
Distributed Computing: Moving from CGI to CORBA 
James FitzGibbon 
TargetNet.com Inc. 

Tim Strike 
TargetNet.com Inc. 

 
 

Abstract 
In this paper, we document the evolution of a banner ad delivery system from a simple CGI script written in Perl 
running on a single host into a distributed computing application using CORBA. 

While CORBA has an established history in the enterprise-computing world, it is only recently that the Open-
Source® community has begun to embrace it.  Starting without any RPC programming experience, it took TargetNet 
a little less than half a year to integrate CORBA into the Apache web server and convert all their CGI programs into 
CORBA servers. 

Performance of the system increased from 50 transactions per second to over 400 per second.  Thanks to the cross-
platform capabilities of CORBA, future components can be developed on virtually any operating system and pro-
gramming language.  By adding inexpensive servers, the capacity of the system scales in a near-linear fashion.  Most 
importantly, the switch to CORBA didn’t require a change of operating system or development environment – every-
thing runs on a free operating system using OpenSource components. 

Introduction 
In 1997, TargetNet built and deployed “The Datacom 
Ad Network”, a banner ad delivery system.  The CGI 
script that selected and delivered ads was written in 
Perl, ran on a Pentium 200 machine, and could deliver 
just one ad per second.  Rewriting in C and migration to 
faster processors took performance to 10 ads per sec-
ond, then 30, then 50.  Further optimization proved fu-
tile: we had reached the CGI performance barrier. 

Increasing performance by adding processors or hosts 
was not feasible: the architecture of the existing deliv-
ery system was limited to running on a single host, and 
was single-threaded.  Worse, the code used a large 
number of flat files on disk, and so spent a large per-
centage of its time performing system calls or waiting 
for file locks.  Increasing processor power provided a 
brief respite, but we could not afford to upgrade server 
hardware forever. 

To remain competitive, ad delivery performance needed 
to increase to roughly 400 ads per second plus allow for 
multiple hosts to share the load of the network.  It was 
clear that a new architecture was required that could 
overcome the limitations of standard CGI scripts.  The 
base requirements of the new system were laid down 
before any research began.  The new system would have 
to: 

- offer single host performance several times that of 
the existing CGI script. 

- utilize a distributed computing model without arbi-
trary limits on the number of hosts. 

- allow multiple hosts to share the network load, 
preferably with load balancing and redundancy. 

- be called from a web browser like a CGI script but 
without the inherent limitations of CGI. 

- scale to handle anticipated growth over the next 
four to five years without major architectural 
changes. 

- allow gradual integration of commercial hardware 
and software without massive re-coding. 

Most importantly, the system had to be cost effective.  
Our server platform was Apache running on FreeBSD, 
and all software in use was either freely available or 
developed in-house.  While commercial solutions to our 
problem existed (Oracle Parallel Server running on a 
commercial UNIX), financial constraints dictated that 
we find a free solution or develop one in-house. 



Breaking the CGI speed barrier 
The problem of CGI performance is not new.  Over the 
last several years, many solutions that remove the 
forked-CGI bottleneck from web applications have 
come to light. 

CGI enhancement wrappers like [FASTCGI] allow an 
existing CGI script (especially those written in inter-
preted languages like Perl) to run much faster and re-
main resident between invocations.  Still, these wrap-
pers extend the existing CGI standard, sacrificing flexi-
bility for compatibility.  They are limited, naturally, to 
tasks that you would usually use a CGI script for.  Other 
client/server tasks need to be addressed separately. 

Integrating the functionality of a CGI script directly into 
the web server provides the benefits of a CGI wrapper, 
and gives developers access to the internals of the web 
server.  Not only does this technique share the same 
limitations as CGI wrapper toolkits, but developers 
have to lock themselves into a particular web server 
architecture, choosing to develop an ISAPI, NSAPI, or 
Apache module.  Similarities between these architec-
tures are few: moving a complex module from one web 
server product to another could require a complete re-
write.  

