk

surface.

� The device driver or disk controller can sort

disk requests to minimize the total amount of

disk head positioning done. With a larger list

of disk requests, the driver or controller can do

a better job of ordering them to minimize disk

head motion. Additionally, the blocks of a �le

are often clustered together on the disk; when

this is so, multiple blocks of the �le can be read

at once without an intervening seek.

� If the application performs substantial compu-

tation as well as I/O, prefetching may allow

the application to overlap the two, which would

increase the application's throughput. For ex-

ample, an MPEG player may spend as much

time computing as it does waiting for I/O; if

the �le system can run ahead of the MPEG

player, loading data into memory before they

are needed, the player will not block on I/O.



If an application spends as much time per-

forming I/O as it does computing|successfully

prefetching data will allow overlapping the two

and the application's throughput will double.

This paper presents and validates an analytic �le

system performance model that allows us to explain

why and when prefetching works, and makes rec-

ommendations for how to improve the bene�t of �le

prefetching. The model described here is restricted

in two ways.

First, it addresses only �le read tra�c, and does not

capture �le writes or �le name lookup. Although

this restricts the applicability of the model, we be-

lieve that there are many interesting workloads cov-

ered by the model. For example, many workloads

consist almost entirely of reads, such as web servers,

read-mostly database systems, and �le systems that

store programs, libraries, and con�guration �les

(e.g., /, /etc, and /usr). Additionally, studies have

shown that, for some engineering workloads, 80% of

�le requests are reads [Baker91, Hartman93].

It has long been the case that in order to im-

prove performance, �le systems use a write-back

cache, delaying writes for some period of time

[Feiertag72, Ritchie78, McKusick84]. The results

of the study by Baker and associates showed that

with a 30-second write-back delay, 36% to 63% of

the bytes written to the cache do not survive, and by

increasing the write-back delay size to 1000 seconds,

60% to 95% do not survive.

Second, although our model includes multiple con-

current programs accessing the �le system, we limit

it to workloads where each �le is read from start

to �nish with little or no think time between read

requests. Although this does not cover workloads

such as the MPEG player discussed above, we be-

lieve that, given the relative speed of modern pro-

cessors and I/O devices, in the common case think

time is immeasurable. The Baker study showed that

75% of �les were open less than a quarter of a second

[Baker91]. This study was done on a collection of

machines running at around 25 MHz (SPARCSta-

tion 1, Sun 3, DECStation 3100, DECStation 5000);

on modern machines, with clock speeds an order of

magnitude faster, think time should be substantially

lower.

Outline of paper. Section 2 discusses in detail

the modeled �le system (the 4.4BSD Fast File Sys-

tem) and disk. Section 3 presents previous work in

�le systems and prefetching policies. The analytic

model of �le system response time and its valida-

tion are presented in Section 4 and Appendix A.

Section 5 explains why and when prefetching works.

We summarize our work and discuss future work in

Section 6.

2 Background

In this section we describe in detail the behavior of

the �le system we model, and discuss the character-

istics of modern disks.

2.1 The �le system

The �le system that we used as the basis for our

model is the 4.4BSD implementation of the Berke-

ley Fast File System that ships with BSD/OS 3.1

[McKusick96].

Reading �les. An application can make a request

for an arbitrarily large amount of data from a �le.

To process an application-level read request, the �le

system divides the request into one or more block-

sized (and block-aligned) requests, each of which the

�le system services separately. A popular �le system

block size is 8 KB, although other block sizes can

be speci�ed when the �le system is initialized.

For each block in the request, the �le system �rst

determines whether the block is already in the op-

erating system's in-memory cache. If it is, then the

block is copied from the cache to the application. If

the block is not already in memory, the �le system

issues a read request to the disk device driver.

Regardless of whether the desired block is already

in memory, the �le system may prefetch one or more

subsequent blocks from the �le. The amount of data

the �le system prefetches is determined by the �le

system's prefetch policy, and is a function of the

current �le o�set and whether or not the application

has been accessing the �le sequentially. A read of

block x from a �le is sequential if the last block read

from that �le was either x or x � 1. By treating



successive reads of the same block as \sequential,"

applications are not penalized for using a read size

that is less than the �le system's block size.

As read requests are synchronous, the operating sys-

tem blocks the application until all of the data it has

requested are available. Note that a single disk re-

quest may span multiple blocks and include both the

requested data and prefetch data, in which case the

application can not continue until the entire request

completes.

Data placement on disk. A cluster is a group

of logically sequential �le blocks that are stored se-

quentially on disk; the cluster size is the number of

bytes in the cluster. Depending on the �le system

parameters, the �le system may place successive al-

locations of clusters contiguously on the disk. This

can result in contiguous allocations of hundreds of

kilobytes in size.

The blocks of a �le are indexed by a tree structure

on disk; the root of the tree is an inode. The inode

contains the disk addresses to the �rst few blocks of

a �le (i.e., the �rst DirectBlocks blocks of the �le); in

the case of the modeled system, the inode contains

pointers to the �rst twelve blocks. The remaining

blocks are referenced by indirect blocks.

The �rst block referenced from an indirect block is

always the start of a new cluster. This may cause

the preceding cluster to be smaller than the �le sys-

tem's cluster size. For example, if DirectBlocks is

not a multiple of the cluster size, the last cluster of

direct blocks may be smaller than the cluster size.

The �le system divides the disk into cylinder groups,

which are used as allocation pools. Each cylin-

der group contains a �xed sized number of blocks

(2048 blocks, or 16 MB on the modeled system).

The �le system exploits expected patterns of local-

ity of reference by co-locating related data in the

same cylinder group.

The �le system usually attempts to allocate clus-

ters for the same �le in the same cylinder group.

