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Abstract
Massive storage systems typically replicate and partition
data over many potentially-faulty components to provide
both reliability and scalability. Yet many commercially-
deployed systems, especially those designed for inter-
active use by customers, sacrifice stronger consistency
properties in the desire for greater availability and higher
throughput.

This paper describes the design, implementation, and
evaluation of CRAQ, a distributed object-storage system
that challenges this inflexible tradeoff. Our basic ap-
proach, an improvement on Chain Replication, maintains
strong consistency while greatly improving read through-
put. By distributing load across all object replicas, CRAQ
scales linearly with chain size without increasing consis-
tency coordination. At the same time, it exposes non-
committed operations for weaker consistency guarantees
when this suffices for some applications, which is espe-
cially useful under periods of high system churn. This
paper explores additional design and implementation con-
siderations for geo-replicated CRAQ storage across mul-
tiple datacenters to provide locality-optimized operations.
We also discuss multi-object atomic updates and multicast
optimizations for large-object updates.

1 Introduction
Many online services require object-based storage, where
data is presented to applications as entire units. Object
stores support two basic primitives: read (or query) oper-
ations return the data block stored under an object name,
and write (or update) operations change the state of a sin-
gle object. Such object-based storage is supported by
key-value databases (e.g., BerkeleyDB [40] or Apache’s
semi-structured CouchDB [13]) to the massively-scalable
systems being deployed in commercial datacenters (e.g.,
Amazon’s Dynamo [15], Facebook’s Cassandra [16], and
the popular Memcached [18]). To achieve the requisite re-
liability, load balancing, and scalability in many of these
systems, the object namespace is partitioned over many
machines and each data object is replicated several times.

Object-based systems are more attractive than their file-
system counterparts when applications have certain re-
quirements. Object stores are better suited for flat names-
paces, such as in key-value databases, as opposed to hi-
erarchical directory structures. Object stores simplify the
process of supporting whole-object modifications. And,
they typically only need to reason about the ordering of
modifications to a specific object, as opposed to the en-
tire storage system; it is significantly cheaper to provide
consistency guarantees per object instead of across all op-
erations and/or objects.

When building storage systems that underlie their myr-
iad applications, commercial sites place the need for high
performance and availability at the forefront. Data is
replicated to withstand the failure of individual nodes or
even entire datacenters, whether from planned mainte-
nance or unplanned failure. Indeed, the news media is rife
with examples of datacenters going offline, taking down
entire websites in the process [26]. This strong focus on
availability and performance—especially as such proper-
ties are being codified in tight SLA requirements [4, 24]—
has caused many commercial systems to sacrifice strong
consistency semantics due to their perceived costs (as at
Google [22], Amazon [15], eBay [46], and Facebook [44],
among others).

Recently, van Renesse and Schneider presented a chain
replication method for object storage [47] over fail-stop
servers, designed to provide strong consistency yet im-
prove throughput. The basic approach organizes all nodes
storing an object in a chain, where the chain tail handles
all read requests, and the chain head handles all write re-
quests. Writes propagate down the chain before the client
is acknowledged, thus providing a simple ordering of all
object operations—and hence strong consistency—at the
tail. The lack of any complex or multi-round protocols
yields simplicity, good throughput, and easy recovery.

Unfortunately, the basic chain replication approach has
some limitations. All reads for an object must go to the
same node, leading to potential hotspots. Multiple chains
can be constructed across a cluster of nodes for better load
balancing—via consistent hashing [29] or a more central-
ized directory approach [22]—but these algorithms might



still find load imbalances if particular objects are dispro-
portionally popular, a real issue in practice [17]. Perhaps
an even more serious issue arises when attempting to build
chains across multiple datacenters, as all reads to a chain
may then be handled by a potentially-distant node (the
chain’s tail).

This paper presents the design, implementation, and
evaluation of CRAQ (Chain Replication with Apportioned
Queries), an object storage system that, while maintaining
the strong consistency properties of chain replication [47],
provides lower latency and higher throughput for read op-
erations by supporting apportioned queries: that is, divid-
ing read operations over all nodes in a chain, as opposed
to requiring that they all be handled by a single primary
node. This paper’s main contributions are the following.

1. CRAQ enables any chain node to handle read op-
erations while preserving strong consistency, thus
supporting load balancing across all nodes stor-
ing an object. Furthermore, when workloads are
read mostly—an assumption used in other systems
such as the Google File System [22] and Mem-
cached [18]—the performance of CRAQ rivals sys-
tems offering only eventual consistency.

2. In addition to strong consistency, CRAQ’s design
naturally supports eventual-consistency among read
operations for lower-latency reads during write con-
tention and degradation to read-only behavior dur-
ing transient partitions. CRAQ allows applications
to specify the maximum staleness acceptable for read
operations.

3. Leveraging these load-balancing properties, we de-
scribe a wide-area system design for building CRAQ
chains across geographically-diverse clusters that
preserves strong locality properties. Specifically,
reads can be handled either completely by a local
cluster, or at worst, require concise metadata infor-
mation to be transmitted across the wide-area during
times of high write contention. We also present our
use of ZooKeeper [48], a PAXOS-like group mem-
bership system, to manage these deployments.

Finally, we discuss additional extensions to CRAQ,
including the integration of mini-transactions for multi-
object atomic updates, and the use of multicast to improve
write performance for large-object updates. We have not
yet finished implementing these optimizations, however.

A preliminary performance evaluation of CRAQ
demonstrates its high throughput compared to the basic
chain replication approach, scaling linearly with the num-
ber of chain nodes for read-mostly workloads: approxi-
mately a 200% improvement for three-node chains, and
600% for seven-node chains. During high write con-
tention, CRAQ’s read throughput in three-node chains still

outperformed chain replication by a factor of two, and
read latency remains low. We characterize its performance
under varying workloads and under failures. Finally,
we evaluate CRAQ’s performance for geo-replicated stor-
age, demonstrating significantly lower latency than that
achieved by basic chain replication.

The remainder of this paper is organized as follows.
Section §2 provides a comparison between the basic chain
replication and CRAQ protocols, as well as CRAQ’s sup-
port for eventual consistency. Section §3 describes scaling
out CRAQ to many chains, within and across datacenters,
as well as the group membership service that manages
chains and nodes. Section §4 touches on extensions such
as multi-object updates and leveraging multicast. Section
§5 describes our CRAQ implementation, §6 presents our
performance evaluation, §7 reviews related work, and §8
concludes.

2 Basic System Model
This section introduces our object-based interface and
consistency models, provides a brief overview of the stan-
dard Chain Replication model, and then presents strongly-
consistent CRAQ and its weaker variants.

2.1 Interface and Consistency Model
An object-based storage system provides two simple
primitives for users:

• write(objID, V): The write (update) operation stores
the value V associated with object identifier ob jID.