Clustered computing solutions promise transparent 
scalability simply by adding hosts.  Unfortunately, most 
clustering systems are commercial, costly, and tied to a 
particular line of hardware (though there are alterna-
tives, such as Beowulf clusters running on Linux).  Us-
ing commodity hardware would have addressed the cost 
issue, but would have required us to switch from 
FreeBSD to Linux.  In doing so we would be giving up 
the significant investment we already had in FreeBSD 
servers and knowledgeable personnel.  In short, we felt 
that the immediate benefits of clustering were out-
weighed by the commitment that one has to make to a 
particular vendor and/or operating system.   

Remote Procedure Call (RPC) solutions do not share 
the aforementioned limitations.  Most RPC solutions are 
available for multiple operating systems and hardware.  
They are abstracted from the application layer, and do 
not require adherence to one vendor’s API.  As it is not 
directly tied to the CGI model, RPC can be used to re-
place traditional client/server applications as well.  The 
only issue surrounding RPC is which architecture to 
use. 

ONC RPC, developed by Sun Microsystems, is already 
in wide use on UNIX® systems.  ONC RPC is at the 
heart of NIS, NIS+ and NFS.  The limitations of the 

original ONC RPC have been documented and ex-
ploited for as long as they have been in use.  ONC 
RPC+ addresses many of these limitations and provides 
for encrypted communication but is not as widely avail-
able as the original implementation. 

The Distributed Computing Environment (DCE) from 
the Open Group provides almost every distributed com-
puting tool one could need, but is as complex as it is 
complete.  Suited best for large projects, the administra-
tion of DCE can be a monumental task.  Only one free 
implementation of DCE is available, limiting improve-
ment through vendor competition. 

We found many of the elements we required in RPC, 
but we did not find an implementation that provided all 
of them in one package.  We attempted to build our own 
middleware, without much success.  The issues that 
undoubtedly plagued the developers of ONC RPC and 
DCE proved too much for our small team of developers.  
Returning to the research arena, we began to look at 
CORBA. 

We had dismissed CORBA early in the design phase, 
believing it to be geared towards enterprise computing 
and unsuitable for our use.  An in-depth examination 
showed promise.  CORBA offered everything that we 
were looking for: unlimited cross-platform capability, 
several free implementations, and an aggressive devel-
opment model that promises to keep the technology 
alive in the future.  As discussed in [MODZ97], 
CORBA also offers features not found in RPC or DCE, 
including interface portability, dynamic interface invo-

Object Implementation

Dynamic
Invocation

Client

IDL
Stubs

ORB
Interface

Object
Adaptor

Static
IDL

Skeleton

Dynamic
IDL

Skeleton

����
���
���

ORB Core
�������������

��
��

��
��

��
��

��
��

���
���

���
���
���
���
���
���

Interface Identical for all ORB Implementations

There may be multiple object adaptors

There are stubs and skeletons for each object type

ORB-dependant interface

Up-call interface

Normal call interface

Figure 1: the CORBA Infrastructure



cation and platform independent data types.  Only one 
question remained: how easy would CORBA be to inte-
grate into a system built solely from OpenSource soft-
ware and in-house code? 

Back to School 
The first order of business was to learn about CORBA.  
Starting with no more than a conceptual understanding 
of RPC mechanisms, we needed to deliver a proof-of-
concept application in short order.  To learn about 
CORBA, the best place to start is the Object Manage-
ment Group[OMG].  The OMG produces the CORBA 
specification, but unlike ONC RPC and DCE, does not 
provide an implementation.  This distinction prevents 
the specification group from monopolizing the imple-
mentation. 

CORBA allows applications to communicate with each 
other, without regard to where they are located, the op-
erating system they run on, or the programming lan-
guage they were developed in.  CORBA allows the de-
veloper to concentrate on the function that the applica-
tion performs as opposed to the mundane details of 
protocol design and network transport.  At the heart of a 
CORBA application is the ORB, or Object Request 
Broker.  The ORB is responsible for intercepting client 
calls for remote methods, locating the host that provides 
the implementation of that method and the packaging of 
parameters and return values over the wire.  The OMG 
also specifies the Internet Inter-Orb Protocol (IIOP), 
which is protocol that ORBs use to talk to each other.  
Figure 1 (from the OMG’s web site) illustrates the ar-
chitecture. 