Each cluster is allocated in the same cylinder group

as the previous cluster. The �le system attempts

to space clusters according to the value of the rota-

tional delay parameter which is set using the newfs

or tunefs command. The �le system can always

achieve this spacing on an empty �le system. If the

free space on the �le system is fragmented, however,

this spacing may vary. The �le system allocates the

�rst cluster of a �le from the same cylinder group

as the �le's inode. Whenever an indirect block is al-

located to a �le, allocation for the �le switches to a

di�erent cylinder group. Thus an indirect block and

the clusters it references are allocated in a di�erent

cylinder group than the previous part of the �le.

Prefetching in the �le system cache. If the re-

quested data are not in cache, the �le system issues

a disk request for the desired block. If the applica-

tion is accessing the �le sequentially, the �le system

may prefetch one or more additional data blocks.

The amount of data prefetched is doubled on each

disk read, up to a maximum of the cluster size. The

last block of a �le may be allocated to a fragment

rather than a full size block. When this happens,

the �nal fragment of the �le is not prefetched.

It is possible for a block to be prefetched and then

evicted before it is requested. If the user subse-

quently requests such a block, the �le system as-

sumes that it is prefetching too aggressively and cuts

the prefetch size in half.

2.2 The disk

When a disk request is issued from the �le system,

it enters the device driver. If the disk is busy, the

request is put on a queue in the device driver; the

queue is sorted by a scheduling algorithm that at-

tempts to improve response times. One commonly-

used class of scheduling algorithms are the elevator

algorithms, where the requests are serviced in the

order that they appear on the disk tracks. CLOOK

and CSCAN are examples of elevator algorithms.

Once the request reaches the head of the queue, the

request is sent to the bus controller which gains con-

trol of the bus. The request is then sent to the disk,

and might be queued there if the disk mechanism is

busy. This queue is also sorted to improve response

time; one commonly-used scheduling algorithm is

Shortest Positioning Time First, which services re-

quests in an order intended to minimize the sum of

the seek time (i.e., the time to move the head from

the current track to the desired track) and the rota-

tional latency (i.e., the time needed for the disk to

rotate to the correct sector once the desired track is

reached).



Seek time. Seek is the time for the actuator to

move the disk arm to the desired cylinder. A seek

operation can be decomposed into:

� speedup, where the arm is accelerated until it

reaches half of the seek distance or a �xed max-

imum velocity,

� coast for long seeks, where the arm is moving

at maximum velocity,

� slowdown, where the arm is brought to rest

close to the desired track, and

� settle, where the disk controller adjusts the

head to access the desired location.

Very short seeks (2{4 cylinders) are dominated by

the settle time. Short seeks (less than 200{400 cylin-

ders) are dominated by the speedup, which is pro-

portional to the square root of seek distance. Long

seeks are dominated by the coast time, which is pro-

portional to the seek distance. Thus, the seek time

can be approximated by a function such as

Seek Time[dis] =

8
<
:

0 dis = 0

a+ b
p
dis 0 < dis � e

c+ d dis dis > e

(1)

where a, b, c, d, and e are device-speci�c parameters

and dis is the number of cylinders to be traveled.

Single cylinder seeks are often treated specially.

The disk cache. When the request reaches the

head of the queue, the disk checks its cache to see

if the data are in cache. If not, the disk mechanism

moves the disk head to the desired track (seeking)

and waits until the desired sector is under the head

(rotational latency). The disk then reads the desired

data into the disk cache. The disk controller then

contends for access to the bus, and transfers the

data to the host from the disk cache at a rate deter-

mined by the speed of the bus controller and the bus

itself. Once the host receives the data and copies

them into the memory space of the �le system, the

system awakens any processes that are waiting for

the read to complete.

The disk cache is used for multiple purposes. One

is as a pass-through speed-matching bu�er between

the disk mechanism and the bus. Most disks do not

retain data in the cache after the data have been

sent to the host. A second purpose is as a readahead

bu�er. Data can be readahead into the disk cache to

service future requests. Most frequently, this is done

by the disk saving in a cache segment the data that

comes after the requested data. Modern disks such

as the Seagate Cheetah only readahead data when

the requested addresses suggest that a sequential

access pattern is present.

The disk cache is divided into cache segments. Each

segment contains data prefetched from the disk for

one sequential stream. The number of cache seg-

ments usually can be set on a per-disk basis; the

typical range of allowable values is between one and

sixteen.

Disk performance is covered in more detail by

Shriver [Shriver97] and by Ruemmler and Wilkes

[Ruemmler94].

3 Related work

Prefetching. Prefetching is not a new idea; in the

1970's, Multics supported prefetching [Feiertag72],

as did Unix [Ritchie78]. Earlier work has focused

on the bene�t of prefetching, either by allowing

applications to give prefetching hints to the op-

erating system [Cao94, Patterson95, Mowry96], or

by automatically discovering �le access patterns in

order to better predict which blocks to prefetch

[Gri�oen94, Lei97, Kroeger96]. Techniques stud-

ied have included neural networks [Madhyastha97a]

and hidden Markov models [Madhyastha97b]. Our

work di�ers from this work in three ways. First,

we address only common case workloads that have

sequential access patterns. Second, our model is

parameterized by the �le system's behavior such as

caching strategy and �le layout, and takes into ac-

count the behavioral characteristics of the disks used

to store �les. Third, our model predicts the perfor-

mance of the �le system.

Substantial work has been done studying the in-

teraction between prefetching and caching [Cao95,

Patterson95, Kimbrel96]. Others have examined

methods to work around the �le system cache to

achieve the desired performance (e.g., [Kotz95]).

The bene�t of prefetching is not limited to work-

loads where �les are read sequentially; Small stud-

ied the e�ect of prefetching on random-access, zero

think time workloads on the VINO operating sys-



tem, and showed that even with these workloads the

performance gain from prefetching was more than

20% [Small98].

