Wide-area Network Acceleration for the Developing World
Sunghwan lhrh KyoungSoo Park, and Vivek S. Pai

!Department of Computer Science, Princeton University
2Department of Electrical Engineering, KAIST

Abstract tops in the price range of US $100-$200 each, for a total

] cost of $10K-$20K [22]. Requiring special server-class
Wide-area network (WAN) accelerators operate by com+argware for WAN acceleration alone could increase de-

pressing redundant network traffic from point-to-point yjoyment cost. Other options would be to share the ma-
communications, enabling higher effective bandwidth.chine with other services (e.g, mail servers, Web servers,
Unfortu_nat_ely, while netvyork bandwidth is scarce and 5 proxies) or to use cheap, laptop-class hardware, both
expensive in the developing world, current WAN accel- ot \hich would reduce the RAM and disk available to the

erators are designed for enterprise use, and are a poor {fjAN accelerator. In addition, existing designs cannot

in these environments. _ exploit the mesh network environments being deployed
We present Wanax, a WAN accelerator designed fof, the developing world, limiting their potential utility.

developing-world deployments. It uses a novel multi- \ye have developed a new WAN accelerator, Wanax,
resolution chunking (MRC) scheme that provides highyhat js designed to meet these challenges in the devel-
compression rates and high disk performance for a varigping world. Our technical contributions are the fol-
ety of content, while using much less memory than exqgyings: (1) a novel multi-resolution chunking (MRC)
isting approaches. Wanax exploits the design of MRC technique, which provides high compression rates and
perform intelligent load shedding to maximize through-high gisk performance across workloads while having a
pyt when running on resource-limited shared _platformssma” memory footprint; (2) an intelligent load shedding
Finally, Wanax exploits the mesh network environmentsechnigue that exploits MRC to maximize effective band-
being deployed in the developing world, instead of just,,;gin by adjusting disk and WAN usage as appropriate;
the star topologies common in enterprise branch offices 4, (3) a mesh peering protocol that exploits higher-
1 Introduction speed local peers when possible, instead of fetching only

While low-cost laptops may soon improve computer ac-OVer §Iow WAN Iink§. The .combinatio.n of thgse design
cess for the developing world, their widespread deployltechniques makes it possible to achieve high effective
ment will increase the demands on local networking in-bandwidth even with resource-limited shared machines.
frastructure. Locally caching static Web content can al- The rest of this paper is organized as folloWg:pro-
leviate some of this demand, but this approach has limit¥ides background on WAN accelerators and new chal-
on its effectiveness, especially in smaller environments.lenges in the developing world3 describes the design
We propose to augment these caches with integrate@f Wanax, and we show the trace-based simulation anal-
wide area network (WAN) accelerators that have beerysising4. In§ 5, we detail the prototype implementation,
specifically designed to operate in developing-world en-2nd$6 presents the experimental results. Finally, we dis-
vironments. WAN accelerators are deployed near edg€Uss related work ij7, and conclude i8.
r_outers, and yvork b_y compressing redundant traffic des9 Backg round and Motivation
tined to Iogatlons with ather WAN accelerators. To oM oyr goal is to improve Internet access in the developing
press traffic, the accelerators break the data stream 'nRﬁorld using WAN accelerators designed to use low-end

smaller chunks, store th_ese chunks at gach aCC,elerat(Hardware. We primarily focus on increasing tféec-
and then replace future instances of this data with ref;

erence to the cached chunks. By passing references five bandwidth (or throughput) of the expensive, low-

the chunks rather than the full data. th lerat Bandwidth WAN link in the region. We first provide a
€ chunks rather than the tull data, the accelerator Comg a¢ introduction to WAN accelerators, and then discuss
presses the data stream.

. the specific problems.
Current WAN accelerators are not well-suited for the2 1 WAN A | t
developing world. While they typically require server- < cceleralors

class machines with a set of fast disks and a large poo(f'Ontent Fingerprinting Content fingerprinting (CF)

of dedicated memory, the average school targeted by thfé)rmsthe basis for WAN acceleration, since it provides a

One Laptop Per Child (OLPC) project will have 100 lap- ?Oorsg'g;'(?:ge%eg?rzgtrsng hd'zttc;rﬁ{;diﬁqe;}?;n;itsggg'q(l;re

TWork partly done while at University of Pittsburgh. chunks, based only on their content.

sequently the effective bandwidth as well. Small chunks
can lead to better compression if changes are fine-
grained, such as a word being changed in a paragraph.
) Only the chunk containing the word is modified, and the
v rest of the paragraph can be compressed. However, for
— the same storage size, smaller chunks create more total

Content
Fingerprinting
Engine

LS Wetadata chunks, increasing the metadata index size, and increas-
ing the memory pressure and disk seeks. Large chunks
Storage System (Disk) yield fewer chunks in total, reducing memory pressure
Figure 1:WAN Accelerator Architecture from indexing and providing better disk usage since each

read can provide more data. Large chunks, however, can
While early systems used Manber’s anchor technigueniss fine-grained changes, leading to lower compression.
to determine chunk boundaries [18], Rabin’s fingerprint-No chunk size is standard in systems that use content
ing technique is now widely used for its efficiency and fingerprinting — for example, VBWC [30] uses a 2KB
flexibility [29]. It continuously generates integer valyes chunk size, LBFS [21] uses 8KB, and Shark [5] uses
or fingerprints, over a sliding window (e.g., 48 bytes) of 16KB.

a byte stream. When a fingerprint matches a specifie¢. 2 Developing World Challenges
global constani(’, that region constitutes a chunk bound- Qur target environment, schools in the developing world,

ary. The average chunk size can be controlled with a pais very different from enterprise branch offices, the typi-
rametem, that defines how many low-order bits&fare cal candidate for WAN accelerators.

used to determine chunk boundaries. In the average cas

the expected chunk size 2 bytes. To prevent chunks

from being too large or too small, minimum and maxi-

mum chunk sizes can be specified as well. Since Rabi : . .

fingerprinting determines chunk boundaries by content, edicated server appliance. Also, school children may

rather than offset, localized changes in the data strealwant to access any content on the Internet, r_ather than

only affect chunks that are near the changes. Just a smaller set of work-related documents in the en-
Once a stream has been chunked, the WAN acceleraté?rpnse_ environment. Thisarger working set requires

can cache the chunks and pass references to previoué&ore .d'Sk stqrage, more chunks, and more metadata en-

cached chunks, regardless of their origin. As a result:[IS, Increasing memory pressure.

WAN accelerators can compress within a stream, acrosBoor Disk Performance While disk capacity is cheap

streams, and even across files and protocols. and large (1TB SATA per $100), disk seek performance

| is still limited and is often the bottleneck. Modern desk-

architecture of modern WAN accelerators. Chunk datg°P drives typically perform ropghly 100 seeks/secpnd,
is stored on disk due to cost and capacity, but an in. ut chegper laptop/external drives we may expect in the
dex of chunk metadata is partially or completely keptdeveloplng world are even slower, and are much slower

in memory to avoid disk accesses. Memory also servegjan the high-RPM SCSI disks commercial WAN accel-

as a cache for chunk data, to reduce disk access foqrators use. Also, the larger working set and other ser-
commonly-used content vices sharing the disks further increase the disk load.

The performance of WAN accelerators is mainly de-Low Compression Rate To handle poor disk perfor-
termined by three factors - (Igompression rate, (2) mance in the developing world, one choice is to use large
disk performance, and (3)memory pressure. Compres- chunks to reduce the number of disk accesses, but this re-
sion rate refers to the fraction of the original data actu-duces the compression rate, limiting bandwidth gains.

ally get; sen_t, and reflects -network bandwidth SaVi.ng%esh Topology Enterprise branch offices typically
by receiver-side caching. Disk performance determ'ne%ommunicate with a central office in a star topology,

the cached Chflfmkt at%ces:r tl_me (sefetla tlrr;]e) Vlgh'lde MeMy hereas many schools in a local region may prefer to get
ory pressure afiects the efliciency ot the chunk index anc,, ,ient from each other over cheaper local links rather

|tn;r|netmory ca;]gh;]ng. tr;r htgse tthree facut)rs ?ﬁegt (tjh? to'than over the WAN link. Current WAN accelerators are
al latency, wnich is the ime 1o reconstruct and deiiver,, ,, designed to exploit this opportunity.

the original data. Delivering high effective bandwidth .
requires reducing the total latency — havinigh com- 3 Wanax DeS|gn

Ei’mited RAM Due to cost, schools wantshared ma-
chine or a cheap laptop with limited RAM running the
/AN accelerator and other services, instead of using a