CORBA allows clients and servers to be written in any 

programming language for which a CORBA mapping 
has been defined.  To create a CORBA server, the pro-
cedures and methods of the application are described 
using the Interface Description Language (IDL), which 
is roughly analogous to a C++ class definition.  The 
OMG specifies both the syntax of IDL and the mapping 
from IDL data types to language specific data types. 
Presently, there are language mappings for C, C++, 
Ada, COBOL, Java, Smalltalk and Python.  There are 
several independent language mappings for Perl, though 
they have yet to be ratified by the OMG. 

An IDL compiler (part of the CORBA development 
environment) is used to create language-specific code 
from an IDL definition by generating client-side stubs 
and server-side skeletons.  When writing a server, you 
add your implementation code to the generated skele-
tons.  When writing a client, you call the functions from 
the generated client stubs.  In either case, the finished 
binary is linked against a CORBA runtime object, usu-
ally in the form of a shared library or DLL. 

Choosing an ORB 
At the onset of this project, TargetNet’s server base 
consisted of FreeBSD machines running on Intel hard-
ware.  The number of freely available ORBs is signifi-
cantly lower than those available for commercial UNIX 
systems or for Windows. 

Our ideal ORB would support both C and C++, use 
POSIX threads for maximum server performance, and 
support the latest CORBA specification.  We evaluated 
the five ORBs that were readily available for FreeBSD: 

Table 1: ORBs available for FreeBSD 

ORB Supported 
languages 

True CORBA 
ORB? 

Performance1 License 
Type / Cost 

Comments 

mico C++ yes 0.1 ops/sec GPL slow performance 
in testing 

ILU Many no not tested2 BSD-like; free reads IDL 
ORBacus C++, Java yes not tested3 $3000 per seat SSL support 
ORBit C, C++ coming yes 20 ops/sec GPL basis for 

GNOME 
omniORB C++, Python yes 1250 ops/sec GPL multithreaded 

servant 
 

1 We measured performance by invoking a “null” function which took no parameters and returned no output 
2 The feature set of ILU did not meet our criteria, and was removed as a candidate prior to testing. 
3 We deferred testing of ORBacus due to its cost; the performance of omniORB finalized our decision before testing of ORBacus became nec-
essary. 



- mico [MICO], which supported only C++. 

- ILU [ILU], which supported more languages than 
the OMG has language mappings.  ILU is not a true 
CORBA ORB, but it is conceptually similar and 
can read IDL definitions. 

- ORBacus [ORBACUS], which supports C++ and 
Java and provides an SSL interface, but is not 
freely available. 

- ORBit [ORBIT], which is the technology at the 
heart of the GNOME project.  ORBit supports only 
C, but a C++ binding is being developed. 

- omniORB [OMNIORB], which supports C++ and 
Python. 

The results of our evaluation are summarized in Table 
1. 

Our primary concern was standards conformance, fol-
lowed by performance.  Inexperienced as we were with 
CORBA, we didn’t want to complicate matters with a 
non-compliant ORB.  ILU failed the conformance por-
tion early on - though it understands IDL, the language 
mapping is not the same as the CORBA specification. 

Our test suite consisted of a simple function that took no 
parameters and returned no output (the intent was to 
measure ORB overhead). In retrospect, further research 
into existing benchmarks would have been beneficial; 
[SCHM96] describes modifications to the popular ttcp 
network benchmark program to test CORBA perform-
ance. 

mico’s performance was extremely slow, taking up to 
10 seconds for each transaction.  ORBit worked well as 
a client, but its server implementation serialized remote 
requests, restricting performance to 20 transactions per 
second. 

omniORB took first place for performance – its server 
implementation is fully multithreaded, creating a new 
thread for each remote request while using several 
“housekeeping” threads for connection management.  
omniORB was able to handle 1,250 transactions per 
second.  The only downside to omniORB was that it did 
not provide a C language binding. 

Having found a free ORB that met our performance 
criteria, we did not test the performance of ORBacus.  
Its US $3000 price per developer scared us away; we 

may take another look at it if we require the extra fea-
tures it provides. 

Having completed our tests, we were unable to find all 
of the desired features in one product. In the end, we 
chose to use two ORBs: omniORB for C++ client and 
server development, and ORBit for C client develop-
ment.  Due to the performance limitations of the ORBit 
server model, we decided to restrict server development 
to C++.  With our development tools in hand, we began 
the design and planning of the new ad delivery system. 