• V ← read(objID): The read (query) operation re-
trieves the value V associated with object id ob jID.

We will be discussing two main types of consistency,
taken with respect to individual objects.

• Strong Consistency in our system provides the guar-
antee that all read and write operations to an object
are executed in some sequential order, and that a read
to an object always sees the latest written value.

• Eventual Consistency in our system implies that
writes to an object are still applied in a sequential
order on all nodes, but eventually-consistent reads to
different nodes can return stale data for some period
of inconsistency (i.e., before writes are applied on
all nodes). Once all replicas receive the write, how-
ever, read operations will never return an older ver-
sion than this latest committed write. In fact, a client
will also see monotonic read consistency1 if it main-

1That is, informally, successive reads to an object will return either
the same prior value or a more recent one, but never an older value.
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Figure 1: All reads in Chain Replication must be handled
by the tail node, while all writes propagate down the chain
from the head.

tains a session with a particular node (although not
across sessions with different nodes).

We next consider how Chain Replication and CRAQ pro-
vide their strong consistency guarantees.

2.2 Chain Replication
Chain Replication (CR) is a method for replicating data
across multiple nodes that provides a strongly consistent
storage interface. Nodes form a chain of some defined
length C. The head of the chain handles all write oper-
ations from clients. When a write operation is received
by a node, it is propagated to the next node in the chain.
Once the write reaches the tail node, it has been applied
to all replicas in the chain, and it is considered committed.
The tail node handles all read operations, so only values
which are committed can be returned by a read.

Figure 1 provides an example chain of length four. All
read requests arrive and are processed at the tail. Write re-
quests arrive at the head of the chain and propagate their
way down to the tail. When the tail commits the write, a
reply is sent to the client. The CR paper describes the
tail sending a message directly back to the client; be-
cause we use TCP, our implementation actually has the
head respond after it receives an acknowledgment from
the tail, given its pre-existing network connection with the
client. This acknowledgment propagation is shown with
the dashed line in the figure.

The simple topology of CR makes write operations
cheaper than in other protocols offering strong consis-
tency. Multiple concurrent writes can be pipelined down
the chain, with transmission costs equally spread over
all nodes. The simulation results of previous work [47]
showed competitive or superior throughput for CR com-
pared to primary/backup replication, while arguing a prin-
ciple advantage from quicker and easier recovery.

Chain replication achieves strong consistency: As all
reads go to the tail, and all writes are committed only
when they reach the tail, the chain tail can trivially ap-
ply a total ordering over all operations. This does come at
a cost, however, as it reduces read throughput to that of a
single node, instead of being able to scale out with chain

size. But it is necessary, as querying intermediate nodes
could otherwise violate the strong consistency guarantee;
specifically, concurrent reads to different nodes could see
different writes as they are in the process of propagating
down the chain.

While CR focused on providing a storage service, one
could also view its query/update protocols as an interface
to replicated state machines (albeit ones that affect distinct
object). One can view CRAQ in a similar light, although
the remainder of this paper considers the problem only
from the perspective of a read/write (also referred to as a
get/put or query/update) object storage interface.

2.3 Chain Replication with Apportioned
Queries

Motivated by the popularity of read-mostly workload en-
vironments, CRAQ seeks to increase read throughput by
allowing any node in the chain to handle read operations
while still providing strong consistency guarantees. The
main CRAQ extensions are as follows.

1. A node in CRAQ can store multiple versions of an
object, each including a monotonically-increasing
version number and an additional attribute whether
the version is clean or dirty. All versions are initially
marked as clean.

2. When a node receives a new version of an object (via
a write being propagated down the chain), the node
appends this latest version to its list for the object.

• If the node is not the tail, it marks the version as
dirty, and propagates the write to its successor.

• Otherwise, if the node is the tail, it marks the
version as clean, at which time we call the
object version (write) as committed. The tail
node can then notify all other nodes of the
commit by sending an acknowledgement back-
wards through the chain.

3. When an acknowledgment message for an object ver-
sion arrives at a node, the node marks the object ver-
sion as clean. The node can then delete all prior ver-
sions of the object.

4. When a node receives a read request for an object:

• If the latest known version of the requested ob-
ject is clean, the node returns this value.

• Otherwise, if the latest version number of the
object requested is dirty, the node contacts the
tail and asks for the tail’s last committed ver-
sion number (a version query). The node then
returns that version of the object; by construc-
tion, the node is guaranteed to be storing this
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Figure 2: Reads to clean objects in CRAQ can be com-
pletely handled by any node in the system.
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Figure 3: Reads to dirty objects in CRAQ can be received
by any node, but require small version requests (dotted blue
line) to the chain tail to properly serialize operations.

version of the object. We note that although the
tail could commit a new version between when
it replied to the version request and when the
intermediate node sends a reply to the client,
this does not violate our definition of strong
consistency, as read operations are serialized
with respect to the tail.

Note that an object’s “dirty” or “clean” state at a node
can also be determined implicitly, provided a node deletes
old versions as soon as it receives a write commitment
acknowledgment. Namely, if the node has exactly one
version for an object, the object is implicitly in the clean
state; otherwise, the object is dirty and the properly-
ordered version must be retrieved from the chain tail.

Figure 2 shows a CRAQ chain in the starting clean
state. Each node stores an identical copy of an object,
so any read request arriving at any node in the chain will
return the same value. All nodes remain in the clean state
unless a write operation is received.2

In Figure 3, we show a write operation in the middle of
propagation (shown by the dashed purple line). The head
node received the initial message to write a new version
(V2) of the object, so the head’s object is dirty. It then
propagated the write message down the chain to the sec-

2There’s a small caveat about the system ordering properties for clean
reads. In traditional Chain Replication, all operations are handled by the
tail, so it explicitly defines a total ordering over all operations affecting
an object. In CRAQ, clean read operations to different nodes are exe-
cuted locally; thus, while one could define an (arbitrary) total ordering
over these “concurrent” reads, the system does not do such explicitly. Of
course, both systems explicitly maintain (at the tail) a total ordering with
respect to all read/write, write/read, and write/write relationships.

ond node, which also marked itself as dirty for that object
(having multiple versions [V1,V2] for a single object ID
K). If a read request is received by one of the clean nodes,
they immediately return the old version of the object: This
is correct, as the new version has yet to be committed at
the tail. If a read request is received by either of the dirty
nodes, however, they send a version query to the tail—
shown in the figure by the dotted blue arrow—which re-
turns its known version number for the requested object
(1). The dirty node then returns the old object value (V1)
associated with this specified version number. Therefore,
all nodes in the chain will still return the same version of
an object, even in the face of multiple outstanding writes
being propagated down the chain.