Performance Trade-offs Figure 1 depicts the general

pression, low disk seeks, andlow memory pressure si- Motivated by the challenges in the developing world, we
multaneously. design Wanax around four goals - (1) maximize com-

Chunk size directly impacts all three factors, and con- pression, (2) minimize disk seeks, (3) minimize memory

Receiver R-Wanax S-Wanax Sender

Request ~|__ Open connection
/ Send request Request |
Hit |« Chunk names Content
~ Content / Chunk ACK _| Delivery
Delivery
Miss l«_ _ Chunkrequest |

Chunk response
Content -
Delivery

- Close connection

Figure 2:Wanax System Overview Pong

. Figure 3:Basic Protocol
pressure, and (4) exploit local resources. 9

Wanax works by compressing redundant traffic be- \when the client B sends data back to S-Wanax, S-
tween a pair of servers — one near the clients, called yanax generates chunk names from the data and sends
R-Wanax, and one closer to the content, called an Sthem to R-Wanax in achunk name message. Each
Wanax. For developing regions, the S-Wanax is likely tochunk name message contains a sequence number so
be placed where bandwidth is cheaper. For example, ifhat R-Wanax can reconstruct the original content in the
Africa, where Internet connectivity is often backhauled right order. After R-Wanax reconstructs and delivers the
to Europe via slow and expensive satellite, the S-Wanaxhunk data to the original client, it sendscaunk ac-
may reside in Europe. knowledgment (ACK) message to S-Wanax. S-Wanax

Since we expect most Wanax usage will be Web-can then safely discard the delivered chunks from its
related, Wanax operates on TCP streams rather than 'Rlemory, and proceed with sending more chunk names.
packets since buffering TCP flows can yield larger re- \when the sender or receiver closes the connection,
gions for content fingerprinting. The remote Wanax di- the corresponding Wanax sendsl@se connection mes-
vides the incoming TCP stream into chunks and sendgage to other gateway and the connections between the
chunk identifiers (such as SHA-1 hashes) to the localateways and the clients are closed once all the data is
Wanax. If the local Wanax has the chunks cached, th@jejivered. The control channel, however, remains con-
data is reassembled and delivered to the client. Anyyected. All control messages carry flow identifiers, so
chunks that are not cached can be fetched from the respe control channel can be multiplexed for many data
mote Wanax or other nearby peer. Figure 2 shows th@qows, Control messages can be batched for efficiency.
overall system architecture. Each machine is capable of

acting as both S-Wanax and R-Wanax, based on the gPata and Monitoring Channels The data channel
rection of communication. useschunk request and chunk response messages to de-

3.1 Basic Protocol liver the actual chunk content in case of a cache miss at

Wanax uses three kinds of communication channels beR-Wanax. We al_so h_ave thhunk_peek message W.h'Ch
tween the accelerators — control, data, and monitorin used to query if a given chunk is cached, which is used

channels. The control channel is used for connection 24" load shedding system. . .
management and chunk name exchange. The data chan-Each Wanax accelerator monitors the status of its

nels are used to request and deliver uncached chunkBE€'S by exchanging heartbeats on the monitoring chan-

so it is stateless and implemented as a simple reques'f'—él' The heartbeat response carries the load level of disk
reply protocol. Finally, the monitoring channel is used and network 1/Os of the peer so that we can balance the

for checking the liveness and load levels of the peers us.equest load among peers.

ing a simple heartbeat protocol. Figure 3 shows typica3-2 Multi-Resolution Chunking

data transfer between two Wanax gateways. MRC combines the advantages of both large and small
chunks by allowing multiple chunk sizes to co-exist in

: X) o the system. Wanax uses MRC to achieve (1) high com-
nection to client B in the WAN, that connection is trans- pression rate, (2) low disk seeks, and (3) low memory
parently intercepted by the Wanax gateway ac_celei*ator pressure. When content overlap is high, Wanax can use
R-Wanax. R-Wanax selects S-Wanax which is networkager chunks to reduce disk seeks and memory pres-
topologically closer to B, and sends itgpenconnection g,re * However, when larger chunks miss compression
message with the IP and the port number of B. S-Wanax,, o nities, Wanax uses smaller chunk sizes to achieve
then opens a TCP connection to B and a logical end-topgher compression. In contrast, existing WAN accel-
end user connection between A and B is established. 5445 typically use a fixed chunk size, which we term

INon-cacheable protocols(e.g., SSH, HTTPS) are bypassed. single-resolution chunking, or SRC.

Control Channel When client A initiates a TCP con-

Redupgancy Scheme Compression| Disk | Memory | Index
‘ 7 || ‘ Rate I/O | Pressure| Update
, | /\ SRC-Small High High High Simple
\ HIT , 1 | ‘ HIT [‘ SRC-Large Low Low Low Simple
| MRC-Small High High High Complex
‘ [Tl ‘ ‘ '/‘\ ‘ H,ﬁ/‘\ ‘ MRC-Large High Low High Complex
ﬁ /\ /\ /\ /\ MRC High Low Low Simple
LT T T T 71 Im CT T T T T T [n Table 1:Comparison of Chunking Schemes
(a) unaligned chunk (b) MRC: aligned chunk
boundaries boundaries

To reconstruct a larger chunk, MRC-Small needs to fetch
all the smaller chunks sharing the content, which can sig-
Generating Chunks Generating multiple chunk sizes nificantly increase disk access. The metadata for each
requires careful processing, not only for efficiency, butsmall chunk is accessed in this process and loaded in
also to ensure that chunk boundaries are aligned. Anemory, increasing memory pressure compared to stan-
naive approach to generating chunks can yield unalignedard MRC with only one chunk index entry. MRC-Large
chunk boundaries, as shown in Figure 4(a). Here, th&voids multiple disk seeks but complicates chunk index
fingerprinting algorithm was run multiple times with management. When a chunk is evicted from disk or over-
multiple sizes. However, due to different boundary-written, all dependent chunks must also be invalidated.
detection mechanisms, chunk size limits, or other is-This requires either that each metadata entry grows to
sues, the boundaries for larger chunks are not alignethclude all sub-chunk names, or that all sub-chunk meta-
with those of smaller chunks. As a result, when fetchingdata entries contain backpointers to their parents.
chunks to reconstruct data, some areas of chunks overlap, MRC avoids these problems by making all chunks in-
while some chunks only partly overlap, causing wasteddependent of each other. This choice greatly simplifies
bandwidth when a partially-hit chunk must be fetched tothe design at the cost of more disk space consumption. In
satisfy a smaller missing range. practice, however, we can store more than one month’s

Instead, we perform a single-pass fingerprinting stepyorth of chunk data on a single 1 TB disk assuming a 1
in which all of the smallest boundaries are detected, andbps WAN connection. Table 1 summarizes the trade-
then larger chunks are generated by matching differeneffs of different schemes.

ntu ”_‘bte rsTﬁ_f bits of the sgme b?':!.l&(éa{y dethectlon_ CONtontent Reconstruction When an R-Wanax receives
straint. IS process produces ree shown in a;n MRC tree (chunk names only) from an S-Wanayx, it

Figure 4:Multi-Resolution Chunking

Figulrle 4(2)' vl\(/herhe theblarg(ejst _chun_l:r:s the roc;tt,harjdl al uilds acandidatelist to determine which chunks can be
smaller chunks sharé boundaries with Some ot their 1eafq o g locally, at peers, and from the S-Wanax. To get
chunks. Performing this process using one fingerprint;

. | d | hunk ali this information, it queries its local cache and peers for
Ing pass not only produces a cleaner chunk a IgNMeNtyach chunk’s status, starting from the root. Since Wanax
but also requires less CPU.

uses the in-memory index to handle this query, it does
Storing Chunks All chunks generated by the MRC notrequire extra disk access. If a chunkis a hit, R-Wanax
process are stored to disk, even though the smallestops querying for any children of the chunk. For misses,

chunks contain the same data as their parent. The ratiave find the root of the subtree containing only misses,

nale behind this decision is based on the observation thand fetch that from S-Wanax. After reconstructing the

disk space is cheap, and having all chunks be fully inde€ontent, Wanax stores each uncached chunk in the MRC
pendent simplifies the metadatandexing process, re- to disk for future reference.