Datacom Mk2 
Our original vision for the new ad delivery network is 
outlined in figure 2.  There are two distinct groups of 
users who interact with the system over the Internet.  
The first group includes clients (advertising agencies) 
and members (the owners of the web sites that display 
our ads), who log into the administrative server to query 
how many hits and clicks have been recorded.  The sec-
ond group is the users who request ads as they visit 
member web sites.  These users need to contact one of 
several ad servers, which select an appropriate ad to 
display based upon targeting criteria, and return that ad 
to the user. 

As figure 2 illustrates, CORBA would only be used for 
communication between the administrative server and 
the ad servers.  The main drawback to this model is that 
it requires an HTTP daemon to be installed and config-
ured on each ad server, and that each ad server needs to 
be directly connected to the Internet.  This precludes the 

Internet

User
Requesting Ad

Advertising
Agencies

Website
Owners

Web
Server

Web
Server

Web
Server

Admin
Server

Ad Delivery Servers

HTTP

CORBA

Figure 2: Datacom Mk2 Overview



ad servers using services that are not safe to run on a 
public network, including file sharing or an RDBMS.  
In the event that an ad server goes down, users who 
continue to use a cached IP address will see broken 
images when they attempt to connect. 

Our solution was to abstract the ad server communica-
tion with the Internet.  Rather than talking directly to 
web browsers, the ad delivery machines would use 
CORBA to communicate with a proxy machine.  The 
remote users would use HTTP to talk to the proxy ma-
chine, which could select the best ad server to handle 
the request based upon server load. 

An HTTP to CORBA Proxy 
To allow a server to interact with a user on the Internet 
without being directly connected to the Internet, the 
server must make use of a proxy or gateway of some 
type.  A firewall is an example of a proxy with which 
most people are familiar.  Most firewalls perform sim-
ple address translation without regard to the protocol 
that the IP packets carry.  What Datacom called for was 
a proxy server that could convert an HTTP request into 
a CORBA call, then take the result, if any, and convert 
it back into an HTTP response. 

Using such a proxy (which we named the “Dispatch 
Server”) allowed us to connect the dispatch machines to 
the Internet, leaving all other hosts connected to a pri-
vate LAN only.  Converting from HTTP to CORBA 
was only the initial goal. With careful planning, the 
dispatch server could act as a gateway between other 
protocols as well.  Future goals include gating between 
HTTP and a Generic NQS queue [GNQS] or an Enter-
prise JavaBean gateway[JAVABEAN]. 

Figure 3 illustrates how the dispatch server integrates 
into Datacom Mk 2. 

The dispatch server is implemented as an Apache mod-
ule, written in C, using ORBit as its ORB.  When a web 
browser requests an ad, it contacts the dispatch server 

and requests a URL such as  

http://dispatch.TargetNet.com?target=ad&dir=bi&mem
ber=jfitz 

This URL represents a request for a bi-directional 
communication with the ad delivery service, passing the 
single key-value pair “member=jfitz” to the server.  To 
service this request, the dispatch server makes a connec-
tion to the ad delivery server and invokes a remote pro-
cedure named “DispatchRequest”.  The name-value 
pairs are passed as parameters.  The response from the 
procedure is returned to the web browser as if it had 
come from a CGI script.  The web browser is not aware 
that the response it receives back from the dispatch 
server was actually generated on a different machine.  
Thanks to the cross-platform capabilities of CORBA, it 
does not even know if the response was generated on a 
UNIX machine in the same data center or on a Win-
dows NT box halfway around the world. 

For requests that do not require a response to be re-
turned to the client, the dispatch server calls the remote 
procedure “Dispatch::unidirectional”, which takes the 
same input parameters but returns no output. 

Abstracting the Server interface 
Earlier, we mentioned that for a client to invoke a re-
mote CORBA call, it must be linked with the client stub 
code generated by the IDL compiler.  Imagine for a 
moment that the ad delivery network expands such that 
there are fifteen different types of servers in the system.  
If each server defines a separate interface then the dis-
patch server would have to link in fifteen different client 
stubs in order to dispatch requests to all the servers.  
Every time a new type of server was added, the dispatch 
server would have to be re-compiled and deployed 
across the network.  This limits the scalability of the 
dispatch architecture. 

