
Proceedings of 2000 USENIX Annual Technical Conference
San Diego, California, USA, June 18–23, 2000

M E A S U R I N G A N D C H A R A C T E R I Z I N G
S Y S T E M B E H AV I O R

U S I N G K E R N E L - L E V E L E V E N T L O G G I N G

Karim Yaghmour and Michel R. Dagenais

THE ADVANCED COMPUTING SYSTEMS ASSOCIATION

© 2000 by The USENIX Association All Rights Reserved For more information about the USENIX Association:
Phone: 1 510 528 8649 FAX: 1 510 548 5738 Email: office@usenix.org WWW: http://www.usenix.org

Rights to individual papers remain with the author or the author's employer.
 Permission is granted for noncommercial reproduction of the work for educational or research purposes.

This copyright notice must be included in the reproduced paper. USENIX acknowledges all trademarks herein.

Measuring and Characterizing System Behavior Using

Kernel-Level Event Logging

Karim Yaghmour and Michel R. Dagenais

D�epartement de g�enie �electrique et de g�enie informatique

Ecole Polytechnique de Montr�eal

C.P. 6079, Succ. Centre-Ville

Montr�eal, Qu�ebec, CANADA, H3C 3A7

karym@opersys.com, michel.dagenais@polymtl.ca

Abstract

Analyzing the dynamic behavior and performance
of complex software systems is diÆcult. Currently
available systems either analyze each process in iso-
lation, only provide system level cumulative statis-
tics, or provide a �xed and limited number of pro-
cess group related statistics. The Linux Trace
Toolkit (LTT) introduced here provides a novel,
modular, and extensible way of recording and an-
alyzing complete system behavior. Because all sig-
ni�cant system events are recorded, it is possible to
analyze any desired subset of the running processes,
and for instance distinguish between the time spent
waiting for some relevant event (data from disk or
another process) versus time spent waiting for some
unrelated process to use up its time slice.

Despite the extensive information gathered, experi-
mental results show that the LTT time and memory
overhead is minimal (< 2:5% when observing core
kernel events). Moreover, due to the LTT and Linux
kernel modularity and open source code availability,
the system is easily extended both in terms of sys-
tem events gathered, and of later post-processing
and graphical presentation.

1 Introduction

System performance measurement, for understand-
ing and optimization, may be performed at di�er-
ent levels according to varying needs. For exam-
ple, system administrators need to understand what
is using up all the resources and where the bottle-
necks are; this may help determine which hardware
upgrade would be most bene�cial, or who is abus-
ing the system. On the other hand, the application
user or developer wants to understand where all the

elapsed time is spent; this may include several re-
lated processes as well as system services such as
network and �le systems.

At the system level, easily available performance
data usually includes the average load, number of in-
terrupts, number of packets sent and received, and
number of disk blocks read and written. At user
level, it is possible to obtain per process and per pro-
cess group the elapsed time, system and user CPU
time, number of input/output operations, instruc-
tion counts and portion of CPU time spent in each
function.

This information is suÆcient to analyze the overall
system performance or single CPU intensive pro-
cesses. However, a di�erent approach is required to
analyze complex networked multi-process software
systems, running on multi-processor systems, and
taking into account the aggressive disk caching pol-
icy of modern operating systems. An excellent ex-
ample of such a complex performance problem is
the recent discussions on the Linux kernel mailing
lists about the lower than expected performance on
very high-end web servers. After tedious ad hoc
manual code instrumentation and repeated exper-
iments, they eventually focused on two perceived
problems: coarse grain locking in the TCP/IP stack
and the thundering herd problem (several daemons
were awakened when new data arrived while a single
daemon could use the data anyway). Such complex
and specialized applications motivate the need for a
comprehensive yet low-overhead, modular, and ex-
tensible event monitoring system for detailed per-
formance analysis.

In section 2, existing pro�ling and measurement
tools are reviewed and discussed. Section 3 de-
tails the architecture of the new Linux Trace Toolkit

(LTT) presented here. Section 4 presents the over-
head caused by LTT. Section 5 presents cases where
LTT has been used to analyze system behavior and
compares LTT to existing analysis tools. Section 6
discusses possible future directions.

2 Related work

As discussed in the previous section, there are two
broad categories of existing pro�ling tools. The �rst
is aimed at the detailed analysis of individual appli-
cations and the second is aimed at an overview of
the system's behavior.

In the �rst category, we �nd tools such as DCPI [9],
Morph [11], Path Pro�ler [6], Quantify [1] and
GProf [12], to name a few. DCPI provides a de-
tailed analysis of di�erent processes running on a
system down to pipeline stalls. In order to provide
its highly detailed data, DCPI uses a very high fre-
quency interrupt. Similarly, Morph uses the clock
interrupt to gather data in order to optimize appli-
cations o�-line. Both systems fail to provide their
user with information on the interactions of the dif-
ferent processes. Neither enable the user to under-
stand the dynamics of the observed system. Path
Pro�ler is based on work done by J. Larus and T.
Ball [8] and, contrary to DCPI and Morph, is an
instrumentational approach to data sampling. Path
Pro�ler is much like GProf but is much richer in de-
tail. Here, the problem is the overhead. By the au-
thors' own evaluation, the overhead is around 30%.
On a normal running system, this is often not tol-
erable. As reported in [6], Quantify uses techniques
similar to Path Pro�ler to provide pro�ling informa-
tion, but its capabilities remain con�ned to analyz-
ing one process at a time. Moreover, its overhead is
unpublished.

