
Hashing Round-down Prefixes for Rapid Packet Classification
 Fong Pong Nian-Feng Tzeng

 Broadcom Corp. Center for Advanced Computer Studies
 2451 Mission College Blvd., Santa Clara, CA 95054 University of Louisiana at Lafayette, LA 70504

 fpong@broadcom.com tzeng@cacs.louisiana.edu

Abstract — Packet classification is complex due to
multiple fields present in each filter rule, easily manifesting
itself as a router performance bottleneck. Most known
classification approaches involve either hardware support or
optimization steps (to add precomputed markers and insert
rules in the search data structures). Unfortunately, an
approach with hardware support is expensive and has
limited scalability, whereas one with optimization fails to
handle incremental rule updates effectively. This work
treats a rapid packet classification mechanism, realized by
hashing round-down prefixes (HaRP) in a way that the
source and the destination IP prefixes specified in a rule are
rounded down to “designated prefix lengths” (DPL) for
indexing into hash sets. Utilizing the first ζ bits of an IP
prefix with l bits (for ζ ≤ l, ζ∈DPL) as the key to the hash
function (instead of using the original IP prefix), HaRP
exhibits superb hash storage utilization, able to not only
outperform those earlier software-oriented classification
techniques but also well accommodate dynamic creation
and deletion of rules. HaRP makes it possible to hold all its
search data structures in the local cache of each core within
a contemporary processor, dramatically elevating its
classification performance. Empirical results measured on
our Broadcom BCM-1480 multicore platform under nine
filter datasets obtained from a public source unveil that
HaRP enjoys up to some 5× (or 10×) throughput
improvement when compared with well-known HyperCuts
(or Tuple Space Search).

1 Introduction
Packet classification is basic to a wide array of Internet

applications and services, performed at routers by applying
“rules” to incoming packets for categorizing them into flows. It
employs multiple fields in the header of an arrival packet as the
search key for identifying the best suitable rule to apply. Rules
are created to differentiate packets based on the values of their
corresponding header fields, constituting a filter set. Header
fields may contain network addresses, port numbers, the
protocol type, TCP flags, ICMP message type and code
number, VLAN tags, DSCP and 802.1p codes, etc. A field
value in a filter can be an IP prefix (e.g., source or destination
sub-network), a range (e.g., source or destination port numbers),
or an exact number (e.g., protocol type or TCP flag). A real
filter dataset often contains multiple rules for a pair of
communicating networks, one for each application. Similarly,

an application is likely to appear in multiple filters, one for each
pair of communicating networks using the application.
Therefore, lookups over a filter set with respect to multiple
header fields are complex [9] and often become router
performance bottlenecks.

Various classification mechanisms have been considered,
and they aim to quicken packet classification through hardware
support or the use of specific data structures to hold filter
datasets (often in SRAM and likely with optimization) for fast
search [25]. Hardware support frequently employs FPGAs
(field programmable gate arrays) or ASIC logics [4, 21], plus
TCAM (ternary content addressable memory) to hold filters or
registers for rule caching [8]. Key design goals with hardware
support lie in simple data structures and search algorithms to
facilitate ASIC or FPGA implementation and low storage
requirements to reduce the TCAM costs. They tend to prevent a
mechanism with hardware support from handling incremental
rule updates efficiently, and any change to the mechanism (in its
search algorithm or data structures) is usually expensive.
Additionally, such a mechanism exhibits limited scalability, as
TCAM employed to hold a filter set dictates the maximal set
size allowable. Likewise, search algorithms dependent on
optimization via preprocessing (used by recursive flow
classification [9]) or added markers and inserted rules (stated in
rectangle tuple space search (TSS) [24], binary TSS on columns
[28], diagonal-based TSS [15], etc.) for speedy lookups often
cannot deal with incremental rule updates effectively. A tuple
under TSS specifies the involved bits of those fields employed
for classification, and probes to tuple space for appropriate rules
are conducted via fast exact-match search methods like hashing.

Many TSS-based classifiers employ extra SRAM (in
addition to processor caches). Unlike TCAM, SRAM costs far
less and consumes much lower energy. Further, if the required
SRAM size is made small to fit in an on-chip module, the cost
incurred for the on-chip SRAM can be very low, since it shares
the same fabrication processes as those for on-chip caches.
However, the inherent limitation of a TSS classifier in dealing
with incremental rule updates (deemed increasingly common
due to such popular applications as voice-over-IP, gaming, and
video conferencing, which all involve dynamically triggered
insertion and removal of rules in order for the firewall to handle
packets properly) will soon become a major concern [30].

This article treats hashing round-down prefixes (HaRP)
for rapid packet classification, where an IP prefix with l bits
is rounded down to include its first ζ bits only (for ζ ≤ l, ζ

∈DPL, “designated prefix lengths” [17]). With two-staged
search, HaRP achieves high classification throughput and
superior memory efficiency by means of (1) rounding down
prefixes to a small number of DPL (denoted by m, i.e., m
possible designated prefix lengths), each corresponding to
one hash unit, for fewer (than 32 under IPv4, when every
prefix length is permitted without rounding down) hash
accesses per packet classification, and (2) collapsing those
hash units to one lumped hash (LuHa) table for better
utilization of table entries, which are set-associative. Based
on a LuHa table keyed by the source and destination IP
prefixes rounded down to designated lengths, HaRP not
only enjoys fast classification (due to a small number of
hash accesses) but also handles incremental rule updates
efficiently (without precomputing markers or inserting rules
often required by typical TSS). While basic HaRP
identifies up to two candidate sets in the LuHa table to hold
a given filter rule, generalized HaRP (denoted by HaRP*)
may store the rule in any one of up to 2m candidate sets,
considerably elevating table utilization to lower the
probability of set overflow and achieving good scalability
even for a small set-associative degree (say, 4). Each packet
classification under HaRPP

* requires to examine all the
possible 2m candidate sets (in parallel for those without
conflicts, i.e., those in different memory modules which
constitute the LuHa Table), where those sets are identified
by the hash function keyed with the packet’s source and
destination IP addresses, plus their respective round-down
prefixes. HaRP is thus to exhibit fast classification, due to
its potential of parallel search over candidate sets. With
SRAM for the LuHa table and the application-specific
information table (for holding filter fields other than source
and destination IP prefixes), HaRP exhibits a lower cost and
better scalability than its hardware counterpart. With its
required SRAM size dropped considerably (to some 200KB
at most for all nine filter datasets examined), HaRP makes it
possible to hold all its search data structures in the local
cache of a core within a contemporary processor, further
boosting its classification performance.

Our LuHa table yields high storage utilization via
identifying multiple candidate sets for each rule (instead of
just a single one under a typical hash mechanism), like the
earlier scheme of d-left hashing [1]. However, the LuHa
table differs from d-left hashing in three major aspects: (1)
the LuHa table requires just one hash function, as opposed
to d functions needed by d-left hashing (which divides
storage into d fragments), one for each fragment, (2) the
hash function of the LuHa table under HaRP

 Extensive evaluation on HaRP has been conducted on our
platform comprising a Broadcom’s BCM-1480 SoC (System on
Chip) [18], which has four 700MHz SB-1TM MIPS cores [12],
under nine filter datasets obtained from a public source [29].
The proposed HaRP was made multithreaded so that up to 4
threads could be launched to take advantage of the 4 SB-1TM
cores for gathering real elapsed times via the BCM-1480 ZBus
counter, which ticks at every system clock. Measured
throughput results of HaRP are compared with those of its
various counterparts (whose source codes were downloaded
from a public source [29] and then made multithreaded for)
executing on the same platform to classify millions of packets
generated from the traces packaged with the filter datasets. Our
measured results reveal that HaRPP

* boosts classification
throughput by some 5× (or 10×) over well-known HyperCuts
[20] (or Tuple Space Search [24]), when its LuHa table has a
total number of entries equal to 1.5n and there are 4 designated
prefix lengths, for a filter dataset sized n. HaRP attains superior
performance, on top of its efficient support for incremental rule
updates lacked by previous techniques, making it a highly
preferable software-based packet classification technique.

2 Pertinent Work and Tuple Space Search
Packet classification is challenging and its cost-effective

solution is still in pursuit actively. Known classification lookup
mechanisms may be categorized, in accordance with their
implementation approaches, as being hardware-centric and
software-oriented, depending upon if dedicated hardware logics
or specific storage components (like TCAM or registers) are
used. Different hardware-centric classification mechanisms
exist. In particular, a mechanism with additional registers to
cache evolving rules and dedicated logics to match incoming
packets with the cached rules was pursued [8]. Meanwhile,
packet classification using FPGA was considered [21] by using
the BV (Bit Vector) algorithm [13] to look up the source and
destination ports and employing a TCAM to hold other header
fields, with search functionality realized by FPGA logic gates.
Recently, packet classification hardware accelerator design
based on the HiCuts and HyperCuts algorithms [3, 20] (briefly
reviewed in Section 2.1), has been presented [11]. Separately,
effective methods for dynamic pattern search were introduced
[4], realized by reusing redundant logics for optimization and by
fitting the whole filter device in a single Xilinx FPGA unit,
taking advantage of built-in memory and XOR-based
comparators in FPGA.
 Hardware approaches based on TCAM are considered

attractive due to the ability for TCAM to hold the don’t care
state and to search the header fields of an incoming packet
against all TCAM entries in a rule set simultaneously [16, 27].
While deemed as most widely employed storage components in
support of fast lookups, TCAM has such noticeable
shortcomings (listed in [25]) as lower density, higher power
consumption, and being pricier and unsuitable for dynamic

P

* is keyed by
2m different prefixes produced from each pair of the source
and the destination IP addresses, and (3) a single LuHa table
obtained by collapsing separate hash units is employed to
attain superior storage utilization, instead of one hash unit
per prefix length to which d-left hashing is applied.

rules, since incremental updates usually require many TCAM
entries to be shifted (unless provision like those given earlier
[19, 27] is made). As a result, software-oriented classification is
more attractive, provided that its lookup speed can be quickened
by storing rules in on-chip SRAM.