There are two techniques that avoid this.  The first uses 
the Dynamic Invocation Interface (DII) features of 

Apache w/
Dispatch
ObjectInternet

User requesting ad

CORBA

Generic
NQS

Q Q

�����������������������������������������������������

Standard
CGI

Ad servers

����������������������������

Web Server
Figure 3: the Dispatch Server



CORBA.  DII allows a client to create references to a 
server at run time instead of at compile time.  This is an 
elegant approach, but it is an advanced CORBA topic 
that we were (at the time) uncomfortable using.  To 
invoke operations on arbitrary servers while still using 
static invocation, we chose to define a base interface 
from which all servers would inherit. 

Recall that IDL is conceptually similar to a C++ class 
declaration.  An interface can inherit from another inter-
face and methods in a derived interface can override 
methods from their base interface.  Multiple interfaces 
may be grouped into a module.  The definition of the 
Dispatch interface is in Figure 4. 

The Dispatch module contains two interfaces: unidirec-
tional and bi-directional.  Each of these interfaces de-
fines one member function called DispatchRequest.  
Each of the CORBA servers has its own interface, 
which is derived from the unidirectional or bi-
directional interface.  As in C++, a reference to a base 
interface object can be used to refer to a derived inter-

face object.  This allows the dispatch server to invoke 
the DispatchRequest function on the remote server 
without actually knowing which type of server it is talk-
ing to.  As we become more experienced with CORBA, 
we may abandon this method in favor of DII. For now, 
our inherited base-interface technique provides the 
functionality we need with a minimum of complexity. 

Locating remote servers 
One important step that we have not discussed is the 
method by which an ORB determines the specific server 
that provides a given interface.  Most ORB implementa-
tions assign an ephemeral listening port upon server 
startup.  For the ORB to make a connection to a remote 
host, it needs to know the IP address of the host, the 
port number and the name of the interface. 

To represent this information in a platform-independent 
way, CORBA uses an Interoperable Object Reference, 
or IOR.  The IOR is a text string that encodes the  val-
ues of the host, port and interface for a given server.  
Upon server start-up, the ORB generates an IOR.  The 
client ORB takes this IOR, decodes the values, and es-
tablishes a connection to the remote host.  How, then, is 
the IOR communicated between the server and the cli-
ent? 

The CORBA spec includes interfaces to CORBA helper 
applications.  One of these is the CosNaming service, 
which is a directory service that allows an ORB to reg-
ister and lookup IORs.  The CosNaming service pro-
vides an effective method for looking up IORs but re-
quires that all servers use a single host as their naming 
service.  Neither omniORB nor ORBit provides a facil-
ity for the naming service on one machine to share in-
formation with the naming service on another machine.  
If the machine providing the naming service goes down, 
servers will not be able to register their IORs, nor will 
clients be able to look up IORs. 

There are efforts underway to replace the CosNaming 
service with other directory services, such as LDAP. 
[RFC2714] describes an LDAP schema for storing 

Module Dispatch { 
 
 typedef sequence<octet> stream; 
 
 interface unidirectional : Control { 
  long DispatchRequest( 
   in string id, 
             in string indata, 
             in string inattr 
  ); 
 }; 
  
 interface bidirectional : Control { 
  long DispatchRequest( 
   in string id, 
             in string indata, 
             in string inattr, 
             out stream outdata, 
             out string outattr 
  ); 
 }; 
 
}; 
 
 
 

Figure 4: the Dispatch IDL 

 
ad-delivery.iiop.datacom.rpc IN SRV 0 0 0 ior.ad-delivery.ad-01.datacom.rpc 
 IN SRV 0 0 0 ior.ad-delivery.ad-02.datacom.rpc 
    
ior.ad-delivery.ad-01.datacom.rpc IN TXT “IOR:72616c2d30312e746f722e646174”… 
ior.ad-delivery.ad-02.datacom.rpc IN TXT “IOR:6d2f52656369657665723a312e30”… 

Figure 5: the Dynamic DNS zone 



IORs, which would eliminate many of the problems 
with the CosNaming service.  This solution still has a 
single point of failure, as all updates must be made to 
the LDAP directory master.  Rather than wait for these 
efforts to bear fruit, we developed our own IOR direc-
tory, building in load balancing, replication and redun-
dancy.  We call this directory daemon the Service 
HeartBeat Daemon. 

