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Is Virtual Memory Relevant?

 There is never enough DRAM
— Price, power and DIMM slots limit amount
— Application memory footprints are ever-increasing

e VM is no longer DRAM+Disk

— New memory technologies: Flash, PCM,
Memristor ....



Flash and Virtual Memory
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In this talk

e Flash for Virtual Memory
— Does it improve system price/performance?
— What OS changes are required?
e FlashVM
— System architecture using dedicated flash for VM
— Extension to core VM subsystem in the Linux kernel

— Improved performance, reliability and garbage
collection
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Flash 101

e Flash is not disk

— Faster random access performance: 0.1 vs. 2-3 ms for disk
— No in-place modify: write only to erased location

e Flash blocks wear out
— Erasures limited to 10,000-100,000 per block
— Reliability dropping with increasing MLC flash density

e Flash devices age

— Log-structured writes leave few clean blocks after
extensive use

— Performance drops by up to 85% on some SSDs
— Requires garbage collection of free blocks



Virtual Memory 101
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FlashVM Hierarchy

DRAM

Page Swapping

VM Memory Manager

Disk Scheduler

FlashVM Manager:
Performance, Reliability
and Garbage Collection

[ Block Device Driver ]
} }
@ f ) Dedicated Flash
Dedicated Flash .
Disk Cost-effective for VM
- MLC NAND .
Reduced FS interference




VM Performance

e Challenge
— VM systems optimized for disk performance

— Slow random reads, high access and seek costs,
symmetrical read/write performance

e FlashVM de-diskifies VM:

— Page write back )
— Page scanning > Parameter Tuning
— Disk scheduling

— Page prefetching
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Page Prefetching

b

VM assumption

FREE Seek and rotational delays are longer than
the transfer cost of extra blocks

FREE Linux sequential prefetching

Minimize costly disk seeks

Delimited by free and bad blocks
o= FlashVM

FlashVM prefetching

Exploit fast flash random reads and spatial

BAD locality in reference pattern

Seek over free and bad blocks
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Stride Prefetching

Request

= Request

= Request

- Request

- Request

swap map

FlashVM uses stride
prefetching

— Exploit temporal locality in
the reference pattern

— Exploit cheap seeks for
fast random access

— Fetch two extra blocks in
the stride



The Reliability Problem

 Challenge: Reduce the number of writes
— Flash chips lose durability after 10,000 — 100,000 writes
— Actual write-lifetime can be two orders of magnitude less
— Past solutions:

» Disk-based write caches for streamed 1/O
e De-duplication and compression for storage

 FlashVM uses knowledge of page content and state
— Dirty Page sampling
— Zero Page sharing



Page Sampling
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FlashVM
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Adaptive Sampling

 Challenge: Reference pattern variations
— Write-mostly: Many dirty pages
— Read-mostly: Many clean pages
 FlashVM adapts sampling rate

— Maintain a moving average for the write rate

— Low write rate =2 Increase s;
e Aggressively skip dirty pages

— High write rate - Converge to native Linux
e Evict dirty pages to relieve memory pressure
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Flash Cleaning

write ‘cluster A’ at block O
write ‘cluster B’ at block 100

fee Ghiss A'g discard

write ‘cluster B’ at block 100

free ‘cluster B’
write ‘cluster C’ at block 200

write ‘cluster D’ at block O

All writes to flash go to
a hew location

Discard command
notifies SSD that blocks
are unused

Benefits:

— More free blocks for
writing

— Avoids copying data for
partial over-writes



Discard is Expensive

Operation Latency
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Discard and VM

* Native Linux VM has limited discard support
— Invokes discard before reusing free page clusters
— Pays high fixed cost for small sets of pages

* FlashVM optimizes to reduce discard cost

— Avoid unnecessary discards: dummy discard

— Discard larger sizes to amortize cost: merged
discard



Dummy Discard

* Observation: Overwriting a
block

Dissaveite — notifies SSD it is empty

Overwrite

— after discarding it, uses the free
space made available by discard

e FlashVM implements dummy
discard

— Monitors rate of allocation

— Virtualize discard by reusing
blocks likely to be overwritten
: : soon
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Merged Discard

e Native Linux invokes

cluster
— Result: 55 ms latency for
sz freeing 32 pages (128K)
| * FlashVM batch many
Discard
free pages

— Defer discard until 100
MB of free pages
available

— Pages discarded may be
non-contiguous



Design Summary

e Performance improvements

— Parameter Tuning: page write back, page
scanning, disk scheduling

— Improved/stride prefetching
e Reliability improvements

— Reduced writes: page sampling and sharing

 Garbage collection improvements
— Merged and Dummy discard
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Outline

e Evaluation
— Performance and memory savings
— Reliability and garbage collection

e Conclusions



Methodology

e System and Devices

— 2.5 GHz Intel Core 2 Quad, Linux 2.6.28 kernel
— IBM, Intel X-25M, OCZ-Vertex trim-capable SSDs

e Application Workloads
— ImageMagick - resizing a large JPEG image by 500%
— Spin — model checking for 10 million states
— SpecJBB — 16 concurrent warehouses
— memcached server — key-value store for 1 million keys
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Application Performance and Memory Savings
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Write Reduction
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Conclusions

e FlashVM: Virtual Memory Management on
Flash

— Dedicated flash for paging

— Improved performance, reliability and garbage
collection
* More opportunities and challenges for OS
design
— Scaling FlashVM to massive memory capacities
(terabytes!)

— Future memory technologies: PCM and
Memristors
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