ducing memory pressure in the system, also minimizingChunk Name Hints Optimization Sending full MRC
disk seeks as well. For example, when reading a chun S : .
rees would waste bandwidth if there is a cache hit at

content from disk, MRC requires onfyne index entry a high level in the tree or when subtrees are all cache

access, and onlgne disk seek. misses. Sending one level of the tree at a time avoids the

ch-llj-vr\:l(()s ggﬁ;;gﬁ?i%ﬁ&d Wﬁcﬁowéecc&gséma Illargewasted bandwidth, but increases the transmission latency
' ’ ith a large number of round trips. Instead, we have

and storing the smaller chunks as offsets into the roo “Wanax predict chunk hits or misses at R-Wanax and

Ch\L;\;]hl('i WQ |ct2 vl\\l/IeRc?I;/IRCI—ILar%e.MR CL q prune the MRC tree accordingly. We augment S-Wanax
_vvhiie bo ~>mat and ! -Large can reduce iy 4 hint table that contains recently-seen chunk names
disk space consumption by saving only unique data, the<yalong with timestamps. Before sending the MRC tree, S-

sufferfrom more disk seeks and higher memory PreSSUryanax checks all chunk names againstthe hinttable. For

2chunk name, disk location of chunk content, and chunk leaggn @Y hitin the hint table, S'_N?nax aVOidS sending the sub-
minimum. trees below the chunk. If it is a miss or the chunk name

hint is stale, S-Wanax determines the largest subtree thalgorithm 1 Intelligent Load Shedding
is a miss and sends one chunk content for the entire sullRequire: C: all the chunk names to be scheduled
tree. This way, we eliminate any inefficiency exchanging ~ BW, RTT" link bandwidth and RTT
MRC trees, further increasing effective compression rat_e. % ::eor: dﬁﬁg?{g&%fkkgsfeiefgigggf/ﬁ;r peer
Here, we assume the S-Wanax and the R-Wanax will s: per chunk disk latency
be roughly synchronized over time — what an R-Wanax 1: partitionC with HRW
receives from an S-Wanax now is likely to be fetched 2 resolveC with chunk peek message in parallel
from the same S-Wanax in the future. We use the times-> 9°nerate the candidate list
D;: cache-hit chunks on peér
tamps to invalidate old hint entries, but even if prediction n: cache-miss chunks
is wrong, it does not affect correctness. 4: estimate each latency
3.3 Resource Sharing via Peering o, = (Dl Qi) x S
Wanax incorporates a peering mechanism to share the Ty =RTT + {zi: B +§Vlength(c)}/BW
resources such as disks, memory, and CPU with nearbys: while maz(Tp,) > T do
peers using cheaper/faster local connectivity. It allows6: pick the peek wheremaxz(Tp,) = Tp,
Wanax to distribute the chunk fetching load among the ”* T%Vaetge S”g?ge;t chunk frof; to
peers and utilize multiple chunk cache stores in parallel,g. gnq svh”e e v
improving performance. In comparison, existing WAN 10: returnD; and N
accelerators support only point-to-point communication.
To reduce scalability problems resulting from query-
ing peers [45], Wanax uses a variant of consistent hashand fetching smaller chunks over the network, we can
ing called Highest Random Weight (HRW) [40]. Regard- sustain high effective bandwidth without disk overload.
less of node churn, HRW deterministically chooses the We introduce intelligent load shedding (ILS), which
responsible peer for a chunk. We considered other apexploits the structure of the MRC tree and dynamically
proaches like Summary cache [12], but HRW consumeschedules chunk fetches to maximize the effective band-
small memory at the expense of more CPU cycles, anavidth given a resource budget. The ILS algorithm is
this trade-off fits well in the developing world scenario. presented in Algorithm 1, and takes the link bandwidth
In comparison, periodic rebuilds of a Bloom filter would (BW) and round-trip latencyR7TT) of the R-Wanax as
require re-scanning all chunk metadata, causing signifinput. Each peer Wanax also uses the monitoring chan-
cant memory pressure and possibly disk access. nel to send heartbeats that contain its network and disk
Here is how it works. On receiving thehunk name load status in the form of the number of pending disk
message from S-Wanax, R-Wanax sendsumk request ~ requests@;), and the pending bytes to receive from net-
message to its responsible peer Wanax. The messagerk (B;). We assume per-chunk disk read latengy, (
includes the missing chunk name and the address of Ser seek time is uniform for all peers for simplicity.
Wanax from whom the name of the missing chunk orig- The first step in the ILS process is generating the can-
inates. If the peer Wanax has the chunk, it sends thelidate list. On receiving the chunk names from S-Wanax,
requested chunk content back to R-Wanax witthank R-Wanax runs the HRW algorithm to partition the chunk
response message. If not, the peer proxy can fetch thenames () into responsible peers. Some chunk names
missing chunk from S-Wanax, deliver it to R-Wanax, are assigned to R-Wanax itself. Then R-Wanax checks
and save the chunk locally for future requests. If peersf the chunks are cache hits by sending tienk peek
are not in the same LAN and could incur separate bandmessages to the corresponding peers in parallel. Based
width cost, fetching the missing chunk falls back to theon the lookup results, R-Wanax generates the candidate
R-Wanax instead of the peer. After finishing data recondist (§3.2). Note that this lookup and candidate list gener-
struction, R-Wanax also distributes any uncached chunigtion process (line 2 and 3 in Algorithm 1) can be saved
to its corresponding peers. We introducehank put by name hints from S-Wanax, which R-Wanax uses to
message in the data channel for this purpose. determine the results without actual lookups.
3.4 Intelligent Load Shedding The next step in the ILS process is estimating fetch la-
While chunk cache hits are desirable in general sincaencies for the network and disk queues. From the candi-
they reduce bandwidth consumption, too many disk acdate list, we know which chunks need to be fetched over
cesses may degrade the effective bandwidth by increasretwork fietwork queue, N) and which chunks need to
ing the overall latency. This problem becomes everbe fetched either from local disk or a pedrsk queues,
worse in the developing world where the disk perfor- D;). Based on this information, we estimate the latency
mance is poor. In such cases, we can opportunisticalljor each chunk source. For each disk queue, the esti-
use network bandwidth instead of queueing more reimateddisk latency will be per-chunk disk latencys)
guests to the disk. By using the disk for larger chunksmultiplied by the number of cache hits. For the net-

ChunkSource = Disk Queue code. The outputs are actual and ideal bandwidth savings

— — with and without chunk indexing metadata overhead,
' disk access overhead for chunk content fetching, and to-

-Hi Peer #2 I [N iy k
Cgﬁﬂikﬁ“ (Poer#2) \ tal memory usage. We use 20-byte SHA-1 hashes for

"""""" \} the chunk names, and model point-to-point deployments
!

\ | \ with one S-Wanax and one R-Wanax with no peers. The

Cache-Miss .- simulator implements all of the Wanax design mentioned
S-Wanax L T i S . . At
Chunks L (CsWanax) earlier, including the chunk name hint optimization used
Network Queue for both SRC and MRC.

Figure 5: Intelliggnt Load Shedding: by moving smaller We vary the chunk size for both schemes, with SRC
chunks _from the disk queue to the network queue, the overa"using chunks from 32 bytes to 64 KB, and MRC using
latency is further reduced.

three tree configurations, with a 64 KB root chunk with

work queue, the estimatewtwork latency will be one trée _degrees 2,4 and 8 each. The child chunk size is
RTT plus the total size of cache-miss chunks divided byobtained by dividing the parent chunk size by the degree.
BW. Ifthere were pending chunks in the network or disk FOr example, a degree-2 tre¢ & 2) starts with a 64
queues, each latency is accordingly adjusted. We assunf® root chunk and two 32 KB children chunks. Each
the latency between the R-Wanax and peers is small, anghild chunk recursively forms a subtree with the same
do not incorporate it in our model. degree until the chunk size reaches 32 bytes. A degree-4
The final step in ILS is balancing the expected queuetree has 64 bytes as leaf node size while a degree-8 tree

latencies, but doing so in a bandwidth-sensitive mannef@S 128 bytes as the minimum size. If needed, we also
We decide if we need to move some cache hit chunk§h@nge the height of the MRC tree of the same degree,
from a disk queue to a network queue — since fetching?y controlling the smallest chunk size,
chunks from each source can be done in parallel, the tot#h.2 Workload
latency will be the maximum latency among them. If the We choose two types of workloads — dynamically-
network is expected to cause the highest latency, we stogenerated Web content and redundant large files. We
here because no further productive scheduling is possfocus on dynamic content because the static content is
ble. When disk latency dominates, we can reduce it bylikely to be handled by a standard Web proxy, and we can
fetching some chunks from the network. We choose thdurther reduce bandwidth consumption on uncacheable
smallest chunk because it reduces one disk seek latencgontent with Wanax. We select a number of popular news
while increasing the minimum network latency. We up- sites, fetch the front pages every five minutes, and mea-
date the estimated latencies, and repeat this process ursilire the redundancy between the fetcHeslo gener-
the latencies equalize, as shown in Figure 5. After fin-ate traffic close to what actual users would produce, we
ishing ILS, R-Wanax distributeshunk request messages use Firefox 3.0 [13] to fetch the content, and we enable
to corresponding peers. We send the requests in the othe browser cache to avoid re-fetching cacheable content.
der they appear in the candidate list, in order to avoidWe collect packet-level traces for three days, yielding a
possible head-of-line (HOL) blocking. 1GB trace with 102K TCP sessions and a 72% redun-
Note that ILS algorithm works with both MRC and dancy. We refer to this workload as “news sites”.
SRC. However, by moving the smallest chunk from the The large-file workload represents long-lived connec-
disk queue to the network queue, MRC could further re-tions for videos or software packages. For this, we down-
duce the disk latency than SRC, which results in smalletoad two different versions of the Linux kernel source
overall latency. Combined with MRC's better overall tar files, 2.6.26.4 and 2.6.26.5, one at a time and gather
disk performance and compression, it gives much highepacket-level traces as well. The size of each tar file is
effective bandwidth. about 276 MB, and the two files are 94% redundant. We