When the tail receives and accepts the write request, it
sends an acknowledgment message containing this write’s
version number back up the chain. As each predeces-
sor receives the acknowledgment, it marks the specified
version as clean (possibly deleting all older versions).
When its latest-known version becomes clean, it can sub-
sequently handle reads locally. This method leverages the
fact that writes are all propagated serially, so the tail is
always the last chain node to receive a write.

CRAQ’s throughput improvements over CR arise in
two different scenarios:

• Read-Mostly Workloads have most of the read re-
quests handled solely by the C−1 non-tail nodes (as
clean reads), and thus throughput in these scenarios
scales linearly with chain size C.

• Write-Heavy Workloads have most read requests to
non-tail nodes as dirty, thus require version queries
to the tail. We suggest, however, that these version
queries are lighter-weight than full reads, allowing
the tail to process them at a much higher rate be-
fore it becomes saturated. This leads to a total read
throughput that is still higher than CR.

Performance results in §6 support both of these claims,
even for small objects. For longer chains that are per-
sistently write-heavy, one could imagine optimizing read
throughput by having the tail node only handle version
queries, not full read requests, although we do not evalu-
ate this optimization.

2.4 Consistency Models on CRAQ
Some applications may be able to function with weaker
consistency guarantees, and they may seek to avoid the
performance overhead of version queries (which can be
significant in wide-area deployments, per §3.3), or they
may wish to continue to function at times when the system
cannot offer strong consistency (e.g., during partitions).
To support such variability in requirements, CRAQ simul-
taneously supports three different consistency models for



reads. A read operation is annotated with which type of
consistency is permissive.

• Strong Consistency (the default) is described in the
model above (§2.1). All object reads are guaranteed
to be consistent with the last committed write.

• Eventual Consistency allows read operations to a
chain node to return the newest object version known
to it. Thus, a subsequent read operation to a different
node may return an object version older than the one
previously returned. This does not, therefore, satisfy
monotonic read consistency, although reads to a sin-
gle chain node do maintain this property locally (i.e.,
as part of a session).

• Eventual Consistency with Maximum-Bounded
Inconsistency allows read operations to return newly
written objects before they commit, but only to a cer-
tain point. The limit imposed can be based on time
(relative to a node’s local clock) or on absolute ver-
sion numbers. In this model, a value returned from a
read operation is guaranteed to have a maximum in-
consistency period (defined over time or versioning).
If the chain is still available, this inconsistency is ac-
tually in terms of the returned version being newer
than the last committed one. If the system is parti-
tioned and the node cannot participate in writes, the
version may be older than the current committed one.

2.5 Failure Recovery in CRAQ
As the basic structure of CRAQ is similar to CR, CRAQ
uses the same techniques to recover from failure. Infor-
mally, each chain node needs to know its predecessor and
successor, as well as the chain head and tail. When a head
fails, its immediate successor takes over as the new chain
head; likewise, the tail’s predecessor takes over when the
tail fails. Nodes joining or failing from within the middle
of the chain must insert themselves between two nodes,
much like a doubly-linked list. The proofs of correct-
ness for dealing with system failures are similar to CR;
we avoid them here due to space limitations. Section §5
describes the details of failure recovery in CRAQ, as well
as the integration of our coordination service. In particu-
lar, CRAQ’s choice of allowing a node to join anywhere
in a chain (as opposed only to at its tail [47]), as well as
properly handling failures during recovery, requires some
careful consideration.

3 Scaling CRAQ
In this section, we discuss how applications can specify
various chain layout schemes in CRAQ, both within a sin-
gle datacenter and across multiple datacenters. We then

describe how to use a coordination service to store the
chain metadata and group membership information.

3.1 Chain Placement Strategies

Applications that use distributed storage services can be
diverse in their requirements. Some common situations
that occur may include:

• Most or all writes to an object might originate in a
single datacenter.

• Some objects may be only relevant to a subset of dat-
acenters.

• Popular objects might need to be heavily replicated
while unpopular ones can be scarce.

CRAQ provides flexible chain configuration strategies
that satisfy these varying requirements through the use
of a two-level naming hierarchy for objects. An object’s
identifier consists of both a chain identifier and a key iden-
tifier. The chain identifier determines which nodes in
CRAQ will store all keys within that chain, while the key
identifier provides unique naming per chain. We describe
multiple ways of specifying application requirements:

1. Implicit Datacenters & Global Chain Size:

{num_datacenters, chain_size}
In this method, the number of datacenters that will
store the chain is defined, but not explicitly which
datacenters. To determine exactly which datacen-
ters store the chain, consistent hashing is used with
unique datacenter identifiers.

2. Explicit Datacenters & Global Chain Size:

{chain_size, dc1, dc2, . . . , dcN}
Using this method, every datacenter uses the same
chain size to store replicas within the datacenter. The
head of the chain is located within datacenter dc1,
the tail of the chain is located within datacenter dcN ,
and the chain is ordered based on the provided list
of datacenters. To determine which nodes within a
datacenter store objects assigned to the chain, con-
sistent hashing is used on the chain identifier. Each
datacenter dci has a node which connects to the tail
of datacenter dci−1 and a node which connects to the
head of datacenter dci+1, respectively. An additional
enhancement is to allow chain_size to be 0 which
indicates that the chain should use all nodes within
each datacenter.

3. Explicit Datacenter Chain Sizes:

{dc1, chain_size1, . . . , dcN , chain_sizeN}



Here the chain size within each datacenter is spec-
ified separately. This allows for non-uniformity in
chain load balancing. The chain nodes within each
datacenter are chosen in the same manner as the pre-
vious method, and chain_sizei can also be set to 0.

In methods 2 and 3 above, dc1 can be set as a mas-
ter datacenter. If a datacenter is the master for a chain,
this means that writes to the chain will only be accepted
by that datacenter during transient failures. Otherwise, if
dc1 is disconnected from the rest of the chain, dc2 could
become the new head and take over write operations un-
til dc1 comes back online. When a master is not defined,
writes will only continue in a partition if the partition con-
tains a majority of the nodes in the global chain. Other-
wise, the partition will become read-only for maximum-
bounded inconsistent read operations, as defined in Sec-
tion 2.4.

CRAQ could easily support other more complicated
methods of chain configuration. For example, it might be
desirable to specify an explicit backup datacenter which
only participates in the chain if another datacenter fails.
One could also define a set of datacenters (e.g., “East
coast”), any one of which could fill a single slot in the
ordered list of datacenters of method 2. For brevity, we
do not detail more complicated methods.

There is no limit on the number of key identifiers
that can be written to a single chain. This allows for
highly flexible configuration of chains based on applica-
tion needs.