Disk modeling. Much work has been done in

disk modeling. The usual approach to analyz-

ing detailed disk drive performance is to use sim-

ulation (e.g., [Hofri80, Seltzer90, Worthington94]).

Most early modeling studies (e.g., [Bastian82,

Wilhelm77]) concentrated on rotational position

sensing for mainframe disk drives, which had no

cache at the disk and did no readahead. Most

prior work has not been workload speci�c, and has,

for example, assumed that the workload has uni-

form random spatial distributions (e.g., [Seeger96,

Ng91, Merchant96]). Chen and Towsley, and Ku-

ratti and Sanders, modeled the probability that

no seek was needed [Chen93, Kuratti95]; Hospodor

reported that an exponential distribution of seek

times matched measurements well for three test

workloads [Hospodor95]. Shriver and colleagues,

and Barve and associates present analytic mod-

els for modern disk drives, representing readahead

and queueing e�ects across a range of workloads

[Shriver97, Shriver98, Barve99].

4 The analytic model

In this section, we present the �le system, disk, and

workload parameters that we need for our model.

As we present the needed �le system and disk pa-

rameters, we also give the values for the platforms

which we used to validate the model. We close this

section with presenting the details of the model.

We used two platforms; one with a slow bus (i.e.,

10 MB/s), and one with a fast bus (i.e., 20 MB/s).

Details of our test/experiment platforms are in Sec-

tion 5.

4.1 File system speci�cation

Based on our understanding of the �le system cache

policies, we determined a set of parameters that al-

low us to capture the performance of the �le system

cache; these can be found in Table 1. For our fast

machine, the SystemCallOverhead value was 5 �s and

the MemoryCopyRate was 5 �s/KB.

4.2 Disk speci�cation

To predict the disk response time, we need to know

several parameters of the disk being used.

� DiskOverhead includes the time to send the re-

quest down the bus and the processing time at

the controller, which is made up of the time re-

quired for the controller to parse the request,

check the disk cache for the data, and so on.

DiskOverhead can either be approximated us-

ing a complex disk model [Shriver97] or can

be measured experimentally. In this paper we

measured the disk overhead experimentally at

1.8 ms for a single �le and 1.2 ms for multiple

�les for our slow platform and 0.34 ms for our

fast platform.

� seek curve information is used to approximate

the seek time. The seek curve information we

use is a = 0:002, b = 0:173, c = 3:597, d =

0:002, and e = 801 as de�ned in equation (1).

� disk rotation speed is used to approximate the

time spent in rotational latency. The DiskTR is

the rate that data can be transfered from the

disk surface to the disk cache. The disk used to

validate our model spins at 10,000 RPM, giving

us a DiskTR of close to 18 MB/s.

� BusTR gives us the rate at which data can be

transfered from the disk cache to the host; we

are bounded by the slower of the BusTR and

DiskTR. On the slow platform, the transfer rate

was limited to 9.3 MB/s; on the fast platform,

the transfer rate was 18.2 MB/s.

� CacheSegments is the number of di�erent data

streams the disk can concurrently cache, and

hence the number of streams for which it can

perform read-ahead. The disk used to validate

our model was con�gured for three cache seg-

ments; this model of disk can be con�gured for

between one and sixteen cache segments.

� CacheSize is the size of the disk cache. From

this value and the CacheSegments, the size of

each cache segment can be computed. The disk

used to validate our model has a 512 KB cache.

� Max Cylinder is the number of cylinders in the

disk. The disk used to validate our model has

6526 cylinders.



Table 1: File system parameters and values for validated platform.

parameter de�nition validated platform

BlockSize the amount of data which the �le system processes at once 8 KB

DirectBlocks the number of blocks that can be accessed before the indirect

block needs to be accessed

12

ClusterSize the amount of a �le that is stored contiguously on disk 64 KB

CylinderGroupSize number of bytes on a disk that �le system treats as \close" 16 MB

SystemCallOverhead time needed to check the �le system cache for the requested

data

10 �s

MemoryCopyRate rate at which data are copied from the �le system cache to the

application memory

10 �s/KB

4.3 Workload speci�cation

The workload parameters that a�ect �le system

cache performance are the ones needed to predict

the disk performance and the �le layout on disk.

Table 2 presents this set of parameters; most of

these parameters were taken from earlier work on

disk modeling [Shriver98].
1

4.4 The model

Our approach has been to use the technique pre-

sented in our earlier work on disk modeling, which

models the individual components of the I/O path,

and then composes the models together [Shriver97].

We use some of the ideas presented in the disk cache

model to model the �le system cache.

Disk response time. The mean disk response

time is the sum of disk overhead, disk head posi-

tioning time, and time to transfer the data from

disk to the �le system cache:

DRT = DiskOverhead+ PositionTime+

E[disk request size]=minfBusTR;DiskTRg:

(Note: E[x] denotes the expected, or average value

for x.) The amount of time spent positioning the

disk head, PositionTime, depends on the current lo-

cation of the disk head, which is determined by the

previous request. For example, if this is the �rst

request for a block in a given cluster, PositionTime

1The previous disk model includes additional workload pa-

rameters that support speci�cation of spatial locality; these

are not needed for our current model since we assume that

the �les are accessed sequentially. The earlier disk model

also supports a read fraction parameter; in this paper, we

only model �le reads.

will include both seek time and time for the rota-

tional latency. Let E[SeekTime] be the mean seek

time and E[RotLat] be the mean rotational latency

(1/2 the time for a full disk rotation). Thus, the

disk response time for the �rst request in a cluster

is

DRT[random request] = DiskOverhead+

E[SeekTime] +E[RotLat] +

E[disk request size]

minfBusTR;DiskTRg : (2)

If the previous request was for a block in the same

cylinder group, the seek distance will be small. This

will be the case if the previous read was to a por-

tion of the �le stored in the same cylinder group,

or to some other �le found in the same cylinder

group. If there are n �les being accessed concur-

rently, the expected seek distance will either be (a)

Max Cylinder/3, if the device driver and disk con-

troller request queues are empty, or (b) (assuming

the disk scheduler is using an elevator algorithm)

Max Cylinder=(n+ 2) [Shriver97].