2.1 Software-Oriented Classification
Software-oriented mechanisms are less expensive and

more flexible (better adaptive to rule updates), albeit to slower
filter lookups when compared with their hardware-centric
counterparts. Such mechanisms are abundant, commonly
involving efficient algorithms for quick packet classification
with an aid of caching or hashing (via incorporated SRAM).
Their classification speeds rely on efficiency in search over the
rule set (stored in SRAM) using the keys constituted by
corresponding header fields. Several representative software
classification techniques are reviewed in sequence.

Recursive flow classification (RFC) carries out multistage
reduction from a lookup key (composed of packet header fields)
to a final classID, which specifies the classification rule to apply
[9]. Given a rule set, preprocessing is required to decide
memory contents so that the sequence of RFC lookups
according to a lookup key yields the appropriate classID [9].
Preprocessing results can be put in SRAM for fast accesses,
important for RFC as it involves multiple stages of lookups.
Any change to the rule set, however, calls for memory content
recomputation, rendering it unsuitable for frequent rule updates.

Based on a precomputed decision tree, HiCuts
(Hierarchical Intelligent Cuts) [10] holds classification rules
merely in leaf nodes and each classification operation needs to
traverse the tree to a leaf node, where multiple rules are stored
and searched sequentially. During tree search, HiCuts relies
on local optimization decisions at each node to choose the next
field to test. Like HiCuts, HyperCuts is also a decision tree-
based classification mechanism, but each of its tree nodes splits
associated rules possibly based on multiple fields [20]. It builds
a decision tree, aiming to involve the minimal amount of total
storage and to let each leaf node hold no more than a
predetermined number of rules. HyperCuts is shown to enjoy
substantial memory reduction while considerably quickening
the worst-case search time under core router rule sets [20], when
compared with HiCuts and other earlier classification solutions.

An efficient packet classification algorithm was introduced
[2] by hashing flow IDs held in digest caches (instead of the
whole classification key comprising multiple header fields) for
reduced memory requirements at the expense of a small amount
of packet misclassification. Recently, fast and memory-efficient
(2-dimensional) packet classification using Bloom filters was
studied [7], by dividing a rule set into multiple subsets before
building a crossproduct table [23] for each subset individually.
Each classification search probes only those subsets that contain
matching rules (and skips the rest) by means of Bloom filters,
for sustained high throughput. The mean memory requirement
is claimed to be some 32 ~ 45 bytes per rule. As will be

demonstrated later, our mechanism achieves faster lookups
(involving 8~16 hash probes plus 4 more SRAM accesses,
which may all take place in parallel, per packet) and consumes
fewer bytes per rule (taking 15 ~ 25 bytes per rule).

A fast dynamic packet filter, dubbed Swift [30], comprises
a fixed set of instructions executed by an in-kernel interpreter.
Unlike packet classifiers, it optimizes filtering performance by
means of powerful instructions and a simplified computational
model, involving a kernel implementation.

2.2 Tuple Space Search (TSS)
Having rapid classification potentially (with an aid of

optimization) without additional expensive hardware, TSS has
received extensive studies. It embraces versatile software-
oriented classification and involves various search algorithms.
Under TSS, a tuple comprises a vector of k integer elements,
with each element specifying the length or number of bits of a
header field of interest used for the classification purpose. As
the possible numbers of bits for interested fields present in the
classification rules of a filter dataset tend to be small, all length
combinations of the k fields constituting tuple space are rather
contained [24]. In other words, while the tuple space T in
theory comprises totally Πi=1..k prefix.length(fieldi) tuples, it only
needs to search existing tuples rather than the entire space T.

A search key can be obtained for each incoming packet by
concatenating those involved bits in the packet header.
Consider a classic 5-dimensional classification problem, with
packets classified by their source IP address (sip), source port
number (spn), destination IP address (dip), destination port
number (dpn), and protocol type (pt). An example tuple of (sip,
dip, spn, dpn, pt) = (16, 24, 6, 4, 6) means that the source and
the destination IP addresses are respectively a 16-bit prefix and
a 24-bit prefix. The number of prefix bits used to define the
tuple elements of sip and dip is thus clear. On the other hand,
the port numbers and the protocol type are usually specified in
ranges; for example, [1024, 2112] referring to the port number
from 1024 to 2112. For TSS, those range files are (1) handled
separately (like what was stated in [3]), (2) encoded by nested
level and range IDs [24], or (3) transformed into collections of
sub-ranges each corresponding to a prefix (namely, a range with
an exact power of two), resulting in rule dataset expansion.

TSS Implementation Consideration
TSS intends to achieve high memory efficiency and fast

lookups by exploiting a well sanctioned fact of rule construction
resulting from optimization. Its optimization methods include:

1. Tuple Pruning and Rectangle Search, using markers and
pre-computed best-matched rules to achieve the worst-
case lookup time of 2W-1 for two-dimensional
classification, with W being the length of source and
destination IP prefixes [24],

2. Binary Search on Columns, considered later [28] to
reduce the worst-case lookup time down to O(log2W),
while involving O(N×log2W) memory for N rules, and

Prefix Pair Pointer

(sip, dip) index
……..

….

(sip, dip) index

Figure 1. HaRP classification mechanism comprising one set-associative hash table (obtained by lumping multiple hash
tables together) and an application-specific information table.

Collapse

hash table for prefixes P|lm

hash table for prefixes P|li

hash table for prefixes P|lk

Source Port Dest. Port Proto. Type

(spnlow, spnhi) (dpnlow, dpnhi) (ptlow, pthi)
…….. ……..

(spnlow, spnhi) (dpnlow, dpnhi) (ptlow, pthi)

(spnlow, spnhi) (dpnlow, dpnhi) (ptlow, pthi)

(spnlow, spnhi) (dpnlow, dpnhi) (ptlow, pthi)

Lumped Hash
(LuHa) table

Application-Specific Information
(ASI) table

3. Diagonal-based Search to exhibit the search time of
O(logW) for two-dimensional filters, with a large
memory requirement of O(N2) [15].

While TSS (with optimization) is generally promising, it
suffers from the following limitations.
Expensive Incremental Updates. Dynamic creation and
removal of classification rules may prove to be challenging to
those known TSS methods. However, dynamic changes to rule
datasets take place more frequently going forward, due to many
growing popular applications, such as voice-over-IP, gaming,
and video conferencing, which all require dynamically triggered
insertion and removal of rules in order for the firewall to handle
packets properly. This inability in dealing with frequent rule
updates is common to TSS-based packet classification, because
its high search rate and efficient memory (usually SRAM)
utilization result from storing contents in a way specific to
contents themselves, and any change to the rule dataset requires
whole memory content recomputed and markers/rules
reinserted. With its nature of complex and prohibitively
expensive memory management in response to rule changes,
TSS is unlikely to arrive at high performance.
Limited Parallelism. TSS with search optimization lends itself
to sequential search, as the next tuple to be probed depends on
the search result of the current tuple. Its potential in parallelism
is rather limited as the number of speculative states involved
grows exponentially when the degree increases.
Extensibility to Additional Fields. Results for two-dimensional
TSS have been widely reported. However, it is unclear about
TSS performance when the number of fields rises (to
accommodate many other fields, including TCP flags, ICMP
message type and code number, VLAN tags, DSCP and 802.1p
codes, besides commonly mentioned five fields), in particular, if
markers and precomputation for best rules are to be applied.

3 Proposed HaRP Architecture
3.1 Fundamentals and Pertinent Data Structures

As eloquently explained earlier [25, 26], a classification
rule is often specified with a pair of communicating networks,
followed by the application-specific constraints (e.g., port

numbers and the protocol type). Our HaRP exploits this
situation by considering the fields on communicating networks
and on application-specific constraints separately, comprising
two search stages. Its first stage narrows the search range via
communicating network prefix fields, and its second stage
checks other fields on only entries chosen in the first stage.

 Basic HaRP
As depicted in Figure 1, the first stage of HaRP comprises

a single set-associative hash table, referred to as the LuHa
(lumped hash) table. Unlike typical hash table creation using
the object key to determine one single set for an object, our
LuHa table aims to achieve extremely efficient table utilization
by permitting multiple candidate sets to accommodate a given
filter rule and yet maintaining fast search over those possible
sets in parallel during the classification process. It is made
possible by (1) adopting designated prefix length, DPL: {l1, l2,
… li, … lm}, where li denotes a prefix length, such that for any
prefix P of length w (expressed by P|w) with li ≤ w < li+1, P is
rounded down to P|li before used to hash the LuHa table, and (2)
storing a filter rule in the LuHa table hashed by either its source
IP prefix (sip, if not wild carded) or destination IP prefix (dip, if
not wild carded), after they are rounded down. Each prefix
length ζ, with ζ∈DPL, is referred to as a tread. Given P, it is
hashed by treating P|li as an input to a hash function to get a d-
bit integer, where d is dictated by the number of sets in the
LuHa table. Since treads in DPL are determined in advance, the
numbers of bits in an IP address of a packet used for hash
calculation during classification are clear and their hashed
values can be obtained in parallel for concurrent search over the
LuHa table. Our classification mechanism results from hashing
round-down prefixes (HaRP) during both filter rule installation
and packet classification search, thereby so named.