3.2 CRAQ within a Datacenter
The choice of how to distribute multiple chains across a
datacenter was investigated in the original Chain Repli-
cation work. In CRAQ’s current implementation, we
place chains within a datacenter using consistent hash-
ing [29, 45], mapping potentially many chain identifiers
to a single head node. This is similar to a growing number
of datacenter-based object stores [15, 16]. An alternative
approach, taken by GFS [22] and promoted in CR [47], is
to use the membership management service as a directory
service in assigning and storing randomized chain mem-
bership, i.e., each chain can include some random set of
server nodes. This approach improves the potential for
parallel system recovery. It comes at the cost, however,
of increased centralization and state. CRAQ could eas-
ily use this alternative organizational design as well, but
it would require storing more metadata information in the
coordination service.

3.3 CRAQ Across Multiple Datacenters
CRAQ’s ability to read from any node improves its latency
when chains stretch across the wide-area: When clients

have flexibility in their choice of node, they can choose
one that is nearby (or even lightly loaded). As long as
the chain is clean, the node can return its local replica of
an object without having to send any wide-area requests.
With traditional CR, on the other hand, all reads would
need to be handled by the potentially-distant tail node. In
fact, various designs may choose head and/or tail nodes in
a chain based on their datacenter, as objects may experi-
ence significant reference locality. Indeed, the design of
PNUTS [12], Yahoo!’s new distributed database, is moti-
vated by the high write locality observed in their datacen-
ters.

That said, applications might further optimize the se-
lection of wide-area chains to minimize write latency and
reduce network costs. Certainly the naive approach of
building chains using consistent hashing across the entire
global set of nodes leads to randomized chain successors
and predecessors, potentially quite distant. Furthermore,
an individual chain may cross in and out of a datacenter
(or particular cluster within a datacenter) several times.
With our chain optimizations, on the other hand, appli-
cations can minimize write latency by carefully selecting
the order of datacenters that comprise a chain, and we can
ensure that a single chain crosses the network boundary
of a datacenter only once in each direction.

Even with an optimized chain, the latency of write
operations over wide-area links will increase as more
datacenters are added to the chain. Although this in-
creased latency could be significant in comparison to
a primary/backup approach which disseminates writes
in parallel, it allows writes to be pipelined down the
chain. This vastly improves write throughput over the pri-
mary/backup approach.

3.4 ZooKeeper Coordination Service

Building a fault-tolerant coordination service for dis-
tributed applications is notoriously error prone. An ear-
lier version of CRAQ contained a very simple, centrally-
controlled coordination service that maintained member-
ship management. We subsequently opted to leverage
ZooKeeper [48], however, to provide CRAQ with a ro-
bust, distributed, high-performance method for tracking
group membership and an easy way to store chain meta-
data. Through the use of Zookeper, CRAQ nodes are guar-
anteed to receive a notification when nodes are added to or
removed from a group. Similarly, a node can be notified
when metadata in which it has expressed interest changes.

ZooKeeper provides clients with a hierarchical names-
pace similar to a filesystem. The filesystem is stored in
memory and backed up to a log at each ZooKeeper in-
stance, and the filesystem state is replicated across mul-
tiple ZooKeeper nodes for reliability and scalability. To
reach agreement, ZooKeeper nodes use an atomic broad-



cast protocol similar to two-phase-commit. Optimized for
read-mostly, small-sized workloads, ZooKeeper provides
good performance in the face of many readers since it can
serve the majority of requests from memory.

Similar to traditional filesystem namespaces,
ZooKeeper clients can list the contents of a direc-
tory, read the value associated with a file, write a value to
a file, and receive a notification when a file or directory
is modified or deleted. ZooKeeper’s primitive operations
allow clients to implement many higher-level seman-
tics such as group membership, leader election, event
notification, locking, and queuing.

Membership management and chain metadata across
multiple datacenters does introduce some challenges. In
fact, ZooKeeper is not optimized for running in a multi-
datacenter environment: Placing multiple ZooKeeper
nodes within a single datacenter improves Zookeeper
read scalability within that datacenter, but at the cost of
wide-area performance. Since the vanilla implementa-
tion has no knowledge of datacenter topology or notion
of hierarchy, coordination messages between Zookeeper
nodes are transmitted over the wide-area network mul-
tiple times. Still, our current implementation ensures
that CRAQ nodes always receive notifications from local
Zookeeper nodes, and they are further notified only about
chains and node lists that are relevant to them. We expand
on our coordination through Zookeper in §5.1.

To remove the redundancy of cross-datacenter
ZooKeeper traffic, one could build a hierarchy of
Zookeeper instances: Each datacenter could contain its
own local ZooKeeper instance (of multiple nodes), as
well as having a representative that participates in the
global ZooKeeper instance (perhaps selected through
leader election among the local instance). Separate
functionality could then coordinate the sharing of data
between the two. An alternative design would be to
modify ZooKeeper itself to make nodes aware of network
topology, as CRAQ currently is. We have yet to fully
investigate either approach and leave this to future work.

4 Extensions
This section discusses some additional extensions to
CRAQ, including its facility with mini-transactions and
the use of multicast to optimize writes. We are currently
in the process of implementing these extensions.

4.1 Mini-Transactions on CRAQ

The whole-object read/write interface of an object store
may be limiting for some applications. For example, a
BitTorrent tracker or other directory service would want
to support list addition or deletion. An analytics service

may wish to store counters. Or applications may wish
to provide conditional access to certain objects. None of
these are easy to provide only armed with a pure object-
store interface as described so far, but CRAQ provides key
extensions that support transactional operations.

4.1.1 Single-Key Operations

Several single-key operations are trivial to implement,
which CRAQ already supports:

• Prepend/Append: Adds data to the beginning or
end of an object’s current value.

• Increment/Decrement: Adds or subtracts to a key’s
object, interpreted as an integer value.

• Test-and-Set: Only update a key’s object if its cur-
rent version number equals the version number spec-
ified in the operation.

For Prepend/Append and Increment/Decrement opera-
tions, the head of the chain storing the key’s object can
simply apply the operation to the latest version of the ob-
ject, even if the latest version is dirty, and then propagate
a full replacement write down the chain. Furthermore, if
these operations are frequent, the head can buffer the re-
quests and batch the updates. These enhancements would
be much more expensive using a traditional two-phase-
commit protocol.

For the test-and-set operation, the head of the chain
checks if its most recent committed version number
equals the version number specified in the operation. If
there are no outstanding uncommitted versions of the ob-
ject, the head accepts the operation and propagates an up-
date down the chain. If there are outstanding writes, we
simply reject the test-and-set operation, and clients are
careful to back off their request rate if continuously re-
jected. Alternatively, the head could “lock” the object
by disallowing writes until the object is clean and re-
check the latest committed version number, but since it
is very rare that an uncommitted write is aborted and be-
cause locking the object would significantly impact per-
formance, we chose not to implement this alternative.

