Tolerating File-System Mistakes
with EnvyFS

Swaminathan Sundararaman

Lakshmi N. Bairavasundaram Andrea C. Arpaci-Dusseau

NetApp, Inc. Remzi H. Arpaci-Dusseau

University of Wisconsin Madison

1 B

THE UNIVERSITY

NetApp’ WISCONSIN

Go further, faster MADISON




File Systems in Today’s World

Modern file systems are complex
— Tens of thousands of lines of code (e.g., XFS 45K LOC)

Storage stack is also getting deeper
— Hypervisor, network, logical volume manager

Need to handle a gamut of failures
— Memory allocation, disk faults, bit flips, system crashes

Preserve integrity of its meta-data and user data



File System Bugs

* Bug reports for Linux 2.6 series from Bugzilla
— ext3: 64, JFS: 17, ReiserFS: 38
— Some are FS corruption causing permanent data loss

* FS bugs broadly classified into two categories

— “fail-stop”: System immediately crashes
Nooks [Swift 04], CuriOS [David08]

— “fail-silent”: Accidentally corrupt on-disk state

° Many such bugs uncovered [PrabhakaranOS, Gunawi08, Yang04, Yang06b]



Bugs are inevitable in file systems

Challenge: how to cope with them?

6/18/09 Tolerating File-System Mistakes with EnvyFS



N-Version File Systems

* Based on N-version programming [Avizienis77]
— NFS servers [Rodrigueso1], databases [Vandivero7], security [Cox06]

( Application )

e EnvyFS: Simple software layer

A 4

— Store data in N child file systems P —
— Operations performed on all childV
* Rely on a simple software layer S| | )

DSk drjwer

Child 1
Child 2
Child N

* Challenge: reducing overheads while
retaining reliability .
— SubSIST: Novel Single Instance Store

[ EnvyFS layer ]
[




Results

* Robustness
— Traditional file systems handle few corruptions (< 4%)
— EnvyFS, tolerates 98.9% of single file system mistakes

* Performance
— Desktop workloads: EnvyFS, has comparable performance

— |/0O intensive workloads:
* Normal mode: EnvyFS, + SubSIST acceptable performance
* Under memory pressure: EnvyFS, + SubSIST large overheads

* Potential as a debugging tool for FS developers
— Pinpoint the source of “fail-silent” bug in ext3



Outline

Building reliable file systems
Reducing overheads with SubSIST
Evaluation

Conclusion



N-Version Systems

Development process:
1. Producing the specification of software
2. Implementing N versions of the software

3. Creating N-version layer
— Executes different versions

— Determines the consensus result



1. Producing Specification

 Our own specification ?
— Impractical: Requires wide scale changes to file systems
— Specifications take years to get accepted

* Can we leverage existing specification ?

— Yes, can leverage VFS, but there are some issues

« VFS not precise for N-versioning purpose

— Needs to handle cases where specification is not precise
— e.g., Ordering directory entries, inode number allocation



Imprecise vrs Specification

Ordering directory entries

Dir: test

e |ssue: File 1

File 2

— No specified return order Readdir: test l NosEntries

— Can’t blindly compare entries [ | )
EnvyFS layer

i File 1 File 2 File 3
e Solution: )
N
— Read all entries from a directory -
(dir: test in our case) from all FSes %
— Match entries from FSes

— Return majority results Dir: test Dir: test Dir: test



Imprecise vrs Specification (cont)

* Inode number allocation
— Inode numbers returned through system calls
— Each child file system issues different inode numbers
— Possible solution: Force file systems to use same algorithm?
— Our solution: Issue inode numbers at EnvyFS layer

Stat: File 1 1 TFiIe 1|28

( EnvyFS layer } ___________

File1|10 File1|36| File1 |65

Virt#{ FS1|FS2 | FS3

A 4 A 4 A 4

i R ) ) Inode Mapping Table
File 1110 [§%" > N
F!Ie 2 15 g A el
File 3 16 Inode Mapping Table not persistently stored

/ -
Dir: test " ~Dir: test __--Dir: test
\\l—”

6/18/09 Inode Numbers Tolerating File-System Mistakes with EnvyFS 11



2. Implementing N versions of FS

* Painful process
— High cost of development, long time delays

* Lucky! Hard work already done for us
— 30 different disk based file systems in Linux 2.6

* Which file systems to use?
— ext3, JFS, ReiserFS in a three-version FS
— Others should work without modifications



3. Creating N-Version Layer

* N-Version layer (EnvyFS) (__ Application )

— Inserted beneath VFS Read (file, 1 block)§ err, )

— Simple design to avoid bugs ( VES layer %
Read (file, 1 block) err

EnvyFS Inode Mapping Table

* Example: Reading a file Layer | Wrappers ] Comparators I
— Allocate N data buffers
— Read data block from the disk err = Read [B} eprsRead '\W\Rfadm