The mean disk request size, E[disk request size], can

be computed by averaging the request sizes; these

can be computed by simulating the algorithm to de-

termine the amount of data prefetched, where the

simulation stops when the amount of accessed data

is equal to ClusterSize. If the �le system is servicing

more than one �le, the actual amount prefetched

can be smaller than expected due to blocks being

evicted before use. If the �le system is not prefetch-

ing data, the E[disk request size] is the �le system

block size, BlockSize.

Sometimes the requested data are in the disk cache

due to readahead; in these cases, the disk response

time is

DRT[cached request] = DiskOverhead+

E[disk request size]=BusTR: (3)



Table 2: Workload speci�cation.

parameter de�nition unit

temporal locality measures

request rate rate at which requests arrive at the storage device requests/second

cylinder group id cylinder group (location) of the �le integer

arrival process inter-request timing (constant [open, closed], Poisson, or

bursty)

|

spatial locality measures

data span the span (range) of data accessed bytes

request size length of a host read or write request bytes

run length length of a run, a contiguous set of requests bytes

File system response time. We �rst compute

the amount of time needed for all of the �le system

accesses TotalFSRT, and then compute the mean

response time for each access, FSRT, by averaging:

FSRT =
data span

request size
TotalFSRT: (4)

The rest of this section discusses approximating

TotalFSRT.

Let us �rst look at the simplest case: reading one

�le that resides entirely in one cluster, the mean

response time to read the cluster contains �le system

overhead plus the time needed to access the data

from disk:

ClusterRT = FSOverhead+

DRT[�rst request] +X
i

DRT[remaining requesti]

where the �rst request and remaining requests

are the disk requests for the blocks in

the cluster and DRT[�rst request] is from

equation (2). If n �les are being serviced

at once, the DRT[remaining requesti]'s each

contain E[SeekTime] + E[RotLat] if n is more

than CacheSegments, the number of disk cache

segments. If not, some of the data will be

in disk cache and equation (3) is used. The

FSOverhead can be measured experimently

or computed as SystemCallOverhead +

E[request size]=MemoryCopyRate. The number

of requests per cluster can be computed as

data span=disk request size.

If the �les span multiple clusters, we have

TotalFSRT = NumClusters � ClusterRT

where we approximate the number of clusters

as NumClusters = data span=ClusterSize. To

capture the \extra" cluster due to only the

�rst DirectBlocks blocks being stored on the

same cluster, this value is incremented by 1 if

(ClusterSize=BlockSize)=DirectBlocks is not 1 and

data span=BlockSize > DirectBlocks.

If the device driver or disk controller scheduling al-

gorithm is CLOOK or CSCAN and the queue is not

zero, then there is a large seek time (for CLOOK) or

a full stroke seek time (for CSCAN) for each group

of n accesses, when n is the number of �les be-

ing serviced by the �le system; we call this time

extra seek time.

If the n �les being read are larger than DirectBlocks,

we must include the time required to read the indi-

rect block:

TotalFSRT = n � NumClusters � ClusterRT+

num requests � extra seek time+

DRT[indirect block] (5)

where num requests is the number of disk requests

in a �le. Since the location of the indirect block is

on a random cylinder group, equation (2) is used to

compute DRT[indirect block]. Of course, if the �le

contains more blocks than can be referenced by both

the inode and the indirect block, multiple indirect

block terms are needed.

5 Discussion

In the introduction to this paper, we listed the rea-

sons that prefetching improves performance: the

disk cache comes into play, the device driver amor-

tizes the �xed cost of an I/O over a larger amount of

data, and total disk seek time can be decreased. In

this section we discuss the terms introduced by our



model and attempt to explain where the time goes,

and when and why prefetching works. To do this, we

collected detailed traces of a variety of workloads.

These traces allowed us to compute the �le system

and disk response times experienced by the test ma-

chines. These response times were also used in our

validations as discussed in Appendix A.

Hardware setup and trace gathering. We

performed experiments on two hardware con�gu-

rations: a 200 MHz Pentium Pro processor and

a 450 MHz Pentium II processor. Each machine

had 128 MB of main memory. We conducted all

of our tracing and measurements on a 4 GB Sea-

gate ST34501W (Cheetah) disk, connected via a

10 MB/second PCI SCSI controller (for the 200

MHz processor) or via a 20 MB/second PCI SCSI

controller (for the 450 MHz processor). Our test

machines were running version 3.1 of the BSD/OS

operating system. The �le system parameters for

our test �le systems are found in Table 1 and the

disk parameters are in Section 4.2.

We collected our traces by adding trace points to

the BSD/OS kernel. At each trace point the kernel

wrote a record to an in-memory bu�er describing

the type of event that had occurred and any related

data. The kernel added a time stamp to each trace

record, using the CPU's on-chip cycle counter. A

user-level process periodically read the contents of

the trace bu�er.

To document the response time for application-level

read requests, we used a pair of trace points at the

entry and exit of the FFS read routine. Similarly,

we measured disk-level response times using a pair

of trace points in the SCSI driver, one when a re-

quest is issued to the disk controller, and a second

when the disk controller indicates that the I/O has

completed. Additional trace points documented the

exact sequence (and size) of the prefetch requests is-

sued by the �le system, and the amount of time each

request spent on the operating system's disk queue.

The numbers discussed in this section are for the

machine with the faster bus unless stated otherwise.