The test-and-set operation could also be designed to
accept a value rather than a version number, but this in-
troduces additional complexity when there are outstand-
ing uncommitted versions. If the head compares against
the most recent committed version of the object (by con-
tacting the tail), any writes that are currently in progress
would not be accounted for. If instead the head compares
against the most recent uncommitted version, this violates
consistency guarantees. To achieve consistency, the head
would need to temporarily lock the object by disallowing
(or temporarily delaying) writes until the object is clean.
This does not violate consistency guarantees and ensures



that no updates are lost, but could significantly impact
write performance.

4.1.2 Single-Chain Operations

Sinfonia’s recently proposed “mini-transactions” provide
an attractive lightweight method [2] of performing trans-
actions on multiple keys within a single chain. A mini-
transaction is defined by a compare, read, and write
set; Sinfonia exposes a linear address space across many
memory nodes. A compare set tests the values of the spec-
ified address location and, if they match the provided val-
ues, executes the read and write operations. Typically
designed for settings with low write contention, Sinfo-
nia’s mini-transactions use an optimistic two-phase com-
mit protocol. The prepare message attempts to grab a lock
on each specified memory address (either because differ-
ent addresses were specified, or the same address space is
being implemented on multiple nodes for fault tolerance).
If all addresses can be locked, the protocol commits; oth-
erwise, the participant releases all locks and retries later.

CRAQ’s chain topology has some special benefits for
supporting similar mini-transactions, as applications can
designate multiple objects be stored on the same chain—
i.e., those that appear regularly together in multi-object
mini-transactions—in such a way that preserves locality.
Objects sharing the same chainid will be assigned the
same node as their chain head, reducing the two-phase
commit to a single interaction because only one head node
is involved. CRAQ is unique in that mini-transactions that
only involve a single chain can be accepted using only the
single head to mediate access, as it controls write access
to all of a chain’s keys, as opposed to all chain nodes. The
only trade-off is that write throughput may be affected if
the head needs to wait for keys in the transaction to be-
come clean (as described in §4.1.1). That said, this prob-
lem is only worse in Sinfonia as it needs to wait (by ex-
ponentially backing off the mini-transaction request) for
unlocked keys across multiple nodes. Recovery from fail-
ure is similarly easier in CRAQ as well.

4.1.3 Multi-Chain Operations

Even when multiple chains are involved in multi-object
updates, the optimistic two-phase protocol need only be
implemented with the chain heads, not all involved nodes.
The chain heads can lock any keys involved in the mini-
transaction until it is fully committed.

Of course, application writers should be careful with
the use of extensive locking and mini-transactions: They
reduce the write throughput of CRAQ as writes to the
same object can no longer be pipelined, one of the very
benefits of chain replication.

4.2 Lowering Write Latency with Multicast

CRAQ can take advantage of multicast protocols [41] to
improve write performance, especially for large updates
or long chains. Since chain membership is stable between
node membership changes, a multicast group can be cre-
ated for each chain. Within a datacenter, this would prob-
ably take the form of a network-layer multicast protocol,
while application-layer multicast protocols may be better-
suited for wide-area chains. No ordering or reliability
guarantees are required from these multicast protocols.

Then, instead of propagating a full write serially down a
chain, which adds latency proportional to the chain length,
the actual value can be multicast to the entire chain. Then,
only a small metadata message needs to be propagated
down the chain to ensure that all replicas have received a
write before the tail. If a node does not receive the multi-
cast for any reason, the node can fetch the object from its
predecessor after receiving the write commit message and
before further propagating the commit message.

Additionally, when the tail receives a propagated write
request, a multicast acknowledgment message can be sent
to the multicast group instead of propagating it backwards
along the chain. This reduces both the amount of time
it takes for a node’s object to re-enter the clean state af-
ter a write, as well as the client’s perceived write delay.
Again, no ordering or reliability guarantees are required
when multicasting acknowledgments—if a node in the
chain does not receive an acknowledgement, it will re-
enter the clean state when the next read operation requires
it to query the tail.

5 Management and Implementation

Our prototype implementation of Chain Replication and
CRAQ is written in approximately 3,000 lines of C++ us-
ing the Tame extensions [31] to the SFS asynchronous I/O
and RPC libraries [38]. All network functionality between
CRAQ nodes is exposed via Sun RPC interfaces.

5.1 Integrating ZooKeeper

As described in §3.4, CRAQ needs the functionality
of a group membership service. We use a ZooKeeper
file structure to maintain node list membership within
each datacenter. When a client creates a file in
ZooKeeper, it can be marked as ephemeral. Ephemeral
files are automatically deleted if the client that cre-
ated the file disconnects from ZooKeeper. During ini-
tialization, a CRAQ node creates an ephemeral file in
/nodes/dc_name/node_id, where dc_name is the
unique name of its datacenter (as specified by an adminis-
trator) and node_id is a node identifier unique to the



node’s datacenter. The content of the file contains the
node’s IP address and port number.

CRAQ nodes can query /nodes/dc_name to de-
termine the membership list for its datacenter, but in-
stead of having to periodically check the list for changes,
ZooKeeper provides processes with the ability to cre-
ate a watch on a file. A CRAQ node, after cre-
ating an ephemeral file to notify other nodes it has
joined the system, creates a watch on the children list
of /nodes/dc_name, thereby guaranteeing that it re-
ceives a notification when a node is added or removed.

When a CRAQ node receives a request to create a new
chain, a file is created in /chains/chain_id, where
chain_id is a 160-bit unique identifier for the chain.
The chain’s placement strategy (defined in §3.1) deter-
mines the contents of the file, but it only includes this
chain configuration information, not the list of a chain’s
current nodes. Any node participating in the chain will
query the chain file and place a watch on it as to be noti-
fied if the chain metadata changes.

Although this approach requires that nodes keep track
of the CRAQ node list of entire datacenters, we chose this
method over the alternative approach in which nodes reg-
ister their membership for each chain they belong to (i.e.,
chain metadata explicitly names the chain’s current mem-
bers). We make the assumption that the number of chains
will generally be at least an order of magnitude larger
than the number of nodes in the system, or that chain
dynamism may be significantly greater than nodes join-
ing or leaving the system (recall that CRAQ is designed
for managed datacenter, not peer-to-peer, settings). De-
ployments where the alternate assumptions hold can take
the other approach of tracking per-chain memberships ex-
plicitly in the coordination service. If necessary, the cur-
rent approach’s scalability can also be improved by hav-
ing each node track only a subset of datacenter nodes:
We can partition node lists into separate directories within
/nodes/dc_name/ according to node_id prefixes,
with nodes monitoring just their own and nearby prefixes.

It is worth noting that we were able to integrate
ZooKeeper’s asynchronous API functions into our code-
base by building tame-style wrapper functions. This al-
lowed us to twait on our ZooKeeper wrapper functions
which vastly reduced code complexity.