The Service HeartBeat Daemon 
The Service Heartbeat Daemon, or HBD, performs sev-
eral important tasks: 

- accepts registrations from servers and keeps them 
in an internal table 

- performs regular checks on all recognized servers 
to make sure that they are answering requests 

- synchronizes its internal table with those of the 
HBDs running on other hosts. 

- synchronizes a DNS zone with its internal table 
using Dynamic DNS updates. 

- listens on a socket for clients wishing to know the 
IOR for a given service. 

The architecture of the Service HeartBeat Daemon is 
conceptually similar to that of IGOR [MODZ97], 
though we were not at the time aware of this work.  
Unlike IGOR, the HeartBeat daemon does not store 
object references in persistent storage; rather it relies on 
a peer network in which daemons on different hosts 
keep each other up-to-date. 

Upon start-up, a server determines its IOR, which is 
then sent to the HBD running on the local host.  The 
HBD performs a quick check to ensure that the server is 
really up, echoes the registration information to other 
HBDs using multicast IP and then inserts the registra-
tion information into its internal table.  The HBD regu-
larly synchronizes its internal table with a DNS zone 
using Dynamic DNS updates.  SRV records in DNS 
represent servers which are up and the IORs are stored 
using TXT records.  If ad delivery servers were started 
on the hosts ad-01.targetnet.com and ad-
02.targetnet.com, the DNS zone would resemble that in 
figure 5. 

A client can find the IOR for a service using two meth-
ods:  DNS or local socket lookup.  To use DNS, the 
client asks a nameserver for the SRV records for a 
given service name.  The client then uses the algorithm 

described in [RFC2052] to select among the multiple 
records returned.  We deviate slightly from the RFC in 
that the target field of the SRV record is not the host on 
which the service can be found but the hostname whose 
TXT record holds the IOR to be used. 

The DNS method of lookup has two shortcomings: it 
requires that the HBD keep a DNS server synchronized 
with the internal list of tables, and due to the 255 char-
acter limit of DNS TXT resource records, it cannot be 
used to store an IOR in excess of this length (In prac-
tice, omniORB does not generate IORs in excess of 255 
characters, but several of the other ORBs that we tested 
did).  In such cases, the client can make a direct socket 
connection to the HBD.  The client requests the IOR for 
a given service (in which case the “best” IOR is re-
turned using the same algorithm as the DNS lookup 
method) or for a specific service and host combination. 

Figure 6 illustrates the function of the Service Heartbeat 
Daemon. 

CORBA server

DNS Server

CORBA client

Service Heartbeat
Daemon

Service
Registration

Status Checks

Dynamic DNS
Updates

IOR
Lookups

Database of
IORs

Registration
Listener

DNS Updater

Status
Checker

Lookup
Listener

DNS
Lookups

Figure 6: the Service HeartBeat Daemon



Adding load balancing and redundancy 
The DNS zone in figure 6 uses zeros for the preference, 
weight, and port values in the SRV record.  As men-
tioned previously, the port for a CORBA server is 
ephemeral, making it of little use to us.  However, the 
preference and weighting values can be very useful.   

When a server registers itself with the HBD, it can spec-
ify a priority and weighting.  Priorities in SRV records 
are used just like the priority field of a MX record – 
first you sort by priority lowest to highest and then you 
select from all servers with the same priority value.  The 
weight value is used in the SRV record algorithm and 
allows a server to ask for a smaller or larger proportion 
of the network load.  We select a weight value for each 
server based upon its capacity, allowing us to take full 
advantage of each server as we roll in more powerful 
machines. 

To provide a common interface for determining if a 
server is up or down, we defined a Control interface that 
the Dispatch interface inherits from. This interface de-
fines administrative procedures to bring services up, 
take them down, or query their status.  When a server is 
asked for its status, it may simply return a TRUE value, 
or it may perform complex checks of the resources that 
it uses (databases, free disk space, etc.) before deciding 
if it is really up and ready to handle requests. 

For the HBD to detect when a server has crashed, it 
must regularly check the status of each server in its in-
ternal table.  If one of these checks fail, it sends a multi-
cast IP alert to the other HBDs on the network.  When 
an HBD receives such an alert, it performs its own 
check of the service, and if is still found to be down, the 
server is removed from the internal table.  This elimi-
nates the race condition between one HBD marking a 
service as down and another HBD multicasting an up-
date saying that the same service is up. 