. . . refer to this workload as “Linux kernel”.
4 Simulation Analysis B
To understand the trade-offs between MRC and othef-acheability Breakdown Table 2 separates the poten-
schemes, we simulate their behavior under a variety ofidl bandwidth savings on the news sites by their HTTP

workloads, comparing bandwidth savings, disk acces§acheability, as determined by checking the cache con-
overheads, memory pressure, and performance. trol directives in the response headers. The top two num-

41 Simulator bers represent the portion of HTTP-uncacheable bytes

. H-U), while the bottom two indicate HTTP-cacheable
We develop a simulator that reads the packet-level trace . .
. . . ytes (H-C). The middle two numbers show the portion
from tcpdump [38] and simulates various scenarios us-

ing SRC and MRC-_ The Simmato_r uses Iibnids_ [16] for — scnn, Google News, NYTimes, Slashdot, Digg, Fark, Salon, Ya-
stream reconstruction, and consists of 7,000 lines of Goo News, and Drudgereport.

__ 100 __ 100
=3 =3
Y 80 - 80
j=2) f=2]
£ £
= 60 = 60
n n $
= = &
ES] 40 ES] 40
2 =
= 20 = 20
[+ T
o« 0 L L L L L L L L L L @ 0 L L L L L L L L L L
32 64 128256512 1K 2K 4K 8K 16K32K64K 32 64 128 256512 1K 2K 4K 8K 16K32K64K
Avg Chunk Size(SRC), Min Chunk Size(MRC) Avg Chunk Size(SRC), Min Chunk Size(MRC)
(a) News Sites (b) Linux Kernel

Figure 6:Potential Bandwidth Savings (d:degree) — SRC overheadeptré from reaching ideal savings for smaller chunk sizes.
MRC savings are close to ideal across all chunk sizes.

10000 4

~ 10000 ——————————grt] .
g MRC, d=2 ¢ =
= MRC, d=4 = 1000
o MRC, d=8 »
T 1000 B, il
o] “//Wﬂ,,,] 100
o %w}l’ o
5 “n‘d}“‘”) “““ » =
= 100 g™ ™ L
(a) [a] 10
ks ks
** T+ N
10 L L L L L L L L L L 1 L L L L L L L L L L
32 64 128256512 1K 2K 4K 8K 16K32K64K 32 64 128256512 1K 2K 4K 8K 16K32K64K
Avg Chunk Size(SRC), Min Chunk Size(MRC) Avg Chunk Size(SRC), Min Chunk Size(MRC)
(a) News Sites (b) Linux Kernel

Figure 7:Disk Operation Cost (d:degree) — By using larger chunks wiwesible, MRC dramatically reduces the number of disk
operations needed for a given workload. Note: Y axis is thods of operations.

SRC| MRC-2 | MRC-4 | MRC-8 sion overhead, the actual savings with SRC peaks at a
H-UW-U | 20 20 21 23 chunk size of 256 bytes with 58% bandwidth savings on
:gmg 613(2) 613(2) 6; 53 the news sites, and 82% on the Linux kernel. The band-
H-OMW-U 8 8 9 10 width savings drops as the chunk size further decreases,

and when the chunk size is 32 bytes, the actual savings is

Table 2: News Sites Cacheability Breakdown (%) — as a re- oy 2504 on the news sites and 36% on the Linux kernel.
sult of browser caching, most traffic in this workload is HFTP

uncacheable (H-U). However, it still has much redundancy, ©On the other hand, MRC approaches the ideal savings
making most bytes Wanax-cacheable (W-C). regardless of the minimum chunk size. With 32 byte

minimum chunks, it achieves close to the maximum sav-

] ings on both workloads — about 66% on the news sites
of Wanax-cacheable bytes (W-C), while the outer two de-ynq 9294 on the Linux kernel. This is because MRC uses
pict the Wanax-uncacheable portion (W-U). larger chunks whenever possible and the chunk name

We see that most of the bytes are not cacheable byint significantly reduces metadata transmission over-
HTTP, but are cacheable by Wanax. Of the bytes thaheads. When comparing the best compression rates,

are not HTTP cacheable, about 75% are redundant angirc's effective bandwidth is 125% higher than SRC’s
can benefit from Wanax. Of the HTTP-cacheable bytesgp, the Linux kernel while it shows 24% improvement on

more than half are Wanax-cacheable as well. This rethe news sites.
sult suggests that Wanax plus a browser cache can handle

much of the traffic, but that Wanax with an HTTP proxy Disk Operation Cost MRC's reduced per-chunk in-

can provide even greater savings. Using an HTTP proxaying overhead becomes clearer if we look at the num-
with Wanax also allows HTTP-cacheable responses to bg. ot disk 1/0s for each configuration, shown in Fig-

served directly from the proxy without re-contacting the ;. 7 SRC's disk fetch cost increases dramatically as the
content provider. chunk size decreases, making the use of small chunks al-
4.3 Results _ _ most impossible with SRC. MRC requires far fewer disk

Potential Bandwidth Savings Figure 6 shows the gperations even at small chunk sizes. When the leaf node
ideal and aCtUal bandW|dth Sa.VingS on bOth Workload%hunk size is 32 byteS, SRC performs 8.5 times as many

for various chunk sizes. As expected, the ideal bandgisk operations on the news sites, and 22.7 times more
width savings increases as the chunk size decreasegn the Linux kernel.

However, due to the chunk indexing metadata transmis-

100 T 1000 - -
o= 851 MRC-Small = 6760 MRC-Small &=z
< 803 SRC ¢ = 1926 SRC s
= Tieg 279 MRC-Large we = 100 £ & 22814666 MRC-Large ®
= 10 ¢ ‘ 108 232 MRC == = MRC =
S | g 10 B
L & | L i
g\ 1 2 B2 26 19 E g iy
= - . “I“ g e
5] i) 25 6 <5} B2
= 3| e b 5 5 5 = e 4

01 2l & Eim sl 0.1 20 A A 3

32 128 1K 32K 32 32K

Avg Chunk Size(SRC), Min Chunk Size(MRC) Avg Chunk Size(SRC), Min Chunk Size(MRC)

(a) News Sites (b) Linux Kernel

Figure 8:Memory Footprint Comparison. Note log-scale Y axis. MRC&mory pressure is typically one-tenth that of SRC and
MRC-Small. MRC-Large typically uses twice the memory duéackpointer overhead.

sizes. We present all three MRC configurations and SRC
with a 32-byte minimum chunk. For MRC, chunk sizes
are sorted from smallest at top to largest at bottom, and
the bottom bar shows the root chunk size of 64KB.