5.2 Chain Node Functionality

Our chainnode program implements most of CRAQ’s
functionality. Since much of the functionality of Chain
Replication and CRAQ is similar, this program operates
as either a Chain Replication node or a CRAQ node based
on a run-time configuration setting.

Nodes generate a random identifier when joining the
system, and the nodes within each datacenter organize

themselves into a one-hop DHT [29, 45] using these iden-
tifiers. A node’s chain predecessor and successor are de-
fined as its predecessor and successor in the DHT ring.
Chains are also named by 160-bit identifiers. For a chain
Ci, the DHT successor node for Ci is selected as the
chain’s first node in that datacenter. In turn, this node’s S
DHT successors complete the datacenter subchain, where
S is specified in chain metadata. If this datacenter is the
chain’s first (resp. last), than this first (resp. last) node is
the chain’s ultimate head (resp. tail).

All RPC-based communication between nodes, or be-
tween nodes and clients, is currently over TCP connec-
tions (with Nagle’s algorithm turned off). Each node
maintains a pool of connected TCP connections with its
chain’s predecessor, successor, and tail. Requests are
pipelined and round-robin’ed across these connections.
All objects are currently stored only in memory, although
our storage abstraction is well-suited to use an in-process
key-value store such as BerkeleyDB [40], which we are in
the process of integrating.

For chains that span across multiple datacenters, the
last node of one datacenter maintains a connection to the
first node of its successor datacenter. Any node that main-
tains a connection to a node outside of its datacenter must
also place a watch on the node list of the external data-
center. Note, though, that when the node list changes in
an external datacenter, nodes subscribing to changes will
receive notification from their local ZooKeeper instance
only, avoiding additional cross-datacenter traffic.

5.3 Handling Memberships Changes

For normal write propagation, CRAQ nodes follow the
protocol in §2.3. A second type of propagation, called
back-propagation, is sometimes necessary during recov-
ery, however: It helps maintain consistency in response
to node additions and failures. For example, if a new
node joins CRAQ as the head of an existing chain (given
its position in the DHT), the previous head of the chain
needs to propagate its state backwards. But the system
needs to also be robust to subsequent failures during re-
covery, which can cascade the need for backwards prop-
agation farther down the chain (e.g., if the now-second
chain node fails before completing its back-propagation
to the now-head). The original Chain Replication pa-
per did not consider such recovery issues, perhaps be-
cause it only described a more centrally-controlled and
statically-configured version of chain membership, where
new nodes are always added to a chain’s tail.

Because of these possible failure conditions, when a
new node joins the system, the new node receives prop-
agation messages both from its predecessor and back-
propagation from its successor in order to ensure its cor-
rectness. A new node refuses client read requests for a



particular object until it reaches agreement with its suc-
cessor. In both methods of propagation, nodes may use
set reconciliation algorithms to ensure that only needed
objects are actually propagated during recovery.

Back-propagation messages always contain a node’s
full state about an object. This means that rather than just
sending the latest version, the latest clean version is sent
along with all outstanding (newer) dirty versions. This
is necessary to enable new nodes just joining the system
to respond to future acknowledgment messages. Forward
propagation supports both methods. For normal writes
propagating down the chain, only the latest version is sent,
but when recovering from failure or adding new nodes,
full state objects are transmitted.

Let us now consider the following cases from node N’s
point of view, where LC is the length of a chain C for
which N is responsible.

Node Additions. A new node, A, is added to the system.

• If A is N’s successor, N propagates all objects in C to
A. If A had been in the system before, N can perform
object set reconciliation first to identity the specified
object versions required to reach consistency with
the rest of the chain.

• If A is N’s predecessor:

– N back-propagates all objects in C to A for
which N is not the head.

– A takes over as the tail of C if N was the previ-
ous tail.

– N becomes the tail of C if N’s successor was
previously the tail.

– A becomes the new head for C if N was previ-
ously the head and A’s identifier falls between
C and N’s identifier in the DHT.

• If A is within LC predecessors of N:

– If N was the tail for C, it relinquishes tail duties
and stops participating in the chain. N can now
mark its local copies of C’s objects as deletable,
although it only recovers this space lazily to
support faster state reconciliation if it later re-
joins the chain C.

– If N’s successor was the tail for C, N assumes
tail duties.

• If none of the above hold, no action is necessary.

Node Deletions. A node, D, is removed from the system.

• If D was N’s successor, N propagates all objects in C
to N’s new successor (again, minimizing transfer to

only unknown, fresh object versions). N has to prop-
agate its objects even if that node already belongs to
the chain, as D could have failed before it propagated
outstanding writes.

• If D was N’s predecessor:

– N back-propagates all needed objects to N’s
new predecessor for which it is not the head.
N needs to back-propagate its keys because D
could have failed before sending an outstand-
ing acknowledgment to its predecessor, or be-
fore finishing its own back-propagation.

– If D was the head for C, N assumes head duties.

– If N was the tail for C, it relinquishes tail du-
ties and propagates all objects in C to N’s new
successor.

• If D was within LC predecessors of N and N was the
tail for C, N relinquishes tail duties and propagates
all objects in C to N’s new successor.

• If none of the above hold, no action is necessary.

6 Evaluation
This section evaluates the performance of our Chain
Replication (CR) and CRAQ implementations. At a high
level, we are interested in quantifying the read through-
put benefits from CRAQ’s ability to apportion reads. On
the flip side, version queries still need to be dispatched
to the tail for dirty objects, so we are also interested in
evaluating asymptotic behavior as the workload mixture
changes. We also briefly evaluate CRAQ’s optimizations
for wide-area deployment.

All evaluations were performed on Emulab, a con-
trolled network testbed. Experiments were run using the
pc3000-type machines, which have 3GHz processors and
2GB of RAM. Nodes were connected on a 100MBit net-
work. For the following tests, unless otherwise specified,
we used a chain size of three nodes storing a single object
connected together without any added synthetic latency.
This setup seeks to better isolate the performance char-
acteristics of single chains. All graphed data points are
the median values unless noted; when present, error bars
correspond to the 99th percentile values.

To determine maximal read-only throughput in both
systems, we first vary the number of clients in Figure 4,
which shows the aggregate read throughput for CR and
CRAQ. Since CR has to read from a single node, through-
put stays constant. CRAQ is able to read from all three
nodes in the chain, so CRAQ throughput increases to three
times that of CR. Clients in these experiments maintained
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Figure 4: Read throughput as the number of readers in-
crease: A small number of clients can saturate both CRAQ
and CR, although CRAQ’s asymptotic behavior scales with
chain size, while CR is constant.