The LuHa table comprises collapsed individual hash tables
(each of which is assigned originally to hold all prefixes P|w (li
≤ w < li+1) under chosen DPL, as shown in Figure 1 by the
leftmost component before collapsing) to yield high table
utilization and is made set-associative to alleviate the overflow
problem. Each entry in the LuHa table keeps a prefix pair for
the two communicating networks, namely, sip (the source IP
prefix) and dip (the destination IP prefix). While different (sip,

dip) pairs after being rounded down may become identical and
distinct prefixes possibly yield the same hashed index, the set-
associative degree of the LuHa table can be held low in practice.
Given the LuHa table composed of 2d sets, each with α entries,
it experiences overflow if the number of rules hashed into the
same set exceeds α. However, this overflow problem is
alleviated, since a filter rule can be stored in either one of the
two sets indexed by its sip and dip. With the LuHa table, our
HaRP arrives at (1) rapid packet classification due to a reduced
number of hash probes through a provision of parallel accesses
to all entries in a LuHa set and also to a restricted scope of
search (pointed to by the matched LuHa entry) in the second
stage, and (2) a low SRAM requirement due to one single set-
associated hash table (for better storage utilization).

Generalized HaRP
Given a filter rule with its sip or dip being P|w and under

DPL = {l1, l2, … li, … lm}, HaRP can be generalized by
rounding down P|w, with li ≤ w < li+1, to P|lb, for all 1 ≤ b ≤ i,
before hashing P|lb to identify more candidate sets for keeping
the filter rule. In other words, this generalization in rounding
down prefixes lets a filter rule be stored in any one of those 2×i
sets hashed by P|lb in the LuHa table, referred to as HaRP*.
This is possible because HaRP takes advantage of the
“transitive property” of prefixes – for a prefix P|w, P|t is a prefix
of P|w for all t < w, considerably boosting its pseudo set-
associative degree. A classification lookup for an arrived packet
under DPL with m treads involves m hash probes via its source
IP address and m probes via its destination IP address, therefore
allowing the prefix pair of a filter rule (say, (Ps|ws , Pd|wd), with
lis ≤ ws < lis+1 and lid ≤ wd < lid+1) to be stored in any one of the is
sets indexed by round-down Ps (i.e., Ps|{l1, l2, … lis}, if Ps is not
a wildcard), or any one of the id sets indexed by round-down Pd
(i.e., Pd|{l1, l2, … lid}, if Pd is not a wildcard). HaRP* balances
the prefix pairs among many candidate sets (each with α
entries), making the LuHa table behave like an (is + id)×α set-
associative design under ideal conditions to enjoy high storage
efficiency. Given DPL with 5 treads: {28, 24, 16, 12, 1}, for
example, HaRP* rounds down the prefix of 010010001111001×
(w = 15) to 010010001111 (ζ = 12) and 0 (ζ = 1) for hashing.

This potentially high pseudo set-associativity makes it
possible for HaRP* to choose a small number of treads (m). A
small m lowers the number of hash probes per lookup
accordingly, thus improving lookup performance. Adversely, as
m drops, more rules can be mapped to a given set in the LuHa
table, requiring m to be moderate practically, say 6 or so. Note
that a shorter prefix (either Ps or Pd) leads to fewer candidate
sets for storing a filter rule, but the number of filter rules with
shorter prefixes is smaller, naturally curbing the likelihood of set
overflow. Furthermore, HaRP* enjoys virtually no overflow, as
long as * is greater than 2, to be seen in the following analysis.

Our basic HaRP stated earlier is denoted by HaRP1 (where
P|w, with li ≤ w < li+1, is rounded down to P|li). Rounding down

P|w to both P|li and P|li-1, dubbed HaRP2, specifies up to four
LuHa table sets for the filter rule. Clearly, HaRP* experiences
overflow only when 2×i sets in the LuHa table are all full. The
following analyzes the LuHa table in terms of its effectiveness
and scalability, revealing that for a fixed, small α (say, 4), its
overflow probability is negligible, provided that the ratio of the
number of LuHa table entries to the number of filter rules is a
constant, say ρ.

Effectiveness and Scalability of LuHa Table

From a theoretic analysis perspective, the probability
distribution could be approximated by a Bernoulli process,
assuming a uniform hash distribution for round-down
prefixes. (As round-down prefixes for real filter datasets
may not be hashed uniformly, we performed extensive
evaluation of HaRP* under publicly available 9 real-world
datasets, with the results provided in Section 4.2.) The
probability of hashing a round-down prefix P|li randomly to
a table with r sets equals 1/r. Thus, the probability for k
round-down prefixes, out of n samples (i.e., the filter dataset

size), hashing to a given set is . As

each set has α entries, we get prob.(overflow | k round-
down prefixes mapped to a set, for all k > α) =

, with r = (n×ρ)/α .

knrkr
k
n −−⎟

⎠
⎞⎜

⎝
⎛)/11()/1(

∑
=

−−⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
−

α

0
)/11()/1(1

k

knrkr
k
n

The above expression can be shown to give rise to
almost identical results over any practical range of n, for
given ρ and α. When ρ = 1.5 and α = 4, for example, the
overflow probability equals 0.1316 under n = 500, and it
becomes 0.1322 under n = 100,000. Consequently, under a
uniform hashing distribution of round-down prefixes, the set
overflow probability of HaRPP

* holds virtually unchanged as
the filter dataset size grows, indicating good scalability of
HaRP* with respect to its LuHa table. We therefore provide
in Figure 2, the probability of overflowing a set with α = 4
entries versus ρ (called the dilation factor) for one filter
dataset size (i.e., n = 100,000) only. As expected, the
overflow probability dwindles as ρ rises (reflecting a larger
table). For ρ = 1.5 (or 2), the probability of overflowing a
typical 4-way set-associative table is 0.13 (or 0.05).

HaRP1 achieves better LuHa table utilization, since it
permits the use of either sip or dip for hashing, effectively
yielding “pseudo 8-way” if sip and dip are not wildcards. It
selects the less occupied set in the LuHa table from the two
candidate sets hashed on the non-wild carded sip and dip.
The overflowing probability of HaRPP

1can thus be
approximated by the likelihood of both candidate LuHa
table sets (indexed by sip and dip) being fully taken (i.e.,
each with 4 active entries). In practice, the probability
results have to be conditioned by the percentage of filter
rules with wild carded IP addresses. With a wild carded sip

(or dip), a filter rule cannot benefit from using either sip or
dip for hashing (since a wild carded IP address is never used
for hashing). The set overflowing probability results of
HaRP1 with wild carded IP address rates of 60% and 0% are
depicted in Figure 2. They are interesting due to their
representative characteristics of real filter datasets used in
this study (as detailed in Section 4.1; the rates of filter rules
with wild carded IP addresses for 9 datasets are listed with
the right box). With a dilation factor ρ = 1.5, the
overflowing probability of HaRP1 drops to 1.7% (or 8.6%),
for the wildcard rate of 0% (or 60%).

Figure 2. Overflow probability versus ρ for a 4-way set.

Meanwhile, HaRP2 and HaRPP

3 are seen in the figure to
outperform HaRP1

P smartly. In particular, HaRP2 (or
HaRP3) achieves the overflowing probability of 0.15% (or
1.4 E-07 %) for ρ = 1.5, whereas HaRPP

3 exhibits the
overflowing probability less than 4.8 E-05 % even under =
1.0 (without any dilation for the LuHa table). These results
confirm that HaRP* indeed leads to virtually no overflow
with α = 4 under * > 2, thanks to its exploiting the high set-
associative potential for effective table storage utilization.
As will be shown in Section 4, HaRP* also achieves great
storage efficiency under real filter datasets, making it
possible to hold a whole dataset in local cache practically
for superior lookup performance.

Application-Specific Information (ASI) Table

The second stage of HaRP involves a table, each of
whose entry keeps the values of application-specific filter
fields (e.g., port numbers, protocol type) of one rule, dubbed
the application-specific information (ASI) table (see Figure
1). If rules share the same IP prefix pair, their application-
specific fields are stored in contiguous ASI entries packed
as one chunk pointed by its corresponding entry in the LuHa
table. For fast lookups and easy management, ASI entries
are fragmented into chunks of a fixed size (say 8 contiguous
entries). Upon creating a LuHa entry for one pair of sip and
dip, a free ASI chunk is allocated and pointed to by the
created LuHa entry. Any subsequent rule with an identical
pair of sip and dip puts its application-specific fields in a

free entry insider the ASI chunk, if available; otherwise,
another free ASI chunk is allocated for use, with a pointer
established from the earlier chunk to this newly allocated
chunk. In essence, the ASI table comprises linked chunks
(of a fixed size), with one link for each (sip, dip) pair.

The number of entries in a chunk is made small
practically (say, 8), so that all the entries in a chunk can be
accessed simultaneously in one cycle, if they are put in one
word line (of 1024 bits, which can physically comprise
several SRAM modules). This is commonly achievable with
current on-chip SRAM technologies. The ASI table requires
a comparable number of entries as the filter dataset to attain
desirable performance, with the longest ASI list containing
36 entries, according to our evaluation results based on real
filter datasets outlined in Sections 4.3 and 4.4.

As demonstrated in Figure 1, each LuHa table entry is
assumed to have 96 bits for accommodating a pair of sip
and dip together with their 5-bit length indicators, a 16-bit
pointer to an ASI list, and a 6-bit field specifying the ASI
list length. Given the word line of 1024 bits and all entries
of a set put within the same word line with on-chip SRAM
technology for their simultaneous access in one cycle, the
set-associative degree (α) of the LuHa table can easily reach
10 (despite that α = 4 is found to be adequate in practice).