All these pro�ling systems provide detailed analysis
of one or many processes, but fail to provide in-
formation on system dynamics. Yet, two of these
systems bare a signi�cant contribution that is used
by LTT and that provides an eÆcient way to col-
lect a high volume of data without hindering system
performance. DCPI and Morph use a combination
of kernel modi�cations, driver, and daemon to col-
lect the necessary data for their operation. This is a
departure from the traditional practice of using new
system calls or adding entries to the /proc directory
and provides a wealth of opportunities for pro�ling
and measuring systems.

On the other end of the spectrum, we �nd such tools
as UNIX ps and top and the Windows NT Perfor-
mance Monitor [15]. The former often use the con-
tent of the /proc directory to present the user with
system statistics. The later uses system calls that
enable the user to read into kernel counters. Both
are based on sampling or on crude event counting.
Both lack the possibility to track the order in which
events occurred or their details. They cannot, there-
fore, be relied on to o�er a correct appreciation of
the underlying system's dynamics.

In a category of their own, we �nd specialized tools
that enable the user to track key system events while
preserving their order of occurrence and some de-
tails. These tools have primarily been used for de-
bugging or for security auditing. They have not
been designed for measurement or characterization.
For instance, WindView [2], DejaView [3] and the
Hyperkernel Trace Utility [4] are primarily designed
to help embedded system designers understand the
dynamics of their systems in order to clarify syn-
chronization and resource usage problems. The se-
curity auditing tools are limited by their own pur-
pose. That is, their usage cannot be generalized
to purposes other than security auditing. Neither
category is intended to provide the user with sys-
tem performance analysis. Moreover, the debugging
tools, which are far more elaborate than the secu-
rity oriented tools mentioned, are all proprietary.
Therefore, they cannot be improved and extended
in the same way by the user community.

Another approach is used in SimOS [13] which
simulates the hardware on which an operating sys-
tem runs in order to retrieve information regarding
its behavior and how applications interact. This,
though, remains a simulated system and cannot be
used on production systems. In this regard, LTT is
not unique in the information it provides. Yet, it is
the only tool available for a mainstream operating
system that has been designed from the ground up
in order to provide the user with not only a view
of the dynamic behavior of the system, but also a
characterization of its behavior and a measurement
of the di�erent latencies su�ered by and because of
the di�erent processes running. Moreover, it is an
open-source project and can, therefore, be modi�ed
and extended under the GNU General Public Li-
cense [5].

Trace facility

Kernel
Linux

Daemon

Virtual File System

Trace module

Figure 1: LTT architecture.

3 Toolkit architecture

LTT is composed of independent software modules.
Each module has been designed in order to facilitate
extension while minimizing performance overhead.
Figure 1 represents the architecture used. Note
that, for reasons of simplicity, only the architectural
parts of the Linux kernel relating to LTT's function-
ality are presented. Details for the Linux architec-
ture can be found in [10, 14]. Details for a general
UNIX system architecture can be found in [16, 7].
The arrows indicate the
ow of information through
the di�erent modules making up LTT. The primary
source of information being the instrumented ker-
nel. The source of this primary information is not
attributed to a kernel component in particular since
many components convey trace information. There-
fore, not all the modules producing information are
illustrated, to simplify presentation, but they are all
discussed in detail below.

Basically, events are forwarded to the trace module
via the kernel trace facility. The trace module, vis-
ible in user space as an entry in the /dev directory,
then logs the events in its bu�er. Finally, the trace
daemon reads from the trace module device and
commits the recorded events into a user-provided
�le.

Section 3.1 discusses the kernel trace facility. Sec-
tion 3.2 discusses the instrumentation of the kernel.
Section 3.3 discusses the trace module. Section 3.4
discusses the trace daemon. Finally, section 3.5 dis-
cusses the data analysis and presentation software
that come with LTT.

3.1 Kernel trace facility

The kernel trace facility is an extension to the core
kernel facilities. Its function is to provide a unique
entry point to all the other kernel facilities that
would like an event to be traced. However, it does
not log the events. Rather, it forwards the trace
request to the trace module.

To achieve such functionality, the trace module has
to register itself with the trace facility upon system
startup, if it was compiled as part of the kernel.
When compiled and loaded as a separate module,
the registration will take place when the module is
loaded. When registering, the trace module pro-
vides the trace facility with a call-back function that
is to be called whenever an event occurs. If no trace
module is registered, then the traced events are ig-
nored. Furthermore, it provides the trace module
with the possibility to con�gure the way the instruc-
tion pointer values are recorded upon the occurrence
of a system call. For instance, since most system
calls are done from a loaded library rather than from
the code belonging to the running application, it is a
desirable feature to specify either the number of call
depths on the stack or an address range from which
the instruction pointer should come from. Once set,
the kernel will browse the stack to �nd an instruc-
tion pointer matching the desired constraints, when-
ever a system call occurs.

In summary, the kernel trace facility acts as a link
between the trace module and the di�erent kernel
facilities.

3.2 Kernel instrumentation

The kernel instrumentation consists of the di�erent
events being traced in the kernel. There are dif-
ferent types of events. Each type of event has its
own data set and, as such, the length of a trace en-
try varies according to the type of event recorded.
Within a given type, there can be di�erent subtypes.
This allows various degrees of detail. Figure 2 lists
for every type of event existing subtypes and the
recorded data.