The results explain MRC'’s low disk overhead and low
memory pressure — only a small fraction of the total
savings is handled by the smallest chunks with MRC,
whereas all of the savings is handled by 32-byte chunks
with SRC. Most of MRC’s bandwidth reduction comes
from larger chunks, which results in a much smaller
Figure 9: Per-level Bandwidth Savings in the MRC Tree — n_umber of disk I/Os arld cache entries. We can see the
most MRC savings are from larger chunk sizes, reducing disksimilar trend across different MRC degrees. For exam-
access and memory pressure. ple, the portion handled by a 4KB chunk size in MRC

degree 4 is handled by 8KB chunk size as well in MRC
Memory Pressure Memory pressure limits the amount degree 2. This means that some portion of 4KB chunks
of cache storage that a WAN accelerator can serve angdre merged into 8KB chunks in MRC degree 2. In all the
the amount of RAM it requires for that storage. Figure 8MRC scenarios, chunks that are 4KB or larger provide

compares the memory footprint with different chunking 40-50% of the bandwidth savings, drastically reducing
approaches. We count the number of chunk index entriedisk /0.

that are used during the simulation, and calculate the aﬁ'ntelligent Load Shedding Based on the previous re-

tual memory footprint. Each bar represents the memory. .« ot bandwidth savings and disk performance, we
footprint (MB), and the numbers on top of each bar show, imulate the effective bandwidth improvement (times)

the number of used cache entries in thousands. Due t%.

space constraints, we show only the MRC trees with the'ven a t".’“g‘“ link _capacny using ILS in Figure 10. We
vary the link capacity from 1Mbps to 5Gbps, and assume
degree 2, but other results follow the same trend. .
MRC i h th SRCone 7200RPM SATA disk.
INCUrS much 1ess memory pressure than We see that the effective bandwidth improvement of

does, since MRC requires one cache entry for any Iarg%Oth MRC and SRC approaches one as link capacity in-
chunk while SRC needs several cache entries for th%reases but SRC drops much faster than MRC. With

same content. MRC-Small, however, requires even MO maller chunk sizes, SRC shows a high effective band-

cache entries than SRC does since reconstructing alarg&vridth with slow links due to its high compression rate

chunk requires accessing all of its child entries. At a 32- . . . :
byte chunk size, MRC-Small consumes almost 300 Ilebut the effective bandwidth quickly degrades as the link

. . : capacity grows. This is because with small chunks, the
ErBt?:r l:ﬁgxczgggegx?li M,GS Cr_el_qaur'rzssﬁglysagosqrtn.llgrdisk soon becomes the bottleneck of the system. In the
1€s. Y W Ml ?ame context, SRC with larger chunk sizes performs bet-

number of cache entries as MRC. However, the actu

. . er with fast links, but shows a worse bandwidth im-
memory consumption of MRC-Large is much worse than . . .
. . rovement for slow links due to its low compression rate.
MRC because every child chunk has a back pointer t

its parent. MRC-Large consumes almost twice as muc MRC outperforms SRC regardless of link speed, and
P ' 9 r?t sustains high effective bandwidth by leveraging mul-
memory as MRC on the news workload.

tiple chunk sizes. If the link is slow, MRC fetches
MRC Chunk Size Breakdown Figure 9 shows the even the smallest chunks from disk, suppressing most re-
breakdown of bandwidth savings by different chunkdundancy. As the link capacity increases, MRC stops

232
|64
128

128

Bandwidth Saving per Tree Level (%)
Bandwidth Saving per Tree Level (%

2 SRC
MRC Tree Degree

8 4

MRC Tree Degree

(a) News Site (b) Linux Kernel

MRC, d=2, M=32 =
SRC, C=1K PGreene
SRC, c=16K

MRC, d=2, m=32 ——f—
SRC, C=1K PGrrrns |
SRC, C=16K i

........

Bandwidth Improvement (x)
Bandwidth Improvement (x)
N

S i R VR
1 2 5 10 20 50100200 500 1K 2K 5K 1 2 5 10 20 50100200 500 1K 2K 5K
Link Bandwidth (Mbps) Link Bandwidth (Mbps)
(a) News Sites (b) Linux Kernel

Figure 10: Effective Bandwidth Improvement over Link Capacity (c: astyunk size, d: degree, m: min chunk size) — as link
capacity increases and disk performance becomes a bakld&C sheds cache hits on smaller chunks first, leading taeeful
degradation in effective bandwidth. With ILS disabled, lamdwidth collapses to the bottleneck disk speed. Notsbade Y-axis.

fetching the smaller chunks from disk, and focuses oran ideal storage system for developing regions. Hash-
the larger chunks rather than completely disabling com-Cache is designed to use at most one disk seek for read-
pression, gracefully degrading the effective bandwidthing a random chunk, and performs group writes of re-
When ILS is disabled, the effective bandwidth of all threelated chunks to minimize disk latency for future reading.
configurations collapses to the bottleneck disk speed. Wanax uses two special HashCache ARis,peek()

5 Implementation andhc_hi nt (). hc_peek() tells the existence of a

. . hunk without performing actual disk 1/O, and we use
The Wanax prototype consists of about 18,000 lines oﬁ for ILS and chunk name hintshc_hi nt () exports

C. code sharmg the same MRC/SRC code base with thﬁwe gueuing status of the disk I/Os and is used for ILS
simulator ing4. calculations

PPTP/GRE Tunneling To provide easy access to end

users, Wanax is implemented as an Internet gatewa
with PPTP/GRE tunneling, with TUN/TAP [42] support

planned for the near future. Currently, users need to spe
ify the IP address of Wanax in their PPTP client on Linux
(or to set up a VPN client on Microsoft Windows), after
which all traffic from the user is forwarded to the Wanax
system. Wanax performs content fingerprinting only on
TCP streams, and bypasses all non-TCP packets.

ptimizing Transport Protocol Inter-Wanax com-
unication uses a set of techniques to improve network
(Qerformance over high-latency WANs. While imple-
menting a fully-custom transport protocol might yield
some additional benefit, we opt for simplicity and use
TCP variants optimized for high-delay, low-bandwidth
links [14, 15]. They modify the congestion avoidance
algorithm so that they can quickly increase the conges-
] _ tion window even under high latency. In addition, Wanax
Reconstructing TCP Byte Streams While a fully mytiplexes all communication over a set of long-lived
transparent solution could intercept all IP packets andrcp connections, avoiding an extra connection setup
reconstruct TCP streams, that creates unnecessary COyerhead of one RTT [23]. We also disable slow-start
plexity between layer 3 and 4. Instead, we intercept eacRter idle time because we carefully control the number
TCP connection from the client, and redirect it to Wanax.f connections per link* These techniques are help-
This greatly simplifies the buffering process since Wanaxy| especially for short-lived HTTP connections, which
can use the regular socket interface to recover the origigominates traffic in the developing world [11]. In our
nal content. We implement this in the PPTP server [26}ests, we find this combination yields close to the line
by modifying the destination address and port of the in-speed even for many short connections.
coming packets from the client, to those of Wanax. Sim- =~))
ilar to network address translation (NAT), we store thisMinimizing MRC Computation Overhead While
mapping in the address translation table, and recover thiRC preserves high bandwidth savings without sacri-
original address and port for the outgoing packets from{icing disk performance, it consumes more CPU cycles
Wanax to the client. This requires about 500 lines ofi" fingerprinting and hash calculation due to an increased
PPTP server code modification. n_umbero_f chL_mks. Fl_gu_re 11 sh(_)ws average time for run-
ning Rabin’s fingerprinting algorithm and SHA-1 on one
Storage System We use HashCache [6] not only as . nk with an average size of 64 KB from a 10 MB file.
an HTTI_3 proxy, but also as scalable storage for Stor'ngSurprisingly, Rabin’s fingerprinting, though it is known
and retrieving the chunk content as well as the chunkg, e computationally efficient, turns out to be still quite

name hint. With a highly memory-efficient indexing e, nensive, taking three times more than SHA-1. How-
scheme, HashCache fully utilizes a Terabytes-sized disk

with less than 256 MB of physical memory, which is “sysctlt cp_sl owst art _af t er i dl e’ in Linux.

30 ! ! ! ! . ! ! 05 ! ! ! 16 ! !
K Rabin, Pentium Il 850Mhz =—f— BASE BASE baks A
25 L% SHA-1, Pentium Il 850Mhz , SRC A 64KB 14l src A
m % Rabin, Pentium D 2.8Ghz 3 ? 045 MRC [] % 2 19 |LMRC O E—l
£ SHA-1, Pentium D 2.8Ghz =} s s A
o 2 1 s 0 S w0
E s 04 A s
Q Qo A
j=2 o o
£ £ A £ 6
£ 3 03 g A
=3 - c
x F AmB oy, 288, A
03 A
o e, o
64 128 256 512 1K 2K 4K 8K 16K 32K 64K 50 -40 30 20 -10 0 0 20 40 60 8 100
Average Chunk Size (bytes) Bandwith Saving (%) Bandwith Saving (%)
Figure 11:MRC Computation Overhead for 64KB Block (a) 100% Cache Miss (b) 100% Cache Hit

ever, the aggregate SHA-1 cost increases as MRC'’s |e£igure 12:Cache Miss and Cache Hit Performance — even on
chunk size decreases. If naively implemented, the totafll-hit or all-miss workloads, the extra overheads of MRE ar
CPU cost of an MRC tree with a heightwould ben x small compared to SRC. The best SRC performers on this set

Rabin’s fingerprinting time + sum of SHA-1 calculation use large chunk sizes, which would produce poor compression
of each level on realistic workloads.