Disk cache. When an application makes a read

request of the �le system, the �le system checks to

see if the requested data are in its cache, and if not,

issues an I/O request to the disk. The data will be

found in the �le system cache if they were prefetched

��
��
��
��

��
��
��

��
��
��

���
���
���
���
���

���
���
���
���
���

��
��
��
��
��

��
��
��
��
��

��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��

���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���

���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���

�
�
�

�
�
�

�
�
�
�

0

5

10

15

20

fi
le

 s
ys

te
m

 r
es

po
ns

e 
tim

e 
(m

s)

6432168 

readahead

no readahead

request size (KB)

Figure 1: File system response times for a 64 KB �le

with and without the disk cache performing reada-

head. The readahead values are measured; the no-

readahead values are predicted by the model.

and have not been evicted. If the data are not in

the �le system's cache, the �le system must read it

from the disk. There are two possible scenarios:

1. The data are in the disk cache as a result of

readahead for a previous command, so the disk

does not need to read the data again. The disk

sends the data directly from the disk cache.

2. The data are not in the disk cache and must be

read from the disk surface.

In an attempt to quantify the e�ect of the disk

cache, Figures 1 and 2 contain the �le system

response time measurements with the disk cache

performing readahead and �le system response

time predictions without the disk cache perform-

ing readahead. The percent improvement in the

response time when the disk cache is performing

readahead is 17{23%.

Modern disks are capable of caching data for con-

current workloads, where each workload is reading

a region of the disk sequentially. If there are enough

cache segments for the current number of sequential

workloads, the disk will readahead for each work-

load, and each workload will bene�t. However, if

there are more sequential workloads than cache seg-

ments, depending on the cache replacement algo-

rithm used by the disk, the disk's ability to prefetch

may have little or no positive e�ect on performance.

In addition, disk readahead is only valuable when

the �le system prefetch size is less than the cluster



��
��
��

��
��
��

��
��
��
��

��
��
��
��

���
���
���
���
���
���

���
���
���
���
���
���

��
��
��
��
��
��
��

��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��

���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���

���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���

�
�
�

�
�
�

�
�
�
�

0

10

15

20
fi

le
 s

ys
te

m
 r

es
po

ns
e 

tim
e 

(m
s)

6432168 

readahead

no readahead

5

request size (KB)

Figure 2: File system response times for a 128 KB

�le with and without the disk cache performing

readahead. The readahead values are measured; the

no-readahead values are predicted by the model.

size, since, after that, the entire cluster is fetched

with one disk access. In the case of our �le system

parameters, this occurred when the �le was 128 KB

or smaller.

I/O cost amortization. On our slow bus con�g-

uration, we measured the disk overhead of perform-

ing an I/O operation at 1.2 to 1.8 ms, which is on

the same order as the time to perform a half-rotation

(3 ms). The measured transfer rate of the bus is 9.3

MB/s; by saving an I/O operation, we can transfer

an additional 11 to 16 KB. As an example, assume

that 64 KB of data will be used by the application.

If the requested data are in the disk cache, using a

�le block of 8 KB will take at least 14.1 ms (1.8 ms

overhead four times + 6.9 ms for data transfer);
2
a

�le block of 64 KB will take 8.7 ms (1.8 ms overhead

+ 6.9 ms for data transfer), just a little over half the

I/O time.

The impact of I/O cost amortization can be seen

when comparing the measured �le system response

time when servicing one �le, with and without

prefetching. Figure 3 show these times for the slower

hardware con�guration. With prefetching disabled,

the �le system requests data in BlockSize units, in-

creasing the number of requests, and the amount

of disk and �le system overhead. The additional

overheads increase the resulting performance by 13{

29%.

2With the �le system performing prefetching, there will

be 4 disk requests having a mean disk request size of 16 KB.

��
��
��
��

��
��
��
��

��
��
��
��
��

��
��
��
��
��

���
���
���
���
���
���

���
���
���
���
���
���

��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��

���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���

���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���

�
�
�

�
�
�

�
�
�
�

0

5

10

15

20

fi
le

 s
ys

te
m

 r
es

po
ns

e 
tim

e 
(m

s)

6432168 

prefetching

no prefetching

request size (KB)

Figure 3: Measured �le system response times for

a 64 KB �le with and without the �le system per-

forming prefetching.

When we ran our tests on the machine with the

faster bus, we noted anomalous disk behavior that

we do not yet understand. According to our mea-

surements, it should (and does, in most cases) take

roughly 0.78 ms to read an 8 KB block from the

disk cache over the bus on this machine. However,

under certain circumstances, 8 KB reads from the

disk cache complete more quickly, taking roughly

0.56 ms.
3

This happened only when �le system

prefetching is disabled, i.e., when the �le system re-

quests multiple consecutive 8 KB blocks, and when

there is only one application reading from the disk.

The net result is that, in these rare situations, per-

formance is slightly better with �le system prefetch-

ing disabled. This behavior also was displayed with

the slower bus, but as you can see in Figure 3, the

bus is slow enough so that the response time with

prefetching is smaller than the response time with-

out prefetching.

Seek time reduction. As the number of active

workloads increases, the latency for each workload

will increase, but the disk throughput can, paradox-

ically, increase as well. Due to the type of scheduling

algorithms used for the device driver queue, more

elements in the read queue can mean smaller seeks

between each read, and hence greater disk through-

put. On the other hand, a longer queue means that

each request will, on average, spend more time in the

queue, and thus the read latency will be greater.

3We are in communication with Seagate in an attempt to

determine why we are seeing this behavior.



��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��
��
��
��

��
��
��
��
��
��
��

���
���
���
���
���
���
���

���
���
���
���
���
���
���

���
���
���
���
���
���
���
���
���
���
���

���
���
���
���
���
���
���
���
���
���
���

���
���
���
���
���
���
���
���
���
���
���
���

���
���
���
���
���
���
���
���
���
���
���
���

���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���

���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���

���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���

���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���

�
�
�

�
�
�

�
�
�
�

0

50

100

150

200

250

300

350
fi

le
 s

ys
te

m
 r

es
po

ns
e 

tim
e 

(m
s)

6432168 

FCFS

CLOOK

request size (KB)

Figure 4: Measured �le system response times for 8

64 KB �les with the device driver using a CLOOK

scheduling algorithm with a FCFS scheduling algo-

rithm.

Figure 4 displays the �le system response time

with the device driver implementing the CLOOK

scheduling algorithm (the standard algorithm), and

implementing FCFS, which will not reduce the seek

time. The performance gain from using CLOOK

over FCFS is 14%.

I/O / computation overlap. As was discussed

in Section 1, if an application performs substantial

computation as well as I/O, prefetching may allow

the application to overlap the two, increasing ap-

plication throughput and decreasing �le system re-

sponse time. For example, on our test hardware,

computing the MD5 checksum of a 10 KB block of

data takes approximately one millisecond. A pro-

gram reading data from the disk and computing the

MD5 checksum will exhibit delays between succes-

sive read requests, giving the �le system time to

prefetch data in anticipation of the next read re-

quest. Figure 5 shows the �le system response times

with a request size of 10 KB for �les of varying

lengths. The �gure shows the response time given

no delay (representing the application having no I/O

/ computation overlap), with an application delay

of 0.5 ms, and with an application delay of 1.0 ms

(as with MD5). As the �le size increases, so do

the savings due to prefetching. With a 64 KB �le

there is a 36% improvement, compared to a 114%

improvement when reading a 512 KB �le.

��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��

���
���
���
���
���
���
���
���
���
���
���

���
���
���
���
���
���
���
���
���
���
���

���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���

���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���

���
���
���
���
���
���
���
���
���
���
���
���

���
���
���
���
���
���
���
���
���
���
���
���

���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���

���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���

���
���
���
���
���
���
���
���
���
���
���

���
���
���
���
���
���
���
���
���
���
���

���
���
���
���
���
���
���
���
���
���
���

���
���
���
���
���
���
���
���
���
���
���

���
���
���
���
���
���
���
���
���
���
���
���

���
���
���
���
���
���
���
���
���
���
���
���

�
�
�

�
�
�

�
�
�
�

�
�
�
�

0

0.5

1

1.5

2

2.5

fi
le

 s
ys

te
m

 r
es

po
ns

e 
tim

e 
(m

s)

file size (KB)

64 128 256 512

0.5 ms think time

0 think time

1 ms think time

Figure 5: Measured �le system response times with

the application think time of 0 ms, 0.5 ms, and 1

ms.

Summary. In this section we showed how the

components of prefetching combine to improve per-

formance. In our tests, disk caching provided a 17{

23% boost, I/O cost amortization yielded, 13{29%,

seek time reduction (CLOOK vs. FCFS) 14%, and

overlapping computation and I/O can save as much

as 50%. Depending on the behavior of the speci�c

application, these components can have a greater or

lesser bene�t; added together, the performance gain

is signi�cant.

6 Conclusions

We developed an analytic model that predicts the

response time of the �le system with a maximum

relative error of 9% (see Appendix A). Given the

wide range of conceivable �le system layouts and

prefetching policies, an accurate analytic model sim-

pli�es the task of setting system parameters that

may improve performance enough to be worth im-

plementing and studying in more detail.

Our model has allowed us to develop two suggestions

for decreasing the �le system response time. If it

is reasonable to assume that the prefetched data

will be used, and we have room in the �le system

cache, once the disk head has been positioned over a

cluster, the entire cluster should be read. This will

decrease the �le system and disk overheads.

The number of disk cache segments restricts the

number of sequential workloads for which the disk



��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��

���
���
���
���
���

���
���
���
���
���

���
���
���
���
���
���
���
���
���
���
���
���
���

���
���
���
���
���
���
���
���
���
���
���
���
���

���
���
���
���
���
���
���
���
���
���

���
���
���
���
���
���
���
���
���
���

���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���

���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���

���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���

���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���

�
�
�

�
�
�

�
�
�
�

0

50

100

150

200

250

300
fi

le
 s

ys
te

m
 r

es
po

ns
e 

tim
e 

(m
s)

6432168 

3 cache segments

8 cache segments

request size (KB)

Figure 6: File system response times for 8 64 KB

�les with 3 and 8 segments. 3-segment values are

measured and 8-segment values are predicted by the

model.

cache can perform readahead, which means that if

the number of disk cache segments is smaller than

the number of concurrent workloads, it can be as

if the disk had no cache at all. One enhancement

that we suggest is for the �le system to dynamically

modify the number of disk cache segments to be

the number of �les being concurrently accessed from

that disk. This is a simple and inexpensive SCSI op-

eration, and can mean the di�erence between hav-

ing the disk cache work e�ectively and having it not

work at all. Figure 6 compares the measured �le

system response time when servicing 8 workloads

with 3 cache segments and the predicted response

time with 8 cache segments. This shows us a 44{

46% decrease in the response time when the number

of cache segments is set to the number of concurrent

workloads.

Our current model does not handle �le system

writes; we would like to extend it to support writes.

We would like to use our analytic model to compare

di�erent �le system prefetching polices and param-

eter settings to determine the \best" setting for a

particular workload. Workloads which seem promis-

ing are web server, scienti�c workloads [Miller91],

and database benchmarking workloads.

Acknowledgments. Many thanks to Bruce

Hillyer for many interesting conversations.

References

[Baker91] Mary G. Baker, John H. Hartman,

Michael D. Kupfer, Ken W. Shirri�, and

John K. Ousterhout. Measurements of a dis-

tributed �le system. Proceedings of the Thir-

teenth ACM Symposium on Operating Systems

Principles (Asilomar (Paci�c Grove), CA),

pages 198{212. ACM Press, October 1991.