3.2 Installing Filter Rules

Given a set of filter rules, HaRP installs them by putting
their corresponding field contents to the LuHa and the ASI
tables sequentially. When adding a rule, one uses its source (or
destination) IP prefix for finding a LuHa entry to hold its prefix
pair after rounded down according to chosen DPL, if its
destination (or source) IP field is a don’t care (×). Under
HaRP*, the number of round-down prefixes for a given non-
wildcard IP prefix is up to * (dependent upon the given IP
prefix and chosen DPL). When both source and destination IP
fields are specified, they are hashed separately (after rounded
down) to locate an appropriate set for accommodation. The set
is selected as follows: (1) if a hashed set contains the (sip, dip)
prefix pair of the rule in one of its entry, the set is selected (and
thus no new LuHa table entry is created to keep its (sip, dip)
pair), (2) if none hashed set has an entry keeping such a prefix
pair, a new entry is created to hold its (sip, dip) pair in the set
with least occupancy; if all candidate sets are with the same
occupancy, the last candidate set (i.e., the one indexed by the
longest round-down dip) is chosen to accommodate the new
entry created for keeping the rule. Note that a default table
entry exists to hold the special pair of (×, ×), and that entry has
the lowest priority since every packet meets its rule.

The remaining fields of the rule are then put into an entry
in the ASI table, indexed by the pointer stored in the selected
LuHa entry. As ASI entries are grouped into chunks (with all
entries inside a chunk accessed at the same time, in the way like
accesses to those set entries in the LuHa table), the rule will find

any available entry in the indexed chunk for keeping the
contents of its remaining fields, in addition to its full source and
destination IP prefixes (without being rounded down). Should
no entry be available in the indexed chunk, a new chunk is
allocated for use (and this newly allocated chunk is linked to the
earlier chunk, as described in Section 3.1).

Input: Received packet, with dip (destination IP address), sip, sport

(source port), dport (destination port), proto (protocol type)

#define mask(L) ~((0x01 <<L) -1)
int match_rule_id = n_rules;

Hash_Probe (key_select) ::
 key = (key_select == USE_DIP) ? dip : sip;
 for each tread t in DPL {
 h = hash_func(key&mask(t), t); /* round down prefix & hash */
 for each entry s in hash set LuHa[h] {
 if (PfxMatch((s.dip_prefix, dip), s.dip_prefix_length) &&

PfxMatch((s.sip_prefix, sip), s.sip_prefix_length) {
 /* a prefix-pair matched, continue on checking ASI */
 for each asi entry e in the chunk pointed by s.asi_pointer {
 if (e.sport_low <= sport <= e.sport_high &&
 e.dport_low <= dport <= e.dport_high &&
 e.proto_low <= proto <= e.proto_high) {
 /* Match! Choose rule with lower rule number */
 if (match_rule_id >= e.ruleno)
 match_rule_id = e.ruleno;
 }}}}}}

/* Pass 1: hash via dip */

Hash_Probe(USE_DIP);
/* Pass 2: hash via sip */

Hash_Probe(USE_SIP);

Figure 3. Pseudo code for prefix-pair lookups.

3.3 Classification Lookups
 Given the header of an incoming packet, a two-staged

classification lookup takes place. During the LuHa table
lookup, two types of hash probes are performed, one keyed with
the source IP address (specified in the packet header) and the
other with the destination IP address. Since rules are indexed to
the LuHa table using the round-down prefixes during
installation, the type of probes keyed by the source IP address
involves m hash accesses, one associated with a length listed in
DPL = {l1, l2, … li, … lm}. Likewise, the type of probes keyed
by the destination IP address also contains m hash accesses.
This way ensures that no packet will be misclassified regardless
of how a rule was installed, as illustrated by the pseudo code
given in Figure 3.

Lookups in the ASI table are guided by the selected LuHa
entries, which have pointers to the corresponding ASI chunks.
The given source and destination IP addresses could match
multiple entries (of different prefix lengths) in the LuHa table.
Each matched entry points to one chunk in the ASI table, and
the pointed chunks are all examined to find the best matched

rule. As all entries in one pointed chunk are fetched in a clock,
they are compared concurrently with the contents of all relevant
fields in the header of the arrival packet. If a match occurs to
any entry, the rule associated with the entry is a candidate for
application; otherwise, the next linked chunk is accessed for
examination, until a match is found or the linked list is
exhausted. When multiple candidate rules are identified, one
with the longest matched (sip, dip) pair, or equivalently the
lowest rule number, if rules are sorted accordingly, is adopted.
On the other hand, if no match occurs, the default rule is chosen.

Source IP Prefix
length 0 1 2 3 4 5 6 … 32

0
1 X
2 X
3 X
4
5 X
:

30 X
31 X

D
estination IP

32 X
 X: Tuple
 : Marker (Trail)
 : Best matched rules

Source IP Prefix
length 0 1 2 3 4 5 6 … 32

0
1 X
2 X
3 X
4
5 X
:

30 X
31 X

D
estination IP

32 X

Rounding down prefixes to
nearest treads when dip is used
for hashing.

Figure 4. Comparison between TSS and proposed HaRP1.

3.4 Lookup Time Complexity
Time complexity consists of search over both the LuHa

table and the ASI table. Search over the LuHa table is indexed
by keys composed of round-down prefix pairs (following the
algorithm of Figure 3), taking exactly 2m hash probes under
DPL with m treads (ranging from 4 to 8). On the other hand,
search over the ASI table is directed by matched prefix pairs
held in the LuHa table, and the mean number of such pairs is
found to be smaller than 4 (for all nine filter datasets of sizes up
to 10K rules adopted for our study, as listed in Table 1).
Therefore, our HaRP requires 8-16 hash probes plus 4 ASI
accesses per lookup, in comparison to 63 (2W-1) and 25 (log2W,
with W being the IP prefix length) probes respectively for
Rectangle Search and Binary Tuple Search stated earlier. As a
smaller m leads to fewer hash probes but more rules mapped to
a given set in the LuHa table, selecting an appropriate m is
important.

As explained in Section 2.2, TSS with optimization uses
markers and pre-computed results to guide its search. However,
the praised property (that any filter dataset usually comprises
only a few unique prefix pair lengths) fails to take a role in
optimization (which relies instead on each rule to leave
markers), as depicted in Figure 4. Proliferating markers may
heighten the storage requirement by an order of O(N×w). In
contrast, HaRP based on DPL treads actually cuts the tuple
space into segments along each dimension. When dip is used
for hashing, as an example, all destination prefixes are rounded

down to designated length specified by the DPL set, as
demonstrated in Figure 4 for HaRPP

1 with designated prefix
lengths equal to 30 and 1 shown. The selection of DPL can be
made to match the distribution of unique prefix lengths for the
best hashing results. Based on the fact that there are not many
unique prefix pair length combinations [24, 25], HaRP design
makes very efficient use of the LuHa table, in a way better than
TSS over the tuple space. The storage requirement is a constant
O(N), linear to the number of rules.

3.5 Handling Incremental Rule Updates and Additional Fields

HaRP admits dynamic filter datasets very well. Adding
one rule to the dataset may or may not cause any addition to the
LuHa table, depending upon if its (sip, dip) pair has been
present therein. An entry from the ASI table will be needed to
hold the remaining fields of the rule. Conversely, a rule
removal requires only to make its corresponding ASI entry
available. If entries in the affected ASI chunk all become free
after this removal, its associated entry in the LuHa table is
released as well.

Packet classification often involves many fields, subject to
large dimensionality. As the dimension increases, the search
performance of a TSS-based approach tends to degrade quickly
while needed storage may grow exponentially due to the
combinatorial specification of many fields. By contrast, adding
fields under HaRP does not affect the LuHa table at all, and they
only need longer ASI entries to accommodate them, without
increasing the number of ASI entries. Search performance
hence holds unchanged in the presence of additional fields.

4 Evaluation and Results
This section evaluates HaRP using the publicly available

filter databases, focusing on the distribution results of prefix
pairs in the LuHa table. Because the LuHa table is consulted
2m times for DPL with m treads, the distribution of prefix pairs
plays a critical role in hashing performance. Our evaluation
assumes a 4-way set-associative LuHa table design, with default
DPL comprising 8 treads: {32, 28, 24, 20, 16, 12, 8, 1}, chosen
conveniently, not necessary to yield the best results. It will
show that our use of a single set-associative table obtained by
collapsing individual hash tables (see Figure 1) is effective.

This work assumes overflows to be handled by linked lists,
and each element in the linked list contains 4 entries able to hold
4 additional prefix pairs. HaRP is compared with other
algorithms, including the Tuple Space Search, BV, and
HyperCuts in terms of the storage requirement and measured
execution time on a multi-core SoC.

4.1 Filter Datasets

Our evaluation employed the filter database suite from the
open source of ClassBench [26]. The suite contains three seed
filter sets: covering Access Control List (ACL1), Firewall
(FW1), and IP Chain (IPC1), made available by service

providers and network equipment vendors. By their different
characteristics, various synthetic filter datasets with large
numbers of rules are generated in order to study the scalability
of classification mechanisms. For assistance in, and validation
on, implementation of different classification approaches, the
filter suite is accompanied with traces, which can also be used
for performance evaluation as well [29]. The filter datasets
utilized by our study are listed in the following table.

Table 1. Filter datasets
Seed Filters

(#filters, trace length)
Synthetic Filters

(#filters, trace length)
ACL1(752, 8140) ACL-5K(4415, 45600) ACL-10K(9603, 97000)
FW1(269, 2830) FW-5K(4653, 46700) FW-10K(9311, 93250)

IPC1(1550, 17020) IPC-5K(4460, 44790) IPC-10K(9037, 90640)

4.2 Prefix Pair Distribution in LuHa Table
The hash function is basic to HaRP. In this article, a

simple hash function is developed for use. First, a prefix key
is rounded down to the nearest tread in DPL. Next, simple
XOR operations are performed on the prefix key and the
found tread length, as follows:

tread = find_tread_in_DPL(length of the prefix_key);
pfx = prefix_key & (0xffffffff << (32-tread)); // round down
h = (pfx) ^ (pfx>>7) ^ (pfx>>15) ^ tread ^ (tread<<5) ^
 (tread<<12)^ ~(tread<<18) ^ ~(tread<<25);
set_num = (h ^ (h >> 5) ^ (h<<13)) % num_of_set;

While better results may be achieved by using more
sophisticated hash functions (such as cyclic redundancy codes,
for example), it is beyond the scope of this article. Instead, we
show that a single lumped LuHa table can be effective, and
most importantly, HaRP* works satisfactorily under a simple
hash function.