We consider two general optimizations which can beresent the content provider and the developing region,
applied to both S-Wanax and R-Wanax. First, we runyjith intra-region bandwidths set to 100Mbps. We vary
Rabin’s fingerprinting on content only once, detect thethe pandwidth and latency of the bottleneck WAN link
smallest chunk boundaries, and derive the larger Chunl&onnecting the two regions, depending on the evaluation
boundaries from them. Second, we compute SHA-Iscenarios. We have an origin server and an S-Wanax in
hashes only when necessary using the chunk name hinge content provider side, and a client and two R-Wanax
For example, if S-Wanax knows that this chunk has beemgdes in the developing region. Both the SRC and MRC
sent to R-Wanax before, S-Wanax assumes all of its chiltests are conducted using the same Wanax servers with

dren are already in R-Wanax and sends only the namge same TCP optimizations. To emulate the effect of
Of the parent. L|keW|Se, |f R-Wanax kHOWS that a Chunklarge Working sets Wh|Ch do not f|t in memory, we dis_

children.))
In addition, we implement an R-Wanax specific opti- Microbenchmark For our microbenchmark, we use

mization. When the top-level chunk is a miss with R- W0 1 MB files that have 90% redundancy using a 64-

Wanax but there are some chunk hits in the lower ley2Yt® chunk size. The bottleneck WAN link is set to

els in the MRC tree, we only need to run fingerprinting 51.2Kbps with a 200ms RTT. We_ download the first file
with the cache-missed candidate list chunks. In order tgWice to generate a cold cache miss and a complete cache
support this, we now store a Rabin’s fingerprint value (ghit: and then download the second file to generate a par-
bytes) along with each chunk name hint. If a chunk intial cache hit. We repeat the experlment by increasing
the candidate list is a cache hit, we can retrieve the fint1® number of peers, and performing ILS. The down-
gerprint value for the chunk. If a chunk is a cache miss 102ding throughput (effective bandwidth) without Wanax

we run the fingerprinting function to find and store any (BASE) is only 0.41 Mbps due to the high WAN latency.
smaller chunks. We now know Rabin’s fingerprint values Ve t€st SRC with chunk sizes from 128 bytes to 64KB,

for all chunks in the candidate list, so we can also reconfjmOI a degree-8 MRC using a 128-byte minimum and

struct any parents without running the fingerprinting on84KB maximum chunks. _ .
the cache-hit chunks. Figure 12 (a) shows the bandwidth savings and
These optimizations are mainly for the case of chunkthroughputs when downloading the first file. Since ev-

cache hits, where more CPU cycles are needed to delivé&y chunkiis a cache miss, S-Wanax sends the content as

the chunks to the client. In case of a chunk cache miss\f\’eII as the chunk name. Due to the chunk name over-

the bottleneck will still be in the slow WAN link for the €ad, SRC consumes more bandwidth than BASE, with
developing worlds and consuming extra CPU cycles willUP 10 48% overhead for 128-byte chunks. However, the

not affect the download throughpui. throughput is higher than BA_SI_E, reaching 0.45Mbps for
. 64KB chunks, due to the optimized TCP between Wanax
6 Evaluation nodes. On the other hand, the overhead of MRC is neg-

In this section, we evaluate our prototype implementadigible since it uses the largest chunk size of 64KB for
tion of Wanax. Except for the realistic traffic test in the most cache misses, yielding an overhead of 5.6% and a
middle of this section, our tests use 1GHz AMD Athlon throughput of 0.43Mbps.

64 X2 CPU machines equipped with 1GB RAM and a Figure 12 (b) compares MRC with SRC for a second
SATA disk. We divide them into two regions to rep- download of the same file. As expected, SRC with the

“BASE O BASE O
% 351 src A % 351 srRc A O 1
é‘ 3t MRC [§ 3t MRC [] 1
€ 25 [MRCALS o Ke & S 25¢ 1KB 1
2 27 AT g 2 L 1
S 157 1288 A s 157 1288 A 1
£ 1 eas A A 2 1 e AA 1
Fooos @A A Foostga A 1
o L= ‘ ‘ ‘ ‘ ‘ o L= ‘ ‘ ‘ ‘ ‘
0 20 40 60 80 100 0 20 40 60 80 100
Bandwith Saving (%) Bandwith Saving (%)
(a) One node (b) Two nodes

Figure 13:Performance with 90% redundancy and 512Kbps WAN link — MR@wauit ILS produces much better compression
than any SRC configuration, and throughput is comparablestdést SRC. With ILS enabled, MRC produces better commessi
and throughput than any SRC configuration. When peeringad, disk is not a bottleneck, and enabling ILS has no effect.

large chunk sizes (16, 32, and 64KB) shows the besand YouTube [46] for testing using realistic traffic. We
throughput of 15Mbps> As the chunk size decreases, use the “pc850” nodes on Emulab [43], each equipped
the throughput degrades, and the bandwidth savings iwith an 850MHz Pentium Ill CPU and 512MB RAM.
also reduced due to the per-chunk metadata overheatlhe bottleneck WAN link is set to 1Mbps with a 1000ms
However, MRC achieves both high throughput and bandRTT, mimicking a satellite link commonly found in the
width savings since they use the largest chunk size in thisleveloping world. First, we collect packet-level traces
case. The slightly lower throughput of MRC versus SRCfrom Alexa’s top 10 sites for Ghana and Nigeria, to re-
with large chunks is because MRC generates multiplédlect common Web browsing activity in these regions,
chunk sizes for the first download, spreading the layouincluding both cacheable and uncacheable objects. We
of the large chunks on disk, whereas the SRC downloadeplay 5,000 connections with 200 simultaneous clients
stores all of the chunks in sequence on disk. on the traffic, and measure the response time. We also

Figure 13 (a) depicts the performance of download-pick one of the most popular videos at the time of test-
ing the second file after warming the cache with theing® from YouTube, and have 100 clients simultaneously
first file (90% redundancy). In this particular workload, download the whole 18 MB clip. YouTube’s video con-
SRC with 1KB chunks is the best configuration achiev-tent is not cacheable by standard Web proxies since its
ing both the highest bandwidth savings (80%) and high-URL is in a customized format and changes for each
est throughput (2Mbps). MRC, in comparison, providesdownload. This test is intended to reflect a classroom
a higher bandwidth savings (89%) than any SRC schemescenario where a number of students watch the same
but without ILS, the disk becomes the bottleneck and theclip roughly at the same time. We introduce an 1 sec-
throughputis almost the same as the best SRC. Enablingnd interval between the client requests, and measure the
ILS raises the MRC throughput to 2.4Mbps at the cost ofthroughput of each transfer. For these experiments, we
bandwidth savings, but beats every SRC configuration omse only one R-Wanax, configured with either a degree-
both bandwidth savings and throughput — ILS automati-8 MRC tree or a 1 KB SRC configuration, which has
cally finds the sweet spot regardless of the workload. shown good performance and bandwidth savings.

Figure 13 (b) presents the effect of peering. The exper- Figure 14 (a) shows the response time CDFs for the
iment is the same as the previous test, but now includeélexa workload. The average object size is 5,425 bytes
another Wanax peer in the developing region. Since peeland the median is 570 bytes. MRC outperforms both
ing allows Wanax to access multiple disks in parallel, weSRC and direct transfer (BASE), and shows the median
can expect improved throughputs by mitigating the diskresponse time of 1.5 seconds while BASE and SRC show
bottleneck. However, for SRC, the lower compression6.7 and 3.8 seconds each. MRC and SRC are generally
rate causes the WAN bandwidth to be the bottleneck, sdaster than BASE because they fetch most objects from
peering does not help. In comparison, MRC benefits sigthe local disk cache. However, on this workload, MRC
nificantly from peering, achieving 3.4Mbps throughput. typically uses one disk read per object while SRC fre-
With disk no longer the bottleneck, ILS is not necessary,quently uses multiple disk 1/0s per object. This behav-

and enabling it does not shed any load. ior explains the performance difference between the two,
Realistic Traffic To test more general Web browsing and the disk latency sometimes makes SRC worse than
BASE.

in the developing regions, we use Alexa Top Sites [3 ; .
ping reg P 3] Figure 14 (b) shows the YouTube results. The bitrate

5The throughput is limited by the 200ms link latency sincettitel ~ of the video is 490 Kbps and the BASE curve shows
download time is 500-600ms. Downloading a larger file (10 ViB)ds

44 Mbps throughput. 6The first weekly address by President Obama on 01/24/09

100 100

90 X + ¥

80 r X 80 F T R 1
g 60 X g 60 T X X 1
S S0rx = T X X BASE + |
3 40X s 40 X X MRC-8, m=128 X

30X BASE + T X% X SRC, c=1K ¥

20 X MRC-8, m=128 X 20r + % X Normal Quality - 1

10 [X ‘ SRC,c=1K ¥ LT K X _ High Quality --

1 10 100 1000 0 500 1000 1500 2000 2500 3000
Response Time (sec) Throughput (Kbps)
(a) Alexa (b) YouTube

Figure 14:Realistic Traffic — both MRC and SRC provide compression en&lexa workload, but MRC’s median response time
is 1.5 seconds, compared to 3.8 for SRC. For the YouTubeakstudents would be able to view the video without intetiap
using MRC, while with SRC, it would be 20% for the high-quaNtersion and 50% for the low-quality version.