[Barve99] Rakesh Barve, Elizabeth Shriver,

Phillip B. Gibbons, Bruce K. Hillyer, Yossi

Matias, and Je�rey Scott Vitter. Modeling

and optimizing I/O throughput of multiple

disks on a bus. Proceedings of the 1999 ACM

SIGMETRICS Conference on the Measure-

ment and Modeling of Computer Systems

(Atlanta, GA), May 1999. Available at

http://www.bell-labs.com/�shriver/.

[Bastian82] A. L. Bastian. Cached DASD per-

formance prediction and validation. Proceed-

ings of 13th International Conference on Man-

agement and Performance Evaluation of Com-

puter Systems (San Diego, CA), pages 174{177,

Mel Boksenbaum, George W. Dodson, Tom

Moran, Connie Smith, and H. Pat Artis, edi-

tors, December 1982.

[Cao94] Pei Cao, Edward W. Felten, and Kai

Li. Implementation and performance of

application-controlled �le caching. Proceedings

of the First USENIX Symposium on Operating

Systems Design and Implementation (Seattle,

WA), pages 165{178, November 1994.

[Cao95] Pei Cao, Edward W. Felten, Anna Karlin,

and Kai Li. A study of integrated prefetch-

ing and caching strategies. Proceedings of the

ACM SIGMETRICS Conference on Measure-

ment and Modelling of Computer Systems (Ot-

tawa, Canada), pages 188{197, May 1995.

[Chen93] Shenze Chen and Don Towsley. The de-

sign and evaluation of RAID 5 and parity strip-

ing disk array architectures. Journal of Paral-

lel and Distributed Computing, 17(1{2):58{74,

January{February 1993.

[Feiertag72] R. J. Feiertag and E. I. Organick. The

Multics input/output system. Proceedings of

the Third Symposium on Operating Systems

Principles (Palo Alto, CA), pages 35{41, Oc-

tober 1972.



[Gri�oen94] James Gri�oen and Randy Appleton.

Reducing �le system latency using a predic-

tive approach. Proceedings of the 1994 Summer

USENIX Technical Conference (Boston, MA),

pages 197{207, June 1994.

[Hartman93] John Hartman and John Ousterhout.

Letter to the editor. Operating Systems Review,

27(1):7{9, January 1993.

[Hofri80] M. Hofri. Disk scheduling: FCFS vs.

SSTF revisited. Communications of the ACM,

23(11):645{653, November 1980.

[Hospodor95] Andy Hospodor. Mechanical access

time calculation. Advances in Information

Storage Systems, 6:313{336, 1995.

[Kimbrel96] Tracy Kimbrel and Anna R. Karlin.

Near-optimal parallel prefetching and caching.

Proceedings of the 37th Annual Symposium on

Foundations of Computer Science (Burlington,

VT), pages 540{549, October 1996.

[Kotz95] David Kotz. Disk-directed I/O for an

out-of-core computation. Proceedings of the

Fourth IEEE International Symposium on High

Performance Distributed Computing (Pentagon

City, VA), pages 159{166, August 1995.

[Kroeger96] Thomas Kroeger. Predicting �le sys-

tem actions from reference patterns. Depart-

ment of Computer Engineering, University of

California, Santa Cruz, Santa Cruz, CA, De-

cember 1996. Master's thesis.

[Kuratti95] Anand Kuratti and William H.

Sanders. Performance analysis of the RAID

5 disk array. Proceedings of International

Computer Performance and Dependability

Symposium (Erlangen, Germany), pages

236{245, April 1995.

[Lei97] Hui Lei and Dan Duchamp. An analyti-

cal approach to �le prefetching. Proceedings

of the USENIX 1997 Annual Technical Con-

ference (Anaheim, CA), January 1997.

[Madhyastha97a] Tara M. Madhyastha and

Daniel A. Reed. Exploiting global in-

put/output access pattern classi�cation.

Proceedings of Supercomputing '97 (San Jose,

CA), November 1997.

[Madhyastha97b] Tara M. Madhyastha and

Daniel A. Reed. Input/output access pattern

classi�cation using hidden Markov mod-

els. Proceedings of the Fifth Workshop on

Input/Output in Parallel and Distributed

Systems (IOPADS) (San Jose, CA), pages

57{67. ACM Press, November 1997.

[McKusick84] Marshall K. McKusick, William N.

Joy, Samuel J. Le�er, and Robert S. Fabry.

A fast �le system for UNIX. ACM Transac-

tions on Computer Systems, 2(3):181{197, Au-

gust 1984.

[McKusick96] Marshall Kirk McKusick, Keith

Bostic, Michael J. Karels, and John S. Quar-

terman. The Design and Implementation of

the 4.4BSD Operating System. Addison-Wesley

Publishing, 1996.

[Merchant96] Arif Merchant and Philip S. Yu. An-

alytic modeling of clustered RAID with map-

ping based on nearly random permutation.

IEEE Transactions on Computers, 45(3):367{

373, March 1996.

[Miller91] Ethan L. Miller and Randy H. Katz. In-

put/output behavior of supercomputing appli-

cations. Proceedings of Supercomputing '91

(Albuquerque, NM), pages 567{576, November

1991.

[Mowry96] Todd C. Mowry, Angela K. Demke, and

Orran Krieger. Automatic compiler-inserted

I/O prefetching for out-of-core applications.

Proceedings of the 1996 Symposium on Operat-

ing Systems Design and Implementation (Seat-

tle, WA), pages 3{17. USENIX Association,

October 1996.

[Ng91] Spencer W. Ng. Improving disk performance

via latency reduction. IEEE Transactions on

Computers, 40(1):22{30, January 1991.