Given the number of modi�cations to the kernel
source code and the number of �les modi�ed, a set
of macros has been used instead of a direct call to
the services of the trace facility. During compila-
tion of the kernel, if the tracing is disabled in the
con�guration, the added code will have no e�ect. If

Event type Event subtype Event detail

Trace start None Trace module speci�c
System call entry None System call ID and instruction pointer
System call exit None None
Trap entry None Trap ID and instruction pointer
Trap exit None None
Interrupt entry None Interrupt ID
Interrupt exit None None
Scheduling change None Incoming task, outgoing task and outgoing task's state
Kernel timer None None
Bottom half None Bottom half ID
Process Create kernel thread Thread start address and PID

Fork PID of created process
Exit None
Wait PID waited on
Signal Signal ID and destination PID
Wakeup Process PID and state before wakeup

File system Bu�er wait start None
Bu�er wait end None
Exec File name
Open File name and descriptor
Close File descriptor
Read File descriptor and quantity read
Write File descriptor and quantity written
Seek File descriptor and o�set
Ioctl File descriptor and command
Select File descriptor and timeout
Poll File descriptor and timeout

Timer Expired None
Set itimer Type and time
Set timeout Time

Memory Page allocate Size order
Page free Size order
Swap in Page address
Swap out Page address
Page wait start None
Page wait end None

Socket communication Socket call Call ID and socket ID
Socket create Socket type and ID of created socket
Socket send Type of socket and quantity sent
Socket receive Type of socket and quantity received

Inter-process communication System V IPC call Call ID and entity ID
Message queue create Message queue ID and creation
ags
Semaphore create Semaphore ID and creation
ags
Shared memory create Shared memory ID and creation
ags

Network Incoming packet Protocol type
Outgoing packet Protocol type

Figure 2: Kernel events traced.

tracing is selected, then the macros will be replaced
by the portion of code that sets the desired values
and calls the trace facility.

3.3 Trace module

The trace module is a key element of the architec-
ture. The performance of the trace process largely
depends on it. In theory, the goal of the trace mod-
ule is simple: store the incoming event descriptions
and deliver them eÆciently to the trace daemon.
In practice, its implementation is much more elab-
orate. There are many reasons for this.

First, the trace module must retrieve additional in-
formation for each event. This additional informa-
tion consists of the time at which the event occurred
and the CPU identi�er. Since the absolute time is
large (an 8 byte pair consisting of seconds and mi-
croseconds), only the time di�erence between the
current event and the time at which the last bu�er
switch occurred is recorded. The time of the last
bu�er switch is necessary to support a double bu�er-
ing scheme explained below. Given the size of the
bu�ers and the frequency of event occurrences, 4
bytes suÆce. Note that the trace module uses the
do gettimeofday kernel call in Linux in order to ob-
tain the absolute time at which an event occurred.
Under Pentium type PCs, this call uses the pro-
cessor's Time Stamp Counter (TSC) which enables
microsecond precision on timestamps.

Second, the trace module must be con�gurable. The
following con�guration options are possible:

� Set event data bu�er size.

� Set event mask.

� Set event details mask.

� Record CPU ID.

� Track a given PID.

� Track a given process group.

� Track a given GID.

� Track a given UID.

� Set call depth at which the instruction pointer
is to be fetched for a system call.

� Set an address range from which the instruction
pointer is to be fetched for a system call.

The event mask is used to determine whether an
event is to be logged. The event details mask is
used to determine whether the details of a given
event are to be recorded. Tracking a PID, process
group, GID, or UID, will result in the logging of
only the events occurring during the execution of a
process �tting the right description. The call depth
and address range for a system call have previously
been discussed. Con�guration is done through the
ioctl system call.

Third, the trace module must be reentrant since an
event can occur from two di�erent levels of prior-
ity at the same time. For instance, the trace mod-
ule could be dealing with a system call event when
an interrupt occurs. Given the fact that interrupts
have priority over any other event and that di�erent
interrupts have di�erent priorities, the processing of
the system call will be suspended and an interrupt
event will call upon the trace module. To solve this
issue a kernel lock is used during the critical part
of the event treatment. This though raises another
concern. Holding a kernel lock for an extended pe-
riod of time can be costly given the frequency at
which some events can occur. This is not the case
with LTT, since the kernel lock used is held only for
the time of the logging of the event into the mod-
ule's bu�er. Furthermore, since the logging proce-
dure does not call upon any other procedure, there
can be no priority-inversion problem. Each event
logging is interruptible once it has released the ker-
nel lock by any higher priority event.

In order to be accessible through the virtual �le-
system as a device, the trace module provides a ba-
sic set of �le operations. These are:

� open, upon which a pointer to the task struc-
ture of the caller is kept in order to be used by
the trace module when the trace bu�er is full.

� ioctl, to provide the daemon with a way to con-
�gure tracing.

� release, for the device to be released when the
daemon dies or when the device is closed.

� fsync, to reset the driver.

To eÆciently deal with the large quantity of data
generated, the trace module uses double-bu�ering.
That is, a write bu�er is used to log events until
it reaches its limit. At which time, the daemon
is noti�ed using a SIGIO signal. Once the write

bu�er has been �lled, the trace module assigns it as
the read bu�er and uses the previous read bu�er as
the new write bu�er. Of course data can be lost if
the daemon is not rescheduled before the new write
bu�er �lls. Since the size of the bu�ers used by the
module is con�gurable, it is up to the daemon to
con�gure the module properly. Moreover, even if
the daemon has opened the trace module, events do
not get logged until the daemon uses the start com-
mand via ioctl. Logging may be discontinued with
the stop command.

3.4 Daemon

The primary function of the daemon is to retrieve
the information accumulated by the trace module
and store it, typically in a �le. It provides the user
with a number of options to control the tracing pro-
cess. In addition to giving the user access to the
options available from the trace module, the dae-
mon lets the user specify the tracing duration.

Once the daemon is launched, it opens and con�g-
ures the trace module, and sets a timer if a time
duration was speci�ed. Otherwise, the user must
kill the daemon process manually to stop the trace.
In normal operation, the daemon sleeps awaiting
SIGIO signals to read from the trace module, or
timer/kill events to end tracing.

