A DNS REFLECTION METHOD FOR GLOBAL TRAFFIC MANAGEMENT

JIN LI (MICROSOFT RESEARCH)

With Cheng Huang, Nick Holt, Y. Angela Wang, Albert Greenberg, Keith. W. Ross

Outline

- Introduction
- DNS based GTM
- □ GTM optimization, LDNS population & reachability
- DNS reflection
- Results
- Conclusion

Global Traffic Management (GTM)

- □ The GTM problem
 - For any service running in N satellite data centers, which data center should be selected to serve a particular client to achieve the best (latency and/or throughput) performance?
 - Cloud storage
 - Content distribution
- Mega DC (SJC) Dynamic web acceleration Front Load Satellite DC **Balancer** Door (SEA) Private Mega DC AS1 WAN (NYC) Load Front Satellite DC **Balancer** Door (AMS)

Global Traffic Management (GTM)

- Practical GTM solutions: how to redirect?
 - HTTP redirection
 - URL rewriting
 - DNS-based GTM
 - All clients resolve the same hostname (e.g., gtm.CloudService.com)
 - GTM returns the IP of the best DC
 - Based on clients' Local DNS servers (LDNS)
 - GTM never sees clients' IPs
 - Most common ← highly scalable
 - What we deal with in this paper

DNS based GTM

DNS-based GTM solutions

- Geography-based GTM
 - Decision based on geographic location
 - Mapping from location to DC
- Anycast-based GTM
 - Serving clients from the anycast-closest DC
 - Anycast (BGP)-closest ≠ latency-closest

DNS-based GTM solutions

- Passive measurement
 - Monitor performance between IP prefix and DCs
 - Most clients directed to the best DC
 - Some clients (randomly selected) directed to probe other DCs
 - Traces captured at DCs to infer performance
 - Major problem
 - Performance of the selected clients is degraded
 - LDNS caching will affect subsequent clients and can be very bad
- Active probing
 - Most often used by CDN
 - See next slide for reachability

Reachability of LDNS

- □ 6 week's logging of 5% NCSI DNS traffic
 - 795K unique LDNSes in 10,012 cities and 229 countries

Reachability of LDNS

- Monitor performance between LDNS and DC
 - Active probing
 - 49% Ping-able
 - another 6% respond to DNS probe queries
 - \blacksquare For the rest 45% passive measurement w/ DNS traffic
 - Trigger DNS query from arbitrary LDNS to measure any target DC through DNS Reflection
 - \blacksquare Passive measurement \rightarrow no LDNS query, no measurement
 - \blacksquare Universal \rightarrow applicable to any LDNS
 - Minimize performance impact → always serve clients with the optimal DCs
 - Achieve high accuracy

Our proposal – DNS Reflection

- ☐ GTM using DNS Reflection
 - Minimize performance impact
 - Achieve high accuracy

How does it work?

How does the solution fare with existing ones?

Evaluation

- How accurate is the measurement? How good is reflection based GTM fare with geography & anycast based GTM?
- Prototype deployed on 17 DCs in the Microsoft global data center network
- □ 162 (out of 274) PlanetLab nodes
 - LDNS co-locates with client (240)
 - LDNS responds to Ping (162)

Accuracy – DNS Reflection vs. Ping

- DNS reflection matches very well with Ping
 - 6 ms away from Ping

GTM Performance

- GTM using DNS Reflection is very close to optimal
 - 2 ms away from optimal vs. 74 ms (geography) and 183 ms (anycast)

Conclusion

- DNS-based GTM is most commonly used
- Active probing suffers from limited reachability
- Passive measurement by redirecting clients to suboptimal DCs degrade performance and affect subsequent clients
- DNS Reflection method
 - Cause a minimal performance impact
 - Achieve high accuracy