The results of hashing prefix pairs into the LuHa table are
shown in Figure 5, where the LuHa tables are properly sized.
Specifically, the LuHa table is provisioned with ρ = 2 (dilated
by a factor of 2 relative to the number of filter rules) for HaRP1,
whereas its size is then reduced by 25% (i.e., ρ = 1.5) to show
how the single set-associative LuHa table performs with respect
to fewer treads in DPL under HaRP*. Figure 5(a) illustrates that
HaRP1 exhibits no more than 4% of overflowing sets in a 4-way
set-associative LuHa table. Note that those results for 5K filter
datasets (i.e., ACL-5K, FW-5K, and IPC-5K) were omitted in
Figure 5 so that the remaining 6 curves can be read more easily,
given that those omitted results lying between the set of results
for 1K filter datasets and that for 10K datasets. Only the IPC1
dataset happens to have 20 prefix pairs mapped into one set.
This congested set is caused partly by the non-ideal hash
function and partly by the round-down mechanism of HaRP.
Nevertheless, the single 4-way LuHa table exhibits good
resilience in accommodating hash collisions for the vast
majority (96%) cases.

When the number of DPL treads is reduced to 6 under
HaRP*, improved and well-balanced results can be observed in

Figure 5. Results of hashing round-down prefixes into LuHa table.

(a)

(c)

HaRP*, with dilation factor = 1.5 and DPL of 6 treads

0%

20%

40%

60%

80%

100%

0 1 2 3 4 5 6 7 8 9 10 11 12 13

Number of Prefix Pairs in a Set

P
er

ce
nt

ag
e(

/T
ot

al
 S

et
s)

FW1

ACL1

IPC1

FW-10K

ACL-10K

IPC-10K

(d)

HaRP1, with dilation factor = 2 and DPL of 8 treads

0%

20%

40%

60%

80%

100%

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Number of Prefix Pairs in a Set

P
er

ce
nt

ag
e(

/T
ot

al
 S

et
s)

FW1

ACL1

IPC1

FW-10K

ACL-10K

IPC-10K

(b)

HaRP*, with dilation factor = 1.5 and DPL of 4 treads

0%

20%

40%

60%

80%

100%

0 1 2 3 4 5 6 7 8 9 10 11 12 13

Number of Prefix Pairs in a Set

P
er

ce
nt

ag
e(

/T
ot

al
 S

et
s)

FW1

ACL1

IPC1

FW-10K

ACL-10K

IPC-10K

HaRP*, with dilation factor = 2 and DPL of 6 treads

0%

20%

40%

60%

80%

100%

0 1 2 3 4 5 6 7 8 9 1

Number of Prefix Pairs in a Set

P
er

ce
nt

ag
e(

/T
ot

al
 S

et
s)

0

FW1

ACL1

IPC1

FW-10K

ACL-10K

IPC-10K

Figure 5(b), where ρ equal 2. All datasets now experience less
than 1% overflowing sets, except for ACL1 and IPC1 (which
have some 4% and 8% overflows, respectively). Noticeably,
even the most punishing case of IPC1 encountered in Figure
5(a) is reassured. These desirable results hold true when the
LuHa table size is reduced by 25% and DPL contains fewer
thread, as shown in Figures 5(c) and 5(d). Although a few
congested sets emerge, they are still manageable. With 6 treads
in DPL, fewer congested sets, albeit marginal, occur, as
demonstrated in Figure 5(c), than with 4 threads depicted in
Figure 5(d). This is expected, since the hash values are
calculated over round-down prefixes, and a less number of
treads leads to wider strides between consecutive treads, likely
to make more prefixes identical in hash calculation after being
rounded down. Furthermore, fewer treads in DPL implies a
smaller number of LuHa table candidate sets among which
prefix pairs can be stored. These results indicate that a single
lumped set-associative table for HaRP* is promising in
accommodating prefix pairs of filter rules in a classification
dataset effectively.

4.3 Search over ASI Table

The second stage of HaRP probes the ASI (application-
specific information) table, each of whose entry holds values of
all remaining fields, as illustrated in Figure 1. As LuHa table

search has eliminated all rules whose source and destination IP
prefixes do not match, pointing solely to those candidate ASI
entries for further examination. It is important to find out how
many candidate ASI entries exist for a given incoming packet,
as they govern search complexity involved in the second stage.

As described in Section 3.1, we adopt a very simple design
which puts rules with the same prefix pairs in an ASI chunk.
While a more optimized design with smaller storage and higher
lookup performance may be achieved by advanced techniques
and data structures, we study the effectiveness of HaRP by
using basic linear lists because of its simplicity.

The ASI lists are generally short, as shown in Figure 6,
where the results for 5K filter datasets were omitted again
for clarity. Over 95% of them have less than 5 ASI entries
each, and hence, linear search is adequate. The ACL1
dataset is an exception, experiencing a long ASI list with 36
entries. By scrutinizing the outcome, we found that this
case is caused by a large number of rules specified for a
specific host pair, leading to a poor case since those rules
for such host pairs fall in the same list. Furthermore, those
rules have the form of (0:max_destination_port, ×, tcp), that
is, a range is specified for the destination port, with the
source port being wild carded and the protocol being TCP.
Importantly, the destination port range (0, dpi) for Rule i is a
sub-range of (0, dpi+1) for Rule i+1. This is believed to

represent a situation where a number of applications at the
target host rein accesses from a designated host.
Nevertheless, fetching all ASI entries within one chunk at a
time (achievable by placing them in the same word line)
helps to address long ASI lists, if present (since one ASI
chunk may easily accommodate 8 entries, each with 80 bits,
as stated in the next subsection).

Note that the ASI distribution is orthogonal to the
selection of DPL and to the LuHa table size. Filter rules are
put in the same ASI list only if they have the same prefix
pair combination.

4.4 Storage Requirements
Table 2 shows memory storage measured for the rule

datasets. Each LuHa entry is 12-byte long, comprising two
32b IP address prefixes, two 5b prefix length indicators, a
16b pointer to the ASI table, and a 6b integer indicating the
length of its associated linked list. Each ASI entry needs 10
bytes to keep the port ranges and the protocol type, plus two
bytes for the rule number (i.e., the priority).

Table 2. Memory size

Total Storage (in KB, or

otherwise MB as specified)
Per Rule Storage(Byte, or
otherwise KB as specified)

 HaRP Tuple
Space BV Hyper-

Cuts HaRP Tuple
Space BV Hyper

-Cuts

FW1 4.64 22.72 10.50 10.19 17.66 86.49 40 36.79

ACL1 13.79 44.19 52.14 20.24 18.78 60.18 71 25.56

IPC1 29.17 56.26 92.33 91.19 19.27 37.17 61 58.25

FW-5K 101.0 629.5 3.07M 4.10M 22.23 138.5 691 922.3

ACL-5K 76.54 157.7 1.08M 136.8 17.75 36.57 257 29.73

IPC-5K 90.56 199.4 1.52M 332.6 20.79 45.79 358 74.34

FW-10K 217.3 1.68M 14.05M 25.05M 23.9 189.2 1.54K 2.75K

ACL-10K 192.5 403.4 7.31M 279.4 20.52 43.02 798 27.79

IPC-10K 187.5 449.8 6.79M 649.5 21.24 50.97 788 71.60

As listed in Table 2, HaRP enjoys clear superiority

when compared with its previous counterparts, whose
implemented source codes were available publicly [29] and

employed to gather their respective results included here.
HaRP dramatically reduces memory storage needed and
demonstrates consistent levels of storage requirement across
all datasets examined. Previous techniques, especially those
using decision-tree- or trie-based algorithms, exhibit rather
unpredictable outcomes because the size of a trie largely
depends on if datasets have comparable prefixes to enable
trie contraction; otherwise, a trie can grow quickly toward
full expansion. Among prior techniques, tuple space search
(TSS) [24] and HyperCuts [20] show better results,
although they still require more memory than HaRP. Those
listed outcomes generally indicate what can be best
achieved by the cited techniques. For TSS, as an instance,
Tuple Pruning is implemented, but not pre-computed
markers which increase storage requirement (see Section
2.2 and Figure 4 for details). For HyperCuts, its refinement
options are all turned on, including rule overlapping and
rule pushing for the most optimization results [20].

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15+
Num. of ASI Entries per List

Pe
rc

en
ta

ge
(/T

ot
al

 A
SI

 e
nt

rie
s)

FW1

ACL1

IPC1

FW-10K

ACL-10K

IPC-10K

Figure 6. Length distribution of ASI link lists.

The results of memory efficiency, defined as the ratio
between the total storage of constituent data structures (which
include the provisioned but not occupied entries for the LuHa
table in HaRP) and the minimal storage required to keep all
filter rules (as in a linear array of rules), for various algorithms
are listed in Table 3.

Table 3. Memory efficiency

HaRP
(ρ = 2)

HaRP
(ρ = 1.5)

Tuple
Space BV Hyper-

Cuts
FW1 1.62 1.35 3.60 1.67 1.93

ACL1 1.58 1.31 2.51 2.96 1.38
IPC1 1.58 1.31 1.55 2.54 3.01

FW-5K 1.59 1.32 5.77 28.83 46.21
ACL-5K 1.58 1.31 1.52 10.69 1.59
IPC-5K 1.58 1.31 1.91 14.89 3.82
FW-10K 1.58 1.31 7.88 65.93 141.0
ACL-10K 1.58 1.31 1.79 33.26 1.49
IPC-10K 1.59 1.37 2.12 32.83 3.68

 There are a number of interesting findings. First of all,

HaRP consistently delivers greater efficiency than all other
algorithms. When the LuHa table is dilated by a factor ρ = 2, all
memory data structures allocated are no more than 50% of the
amount required to keep the rules. If the LuHa table size is
reduced to ρ = 1.5, total storage drops by 25%. In general, a
smaller LuHa table yields lower performance because of more
hash collisions. However, the next section will show measured
results on multi-core systems under a small LuHa table (with ρ
= 1.5) and small DPL to deliver satisfactory performance
comparable to that under larger tables.