Akin to the trace module, the daemon uses double-
bu�ering. Here, though, the intent is not on pre-
venting the loss of events but on reducing the impact
on the system, due to frequent reading and writing,
and reducing the pollution of the trace, due to the
daemon using system resources. Therefore, when
it receives a SIGIO signal from the trace module,
the trace daemon reads the content of the module's
bu�er and appends it to the content of an internal
bu�er. Once this bu�er is full, it is committed to
�le and, while doing so, a second bu�er is used to
record the incoming data. This second bu�er will
be used as the �rst one was. When tracing is �n-
ished, the trace module and the trace data �le are
closed. Note that even though the daemon writes to
a �le, this does not necessarily mean that informa-
tion gets written to disk. In fact, given the di�erent
caching mechanisms used by Linux, the information
is written to disk somewhat later in big chunks by
the kupdate kernel thread.

Although the data collection method described
above provides the detailed dynamics of the system,

there is one more piece of information missing, the
system's state prior to the trace start. To this end,
the trace daemon will go through the /proc direc-
tory recording for each process the following charac-
teristics: process ID (PID), name (as given to exec)
and parent's PID (PPID). This is done following the
con�guration of the trace module and the start of
the trace. The information retrieved is stored in a
�le that will later be used by the analysis software.

3.5 Data analysis and presentation soft-
ware

Unlike the other LTT components, the data analy-
sis and presentation software is typically run o�-line.
It uses both the initial processes state and the trace
data �les created by the daemon to recreate the dy-
namic behavior of the system in the observed time
interval.

The initial state �le is used to create the process
tree as it was before the trace started. The trace
�le is then used as the trace event database. This
is accomplished using the mmap system call and a
collection of primitives that enable the extraction
of information regarding the events from the trace.
These functions provide the following services: get
an event's ID, its time of occurrence, the process to
which it belongs and the human-readable string de-
scribing it. Also, they enable forward or backward
browsing of the events trace. An important func-
tionality they provide is to determine whether an
event is a control event or not. By control event,
we mean an event that results in the transition of
control from or to the kernel. A system call, for
instance, always marks a control transition to the
kernel. A trap, on the other hand, might not mark
a transition since traps can occur during the ex-
ecution of kernel code. It is not the objective of
this paper to present the complete conditions un-
der which control transitions occur under Linux, but
these conditions have been formalized in the course
of the development of LTT in order to facilitate the
reconstruction of the event graph and the computa-
tion of the di�erent performance measures.

An important component of those primitives is the
trace analysis procedure. This procedure reads the
entire trace cumulating results about the behavior
of the system during the trace. This is where the
core of the trace processing takes place. Here, the
time spent scheduled, the time spent executing pro-
cess code, the time spent in system calls, the num-

ber of occurrences of the di�erent events, etc. are
computed.

These primitives serve as the basis for the analy-
sis software which is usable either from the com-
mand line or from a GUI. The GUI front-end en-
ables the user to browse the trace in both graphical
form and list form. Both interfaces enable the pre-
sentation of the cumulated system statistics and the
list of events. They also enable the user to select the
events to present and the events to ignore. More-
over, the graphical front-end provides a search menu
which simpli�es event searching.

The possibility to view the trace in graphical form
is interesting since it enables the user to easily view
interactions that are often deemed complex. He can
then follow the
ow of control and clearly identify
the di�erent transitions.

4 Toolkit overhead

The main novelty of LTT, besides the extensibil-
ity provided by the modular open source architec-
ture, is the extent of available information while
remaining a non-invasive low overhead monitoring
tool. Thus, this section concentrates on the study
of the overhead caused by LTT.

To this end, section 4.1 deals with quantifying the
overhead caused by LTT. Section 4.2 discusses the
rami�cations of the observed overhead. Section 4.3
presents LTT's memory footprint. Finally, sec-
tion 4.4 discusses possible improvements.

The experimental results show that LTT is able to
provide unique data sets with very little overhead
on the observed systems. Typically, an observed
system incurs less than 2.5% overhead when moni-
toring core system events.

The experiments were performed on an Intel Pen-
tium II 350MHz processor with 128MB of main
memory. The Linux distribution used is RedHat 6.0.
Of course, the default kernel is replaced by the LTT
modi�ed Linux kernel. Unless stated otherwise, all
jobs were run from a plain command-line outside
any graphical environment. The daemon is con�g-
ured to use 1,000,000 bytes bu�ers and the trace
module is con�gured to use 50,000 bytes bu�ers.
Therefore, the daemon will receive a signal from
the trace module every time 50,000 bytes of trace
are generated and it will commit data to �le every

1,000,000 bytes of trace data. The times for these
to occur vary according to the job traced and are
presented below.

4.1 Overall system overhead

In order to evaluate the overhead caused by LTT
to a running system, a number of modi�cations had
to be made in order to isolate the impact caused
by each component to the overall architecture. The
following con�gurations were tested:

1. Original 2.2.13 kernel (base con�guration).

2. Modi�ed 2.2.13 kernel. Events are ignored by
the kernel trace facility.

3. Modi�ed 2.2.13 kernel. Events are logged by
the trace module but the daemon is not run-
ning.

4. Modi�ed 2.2.13 kernel. Events are logged and
reported, but the daemon is not writing the
data to a �le.

5. Modi�ed 2.2.13 kernel. Events are logged, re-
ported and written.

6. Same as above, except that event details are
only recorded for core kernel events 1.

On each system, a batch of jobs was issued and the
elapsed time to complete every job recorded. There-
after, job completion times could be compared and
provide us with insight on which component was
slowing down the system, if any. To this end, the
following jobs were issued using shell scripts:

1. Complete compilation of a Linux kernel, using
make. This job is CPU and �le intensive.

2. Creation of a tar archive using a large number
of �les (800MB). This job is �le intensive.

3. Compression of an archive of the Linux kernel
source (50MB), using bzip2. This job is CPU
intensive.

4. While running the KDE environment, the fol-
lowing tasks were started twice in parallel:

(a) netscape loaded di�erent web pages from
14 di�erent sites.

