FlashVM:
Virtual Memory Management on Flash

Mohit Saxena
Michael M. Swift

University of Wisconsin-Madison

Is Virtual Memory Relevant?

 There is never enough DRAM
— Price, power and DIMM slots limit amount
— Application memory footprints are ever-increasing

e VM is no longer DRAM+Disk

— New memory technologies: Flash, PCM,
Memristor

Flash and Virtual Memory

DRAM

DRAM is expensive
Storage
+

VM

Disk is slow

Flash is cheap and fast

Flash Flash for Virtual Memory

Disk

In this talk

e Flash for Virtual Memory
— Does it improve system price/performance?
— What OS changes are required?
e FlashVM
— System architecture using dedicated flash for VM
— Extension to core VM subsystem in the Linux kernel

— Improved performance, reliability and garbage
collection

Background
— Flash and VM

Design
Evaluation
Conclusions

Outline

Flash 101

e Flash is not disk

— Faster random access performance: 0.1 vs. 2-3 ms for disk
— No in-place modify: write only to erased location

e Flash blocks wear out
— Erasures limited to 10,000-100,000 per block
— Reliability dropping with increasing MLC flash density

e Flash devices age

— Log-structured writes leave few clean blocks after
extensive use

— Performance drops by up to 85% on some SSDs
— Requires garbage collection of free blocks

Virtual Memory 101

No Localit
O Lotality > Reduced DRAM

AM » Same performance
» Lower system price

N S > Faster execution
I > No additional DRAM

Un S el Isresystem price

Execution Time T

FlashVM

Memory Size M

Outline

* Design
— Performance
— Reliability
— Garbage Collection

e Evaluation
e Conclusions

FlashVM Hierarchy

DRAM

Page Swapping

VM Memory Manager

Disk Scheduler

FlashVM Manager:
Performance, Reliability
and Garbage Collection

[Block Device Driver]
} }
@ f) Dedicated Flash
Dedicated Flash .
Disk Cost-effective for VM
- MLC NAND .
Reduced FS interference

VM Performance

e Challenge
— VM systems optimized for disk performance

— Slow random reads, high access and seek costs,
symmetrical read/write performance

e FlashVM de-diskifies VM:

— Page write back)
— Page scanning > Parameter Tuning
— Disk scheduling

— Page prefetching

10

Page Prefetching

b

VM assumption

FREE Seek and rotational delays are longer than
the transfer cost of extra blocks

FREE Linux sequential prefetching

Minimize costly disk seeks

Delimited by free and bad blocks
o= FlashVM

FlashVM prefetching

Exploit fast flash random reads and spatial

BAD locality in reference pattern

Seek over free and bad blocks

| swap map 11

Stride Prefetching

Request

= Request

= Request

- Request

- Request

swap map

FlashVM uses stride
prefetching

— Exploit temporal locality in
the reference pattern

— Exploit cheap seeks for
fast random access

— Fetch two extra blocks in
the stride

The Reliability Problem

 Challenge: Reduce the number of writes
— Flash chips lose durability after 10,000 — 100,000 writes
— Actual write-lifetime can be two orders of magnitude less
— Past solutions:

» Disk-based write caches for streamed 1/O
e De-duplication and compression for storage

 FlashVM uses knowledge of page content and state
— Dirty Page sampling
— Zero Page sharing

Page Sampling

Inactive LRU
Page List

Clean

FlashVM

Prioritize young clean

over old dirty pages

Free
Page List

=

Adaptive Sampling

 Challenge: Reference pattern variations
— Write-mostly: Many dirty pages
— Read-mostly: Many clean pages
 FlashVM adapts sampling rate

— Maintain a moving average for the write rate

— Low write rate =2 Increase s;
e Aggressively skip dirty pages

— High write rate - Converge to native Linux
e Evict dirty pages to relieve memory pressure

15

Outline

* Design

— Garbage Collection
e Evaluation
e Conclusions

Flash Cleaning

write ‘cluster A’ at block O
write ‘cluster B’ at block 100

fee Ghiss A'g discard

write ‘cluster B’ at block 100

free ‘cluster B’
write ‘cluster C’ at block 200

write ‘cluster D’ at block O

All writes to flash go to
a hew location

Discard command
notifies SSD that blocks
are unused

Benefits:

— More free blocks for
writing

— Avoids copying data for
partial over-writes

Discard is Expensive

Operation Latency
500 417 ms

55 ms
<0.5ms 2 ms
; ‘m |

read write
4KB 4KB

erase \ /discard dlscard discard discard / discarc
4KB 10vB 100VB\ 1GB

Operation

OCZ-Vertex, Indilinx controller

Discard and VM

* Native Linux VM has limited discard support
— Invokes discard before reusing free page clusters
— Pays high fixed cost for small sets of pages

* FlashVM optimizes to reduce discard cost

— Avoid unnecessary discards: dummy discard

— Discard larger sizes to amortize cost: merged
discard

Dummy Discard

* Observation: Overwriting a
block

Dissaveite — notifies SSD it is empty

Overwrite

— after discarding it, uses the free
space made available by discard

e FlashVM implements dummy
discard

— Monitors rate of allocation

— Virtualize discard by reusing
blocks likely to be overwritten
: : soon

I I 20

Merged Discard

e Native Linux invokes

cluster
— Result: 55 ms latency for
sz freeing 32 pages (128K)
| * FlashVM batch many
Discard
free pages

— Defer discard until 100
MB of free pages
available

— Pages discarded may be
non-contiguous

Design Summary

e Performance improvements

— Parameter Tuning: page write back, page
scanning, disk scheduling

— Improved/stride prefetching
e Reliability improvements

— Reduced writes: page sampling and sharing

 Garbage collection improvements
— Merged and Dummy discard

22

Outline

e Evaluation
— Performance and memory savings
— Reliability and garbage collection

e Conclusions

Methodology

e System and Devices

— 2.5 GHz Intel Core 2 Quad, Linux 2.6.28 kernel
— IBM, Intel X-25M, OCZ-Vertex trim-capable SSDs

e Application Workloads
— ImageMagick - resizing a large JPEG image by 500%
— Spin — model checking for 10 million states
— SpecJBB — 16 concurrent warehouses
— memcached server — key-value store for 1 million keys

24

Application Performance and Memory Savings

O Runtime B Memory Use

N (0

=

% 60 -

N

> 50 - I

S 40 - Const Performance

g 84% memory savings Const Memory

s 30 ~ 94% less execution time

S 20 -

<

NS

E O I I I I

o ImageMagick Spin SpecJBB memcached- memcached-
store lookup

Applications

25

Write Reduction

O Performance B Writes

120 . 14% reduction
ImageMagick
100 -

80 -
60 -

40 -
93% reduction

Performance/Writes

20

Spin

.

Uniform Page Adaptive Page Page Sharing
7% overhead, Sampling Sampling
12% reduction

077

Write Reduction Technique

26

Elapsed Time (s)

Garbage Collection

@ Linux/Discard W FlashVM [Linux/No Discard
10000

10X faster

o

o

o
|

15% slower

100 -

=
o
|

ImageMagick Spin memcached

Application

27

Conclusions

e FlashVM: Virtual Memory Management on
Flash

— Dedicated flash for paging

— Improved performance, reliability and garbage
collection
* More opportunities and challenges for OS
design
— Scaling FlashVM to massive memory capacities
(terabytes!)

— Future memory technologies: PCM and
Memristors

28

Thanks!

FlashVM: Virtual Memory Management on Flash

Mohit Saxena
Michael M. Swift

University of Wisconsin-Madison
http://pages.cs.wisc.edu/~msaxena/FlashVM.htm|

29