 Contrary to HaRP enjoying consistent efficiency always, all
other methods exhibit unsteady results. When the number of
filter rules is small, those methods may achieve reasonable
memory efficiency. As the dataset size grows, their efficiency
results vary dramatically. For HyperCuts [20] (which uses a
multi-way branch trie), its size largely depends on if datasets

have comparable prefixes that enable trie contraction;
otherwise, the trie can grow exponentially toward full
expansion. A decision tree-based method suffers from the fact
that its number of kept rules may blow up quickly under a filter
dataset with plentiful wild-carded rules. The less specific filter
rules are, the lower memory efficiency it becomes, because a
wild-carded rule holds true for all children at a node irrespective
of the number of branches (cuts) made therein. (We have seen
consistent trends for large datasets comprising 20K and 30K
rules generated using the tool included in the ClassBench [26].)
As analyzed in Section 3.1 and shown in Figure 2, the FW
applications have over 60% wild-carded IP addresses (versus
some 0.1% to 8% for ACL and IPC), yielding the worst
memory efficiency consistently in Table 3. To a large degree,
TSS [24] and BV [13] also leverage tries to narrow the search
scope and hence are subject to the same problem. Furthermore,
TSS employs one hash table per tuple in the space, likely to
bloat the memory size because of underutilized hash tables. For
BV, the n-bit vector stored at each leaf node of a trie is the main
culprit for being memory guzzler.

Section 5.2 will demonstrate the measured performance
results of HaRP, revealing that it not only achieves the best
memory efficiency among all known methods but also
classifies packet at four times faster than HyperCuts, and an
order of magnitude higher than TSS and BV, under our
multi-core evaluation platform.

5 Scalability and Lookup Performance on Multi-Cores
As each packet can be handled independently, packet

classification suits a multi-core system well [6]. Given a multi-
core processor with np cores, a simple implementation may
assign a packet to any available core at a time so that np packets
can be handled in parallel by np cores.

In this section, we present and discuss performance and
scalability of HaRP in comparison with those of its counterparts
BV [13], TSS [24], and HyperCuts [20]. Two HaRP
configurations are considered: (1) basic HaRP with the LuHa
table under a dilation factor ρ = 2 and with 8 treads in DPL, and
(2) HaRP* with the LuHa table under ρ = 1.5 and with only 4
treads in DPL. By comparing results obtained for basic HaRP
and HaRP*, we can gain insight into how the LuHa table size
and the number of treads affect lookup performance.

For gathering measures of interest on our multi-core
platform, our HaRP code was made multithreaded for
execution. With those source codes for BV, TSS and HC
implementations taken from the public source [29], we closely
examined and polished them by removing unneeded data
structures and also replacing some poor code segments with in
order to get best performance levels of those referenced
techniques. All those program codes were also made
multithreaded to execute on the same multi-core platform, with
their results presented in next sections.

5.1 Data Footprint Size
Because search is performed on each hashed set sequentially

by a core, it is important to keep the footprint small so that the
working data structure can fit into its caches, preferably the L1
(level-one) cache dedicated to a core. According to Table 3,
HaRP requires the least amount of memory provisioned; Table
2 shows the actual data sizes to be much smaller. By our
measurement, the FW-10K dataset has the largest size of some
200 KB. As a result, it is quite possible to hold the entire data
structure in the L1 cache of a today’s core, even under large
dataset sizes. This advantage in containing the growth of its
data footprint size as the number of rules increases is unique to
HaRP (and not shared by any prior technique), rendering it
particularly suitable for multi-core implementation to attain high
performance.

0

200

400

600

800

1,000

1,200

1,400

1,600

FW1 ACL1 IPC1 FW-5K ACL-5K IPC-5K FW-10K ACL-
10K

IPC-10K

B
yt

es

Basic HaRP

HaRP*

Tuple Space

BV

HyperCuts

Figure 7. Average number of bytes fetched per lookup.

0

1,000

2,000

3,000

4,000

5,000

6,000

7,000

FW1 ACL1 IPC1 FW-5K ACL-5K IPC-5K FW-10K ACL-
10K

IPC-10K

B
yt

es

Basic HaRP

HaRP*

Tuple Space

BV

HyperCuts

Figure 8. Worst case number of bytes accessed.

The behavior of HaRP driven by the traces provided with
filter datasets [29] was evaluated to obtain the first order of
measurement on the data footprint for lookups. Figure 7
depicts the mean number of bytes fetched per packet lookup, a
conventionally adopted metric for comparing classification
methods [20]. In general, HaRP enjoys lower average footprint
per lookup, except when it is compared to BV under small filter
datasets. Because HaRP always probes 2m LuHa sets
(irrespective of the dataset size), it could incur more overhead
than other techniques which use guided searches. However,
when m is kept small and as the dataset size rises, our HaRP
starts to prevail. Most importantly, as demonstrated in Figure 8,
the deterministic procedure to probe 2m LuHa sets under m
DPL treads yields more stable worst-case results across various
rule datasets (which might possess different characteristics).

In the case of TSS, the data footprint is proportional to the

num

Table 4. Mean number of accessed tuples per lookup (TSS)

ber of hash probes performed for a packet. In the firewall
(FW) applications, TSS fetches 8 to 10 times more tuples (i.e.,
hash table accesses) than ACL and IPC applications, as depicted
in the following table. As a result, the mean and the worst-case
data footprints for FW are all far larger than those for ACL and
IPC. In the next subsection, FW will be observed to deliver
much lower classification rates due to its excessive hash probes.

FW1 ACL1 IPC1 FW-5K ACL- IPC-5K FW- ACL- IPC-
5K 10K 10K 10K

72.95 6.30 11.45 68.2 1 0.68 9.24 67.76 6.73 8.69

For HyperCuts, the results also fluctuate, depending on the

dept

en it needs to check
ever

Table 5. Search performance (in terms of mean number

h of the decision tree and the number of rules that are
pushed up from the leaves and stored at the intermediate nodes.
Pushing common rule subsets upward, the trie structure is an
important technique for saving storage in HC [20]. The idea is
to keep a common set of rules at the parent node if the rules
hold true for all of its child nodes. In this way, rules can be
associated with non-leaf nodes to save storage by avoiding
replicas at the leaves. Adversely, this optimization heuristic
requires inspection of rules kept at the non-leaf nodes while
traversing the trie during lookups. Hence, it can lead to a large
data footprint, as shown in Figure 7.

For BV, the worst case happens wh
y single bit of the n-bit vector obtained by matching each

individual field (for n rules). As a result, the worst-case number
of BV grows consistently with the number of rules, and it is also
the biggest worst-case footprint among all techniques examined.

of entries) per lookup under basic HaRP and HaRP*

LuHa Search ASI Search
ρ = 2, H HaRP* ρ = 2, H , HaRP*aRP ρ = 1.5, aRP ρ = 1.5
Mean number of prefix pair Mean number of entries

C
hecked

M
a

M
atched

C
hecked

tched

C
hecked

C
hecked

FW1 1 1 1 2 214.32 .28 0.42 .20 .22 .20
ACL1 25.67 1.52 21.81 1.53 1.85 1.88
IPC1 39.47 2.03 34.50 1.98 1.73 1.73

F W-5K 16.69 1.01 11.71 1.01 1.20 1.20
ACL-5K 18.31 1.17 12.88 1.22 3.38 3.25
IPC-5K 21.13 1.39 19.03 1.58 1.66 1.74
FW-10K 19.37 1.00 14.76 1.01 1.00 1.00

ACL-10K 17.57 1.14 13.53 1.13 1.64 1.65
IPC-10K 21.64 1.36 17.94 1.53 1.64 1.69

As can be observed in Figures 7 and 8, HaRPP

* often
exhibits smaller footprints than basic HaRP. Although the
LuHa table under HaRP* (with ρ = 1.5) is 25% smaller than that
under basic HaRP (with ρ = 2) and consequently the former has

a lot more well populated hash sets (see Figure 5(d)) than the
latter (see Figure 5(a)), the use of 4 DPL treads in HaRPP

* saves
8 hash probes per classification lookup, in comparison to basic
HaRP (namely, 8 probes to more occupied sets versus 16 probes
to less occupied sets). The mean numbers of matched entries
under two HaRP configurations differ only a little, as depicted
in Table 5, where the first and the third result columns list the
average numbers of prefix pairs inspected per packet
classification under basic HaRP and HaRP*

P

easured execution time
resu

, respectively.
Clearly, HaRP* touches and inspects fewer prefix pairs than
basic HaRP, due to fewer hash probes. The second and the
fourth column contain the average numbers of prefix pairs
matched. On average, less than two prefix pairs match in the
LuHa table per classification lookup, signifying that the two-
stage lookup procedure of HaRP is effective. Finally, the last
two columns list the mean numbers of ASI tuples inspected
with respect to each matched prefix pair. The mean numbers
are small, suggesting that linear search as being performed in
this work may suffice. Obviously, a more sophisticated scheme
(such as a trie) could be employed, if ASI lists are long and
sequential search becomes inefficient.

The next subsection presents m
lts when basic HaRP and HaRP* are executed on our multi-

core platform, uncovered that HaRPP

5.2 Measured Performance on BCM-1480 MultiCore SoC
ection

migh

P, BV, TSS, and HC (HyperCuts) is
mea

* outperforms its basic
counterpart, because it incurs few hashing probes and accesses
to more populated sets for better caching behavior.