1Incidently, the core kernel events are the events presented

in Figure 2 that have no subtypes.

Conf. Compile Archive Compress Desktop

1 240.2 357.4 141.2 246.8
2 240.8 358.0 141.4 249.2
M 0.25 % 0.17 % 0.14 % 0.97 %
3 243.6 359.1 141.1 252.2
M 1.42 % 0.48 % -0.07 % 2.19 %
4 245.7 358.1 141.6 252.9
M 2.29 % 0.20 % 0.28 % 2.47 %
5 246.9 365.5 141.4 258.3
M 2.79 % 2.27 % 0.14 % 4.66 %
6 246.3 363.6 141.6 252.9
M 2.54 % 1.74 % 0.28 % 2.47 %

Figure 3: Job completion times in seconds according
to con�guration.

(b) acroread opened 7 di�erent documents.

(c) staroÆce opened 8 di�erent documents.

(d) gnuplot drew 4 functions 14 times.

This job is I/O and operating system2 inten-
sive. It represents the extreme case of user
desktop usage. Note that for this job, the
daemon is con�gured to use 2,000,000 bytes
bu�ers and the trace module is con�gured to
use 250,000 bytes bu�ers.

The results of these tests are presented in Fig-
ure 3 and discussed in section 4.2. For each job-
con�guration pair, except the ones belonging to
the �rst con�guration, the percentage di�erence be-
tween its completion time and the one for the base
con�guration is given. This facilitates further anal-
ysis. The times given are in seconds and represent
the average time over 10 runs3. Note that due to
the complexity of modern UNIX systems the times
reported vary. Figure 4 presents the standard devia-
tion for each of the times reported. Figure 5 presents
the size of the traces generated and the rate of gen-
eration of the traces. These results will be discussed
in section 4.3.

2The OS has to deal with scheduling many competing pro-

cesses besides having to manage inter-process communication

to the X server via sockets.
3Each test was actually run 11 times, the results from the

�rst run being discarded.

Conf. Compile Archive Compress Desktop

1 0.4 1.6 0.4 0.9
2 0.6 1.9 0.5 1.9
3 0.5 1.7 0.3 1.6
4 0.5 2.0 0.5 1.1
5 1.1 1.6 0.5 3.9
6 0.5 1.3 0.5 1.8

Figure 4: Standard deviations of the measured job
completion times in seconds according to con�gura-
tion.

Job Conf. One Rate Read Write
run Freq. Freq.
(MB) (MB/s) (Hz) (Hz)

Compile 5 33.4 0.135 2.83 0.14
6 25.0 0.101 2.12 0.11

Archive 5 27.9 0.076 1.59 0.08
6 16.5 0.045 0.94 0.05

Compress 5 1.76 0.012 0.25 0.01
6 1.14 0.008 0.17 0.01

Desktop 5 139 0.538 2.26 0.28
6 62.9 0.249 1.04 0.13

Figure 5: Size of event trace in megabytes, accord-
ing to the job, con�guration, and frequency of invo-
cation of the trace daemon given the use of 50,000
bytes bu�ers for non-X applications and 250,000
bytes bu�ers for X applications (desktop job).

4.2 Components of system overhead

In order to fully understand the impact of the dif-
ferent components of LTT's overhead, the following
discussion is broken up along the di�erent process-
ing steps, from the point where the data is generated
inside the kernel to the point where it is available
on disk.

It is interesting to note that instrumenting the core
kernel events yields an impact below 2.5%, as can
be seen by comparing the sixth con�guration with
the �rst from Figure 3, regardless of the type of job
run. Of course jobs that do not call upon kernel
facilities as the compression example are much less
disturbed by the tracing.

4.2.1 Kernel instrumentation

The impact of instrumenting the kernel can be seen
by comparing the second con�guration to the orig-

inal con�guration. As the percentages show, the
impact of instrumenting the kernel is very small, if
not insigni�cant. The largest impact occurs during
the desktop job and is due to the system resource
intensive nature of the job. Otherwise, there does
not seem to be any noticeable slowdown. There-
fore, it is fair to say that using a traced kernel has
minimal or no e�ect on the system's performance
as long as the trace daemon has not instructed the
trace module to record the events in its bu�ers.

4.2.2 Trace logging

The impact of logging the events generated by the
kernel into the trace module's bu�ers can be seen
by comparing the third con�guration to the second
con�guration. Here, the impact varies according to
the type of job the system is running. In the cases
where there's only one process running at all times,
like the archiving and compression, the overhead is
negligible. In the other cases, the kernel compilation
(gcc and make do, in fact, have children) and the
desktop trace, the results suggest that the copying
of events from the kernel to the trace module within
a kernel lock (spin lock irq save) causes scheduling
contention problems.

4.2.3 Trace reading

The impact of the daemon's reading the data from
the trace module to its bu�ers can be seen by com-
paring the fourth con�guration with the third. The
overhead of the daemon copying the data is quite
small but seems correlated with the overhead of the
trace logging.

4.2.4 Trace committing

The impact of the daemon writing the trace data
to disk can be seen by comparing the �fth con�gu-
ration with the fourth. Jobs where many processes
contend for scheduling su�er the most signi�cant
overhead since they have to share the CPU with
the trace daemon which has to write large quanti-
ties of data to �le. The compilation involves several
temporary �les which are erased before they actu-
ally hit the disk, and is thus more CPU intensive
than disk bound. The archiving job sees its over-
head increase because it now has to contend with

another task that not only needs to be scheduled,
but also uses the same resource, the disk.