[Patterson95] R. Hugo Patterson, Garth A. Gibson,

Eka Ginting, Daniel Stodolsky, and Jim Ze-

lenka. Informed prefetching and caching. Pro-

ceedings of the Fifteenth ACM Symposium on

Operating Systems Principles (Copper Moun-

tain, CO), pages 79{95. ACM Press, December

1995.

[Ritchie78] D. M. Ritchie and K. Thompson.

The UNIX time-sharing system. The Bell

System Technical Journal, 57(6):1905{1930,

July/August 1978. Part 2.

[Ruemmler94] Chris Ruemmler and John Wilkes.

An introduction to disk drive modeling. IEEE

Computer, 27(3):17{28, March 1994.



[Seeger96] B. Seeger. An analysis of schedules for

performing multi-page requests. Information

Systems, 21(5):387{407, July 1996.

[Seltzer90] Margo Seltzer, Peter Chen, and John

Ousterhout. Disk scheduling revisited. Pro-

ceedings of Winter 1990 USENIX Conference

(Washington, DC), pages 313{323, January

1990.

[Shriver97] Elizabeth Shriver. Performance model-

ing for realistic storage devices. PhD thesis. De-

partment of Computer Science, New York Uni-

versity, New York, NY, May 1997. Available at

http://www.bell-labs.com/�shriver/.

[Shriver98] Elizabeth Shriver, Arif Merchant, and

John Wilkes. An analytic behavior model for

disk drives with readahead caches and request

reordering. Joint International Conference on

Measurement and Modeling of Computer Sys-

tems (Sigmetrics '98/Performance '98) (Madi-

son, WI), pages 182{191, June 1998. Available

at http://www.bell-labs.com/�shriver/.

[Small98] Christopher Small. Building an extensible

operating system. PhD thesis. Division of En-

gineering and Applied Sciences, Harvard Uni-

versity, Boston, MA, October 1998.

[Wilhelm77] Neil C. Wilhelm. A general model for

the performance of disk systems. Journal of the

ACM, 24(1):14{31, January 1977.

[Worthington94] Bruce L. Worthington, Gregory R.

Ganger, and Yale N. Patt. Scheduling algo-

rithms for modern disk drives. Proceedings

of ACM SIGMETRICS Conference on Mea-

surement and Modeling of Computer Systems

(Santa Clara, CA), pages 241{251, May 1994.

A Validation of the model

To validate the model, we ran a set of simple mi-

crobenchmark workloads, collecting traces of both

�le system and disk events. From these traces, we

determined the mean disk and application-level re-

sponse times for a variety of synthetic and real work-

loads. The results in this section are presented for

the machine with the slower bus.

The workloads. We created simple workloads

which opened �les, read them sequentially, and

closed them. We recorded only the reads, i.e., not

the open and close operations. We varied the re-

quest size and size of the �le (which, in turn, var-

ied data span and run length). Our workloads have

a closed arrival process; �les greater than 96 KB

spanned at least two cylinder groups.

Single �les accessed. We ran our workloads us-

ing one process to access a single �le; we repeated

the experiments 100 times and averaged to compute

the measured FSRT. Table 3 includes the measured

and model-computed FSRT using equations (4) and

(5), as well as the relative errors of the model. In

all but one case the model's estimate is within 4%

of the measured result; when reading 32 KB of a

64 KB �le the model error is 9%, which is higher,

but still quite good for an analytic model of this

type.

Multiple �les accessed. We then reran our ex-

periments with multiple concurrent processes, each

accessing a di�erent �le with the same workload

speci�cation (i.e., same request size and same �le

size). All of the �les were opened at the beginning

of the experiment; the �les which were used during

one experiment run were randomly chosen among a

set of �les that spanned the 4 GB disk. We ushed

the disk cache between each of the 50 experiment

runs. Table 4 presents our results using equations

(4) and (5). We see that the model's error is 6% or

less in all cases.

Prefetching disabled. We modi�ed the �le sys-

tem to disable prefetching and reran our single �le

experiments. Table 5 contains our results using

equations (4) and (5) with E[disk request size] =

BlockSize. The maximum relative error is 7%.



Table 3: Relative errors with one �le accessed.

request size �le size measured E[FSRT] computed E[FSRT] error

(KB) (KB) (ms) (ms)

8 64 2.16 2.16 0%

16 4.15 4.31 4%

32 7.88 8.62 9%

64 17.41 17.24 1%

8 128 2.70 2.69 1%

16 5.41 5.37 1%

32 10.74 10.74 0%

64 21.08 21.48 2%

Table 4: Relative errors with multiple �les accessed.

number of �les request size �le size measured E[FSRT] computed E[FSRT] error

(KB) (KB) (ms) (ms)

2 8 64 8.80 8.80 0%

16 17.27 17.61 2%

32 34.89 35.22 1%

64 68.96 70.43 2%

3 8 64 12.82 12.90 1%

16 25.60 25.81 1%

32 50.85 51.61 1%

64 99.98 103.23 3%

4 8 64 24.61 23.09 6%

16 49.16 46.17 6%

32 98.10 92.35 6%

64 193.86 184.70 5%

8 8 64 43.83 43.52 1%

16 87.54 87.04 1%

32 174.06 174.08 0%

64 344.04 348.16 1%

16 8 64 77.96 79.50 2%

16 155.48 159.00 2%

32 308.20 318.01 3%

64 604.90 636.01 5%

Table 5: Relative errors with one �le accessed and prefetching disabled.

request size �le size measured E[FSRT] computed E[FSRT] error

(KB) (KB) (ms) (ms)

8 64 2.64 2.46 7%

16 64 5.22 4.93 6%

32 64 10.21 9.86 3%

64 64 19.80 19.72 0%

8 128 3.26 3.07 6%

16 128 6.59 6.14 7%

32 128 13.21 12.28 7%

64 128 26.19 24.56 6%