There is a degree of latency between a server crashing 
and all HeartBeat Daemons on the network removing 
the server from their internal lists; for this reason 
CORBA clients must be prepared to soft-fail if the at-
tempt to connect to the server fails.  As discussed in 
[MODZ97] certain commercial ORBs (such as Visi-
genic’s Visibroker) offer the ability to transparently 
fail-over to another application, but this feature is not 
available in omniORB. 

An interesting approach to transparently providing re-
dundancy is that employed by the Eternal system 
[NARA97].  Eternal intercepts the IIOP protocol com-
munication between CORBA clients and servers, redi-

recting the communication to a reliable multicast group 
of servers in such a way that multiple servers are given 
the opportunity to respond to the request.  Eternal inter-
cepts the IIOP stream at the operating system level, and 
as such can be plugged into any ORB that supports 
IIOP.  Unfortunately, Eternal is still under development 
at the University of California, Santa Barbara and is not 
yet available to the public. 

Security 
We mentioned that all of the CORBA communication 
takes place over a private LAN.  The decision to isolate 
CORBA traffic allowed us to deploy Datacom Mk2 
without building a security infrastructure on top of 
CORBA. Although several ORB vendors offer CORBA 
over SSL solutions, they are proprietary, invalidating 
one of CORBA’s biggest selling points.  We instead 
used an open source IPSEC tunnel program to extend 
this private network, allowing Datacom to use multiple 
data centers for performance and redundancy.  In the 
future, we hope to move from running software-based 
tunnels on our servers to using a firmware solution, 
such as Cisco’s VPN product running on our routers. 

Performance 
The success of our conversion was tied to tangible re-
sults: the new system had to meet or exceed our re-
quirements for it.  Using CORBA increases processor 
and network overhead and our initial performance tests 
did not simulate the load that the system would be under 
in the real world.  Throughout our development cycle, a 
large question mark loomed overhead: might we have 
done all this work only to run into yet another perform-
ance barrier? 

Our target was 200 transactions per second on each 
600Mhz Pentium III machine in the network.  After all 
the servers were running in the lab, we were able to max 
out a 400Mhz Pentium II machine at more than 400 
transactions per second.  The design of the system al-
lows for near-linear performance increases as hosts are 
brought online, so we expect that this model will serve 
us for the next several years. 

Looking to the Future: CORBA 3 
The benefits that CORBA has provided to our applica-
tion are numerous, but there is an even bigger bonus yet 
to come: CORBA 3.  This collection of specifications 
addresses many of the annoyances present in the 
CORBA 2.3 specification and lays the groundwork for 
integrating CORBA with other component technologies, 
like ActiveX and JavaBeans. 



The new features in CORBA 3 fall into three categories: 
Internet Integration, Quality of Service (QoS), and the 
CORBAcomponent architecture.  Internet Integration 
allows CORBA to communicate easier over the Internet 
by defining a firewall protocol that allows for client-
side callbacks over a single TCP/IP connection. 

Internet Integration also defines IIOP over SSL, which 
will allow ORBs from multiple vendors to talk to each 
other securely.  Another big change is the Interoperable 
Naming Service which lets a client find an IOR using a 
new URL syntax, like this: 

iioploc://ns.targetnet.com/AdDelivery 

While this feature might seem to render the Service 
Heartbeat Daemon obsolete, it still has a single insertion 
point for updates. Until a hybrid solution that provides a 
redundant IOR directory appears, we expect that the 
HBD will continue to be an essential part of our system. 

Also in the new spec are QoS extensions, including 
asynchronous messaging and queue priorities.  Specifi-
cations for Minimum, Fault-tolerant and Real-time 
CORBA will make CORBA a viable solution for many 
applications that were unable to use CORBA version 2. 

The CORBAcomponent architecture is intended to 
separate CORBA into components, and defines the in-
tegration of these components with popular scripting 
languages.  This will allow a developer to freely mix 
and match CORBA 3 components, ActiveX controls, 
and Enterprise JavaBeans, choosing the best technology 
for each part of their problem without becoming mired 
in interoperability issues.  This could be the single most 
important part of CORBA 3, as it will break the present 
exclusive development model that CORBA 2 forces 
developers to use. 