4.3 Space overhead

When compiled with trace support, a modi�ed ker-
nel increases in size by 4KB. This includes the trace
module and the modi�cations to the kernel. Given
the current resources, this increase does not cause
any problem. When tracing is activated, the con�g-
urable double bu�er space is added.

The amount of disk space used by the generated
traces, as can be seen in Figure 5, varies depending
on the job run and can be quite large. The size of
the generated trace is proportional to the number
of events occurring. For CPU intensive jobs (com-
pression), the results show that the amount of data
generated in minimal. For jobs that use operating
system resources intensively but are not in graphi-
cal mode (compilation and archiving), the quantity
of data generated is below 10 MB per minute (0.167
MB/s) .

The largest traces are generated when in the graph-
ical environment. Here, the amount of data gener-
ated per minute is above 30 MB (0.500 MB/s) in
the worst case. This is due to the constant interac-
tions between the di�erent applications required for
the graphical display through the X server. When
only core kernel events are logged, the quantity of
data generated decreases to 15 MB (0.249 MB/s)
per minute. Therefore 50% of the trace is composed
of detailed non-core events.

4.4 Discussion

As seen in the previous section, some aspects of LTT
use signi�cant system resources, most importantly
disk accesses and disk space. In order to reduce the
overhead caused by reading the trace and writing it
to disk, several mechanisms may be examined. One
solution would be to take advantage of the mmap
system call available in Linux. This would enable
the daemon to map the memory used by the trace
module's bu�ers directly in its address space and,
thus, avoid any data copying from kernel space to
user space by feeding the mapped bu�er as the in-
put for the write system call, in order to commit
the trace to �le. Another solution would be to feed
the traces directly to the �le system or to the block
device driver (disk driver) from within the kernel

without using a daemon. This, though, raises other
issues which go beyond the scope of our work.

Trace size reduction both reduces disk accesses and
disk space requirements simultaneously. The types
and structures used to record the traced events have
already been optimized for size. Nonetheless, so-
phisticated compression algorithms use trace regu-
larity to achieve signi�cant size reductions at the
cost of some CPU time. Using available compres-
sion tools, a compression ratio of approximately
10 was obtained on the sample traces generated.
This means that the 30MB/minute trace obtained
in Figure 5 could be signi�cantly reduced to approx-
imately 3MB/minute. Tests would need to be run
to determine the cost in CPU time of the chosen
compression method.

5 Toolkit usage and comparison

This section covers the usage of LTT in character-
izing system behavior. Moreover, LTT's results are
compared to the results given by conventional Unix
tools.

First, section 5.1 presents example traces generated
and analyzed using LTT. Then, sections 5.2 and 5.3
present real case studies where LTT has been used
in order to reconstruct a system's dynamic behavior
and understand its performance. Last, section 5.4
compares LTT's capabilities with that of conven-
tional Unix tools.

5.1 Trace examples

In order to illustrate the type of data LTT generates
and, inherently, the reason why it obtains its level
of detail and accuracy, Figure 6 presents a sample
trace where a process can be seen waiting to output
to the hard disk. The �rst column presents the event
type, the second the moment at which the event
occurred4, the third the PID of the process running
when the event occurred and the fourth the details
of the event5. The sequence of events is simple, the
process tries to write to a �le but has to wait for
I/O. It is unscheduled until the hard disk is ready.
Thereafter, a veri�cation is made to make sure no
more waiting is necessary and control is returned to

4This usually consists of a seconds and microseconds pair

but due to space constraints only the microseconds are pre-

sented here.
5Not all the details are given due to space constraints.

Syscall entry (678777) 1021 SYSCALL : write
File system (678779) 1021 WRITE : 3
File system (679107) 1021 START I/O WAIT
Sched change (679151) 0 IN : 0; OUT : 1021

...

IRQ entry (691806) 0 IRQ : 14, IN-KERNEL
Process (691818) 0 WAKEUP PID : 1021
IRQ exit (691823) 0
Sched change (691824) 1021 IN : 1021; OUT : 0
File system (691826) 1021 START I/O WAIT
File system (691827) 1021 END I/O WAIT
Syscall exit (691936) 1021
Syscall entry (691941) 1021 SYSCALL : sigreturn

Figure 6: Sample trace: Process waits for I/O.

the process.

Though the example is simplistic, it demonstrates
the level of detail attainable using LTT. gdb, for in-
stance, would have been fairly inadequate in helping
us to �gure out this sequence of events.

Figure 7 shows an example trace graph drawn by
LTT. At the top of the window, we can see a menu
and a toolbar. Three thumbnails are used to present
the data about the trace. The �rst presents the
graph. The second contains performance data. The
last contains the raw list of events. The graph
thumbnail is separated in two parts. The left side
holds a list of all the processes that were active dur-
ing the trace. The right side holds a graph that
shows the
ow of events in time. Vertical lines mark
a transition in control, whereas horizontal lines sig-
nify time
ow. The graph in Figure 7 shows how
minilogd got scheduled right after the system clock.
minilogd then did a newstat system call. The ker-
nel did some work and gave control back to minilogd
which then called on poll. The kernel did not �nd
anything for minilogd and, consequently, scheduled
the idle task since no other task needed the CPU.

5.2 Characterizing a normal worksta-
tion

In order to characterize a normal workstation, a set
of applications must be chosen to represent the com-
mon usage of a system as a workstation. Thereafter,
measures can be made using LTT and using con-
ventional means. The accuracy of the conventional
tools can then be assessed by comparing to the more
accurate detailed data available in the trace.

The following applications where monitored for a
period of 30 seconds: X server, netscape, staroÆce,
x11amp and a script running ps every 5 seconds.

Figure 7: An example trace graph.