— Compare: data, return code, file position g
— Return: data, return code v

\,l

J

\

D 7B

Disk \

{ReiserFS

* |ssues:
— Allocate memory for each read operation

— Extra copy from allocated buffer to application
— Comparison overheads

<

m *—{ ext3




Reading a File in EnvyFS

e Solution:

6/18/09

Same application buffer for all FS
TCP-like checksums for data comparison
Compare: checksums, return code, file
position

Read data until majority

FS1#|FS2#

Checksums

Tolerating File-System Mistakes with EnvyFS

/

-

(__ Application )
Read (file, 1 block)} err, D)

( VFS layer %

Read (file, 1 block)}
EnvyFS Inode Mapping Table

Layer Wrappers | Comparators

-

\

err = Read m erpdread m err Readm
SR

r—\ r—\g
[0osx J IR

i
—.

ReiserFS

<

o
o)

S = T




Outline

* Reducing overheads with SubSIST
* Evaluation
* Conclusion



Case for Single Instance Storage (SIS)

(" Application )
v
( VES layer )

Ideal: One disk per FS

Practical: One disk for all FS [ EnvyFslayer )
Overheads _ ’_L\’g
— Effective storage space: 1/N £ L 0
— N times more |/O (Read/write) ) ) U
, B8 0
. : Disk Reg. Q
Challenge: Maintain diversity . quﬁsk —

while minimizing overheads



SubSIST: Single Instance Store

(" Application )
v

e Variant of an Single Instance Store
— Selectively merges data blocks

 Block addressable SIS

Exports virtual disks to FSes
Manages mapping, free space info.
Not persistently stored on disk

* EnvyFS writes through N file systems

N data blocks merged to 1 data block
Content hashes not stored persistently
Meta-data blocks not merged

Inter FS blocks and not intra FS

( VS layer )

[ Env;S layer )

CHash Layer

Read Cache

/A
Free Space Management

SubSIST



Handling Data Block Corruptions?

v" Corruption to data in a single FS
— Due to bugs, bit flips, storage stack
— Corrupt data blocks not merged
— All other N-1 data blocks merged
— Corrupt data block fixed at next read

x Corruption to data block inside disk

* Single copy of data
— Different code paths
— Different on-disk structures

(" Application )
v

( VES layer )

[ EnvyFS layer )

CHash Layer Read Cache

Free Space Management

A
Es

SubSIST



Outline

e Evaluation
— Reliability
— Performance

* Conclusion



Reliability Evaluation: Fault Injection

{
VFS
X

Robustness of EnvyFS in recovering from a
child file system’s mistake?

( EnvyFS layer )

) (;\
 Corruption: bugs in FS / storage stack ‘; & 3
* Types of disk blocks ¢ G-%

— superblock, inode, block bitmap, file data, ...

* Priformaliffesanijideoyd®rabhakaranos]- - - - Pseudo

Device Driver

I BV EV

 Report user visible results ( Block Driver J
* All results are applicable with SubSIST I

except corruption to data blocks
IS

6/18/09 Tolerating File-System Mistakes with EnvyFS 20

— mount, stat, creat, unlink, read, ...




junown
(duAsy) €-13S
junow
jurun
Jpwia
91ed3unn
EXTIT
JuljwAs
aweual

Result Matrix

1eald
SalJjualiplas
juljpeal

peai

(Powyd) Z-13S
(" 2e3s) T-13S
jesianen] yied

INODE
DIR
BMAP
IMAP
INDIRECT
DATA
SUPER
JSUPER
GDESC

ext3



junown
(duAsy) €-13S
junow
jurun
Jpwia
91ed3unn
EXTIT
JuljwAs
aweual

}jeald
SalJjualiplas
yuljpeas

peai

(powiyd) Z-13S
(" ¥e3s) T-13S
jesianen] yied

but, does not handle superblock corruption

<
=
Ext3 stores many superblock copies;

INODE
DIR
BMAP
IMAP

ext3

HH

INDIRECT
DATA
SUPER
JSUPER
GDESC



e kd o
ext3 g§f _= :
0] x| < ] V| g
o 5o g8 8 . 23S
< N o BB 8 25 g 5@
R =§§EFE§
ol wl wn ¥ 2 o 3| 5 SLE wl 5
nooe  |oJoJo] Tof o[oloHH
DIR
BMAP 0 0 . oo 0
 |n addition to operations failing, inode
IMAP corruption leads to data loss
INDIRECT _ _
e Unlink: system crash during unmount
DATA
SUPER
JSUPER

GDESC

Crash Q

Ops fail [O] |




—
"
s
O
0
X

Depends e

Data
corrupt
Crash
Read-only

Junown
(duAsy) €-13S

snou o H H
Julun [
apwi [
ajejuni} O
IIM
yuljwAs
Jweual

0|0

}jeald
SalJjualiplas
yuljpea

peau

(powyd) Z-13S
(" 1e3s) T-13S
|esioAes] r_umn_

eglejejele|e

"""

| FREEE

o[o]o] Jo Hfhﬁ "