50 We create three sets of PowerPoint slides — an original

% 0 prlipe gm deck that is 11.9 MB, and two modified decks that add
s L o slides to this deck, yielding a 13.9 MB file (Slides A)

s 7 . . and a 14.9 MB file (Slides B). Compared with the origi-

g 20| . . I nal deck, these have redundancies of 86% and 81%. This
£

10l e] represents a scenario where multiple people in different
l L offices are collaborating on a presentation. We first warm
0 Slides A SidesB the Wanax cache with the original file, and measure the
. .)) . throughput of the two modified slide decks. The mea-
Figure 15:Enterprise Environment — with no link bottleneck, sured bandwidth savings correspond to the redundancy
the underlying system performance can be measured. No stari'lr-1 the files. We use MRC degree 8 with the minimum

dard test exists for.these systems, bqt these figures arearaompChunk size of 128 bytes, and repeat the experiments with
rable to those published for commercial systems. . .
two different disks.

that nobody would be able to watch the clip reliably on AS shown in Figure 15, both file downloads achieve
a 1 Mbps link. SRC would satisfy only about 20% of Slightly more than 20 Mbps with a single 7200 RPM
the users while MRC would deliver the video to all 100 SATA disk at R-OWanax. The slightly larger redundancy
clients without interruption. The median throughputs are®f Slides A (86%) incurs more disk hits than Slides B
809 Kbps and 309 Kbps for MRC and SRC each. Wel(81%), and it is reflected in B’s slightly larger through-
test the lower quality video (320 Kbps) of the same con-Put: With a faster 15K RPM SCSiI disk, the throughput
tent, and find that SRC satisfies half of the users. Withouf/MmOst doubles in both cases. In examining the config-
a WAN accelerator, only two or three clients can watchurations of one of the leading WAN accelerator compa-

the clip at any given time, which makes using classrooni€S [32], we see that their per-disk performance ranges
video problematic. from 8 Mbps to 20 Mbps depending on the configura-

tion. Since we have incomplete information about the
Enterprise Environment Finally, we evaluate Wanax testing scenario, we cannot draw any firm conclusions,
in an enterprise-like environment to determine how wellput our range of 20-40 Mbps suggests that we have at
it performs compared to commercial WAN accelerators|east comparable performance to commercial solutions
Unfortunately, while vendors publish performance fig- in these higher-end configurations, and our memory pres-
ures, none appear to publish the test scenarios they ussure analysis suggests that Wanax does so using a small
Testing in industry magazines uses LANSs to remove netfraction of the memory of these systems.

work capacity as the bottleneck, which we also use in

this test. That is, we focus on the impact of disk per—7 Related Work _ .
formance by separating the network delay from the overMuch work, both commercial and academic, has been

all throughput. This is because the disk performance idone in the broad area of redundancy elimination for net-
work traffic. Web caching has been an active field, with

the bottleneck in higher link capacity enterprise environ-)) . g
ments. A high-end commercial product targeting |argethef|rst—generat|on caches [8, 17] storing unchanging ob-
j often with protocol support. Later

offices or data centers uses multiple small capacity SCSECLS in their entirety,) _
disks,” rather than one large capacity disk [32]. techniques included delta encoding [19] to reduce traffic

for object updates, and duplicate detection to suppress

71U product supporting 45Mbps uses 4 disks, 3U product stppor downlpading of aliased HTTP objects [20].
ing 310Mbps uses 16 disks. Spring and Wetherall [36] further extend the pre-

vious approaches to sub-packet granularity, and deposes an efficient technique for choosing the best chunk
velop a protocol-independent content fingerprinting (CF)sizes for the given similar files, by comparing handprints
scheme that eliminates redundancy over a single link- a deterministic subset of chunk hashes with different
Recently, Anandt al. [4] extend this idea on ISP routers, chunk sizes. We share the same spirit of exploiting trade-
with an emphasis on redundancy-aware routing algooffs of multiple chunk sizes. However, their method is
rithms. RTS-id [2] also eliminates redundancy in the based on static analysis on the files they already have.
wireless environment by caching recently transferredMIRC is a dynamic counterpart, and is directly applica-
packets through eavesdropping. However, they all worlkble for online processing.
on a per-packet basis at the link layer, which limits the Finally, there are a number of active research projects
potential bandwidth saving to the packet size. Sincefor the developing world. DitTorrent [34] shares the
Wanax operates on byte streams, it does not have sugame idea of exploiting better regional connectivity as
limits. Wanax, but focuses on scheduling P2P dialup connec-
Content fingerprinting has been widely adapted intions. As systems like rural WiFi [25] or WIMAX [44]
many applications, including network file systems [5, extend the Internet to new regions, Wanax can help im-
21], Web proxies [7, 30], file transfer services [27, 28], prove the effective bandwidth delivered.
and Web servers [24]. However, all of these system :
are application-specific, and do not work across pro\f8 Conclusion)))
tocols. DOT [41] proposes a flexible architecture for W& have presented the design and implementation of
generic data transfer, which is protocol independent, bufVanax, a flexible and scalable WAN accelerator target-
not transparent, and requires application-level modificalNd developing regions. Using a novel chunking tech-
tion. Ditto [10] extends DOT, and targets wireless meshlidue, MRC, Wanax provides high compression and high
network environments. It is complementary to Wanaxthroughput, while maintaining a small memory footprint.

since Wanax focuses on eliminating redundancy on thd his profile enables it to run on resource-limited shared
bottleneck WAN link. hardware, an important requirement in developing-world

There are a number of commercial WAN accelera-d?ploymemsj By gxploiting MRC.tO direct qud shed-
ding, Wanax is designed to maximize the effective band-

tors [9, 33, 35] as well. They operate below the appli- . . .
[] y op PP \1VIdth even when disk performance is poor due to over-

cation layer, so they are both transparent and protoc) . .
independent. However, they are designed to run on dejpadmg. The peering scheme used in Wanax allows mul-
’ iple servers in a region to share their resources, and

icated server-class appliances with fast disks and a Iargt b loit fast deh local fivit
pool of memory. Also, their typical enterprise deploy- ereby exploitfaster and cheaperiocal-areéa connectivi

ment scenario is a star topology where branch offices ar@stead of always using the WAN. In summary, through

speaking only to a central office. Running them on the? careful design addressing the developing world chal-

resource-limited shared machines with mesh topology "{enges, Wanax provides customized, cost-effective WAN

the developing world would be problematic leading to acceleration to the region with commodity hardware. We

poor performance if possible at all. Instead, Wanax ishave begun deploying Wanax at a few partner sites in

designed from the scratch to specifically address the dé?‘fr'ca' and expect to have more results about real-world

veloping world’s needs, and we believe some of our techoperationin the future.

nigues such as MRC and ILS can also be applied to th
enterprise scenarios to reduce the deployment cost. %‘CknOWbdgment

To the best of our knowledge, Wanax is the first\We would like to thank Anirudh Badam for providing
system to simultaneously use multiple chunk sizesHashCache, and Marc Fiuczynski for arranging and co-
Riverbed [33] uses a bottom-up segmentation scheme [1grdinating our deployments in Africa. We also thank our
that first uses 100 byte chunks, and then creates largehepherd, Michael Isard as well as anonymous USENIX
pseudo-chunks that contain the names of the smalleATC reviewers. This research was partially supported
chunks [31], which is similar to MRC-Small. This ap- by NSF awards CNS-0615237 and CNS-0916204, and
proach provides some of the disk efficiency and bandKAIST awards G04100004.
width benefits of MRC, but still requires access to all
of the metadata of the 100-byte chunks, thereby retainReferences
ing the memory pressure of the smaller chunks. In _ _
the context of large file replication, Remote Differential (1] E;apim;fgs’;ﬁ’2":1gs'tocr;’g;egﬁgatfsgs;ﬁggggtﬁgmﬁie
Compression [39] uses a similar recursive segmentation chical segment representation, 2006.
scheme with a minimum chunk size of 1 KB, in order to

. [2] AFANASYEV, M., ANDERSEN D. G.,AND SNOEREN, A. C.

reduce the size of chunk names sent over the network. Efficiency through eavesdropping: Link-layer packet caghiln
Most recently, multi-resolution handprinting [37] pro- USENIX NSDI (Apr. 2008).