Application ps User Running Wait I/O

X server 8.6 12.79 15.28 0.04
netscape 3.25 15.43 17.17 1.85
staroÆce 2.7 4.73 5.52 2.60
x11amp 1.15 1.62 2.19 0
ps script 0.43 0.04 0.08 0

Figure 8: Percentage of activity for each monitored
application for the observed workstation.

During that period of time, LTT's trace daemon
was recording events and ps was called upon every
5 seconds. The applications where used in a typical
fashion. netscape was used to view 2 web sites. A
document was being modi�ed in staroÆce. x11amp
was playing an mp3 �le. Figure 8 presents the re-
sults of the 30 seconds run. Column ps contains the
average value of the percentages of CPU usage re-
ported by the many runs of the ps utility during the
test. Column User shows the percentage of the time
the system was executing actual application code in
user mode, as reported by LTT. Column Running
shows the percentage of time the said application
was scheduled, as reported by LTT. Column Wait
I/O shows the percentage of time during which the
said application was waiting for I/O.

As the results show, the conventional monitoring
tool, in this case ps, fails to provide the observer
with an accurate appreciation of the system's be-

havior. In fact, ps reports that netscape's CPU us-
age was 3.25% whereas the real �gure is 15.43%,
misleading an observer into believing that the said
application's CPU usage is more than 10% lower
than its actual value. Moreover, there is no way to
�nd out the amount of time during which the pro-
cess is not running because it does not need to run
or the amount of time during which it is waiting on
an I/O resource. Also, it is important to know how
much time was spent executing kernel code and how
much time the system was idle. For the workstation,
59.06% was spent in kernel mode and the idle task
was scheduled for 49.31% of the sample time.

5.3 Characterizing a small server

Here a small FTP server is set up to provide ser-
vice to a client connected through Parallel Port IP
using a null modem printer cable. The set of appli-
cations observed is X server, ftp daemon, KDE win-
dow manager kwm, and a script running ps every
5 seconds. The client requests 2 �les for download
from the server and the operation is monitored for
60 seconds. Figure 9 presents the results for the run.
Note that there are 2 ftp entities, one for each copy
of the daemon serving a corresponding �le down-
load.

As for the workstation, the results show that ps does
not provide a clear pro�le of the observed system.
Whereas for the workstation the time spent execut-

Application ps User Running Wait I/O

X server 7.2 0.48 3.45 0
ftp #1 13.1 0.29 10.92 0.26
ftp #2 10.8 0.32 11.77 0.63
kwm 1.63 1.33 21.2 0
ps script 3.6 0.38 2.25 0

Figure 9: Percentage of activity for each monitored
application for the observed server.

ing application code was similar in most cases to the
time reported by ps. For the server no such corre-
lation can be found. Note that the KDE window
manager has been scheduled as running for 21.2%
of the duration of the sample, yet only 1.33% of the
CPU time was in user mode. As for kernel code exe-
cution and time spent idle, the server spent 94.71%
of its CPU time in kernel mode and the idle task
was scheduled for 18.72% of the sample time.

5.4 Conventional tools comparison

The main interest of LTT being the fact that it pro-
vides information previously unavailable, it is im-
portant to compare LTT to existing analysis soft-
ware. To this end, the following paragraphs com-
pare LTT to gdb, ps, gprof and time.

Section 5.1 presented a simple trace example that
showed that gdb was an inadequate tool in some
circumstances. A more blatant example of the
limits of gdb would be to try using it to �gure
out synchronization problems. Because it modi�es
an application's behavior, using the ptrace system
call, it is often impossible to use gdb to reproduce
synchronization problems, much less debug them.
Moreover, synchronization problems, depending on
their nature, can disappear when debugged using
gdb. In the case of simple interactions, the crude
workaround of inserting printf s in the debugged
code is usually suÆcient to help the developer solve
these types of problems. But in complex software
systems, this workaround is seldom adequate. In
this regard, LTT �xes this type of problem by pro-
viding the developer with the exact sequence of
events as they occurred on a live system. There-
after, tracking a synchronization problem amounts
to tracing the con
icting events such as IPC and
socket communication and analyzing the sequence
of their occurrences. Furthermore, LTT does not
modify the behavior of the observed system since

int i, j;

void fct_A(void)

{ for(i = 0, j = 0; j < 10000000; j++)

i++;

printf("i's value : %d \n", i);

}

void fct_B(void)

{ for(j = 0; j < 1000000; j++)

sched_yield();

}

int main(void)

{

fct_A();

fct_B();

}

Figure 10: Pro�led source code.

events are logged in the sequence of their occurrence
and the locks held to record those events are held
for a very short time.

As has been demonstrated above, LTT is also very
helpful in �guring out performance issues regard-
ing an observed system. More importantly, com-
pared with the performance data generated by con-
ventional tools, the performance data generated by
LTT matches more closely the actual behavior of the
observed system of process. This has been demon-
strated for ps. It is important to note that though ps
is not the only tool used for performance measure-
ment on modern Unix systems, and certainly not
the most precise one, it is by far the most impor-
tant because of its wide-spread usage and adoption
as a legitimate way of quantifying a system's per-
formance.

Another tool commonly used to measure perfor-
mance is gprof. Contrary to ps, it is usually used to
analyze the behavior of a single application. Here
again, the data provided is statistical at best. To
illustrate this, Figure 10 presents a portion of code
that was pro�led using gprof.

Using gprof we learn that the application spent
a total of 250ms executing. 170ms were spent in
fct A and the rest, 80ms, were spent in fct B. Using
LTT, we �nd that the application actually spent
3.28s scheduled and that 2.34s were spent execut-
ing code belonging to the application. The rest
of the time was spent running system code for the
application. It is interesting to note that LTT re-
ports that the application spent 972ms in cumula-
tive calls to sched yield. This has gone unnoticed by

gprof, which simply reports that 80ms were spent
in fct B. Moreover, time corroborates LTT's results
and reports that the application ran for 3.64s. time,
though, reports that 2.71s were spent running sys-
tem code and 0.61s were spent running user code.
These times are calculated using the statics cumu-
lated by the sampling done in the kernel. In essence,
these results are similar to results reported by ps,
which are known to lack precision.