INDIRECT |©
SUPER
JSUPER
GDESC

INODE
DIR
BMAP
IMAP
DATA

ext3



ext3

, Panicin

junown

(PuAS}) €-135:
junow
yunun

AIpWi
?1eounay
ESTIT
JuljwAs
JWweuoal
JIpoWi

]
Jean

FEIIFUENTEY:

quljpeas

peai

(powyd) 2-13S
(" e1s) T-13S
|esianery yied

EnvyFS
INODE

EnvyFS,

DIR

BMAP

INDIRECT LT IR

IMAP
DATA

SUPER

JSUPER

GDESC

EnvyFS, works in every scenario



Potential for Bug Isolation

ext3 EnvyFS,
Unlink on corrupt inode: Unlink on corrupt inode:
- ext3_lookup (bug) - ext3_lookup (bug)
- ext3_unlink - ext3 inode does not match
e £ others
= = - Further ops not issued

Unmount (panic)

In EnvyFS,, a problem is noticed
the first time child file system
returns wrong results

In typical use, a problem is
noticed only on panic



I
"
H
O
0
(X

Data
corrupt
Crash
Read-only

O[OH-
H
H
X
T

Q|0

amama O

Q1010|0100

Sa11jUua11p3a8
juljpeal

peal

¢-13S

T-13S
jesianeny yied

3
X
£
O[o[o] [O] WMo™ BM [OIo[oHH

INODE
DIR

BMAP
IMAP
INTERNAL
DATA
SUPER
JSUPER
JDATA
AGGR-INODE
IMAPDESC
IMAPCNTL

2
—
—



EIIFUENTOE):
juljpeal
peai

¢-13S

T-13S
jesianeny yied

EnvyFS,

INODE
DIR

BMAP

IMAP

INTERNAL
DATA

SUPER

JSUPER
JDATA

AGGR-INODE

IMAPDESC
IMAPCNTL



FependihBetehioation

.30Experimenta 3 % overhead ° CPU |ntens|ve
w25 L cesdll * OpenSSH 4.5
S -- Copy, untar and
32T make
C 0
=15 - 00-rpm SATA disk
)}
=
L—; 10 T —

j‘% c T file system
0 _ T T |

ext3 JFS ReiserFS  EnvyFS EnvyFS+SIS

Performance of EnvyFS, is comparable to a single file system

6/18/09 Tolerating File-System Mistakes with EnvyFS 29



Postmark Benchmark

EnvyFS,: 8x

izzl/ O Intensive + subsisT: ax

B 50— Mimics busy ma
S _ EnvyFS;: 1.7x
&% 600 —Transaction: cre + SubSIST: 11.5%

c

o* Postmark Config

E 400 ’) EnvyFS;: 3.3x
- 300 7 < 4 SubSIST: -32%

Q
8200~ File sizer 4Kh — ¢
100

° — No: ¥ tralnSacti
Postmark-10K

M ext3 JFS ReiserFS M EnvyFS EnvyFS+SIS



Summary of Results

e Robustness

— Traditional file systems vulnerable to corruptions
— EnvyFS; tolerates almost all mistakes in one FS

e Performance

— Desktop workloads: EnvyFS; has comparable performance
— |/0O intensive workloads:

* Regular Operations: EnvyFS, + SubSIST acceptable performance
* Memory pressure: EnvyFS, + SubSIST has large overhead



Outline

* [ntroduction
* Building reliable file systems
* Reducing overheads with SubSIST

e Evaluation
e Conclusion

6/18/09 Tolerating File-System Mistakes with EnvyFS 32



Conclusion

* Bugs/mistakes are inevitable in any software

— Must cope, not just hope to avoid

* EnvyFS: N-version approach to tolerating FS bugs
— Built using existing specification and file systems

e SubSIST: single instance store
— Decreases overheads while retaining reliability



THE UNIVERSITY

WISCONSIN

MADISON

6/18/09

Thank You!

Advanced Systems Lab (ADSL)
University of Wisconsin-Madison
http://www.cs.wisc.edu/ads/

Tolerating File-System Mistakes with EnvyFS

34



Future Work

* Debugging tool for developers
— Run older and newer version of file systems

— Compare results with older version

* File system repair
— Simple repair: copy data from other file system
— Complex repair: recreate entire file system tree
— How to do micro repair ?



SUPER

JSUPER

GDESC

)

i o _
- O 2 %)
9 9E 5 d
ol B85 F5 o x 2 &l =
— : m d | —
“F'N =.=.|_; .=E'—wuhx=m=
.:..'c'c-cm_z-cmgp:%.‘z's.o
‘65588‘58:-‘5 S| 3| gl 9 | €
olwnlwnv & e ol=lE 2 & 35 =l 5 € vl S

e Ext3 detects corruption for rmdir, unlink

e creat, mkdir, symlink cause ext3 to reuse an
inode, resulting in data loss