(3]

(4

(5]

(6]

(7]

(8]

El
[10]

[11]

[12]

[13]

[14]

[15]

[16]
[17]

(18]

[19]

[20]

[21]

[22]
[23]

[24]

ALEXA THE WEB INFORMATION COMPANY.
http://ww. al exa. coni .

[25]

ANAND, A., GUPTA, A., AKELLA, A., SESHAN, S., AND
SHENKER, S. Packet caches on routers: The implications of uni-
versal redundant traffic elimination. BGCOMM (2008).

ANNAPUREDDY, S., FREEDMAN, M. J., AND MAZIERES, D.

(26]

Shark: Scaling file servers via cooperative cachingU8ENIX [27]
NSDI (2005).
BADAM, A., PARK, K., Pal, V., AND PETERSON L. Hash- (28]

cache: Cache storage for the next billion. Aroceedings of the
6th conference on Networked Systems Design and Implementa-
tion (NSDI’09) (2009).

CHAKRAVORTY, R., CLARK, A., AND PRATT, I. Optimizing
web delivery over wireless links: Design, implementatiod ax-
periences. IMEEE Journal of Selected Areasin Communications
(JSAC) (2003).

CHANKHUNTHOD, A., DANzIG, P. B., NEERDAELS, C.,
SCHWARTZ, M. F., AND WORRELL, K. J. A hierarchical in-
ternet object cache. IdSENIX ATC (1996), pp. 153-163.

CITRIX SYSTEMS. ht t p: // www. ci tri x. com .

[29]

(30]

(31]

[32]
DOGAR, F., PHANISHAYEE, A., PUCHA, H., RUwWASE, O.,
AND ANDERSEN, D. Ditto - A System for Opportunistic Caching
in Multi-hop Wireless Mesh Networks. IlobiCom (2008).

Du, B., DEMMER, M., AND BREWER, E. Analysis of WWW
traffic in Cambodia and Ghana. \WWWW (2006).

FAN, L., CAO, P., ALMEIDA, J.,AND BRODER, A. Z. Sum-
mary cache: a scalable wide-area web cache sharing protocol
|EEE/ACM Transactions on Networking 8, 3 (2000), 281-293. [35]

FIREFOX WEB BROWSER
http://ww. nozilla.conm firefox/.

(33]

(34]

(36]

FLoYD, S. Highspeed tcp for large congestion windows. RFC
3229, 2003.

HA, S., RHEE, |., AND XU, L. Cubic: a new tcp-friendly
high-speed tcp varian8l GOPS Operating Systems Review. 42, 5
(2008), 64-74.

LiBNIDS. http://1ibnids. sourceforge.net/.

(37]

(38]
MALTZAHN, C., RCHARDSON, K. J., AND GRUNWALD, D. [39]
Performance issues of enterprise level web proxiesinlRro-
ceedings of the SGMETRICS Conference on Measurement and

Modeling of Computer Systems (1997).

MANBER, U. Finding similar files in a large file system. In
Proceedings of the USENIX Winter 1994 Technical Conference
(1994).

MoGuUL, J., KRISHNAMURTHY, B., DOUGLIS, F., FELDMANN,
A., GOLAND, Y., VAN HOFF, A., AND HELLERSTEIN, D. Delta
encoding in HTTP. RFC 3229, January 2002.

MogGuL, J. C., G4AN, Y. M., AND KELLY, T. Design, im-
plementation, and evaluation of duplicate transfer dietecn
HTTP. INUSENIX NSDI (2004).

MUTHITACHAROEN, A., CHEN, B., AND MAZIERES, D. A
low-bandwidth network file system. IBOSP (2001).

ONE LAPTOPPER CHILD. http://ww. | apt op. org/ .

[40]

[41]

[42]

(43]

[44]
PADMANABHAN , V. N., AND MOGUL, J. C. Improving http [45]
latency. Computer Networks and ISDN Systems 28, 1-2 (1995),

25-35.

PARK, K., IHM, S., BOWMAN, M., AND PaAI, V. S. Supporting
practical content-addressable caching with czip commessn

[46]
USENIX ATC (2007).

PATRA, R., NEDEVSCHI, S., SURANA, S., SHETH, A., SUBRA-
MANIAN, L., AND BREWER, E. Wildnet: Design and implemen-
tation of high performance wifi based long distance netwotis
USENIX NSDI (2007).

PopPTOP- THE PPTP &RVER FORLINUX.
http://ww. poptop.org/.

PucHA, H., ANDERSEN D. G.,AND KAMINSKY, M. Exploit-
ing similarity for multi-source downloads using file hanitps.
In USENIX NSDI (Cambridge, MA, Apr. 2007).

PucHA, H., KAaMmINSKY, M., ANDERSEN D. G., AND
KozucH, M. A. Adaptive file transfers for diverse environ-
ments. INUSENIX ATC (2008).

RABIN, M. O. Fingerprinting by random polynomials. Tech.
Rep. TR-15-81, Harvard University, 1981.

RHEA, S., LIANG, K., AND BREWER, E. Value-based web
caching. InProceedings of the Twelfth International World Wide
Web Conference (May 2003).

RIOS 5.5 Technical Whitepaper.
http://ww.riverbed. com docs/
TechOvervi ew Ri ver bed- R OS\ _5. 5. pdf.

RIVERBED STEELHEAD PRODUCTFAMILY DATASHEET.
http://ww.riverbed. conf docs/
Dat aSheet - Ri ver bed- Fam | yPr oduct . pdf.

RIVERBED TECHNOLOGY, INC. http://wmv ri ver bed.
coni .

SAIF, U., CHUDHARY, A. L., BUTT, S.,AND BUTT, N. F. Poor
man’s broadband: peer-to-peer dialup networkirgglGCOMM
Computer Communication Review. 37, 5 (2007), 5-16.

SILVER PEAK SYSTEMS, INC.
http://ww. sil ver- peak. cont .

SPRING, N. T.,AND WETHERALL, D. A protocol-independent
technique for eliminating redundant network traffic AGM S G-
COMM (2000).

TANGWONGSAN, K., PUCHA, H., ANDERSEN D. G., AND
KAMINSKY, M. Efficient similarity estimation for systems ex-
ploiting data redundancy. IAroc. IEEE INFOCOM (San Diego,
CA, Mar. 2010).

TCPDUMP.htt p: // www. t cpdunp. org/ .

TEODOSIUY, D., BJRNER N., GUREVICH, Y., MANASSE, M.,
AND PORKKA, J. Optimizing file replication over limited-
bandwidth networks using remote differential compressi@ch.
Rep. MSR-TR-2006-157, Microsoft Research, Nov. 2006.

THALER, D. G.,AND RAVISHANKAR, C. V. Using name-based
mappings to increase hit ratekEEE/ACM Transactions on Net-
working 6, 1 (Feb. 1998), 1-14.

ToLlA, N., KAMINSKY, M., ANDERSEN D. G., AND PATIL,
S. An architecture for internet data transfer. USENIX NSDI
(2006).

UNIVERSAL TUN/TAP DRIVER.
http://vtun. sourceforge. net/tun/.

WHITE, B., LEPREAU, J., SIOLLER, L., Riccl, R., GuU-
RUPRASAD, S., NEwWBOLD, M., HIBLER, M., BARB, C.,AND
JOGLEKAR, A. An integrated experimental environment for dis-
tributed systems and networks. @8DI (2002).

WIMAX. http://ww. w maxforum org/ hone/ .

WOLMAN, A., VOELKER, G. M., SHARMA, N., CARDWELL,
N., KARLIN, A. R., AND LEVY, H. M. On the scale and per-
formance of cooperative web proxy caching. Symposium on
Operating Systems Principles (1999).

YOuTuUBE. htt p://ww. yout ube. con .