Throughput (in operations/s)

Type 1st Median 99th

R
ea

d

CR–3 19,590 20,552 21,390

CRAQ–3 58,998 59,882 60,626

CRAQ–5 98,919 99,466 100,042

CRAQ–7 137,390 138,833 139,537

W
ri

te

CRAQ–3 5,480 5,514 5,544

CRAQ–5 4,880 4,999 5,050

CRAQ–7 4,420 4,538 4,619

Te
st

&
Se

t CRAQ–3 732 776 877

CRAQ–5 411 427 495

CRAQ–7 290 308 341

Figure 5: Throughput of read and write operations for a
500-byte object and throughput for a test-and-set operation
incrementing a 4-byte integer.

a maximum window of outstanding requests (50), so the
system never entered a potential livelock scenario.

Figure 5 shows throughput for read, write, and test-
and-set operations. Here, we varied CRAQ chains from
three to seven nodes, while maintaining read-only, write-
only, and transaction-only workloads. We see that read
throughput scaled linearly with the number of chain nodes
as expected. Write throughput decreased as chain length
increased, but only slightly. Only one test-and-set opera-
tion can be outstanding at a time, so throughput is much
lower than for writes. Test-and-set throughput also de-
creases as chain length increases because the latency for a
single operation increases with chain length.

To see how CRAQ performs during a mixed read/write
workload, we set ten clients to continuously read a 500-
byte object from the chain while a single client varied its
write rate to the same object. Figure 6 shows the aggre-
gate read throughput as a function of write rate. Note that
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Figure 6: Read throughput on a length-3 chain as the write
rate increases (500B object).
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Figure 7: Read throughput as writes increase (5KB object).

Chain Replication is not effected by writes, as all read re-
quests are handled by the tail. Although throughput for
CRAQ starts out at approximately three times the rate of
CR (a median of 59,882 reads/s vs. 20,552 reads/s), as
expected, this rate gradually decreases and flattens out to
around twice the rate (39,873 reads/s vs. 20,430 reads/s).
As writes saturate the chain, non-tail nodes are always
dirty, requiring them always to first perform version re-
quests to the tail. CRAQ still enjoys a performance benefit
when this happens, however, as the tail’s saturation point
for its combined read and version requests is still higher
than that for read requests alone.

Figure 7 repeats the same experiment, but using a 5 KB
object instead of a 500 byte one. This value was cho-
sen as a common size for objects such as small Web im-
ages, while 500 bytes might be better suited for smaller
database entries (e.g., blog comments, social-network sta-
tus information, etc.). Again, CRAQ’s performance in
read-only settings significantly outperforms that of CR
with a chain size of three (6,808 vs. 2,275 reads/s), while
it preserves good behavior even under high write rates
(4,416 vs. 2,259 reads/s). This graph also includes CRAQ
performance with seven-node chains. In both scenarios,
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even as the tail becomes saturated with requests, its ability
to answer small version queries at a much higher rate than
sending larger read replies allows aggregate read through-
put to remain significantly higher than in CR.

Figure 8 isolates the mix of dirty and clean reads that
comprise Figure 6. As writes increase, the number of
clean requests drops to 25.4% of its original value, since
only the tail is clean as writes saturate the chain. The
tail cannot maintain its own maximal read-only through-
put (i.e., 33.3% of the total), as it now also handles ver-
sion queries from other chain nodes. On the other hand,
the number of dirty requests would approach two-thirds
of the original clean read rate if total throughput remained
constant, but since dirty requests are slower, the number
of dirty requests flattens out at 42.3%. These two rates
reconstruct the total observed read rate, which converges
to 67.7% of read-only throughput during high write con-
tention on the chain.

The table in Figure 9 shows the latency in milliseconds
of clean reads, dirty reads, writes to a 3-node chain, and
writes to a 6-node chain, all within a single datacenter.
Latencies are shown for objects of 500 bytes and 5 KB
both when the operation is the only outstanding request
(No Load) and when we saturate the CRAQ nodes with
many requests (High Load). As expected, latencies are
higher under heavy load, and latencies increase with key
size. Dirty reads are always slower than clean reads be-
cause of the extra round-trip-time incurred, and write la-
tency increases roughly linearly with chain size.

Figure 10 demonstrates CRAQ’s ability to recover from
failure. We show the loss in read-only throughput over
time for chains of lengths 3, 5, and 7. Fifteen seconds into
each test, one of the nodes in the chain was killed. After
a few seconds, the time it takes for the node to time out
and be considered dead by ZooKeeper, a new node joins
the chain and throughput resumes to its original value.
The horizontal lines drawn on the graph correspond to the
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Figure 9: CRAQ Latency by load, chain length, object
state, and object size within a single datacenter.

maximum throughput for chains of lengths 1 through 7.
This helps illustrate that the loss in throughput during the
failure is roughly equal to 1/C, where C is the length of
the chain.

To measure the effect of failure on the latency of read
and write operations, Figures 11 and 12 show the latency
of these operations during the failure of a chain of length
three. Clients that receive an error when trying to read an
object choose a new random replica to read from, so fail-
ures have a low impact on reads. Writes, however, cannot
be committed during the period between when a replica
fails and when it is removed from the chain due to time-
outs. This causes write latency to increase to the time it
takes to complete failure detection. We note that this is
the same situation as in any other primary/backup replica-
tion strategy which requires all live replicas to participate
in commits. Additionally, clients can optionally configure
a write request to return as soon as the head of the chain
accepts and propagates the request down to the chain in-
stead of waiting for it to commit. This reduces latency for
clients that don’t require strong consistency.

Finally, Figure 13 demonstrates CRAQ’s utility in
wide-area deployments across datacenters. In this experi-
ment, a chain was constructed over three nodes that each
have 80ms of round-trip latency to one another (approxi-
mately the round-trip-time between U.S. coastal areas), as
controlled using Emulab’s synthetic delay. The read client
was not local to the chain tail (which otherwise could
have just resulted in local-area performance as before).
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Figure 10: CRAQ re-establishing normal read throughput
after a single node in a chain serving a 500-byte object fails.
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Figure 11: CRAQ’s read latency (shown here under mod-
erate load) goes up slightly during failure, as requests to the
failed node need to be retried at a non-faulty node.

The figure evaluates read latency as the workload mixture
changes; mean latency is now shown with standard de-
viation as error bars (as opposed to median and 99th per-
centile elsewhere). Since the tail is not local, CR’s latency
remains constantly high, as it always incurs a wide-area
read request. CRAQ, on the other hand, incurs almost
no latency when no writes are occurring, as the read re-
quest can be satisfied locally. As the write rate increases,
however, CRAQ reads are increasingly dirty, so the aver-
age latency rises. Once the write rate reaches about 15
writes/s, the latency involved in propagating write mes-
sages down the wide-area chain causes the client’s local
node to be dirty 100% of the time, leading to a wide-
area version query. (CRAQ’s maximum latency is ever-
so-slightly less than CR given that only metadata is trans-
ferred over the wide area, a difference that would only
increase with larger objects, especially in slow-start sce-
narios.) Although this convergence to a 100% dirty state
occurs at a much lower write rate than before, we note that
careful chain placement allows any clients in the tail’s dat-
acenter to enjoy local-area performance. Further, clients
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Figure 12: CRAQ’s write latency increases during failure,
since the chain cannot commit write operations.
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Figure 13: CR and CRAQ’s read latency to a local client
when the tail is in a distant datacenter separated by an RTT
of 80ms and the write rate of a 500-byte object is varied.

in non-tail datacenters that can be satisfied with a degree
of maximum-bounded inconsistency (per §2.4) can also
avoid wide-area requests.