While data footprint results presented in the last subs
t reveal relative performance of different classification

techniques (given the memory system is generally deemed as
the bottleneck), computation steps or the mechanisms involved
in dealing with the data structures are equally important and
have to be taken into consideration. To arrive at more accurate
evaluation, we executed all classification programs on a
platform comprising a Broadcom’s BCM-1480 4-core SoC
[18]. BCM 1480 has four 700MHz SB-1™ MIPS cores [12],
with each SB-1™ core a four-way in-order issue, superscalar
design with separate 32K four-way set-associative instruction
and data caches. The non-blocking data cache supports 8
outstanding misses. The cores are connected by a high-speed
ZBbus and a unified 1MB, L2 cache keeps the active data
structures to back up the smaller L1 caches. The memory
system supports at most two x64 400MHz DDR channels, but
our evaluation platform is equipped with only one channel
clocked at 280MHz, giving rise to theoretical memory
bandwidth of 35 Gbps.

Performance for HaR
sured. TSS generally holds its promise on a reduced

number of hash probes it requires. In this implementation, two
tries (one for source IP and another for destination IP) were
constructed. During lookups, LPM (longest prefix matching)
to the two tries produced two lists of candidate tuples, each
realized by one hash table. Corresponding hash tables in the

3.7 5.0
3.2 3.9 5.1

4.5
3.9 4.3

4.0

2.4 3.4
2.5

2.4 3.6
3.3

2.4 3.0
2.9

0
2
4
6
8
10
12
14
16
18
20
22

R
el

at
iv

e
Sc

al
e

to
 H

yp
er

C
ut

s(
1)

FW
1

A
C

L1

IP
C

1
FW

1-
5K

A
C

L1
-5

K

IP
C

1-
5K

FW
1-

10
K

A
C

L1
-1

0K

IP
C

1-
10

K

B
V

(1
)

B
V

(2
)

B
V

(4
)

H
yp

er
C

ut
s(

1)

Tu
pl

e(
1)

H
aR

P
(1

)

H
aR

P
*(

1)

H
yp

er
C

ut
s(

2)

Tu
pl

e(
2)

H
aR

P
(2

)

H
aR

P
*(

2)

H
yp

er
C

ut
s(

4)

Tu
pl

e(
4)

H
aR

P
(4

)

H
aR

P
*(

4)

BV(1) BV(2) BV(4)
HyperCuts(1) Tuple(1) HaRP(1)
HaRP*(1) HyperCuts(2) Tuple(2)
HaRP(2) HaRP*(2) HyperCuts(4)
Tuple(4) HaRP(4) HaRP*(4)

Figure 9. Measured throughput results on Broadcom BCM-1480 4-core SoC (in relative scale).

intersection of the two lists (namely, intersected tuples) are then
probed. All executed programs were made multithreaded such
that up to 4 threads could be launched to take advantage of the 4
SB-1TM cores. Millions of packets were generated from the
traces packaged together with the rule datasets to measure the
real elapsed times via the BCM-1480 ZBus counter, which ticks
at every system clock.

Results depicted in Figure 9 are all relatively scaled to one
thread HyperCuts performance, which is shown as a consistent
scal

2.4 t

stemming from the fact it employs
DPL

e of one across the graph for clear and system configuration-
independent comparison. Labels on the x-axis of Figure 9
denote different techniques (i.e., BV, HyperCuts, TSS, and
HaRP) executed on varying numbers of BCM-1480 cores (i.e.,
1, 2, and 4). For example, BV(2) (or Tuple(4)) refers to BV (or
TSS) run on 2 (or 4) cores. When the number of threads rises
from 1 to 2 and then 4, HC shows a nearly linear scalability (in
terms of raw classification rates) with respect to the number of
cores. This scalability trend indeed exists for all techniques
because packet classification is inherently parallel, as expected.

Overall, HaRP demonstrates the highest throughput among
all techniques. On a per core basis, HaRP consistently delivers

o 3.5 times improvement over HC under the nine filter
datasets. When compared with TSS, basic HaRP performs 2 to
3 times better than TSS under ACL and IPC filter datasets, and
8 times under the firewall applications (FWs). This is because
HaRP requires fewer hash probes than TSS under firewall
datasets. Our HaRP always performs 2m lookups, equal to 16
for m = 8. Contrary to HaRP, TSS performs as many as four
times more hash probes under Firewall (see Table 4). For ACL
and IPC datasets, TSS may require slightly fewer hash table
lookups, but that advantage is more than negated by its two
LPM search passes over the tries, with respect to the source and
the destination IP prefixes. Furthermore, the smaller data
footprint enjoyed by HaRP (demonstrated in Figure 7) leads to
better cache performance.

Relative performance exhibited by HaRP* is even greater
than that by basic HaRP,

 with 4 treads, as opposed to 8 treads for HaRP. This
brings the number of hash probes per lookup from 16 down to
8, incurring less hashing overhead. Most importantly, HaRPP

* is
expected to be more caching-friendly, because accessing prefix
pairs located in 8 sets should enjoy better caching locality than
prefix pairs spread across 16 sets. Even though HaRP*

P uses a
LuHa table which is 25% smaller than that of HaRP, HaRPP

it sta

ent
filter

m that TSS can outperform HC in such a wide
ma

*
outperforms HC (or TSS) by 4 to 5 times (or 3 to 10 times), on
an average, under the nine datasets, as demonstrated in Figure 9.

When compared to HC, BV shows poor performance with
O(10) degradation, especially for large filter datasets. Because

rts with five LPM search processes across separate tries for
individual header fields to produce a list of candidate rules in
order to get a 5-field cross product, BV is inefficient for
software implementation run on a multi-core platform, since its
processor caches are expected to be trashed due to the large
footprint incurred, as revealed in Figures 7 and 8. Thus, BV is
better suitable for custom hardware with parallelism supported
by high memory bandwidth, suffering from poor scalability.

Table 4 lists the average number of tuples (i.e., hash tables)
fetched per packet lookup under TSS, with respect to differ

 datasets examined. Hash probes for firewall applications
(FWs) are far more than those for ACL and IPC datasets. This
is consistent with the results of Figures 7 and 8, where FWs
exhibit large footprints. Under FWs, TSS delivers 50% to 70%
less performance than HC on a per-core basis. However, TSS
outperforms HC under ACL and IPC datasets by as much as
nearly 100%.

 According to the average footprint results given in Figure 7,
it does not see

rgin. For ACL-5K and ACL-10K datasets, HC reads
roughly the same amount (but no more than 10%) of data bytes
as TSS. However, TSS delivers almost 100% higher

throughputs per core. Under IPC-5K and IPC-10K, TSS
fetches about 50% less data than HC and shows 47% higher
throughput. It confirms that the data footprint can indeed give
first-order estimation on how well a technique could perform,
but the code path during execution is nevertheless critical. By
inspecting the disassembled HC code, we found that the code
path for HC could be long. For example, at each step
traversing the decision tree, the number of bits to be extracted
from a field needs to be determined, and next the extracted bits
are used to calculate the location of the next child in the decision
tree. In brief, the total number of splits (i.e., children) of a node
is specified by NC = Πi nc(i), where nc(i) is the number of cuts
performed on the ith header field. During search, log2(nc(i)) bits
are extracted from the appropriate positions in the ith field;
assuming the decimal value represented by the extracted bits is
vi, the number of child positions in the linear array covering the

NC space is then expressed by D
D

ij

D

i
i vjncv +Π×∑

+=

−

=
)(

1

1

1
 for D

dimensions. These operations seem hey can
take hundreds of cycles to com ificant
performance loss, as observed above.

 simple, but in fact, t
plete, causing a sign

6 Concluding Remarks
Packet classification is

functionality and services, b
essential for most network system
ut it is complex since it involves

comparing multiple fields in a packet header against entries in
the filter dataset to decide the proper rule to apply for handling
the packet [9]. This article has considered a rapid packet
classification mechanism realized by hashing round-down
prefixes (HaRP) able to not only exhibit high scalability in
terms of both the classification time and the SRAM size
involved, but also effectively handle incremental updates to the
filter datasets. Based on a single set-associative LuHa hash
table (obtained by lumping a set of hash table units together) to
support two-staged search, HaRP promises to enjoy better
classification performance than its known software-oriented
counterpart, because the LuHa table narrows the search scope
effectively based on the source and the destination IP addresses
of an arrival packet during the first stage, leading to fast search
in the second stage. With its required SRAM size lowered
considerably, HaRP makes it possible to hold entire search data
structures in the local cache of each core within a contemporary
processor, further elevating its classification performance.

The LuHa table admits each filter rule in a set with lightest
occupancy among all those indexed by hash(round-down sip)
and hash(round-down dip), under HaRPP

has

 HaRP , as we have
witn

 and M. Mitzenmacher, “Using Multiple Hash
o Improve IP Lookups,” Proceedings of 20th Annual

[2]
k Processors and

[3]
ernational

[4]
ings of 12

[5]
 Proc. of IEEE Int’l Conf. on

[6]
 ACM

*. This lowers
substantially the likelihood of set overflow, which occurs only
when all indexed sets are full, attaining high SRAM storage
utilization. It also leads to great scalability, even for small LuHa
table set-associativity (of 4), as long as the table is dilated by a
small factor (say, ρ = 1.5 or 2). Our evaluation results have
shown that HaRP* with the set associative degree of 4, generally
experiences very rare set overflow instances (i.e., no more than

1% of those sets in the LuHa table with ρ = 2 under all studied
filter datasets other than ACL1 and IPC1, if DPL has 6 treads).

Empirical assessment of HaRP has been conducted on our
platform comprising a Broadcom’s BCM-1480 SoC [18], which

four 700MHz SB-1TM MIPS cores [12]. A simple hashing
function was employed for our HaRP implementation.
Extensive measured results demonstrate that HaRP*
outperforms HC [20] (or TSS [24]) by 4 to 5 times (or 3 to 10
times), on an average, under the nine databases examined, when
its LuHa table is with ρ = 1.5 and there are 4 DPL treads.
Besides its efficient support for incremental rule updates, our
proposed HaRP also enjoys far better classification performance
than previous software-based techniques.