The di�erence between the results given by LTT
and the results given by gprof are due to the dif-
ference in the way data is acquired. gprof uses the
system clock to sample the process' behavior. With
LTT, we can see the timers used by gprof to sample
the code going o� and generating sigreturns once
they are done sampling. By observing the trace, we
can see that the pro�ling timeouts very often occur
within a call to sched yield. Therefore, the system is
running kernel code at that time and the time from
that last sample is attributed to the system. This
is why time attributes the wrong values to the dif-
ferent components of performance and it is the rea-
son why gprof reports incorrect values. The same
experiment was run using gettimeofday instead of
sched yield and gave very similar results.

6 Future directions

LTT has been available for some time through its
home page (http://www.opersys.com/LTT). Many
users have already used it for tracing and pro�l-
ing purposes. In providing this project through the
GPL license, the authors hope that it will bene�t
as many users as possible while o�ering advanced
functionality.

The extensibility of LTT is provided by its open-
ness and its modularity. Adding events to the list
of events already being traced amounts to adding an
identi�er in the source code and placing the required
trace instruction in the corresponding place in the
kernel source code. Simplifying this process, an ex-
tension is currently being developed that enables the
dynamic creation of event IDs and their automatic
recognition by the trace analysis software. This will
eliminate the need to modify LTT in any way to add
traced events.

As said before, LTT comes with a versatile data
analysis and presentation software tool. The later
enables the user to view the event trace in a brows-
able graphical form. The trace is presented as a

control graph where changes of control from/to the
kernel are easily seen. It also provides a command-
line interface enabling the user to access all of its
functionality without requiring a resource intensive
GUI.

There are many interesting future research avenues.
For instance, given the precision of LTT's results,
it would be interesting to implement a quality of
service oriented kernel resource management that
would use trace analysis feedback in making its fu-
ture decisions. This would enable system adminis-
trators to �x quotas on the usage of most system
resources.

Given LTT's ability to track detailed kernel events,
it can easily be used as a component of security au-
diting and watchdog tools. Events matching a cer-
tain description could trigger logging or the execu-
tion of a program. Another usage would be to create
a graph for tracking some of the monitored events.
Rather than polling the content of /proc, this graph-
ing tool would be fed directly by the trace module,
increasing the precision of the data. It could resem-
ble the Windows NT Performance Monitor, though
the underlying functionality would di�er greatly.

Merging and interfacing with related open source
projects is important to the authors. Prime and
foremost, this includes eventually integrating the
kernel patches to the main Linux kernel source tree.
This would bring built-in tracing capabilities to ev-
ery Linux user.

7 Conclusion

In this paper, we have presented a novel way of
recording and analyzing system behavior. Our re-
sults have shown that LTT's overhead is minimal
and that it provides unique data sets. These data
sets have successfully been used to reconstruct the
dynamic behavior of systems. The relatively low ac-
curacy of conventional system monitoring tools was
also shown, thus motivating the use of kernel trac-
ing facilities, whenever a precise characterization is
required.

The tools developed as part of the Linux Trace
Toolkit are modular, extensible and openly avail-
able, making it easy to extend and customize them.
Such tools will be crucial to the development of fu-
ture computer systems due to the ever-increasing
complexity of the software and hardware developed.

References

[1] Rational Software's Quantify,
http://www.rational.com/products/quantify.

[2] WindRiver's WindView,
http://www.windriver.com/products/html/
windview2.html.

[3] QNX's DejaView, http://www.qnx.com.

[4] Nematron's HyperKernel Trace Utility,
http://www.nematron.com/solutions/software/
hyperkernel/hyperkernel.html.

[5] GNU General Public License version 2,
http://www.gnu.org/copyleft/gpl.html.

[6] G. Ammons, T. Ball, and J. Larus. Exploit-
ing Hardware Performance Counters with Flow
and Context Sensitive Pro�ling. In Proceedings
of the ACM SIGPLAN '97 Conference on Pro-
gramming Language Design and Implementa-
tion, 1997.

[7] M. Bach. The Design of the Unix Operating
System. Prentice Hall, 1986.

[8] T. Ball and J. Larus. EÆcient Path Pro�ling.
In Proceeding of MICRO-29, 1996.

[9] J. Anderson et al. Continuous Pro�ling: Where
Have All the Cycles Gone. In 16th ACM Sym-
posium on Operating Systems Principles, 1997.

[10] M. Beck et al. Linux Kernel Internals: Second
Edition. Addison-Wesley, 1998.

[11] X. Zhang et al. System Support for Automatic
Pro�ling and Optimization. In 16th ACM Sym-
posium on Operating Systems Principles, 1997.

[12] S. Graham, P. Kessler, and M. McKusick.
gprof: A call graph execution pro�ler. In SIG-
PLAN Notices, 1982.

[13] M. Rosenblum, E. Bugnion, S. Devine, and
S. Herrod. Using the SimOS Machine Simu-
lator to Study Complex Computer Systems. In
ACM Transactions on Modeling and Computer
Simulation, volume 7, pages 78{103, January
1997.

[14] A. Rubini. Linux Device Drivers. O'Reilly,
1998.

[15] David A. Salomon. Inside Windows NT: Sec-
ond Edition. Microsoft Press, 1998.

[16] Uresh Vahalia. Unix Internals: The New Fron-
tiers. Prentice Hall, 1996.