The CORBA 3 specification will not be published until 
mid-to-late 2000.  Even then, we are not sure how 
quickly or how much of CORBA 3 we will use.  Having 
spent the time building CORBA into the heart of the ad 
delivery system gives us the freedom to migrate parts of 
the system to CORBA 3 at a comfortable pace.  Had we 
chosen a different architecture, we might have been 
forced to move the entire system in one piece. 

Concluding Remarks 
The conversion of Datacom from CGI to CORBA took 
us a little more than four months.  Making the journey 
from no CORBA knowledge to full implementation was 
not without its pitfalls – we cut some corners and 
skipped over those topics deemed “too advanced” at the 

time.  Nevertheless, we succeeded in creating a system 
that exceeds its design requirements several times over 
and allows for almost limitless expansion. 

We could have chosen to outsource a solution, but when 
faced with financial constrictions, solving the problem 
in-house is often the only option.  With a little creative 
thinking and some investment in learning new technolo-
gies, it is possible to deploy a distributed computing 
model without a large capital investment. 

CORBA does not have to remain in the enterprise-
computing arena.  Examination of projects like Data-
com or industry software like the Dents name server 
[DENTS] and the GNOME environment [GNOME] 
proves that CORBA/OpenSource integration is viable 
today. Whether you use CORBA implicitly by contrib-
uting to these projects or explicitly as we have, it is 
clear that CORBA has a bright future in the Open-
Source community.  We hope that our experience en-
courages OpenSource developers to seriously consider 
CORBA as part of their projects. 

                                                 
References 
[FASTCGI]  http://www.fastcgi.com/ 

[MODZ97] Brent E. Modzelewski and David 
Cyganski,  “Interactive-Group Object-
Replication Fault Tolerance for 
CORBA,” Proceedings of the Third 
USENIX Conference on Object-
Oriented Technologies and Systems, 
Portland, Oregon (June 1997). 

[OMG] http://www.omg.org/ 

[MICO] http://diamant.vsb.cs.uni-
frankfurt.de/~mico/ 

[ILU]                  
ftp://parcftp.xerox.com/pub/ilu/ilu.ht
ml 

[ORBACUS] http://www.ORBacus.com 

[ORBIT] http://www.labs.redhat.com/orbit/ 

[OMNIORB] 
http://www.orl.co.uk/omniORB/omni
ORB.html 



                                                                            
[SCHM96] Douglas C. Schmidt, Tim Harrison 

and Ehab Al-Shaer, “Object-Oriented 
Components for High-speed Network 
Programming”, Proceedings of the 
USENIX Conference on Object-
Oriented Technologies, Monterey, 
California (June 1995). 

[GNQS] http://www.gnqs.org/ 

[JAVABEAN] 
http://java.sun.com/beans/faq/faq.ente
rprise.html 

[RFC2714] V. Ryan, R. Lee, and S. Seligman, 
Schema for Representing CORBA 
Object References in an LDAP Direc-
tory, RFC2714 (October 1999), 
ftp://ftp.isi.edu/in-notes/rfc2714.txt. 

[RFC2052] A. Gulbrandsen and P. Vixie, A DNS 
RR for specifying the location of ser-
vices (DNS SRV), RFC2052 (October 
1996), ftp://ftp.isi.edu/in-
notes/rfc2052.txt 

[NARA97] P. Narasimhan, L.E. Moser and P.M. 
Melliar-Smith, “The Interception Ap-
proach to Reliable Distributed 
CORBA Objects”, Proceedings of the 
Third USENIX Conference on Object-
Oriented Technologies and Systems, 
Portland, Oregon (June 1997). 

[DENTS] http://www.dents.org/ 

[GNOME] http://www.gnome.org/ 


	Abstract
	Introduction
	Breaking the CGI speed barrier
	Back to School
	Choosing an ORB
	Datacom Mk2
	An HTTP to CORBA Proxy
	Abstracting the Server interface
	Locating remote servers
	The Service HeartBeat Daemon
	Adding load balancing and redundancy
	Security
	Performance
	Looking to the Future: CORBA 3
	Concluding Remarks