7 Related Work
Strong consistency in distributed systems. Strong
consistency among distributed servers can be provided
through the use of primary/backup storage [3] and two-
phase commit protocols [43]. Early work in this area did
not provide for availability in the face of failures (e.g., of
the transaction manager), which led to the introduction
of view change protocols (e.g., through leader consen-
sus [33]) to assist with recovery. There has been a large
body of subsequent work in this area; recent examples in-
clude both Chain Replication and the ring-based protocol
of Guerraoui et al. [25], which uses a two-phase write
protocol and delays reads during uncommitted writes.
Rather than replicate content everywhere, one can explore
other trade-offs between overlapping read and write sets



in strongly-consistent quorum systems [23, 28]. Agree-
ment protocols have also been extended to malicious set-
tings, both for state machine replication [10, 34] and quo-
rum systems [1, 37]. These protocols provide lineariz-
ability across all operations to the system. This paper
does not consider Byzantine faults—and largely restricts
its consideration of operations affecting single objects—
although it is interesting future work to extend chain repli-
cation to malicious settings.

There have been many examples of distributed filesys-
tems that provide strong consistency guarantees, such
as the early primary/backup-based Harp filesystem [35].
More recently, Boxwood [36] explores exporting various
higher-layer data abstractions, such as a B-tree, while
offering strict consistency. Sinfonia [2] provides light-
weight “mini-transactions” to allow for atomic updates to
exposed memory regions in storage nodes, an optimized
two-phase commit protocol well-suited for settings with
low write contention. CRAQ’s use of optimistic lock-
ing for multi-chain multi-object updates was heavily in-
fluenced by Sinfonia.

CRAQ and Chain Replication [47] are both exam-
ples of object-based storage systems that expose whole-
object writes (updates) and expose a flat object names-
pace. This interface is similar to that provided by key-
value databases [40], treating each object as a row in these
databases. As such, CRAQ and Chain Replication focus
on strong consistency in the ordering of operations to each
object, but does not generally describe ordering of oper-
ations to different objects. (Our extensions in §4.1 for
multi-object updates are an obvious exception.) As such,
they can be viewed in light of casual consistency taken
to the extreme, where only operations to the same object
are causally related. Causal consistency was studied both
for optimistic concurrency control in databases [7] and for
ordered messaging layers for distributed systems [8]. Ya-
hoo!’s new data hosting service, PNUTs [12], also pro-
vides per-object write serialization (which they call per-
record timeline consistency). Within a single datacen-
ter, they achieve consistency through a messaging ser-
vice with totally-ordered delivery; to provide consistency
across datacenters, all updates are sent to a local record
master, who then delivers updates in committed order to
replicas in other datacenters.

The chain self-organization techniques we use are
based on those developed by the DHT community [29,
45]. Focusing on peer-to-peer settings, CFS pro-
vides a read-only filesystem on top of a DHT [14];
Carbonite explores how to improve reliability while
minimizing replica maintenance under transient fail-
ures [11]. Strongly-consistent mutable data is consid-
ered by OceanStore [32] (using BFT replication at core
nodes) and Etna [39] (using Paxos to partition the DHT
into smaller replica groups and quorum protocols for con-

sistency). CRAQ’s wide-area solution is more datacenter-
focused and hence topology-aware than these systems.
Coral [20] and Canon [21] both considered hierarchical
DHT designs.

Weakening Consistency for Availability. TACT [49]
considers the trade-off between consistency and availabil-
ity, arguing that weaker consistency can be supported
when system constraints are not as tight. eBay uses a
similar approach: messaging and storage are eventually-
consistent while an auction is still far from over, but use
strong consistency—even at the cost of availability—right
before an auction closes [46].

A number of filesystems and object stores have traded
consistency for scalability or operation under partitions.
The Google File System (GFS) [22] is a cluster-based ob-
ject store, similar in setting to CRAQ. However, GFS sac-
rifices strong consistency: concurrent writes in GFS are
not serialized and read operations are not synchronized
with writes. Filesystems designed with weaker consis-
tency semantics include Sprite [6], Coda [30], Ficus [27],
and Bayou [42], the latter using epidemic protocols to
perform data reconciliation. A similar gossip-style anti-
entropy protocol is used in Amazon’s Dynamo object ser-
vice [15], to support “always-on” writes and continued
operation when partitioned. Facebook’s new Cassandra
storage system [16] also offers only eventual consistency.
The common use of memcached [18] with a relational
database does not offer any consistency guarantees and in-
stead relies on correct programmer practice; maintaining
even loose cache coherence across multiple datacenters
has been problematic [44].

CRAQ’s strong consistency protocols do not support
writes under partitioned operation, although partitioned
chain segments can fall back to read-only operation. This
trade-off between consistency, availability, and partition-
tolerance was considered by BASE [19] and Brewer’s
CAP conjecture [9].

8 Conclusions

This paper presented the design and implementation of
CRAQ, a successor to the chain replication approach for
strong consistency. CRAQ focuses on scaling out read
throughput for object storage, especially for read-mostly
workloads. It does so by supporting apportioned queries:
that is, dividing read operations over all nodes of a chain,
as opposed to requiring that they all be handled by a single
primary node. While seemingly simple, CRAQ demon-
strates performance results with significant scalability im-
provements: proportional to the chain length with lit-
tle write contention—i.e., 200% higher throughput with
three-node chains, 600% with seven-node chains—and,



somewhat surprisingly, still noteworthy throughput im-
provements when object updates are common.

Beyond this basic approach to improving chain replica-
tion, this paper focuses on realistic settings and require-
ments for a chain replication substrate to be useful across
a variety of higher-level applications. Along with our
continued development of CRAQ for multi-site deploy-
ments and multi-object updates, we are working to in-
tegrate CRAQ into several other systems we are build-
ing that require reliable object storage. These include a
DNS service supporting dynamic service migration, ren-
dezvous servers for a peer-assisted CDN [5], and a large-
scale virtual world environment. It remains as interest-
ing future work to explore these applications’ facilities in
using both CRAQ’s basic object storage, wide-area opti-
mizations, and higher-level primitives for single-key and
multi-object updates.
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