Note that theoretically pathological cases may occur
despite encouraging pragmatic results by *

essed in this study. For example, a large number of (hosts
on the same subnet with) prefixes P|w can differ only in a few
bits. Hence, those prefixes can be hashed into the same set after
being rounded down, say P|w to P|li, for li ≤ w < li+1, under
HaRP*. There are possible ways to deal with such cases and to
avoid overwhelming the indexed set. A possible means is to
use one and only one entry to keep the round-down prefix P|li,
as opposed to holding all P|w’s in individual entries following
the current design. Subsequently, the (w - li) round-down bits
can form a secondary indexing structure to provide the
differentiation (among rules specific to each host) and/or the
round-down bits can be mingled with the remaining fields of the
filter rules. Thus, each stage narrows the range of search by
small and manageable structures. These possible options will
be explored in the future.

References
[1] A. Broder

Functions t
Joint Conf. of IEEE Computer and Communications Societies
(INFOCOM 2001), pp. 1454–1463, Apr. 2001.
F. Chang et al., “Efficient Packet Classification with Digest
Caches,” Proceedings of Workshop on Networ
Applications (NP-3, in conjunction with 10th Int’l Conference on
High-Performance Computer Architecture), Feb. 2004.
W. T. Chen, S. B. Shih, and J. L. Chiang, “A Two-Stage Packet
Classification Algorithm,” Proceedings of 17th Int
Conference on Advanced Information Networking and
Applications (AINA ’03), pp. 762-767, Mar. 2003.
Y. H. Cho and W. H. Magione-Smith, “Deep Packet Filter with
Dedicated Logic and Read Only Memories,” Proceed th

IEEE Symposium on Field-Programmable Custom Computing
Machines, pp. 125-134, Apr. 2004.
Y.-T. Chen and S.-S. Lee, “An Efficient Packet Classification
Algorithm for Network Processors,”
Communications (ICC 2003), pp. 1596-1600, May 2003.
H. Cheng et al., “Scalable Packet Classification Using Interpreting
a Cross-Platform Multi-Core Solution,” Proceedings 13th

SIGPLAN Symposium on Principles and Practice of Parallel

Programming (PPoPP ’08), pp. 33-42, Feb. 2008.
S. Dharmapurikar et al., “Fast Packet Classification Using Bloom
Filters,” Proc. ACM/IEEE Symp. Architectures fo

[7]
r Networking

[8]

[9]
Conference of Special

[10]
ings,” IEEE Micro, vol. 20, pp. 34-41,

[11]
on Hardware Accelerator,” Proceedings of IEEE

[12]
,” Proceedings of IEEE Symp.

[13]
l Range

[14]
Advanced Packet Classification with Ternary

[15]
earch,” Computer Networks, vol. 50, pp.

[16]
urnal on Selected Areas in

[17]
E Conf.

[18]

and Communications Systems (ANCS ’06), pp. 61-70, Dec. 2006.
Q. Dong et al., “Wire Speed Packet Classification without
TCAMs: A Few More Registers (and a Bit of Logic) Are
Enough,” Proceedings of ACM International Conference on
Measurement and Modeling of Computer Systems (SIGMETRICS
’07), pp. 253-264, June 2007.
P. Gupta and N. McKeown, “Packet Classification on Multiple
Fields,” Proceedings of ACM Annual
Interest Group on Data Communication (SIGCOMM ’99), pp.
147-160, Aug./Sept. 1999.
P. Gupta and N. McKeown, “Classifying Packets with
Hierarchical Intelligent Cutt
Jan. 2000.
A. Kennedy, X. Wang, and B. Liu, “Energy Efficient Packet
Classificati
International Symposium on Parallel and Distributed Processing
(IPDPS 2008), pp. 1-8, Apr. 2008.
D. Kruckemyer, “The SB-1TM Core: A High Performance, Low
Power MIPSTM 64 Implementation
on High Performance Chips (Hot Chips 12), Aug. 2000.
T. V. Lakshman and D. Stiliadis, “High-Speed Policy-Based
Packet Forwarding Using Efficient Multi-Dimensiona
Matching,” Proc. of ACM Annual Conference of Special Interest
Group on Data Communication (SIGCOMM ’98), pp. 191-202,
Aug./Sept. 1998.
K. Lakshminarayanan, A. Rangarajan, and S. Venkatachary,
“Algorithms for
CAMs,” Proceedings of ACM Annual Conference of Special
Interest Group on Data Communication (SIGCOMM 2005), pp.
193-204, Aug. 2005.
F.-Y. Lee and S. Shieh, “Packet Classification Using Diagonal-
Based Tuple Space S
1406-1423, 2006.
J. van Lunteren and T. Engbersen, “Fast and Scalable Packet
Classification,” IEEE Jo
Communications, vol. 21, no. 4, pp. 560-571, May 2003.
F. Pong and N.-F. Tzeng, “Storage-Efficient Architecture for
Routing Tables via Prefix Transformation,” Proc. 32nd IEE
on Local Computer Networks (LCN 2007), pp. 55-62, Oct. 2007.
S. Santhanam et al., “A 1GHz Power Efficient Single Chip
Multiprocessor System for Broadband Networking Applications,”
Proc. of 15th Symp. on VLSI Circuits, June 2001, pp. 107-110.

[19] D. Shah and P. Gupta, “Fast Incremental Updates on Ternary-
CAMs for Routing Lookups and Packet Classification,” Proc. of
8th Annual IEEE Symposium on High-Performance Interconnects
(Hot Interconnects 8), pp. 145-153, Aug. 2000.

[20] S. Singh et al., “Packet Classification using Multidimensional
Cutting,” Proceedings of ACM Annual Conference of Special
Interest Group on Data Communication (SIGCOMM 2003), pp.
213-114, Aug. 2003.

[21] H. Song and J. W. Lockwood, “Efficient Packet Classification for
Network Intrusion Detection Using FPGA,” Proceedings of
ACM/SIGDA 13th International Symposium on Field
Programmable Gate Arrays (FPGA ’05), pp. 238-245, Feb. 2005.

[22] E. Spitznagel, D. Taylor, and J. Turner, “Packet Classification
Using Extended TCAMs,” Proceedings of 11th IEEE Int’l Conf.
on Network Protocols (ICNP ’03), pp. 120-131, Nov. 2003.

[23] V. Srinivasan et al., “Fast and Scalable Layer Four Switching,”
Proc. of ACM Annual Conference of Special Interest Group on
Data Communication (SIGCOMM ’98), pp. 191-202, Sept. 1998.

[24] V. Srinivasan, S. Suri, and G. Varghese, “Packet Classification
Using Tuple Space Search,” Proceedings of ACM Annual
Conference of Special Interest Group on Data Communication
(SIGCOMM ’99), pp. 135–146, Aug./Sept. 1999.

[25] D. E. Taylor, “Survey and Taxonomy of Packet Classification
Techniques,” ACM Computing Surveys, vol. 37, no. 3, pp. 238-
275, Sept. 2005.

[26] D. E. Taylor and J. S. Turner, “ClassBench: A packet
Classification Benchmark,” Proc. 24th IEEE Int’l Conference on
Computer Communications (INFOCOM 2005), March 2005.

[27] G. Wang and N.-F. Tzeng, “TCAM-Based Forwarding engine
with Minimum Independent Prefix Set (MIPS) for Fast
Updating,” Proceedings of IEEE International Conference on
Communications (ICC ’06), June 2006.

[28] P. Warkhede, S. Suri, and G. Varghese, “Fast Packet
Classification for Two-Dimensional Conflict-Free Filters,” Proc.
20th Annual Joint Conf. of IEEE Computer and Communications
Societies (INFOCOM 2001), pp. 1434–1443, Apr. 2001.

[29] Washington University, “Evaluation of Packet Classification
Algorithms,” at http://www.arl.wustl.edu/~hs1/PClassEval.html.

[30] Z. Wu, M. Xie, and H. Wang, “Swift: A Fast Dynamic Packet
Filter,” Proceedings of 5th USENIX Networked Systems Design
and Implementation (NSDI ’08), pp. 279-292, Apr. 2008.

http://www.arl.wustl.edu/%7Ehs1/PClassEval.html

	1 Introduction
	2 Pertinent Work and Tuple Space Search
	2.1 Software-Oriented Classification
	2.2 Tuple Space Search (TSS)
	TSS Implementation Consideration

	Proposed HaRP Architecture
	3.1 Fundamentals and Pertinent Data Structures
	3.2 Installing Filter Rules
	3.3 Classification Lookups
	3.4 Lookup Time Complexity
	3.5 Handling Incremental Rule Updates and Additional Fields

	4 Evaluation and Results
	4.1 Filter Datasets
	4.2 Prefix Pair Distribution in LuHa Table
	4.3 Search over ASI Table
	4.4 Storage Requirements

	5 Scalability and Lookup Performance on Multi-Cores
	5.1 Data Footprint Size
	5.2 Measured Performance on BCM-1480 MultiCore SoC

	6 Concluding Remarks

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f00630068007700650072007400690067006500200044007200750063006b006500200061007500660020004400650073006b0074006f0070002d0044007200750063006b00650072006e00200075006e0064002000500072006f006f0066002d00470065007200e400740065006e002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f006200650020005000440046002000700065007200200075006e00610020007300740061006d007000610020006400690020007100750061006c0069007400e00020007300750020007300740061006d00700061006e0074006900200065002000700072006f006f0066006500720020006400650073006b0074006f0070002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200066006f00720020007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c00690074006500740020007000e500200062006f007200640073006b0072006900760065007200200065006c006c00650072002000700072006f006f006600650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure true
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

