GAN4

From Flapping Birds to Space Telescopes: The Modern Science of Origami

Robert J. Lang

GイNG Background

- Origami
- Traditional form

- Modern extension
- Most common version: One Sheet, No Cuts

GANA Evolution of origami

- Right: origami circa 1797.
- The traditional

June, 2008

GイNG Even earlier...

- Japanese newspaper from 1734: Crane, boat, table, "yakko-san"

GイNG Modern Origami

Reborn by Yoshizawa

A. Yoshizawa, Origami Dokuhon I

GANG What Changed?

- Origami was discovered by mathematicians.
- Or rather, mathematical principles
- 1950-2000...
- From about 100...
- ...to over 36,000! (see http://www.origamidatabase.com).

C!NイA The Technical Revolution

- The connection between art and science is made by mathematics.

Gイヘロム Origami Mathematics

－The mathematics underlying origami addresses three areas：
－Existence（what is possible）
－Complexity（how hard it is）
－Algorithms（how do you accomplish something）
－The scope of origami math include：
Plane Geometry
Trigonometry
Solid Geometry
Calculus and Differential Geometry
Linear Algebra
Graph Theory
Group Theory
Complexity／Computability
Computational Geometry

GイNへத Geometric Constructions

－What shapes and distances can be constructed entirely by folding？
－Analogous to＂compass－and－straightedge，＂but more general

GNAS The Delian Problems

- Trisect an angle
- Double the cube
- Square the circle
- All three are impossible with compass and unmarked straightedge, but:

Gイロ9 Hisashi Abe's Trisection

GANG
 Peter Messer's Cube Doubling

Binary Approximation for Distance

- Any distance can be approximated to $1 / N$ using $\log _{2} N$ folds taken from its binary expansion
- Example: $0.7813 \sim 25 / 32=.11001_{2}$

- The binary algorithm is a special answer to a general question:
- Starting with a blank square,
- for a given point or line,
- construct an folding sequence accurate to a specified error,
- defining every fold in the sequence in terms of preexisting points and lines.

GONG Building Blocks

- Points and Lines (creases)

GANG
 Points

A point (mark) can only be defined as the intersection of two lines. But a line (fold) can be made in many ways...

Usenix Conference, Boston, MA
June, 2008

GAN9 Lines

- For many years, it was thought that there were only six ways to define a fold.
- The six operations are called the Huzita "Axioms."

(O3) Given two lines 4 and I_{2}, we can fold line 1 onto l_{2}.

GイNA Huzita Axioms 2

GAN9

- In 2002, Koshiro Hatori discovered a seventh "axiom."
(O7) Given a points p and two lines l_{1} and l_{2}, we can make a fold perpendicular to I_{2} that places p_{1} onto line I_{1}.

- In 2006, it was observed that Jacques Justin had identified all 7 in 1989.
- It has since been proven that these seven are the only ways to define a single fold.

 Geometric Constructions

- One-fold-at-a-time origami can solve exactly:
- All quadratic equations with rational coefficients
- All cubic equations with rational coefficients
- Angle trisection (Abe, Justin)
- Doubling of the cube (Messer)
- Regular polygons for $N=2^{i} 3^{j}\left\{2^{\mathrm{k}} 3^{1}+1\right\}$ if last term is prime (Alperin, Geretschläger)
- All regular N -gons up to $\mathrm{N}=20$ except $\mathrm{N}=11$

5
 Simultaneous Creases

- If you allow forming two creases at one time, higher-order equations are possible.
- An angle quintisection!
- Quintisections are impossible with only Huzita (one-fold-at-atime) axioms.
- There are over 400 two-fold-at-a-time "axioms."

GイN参
 More simultaneous

－What about N －at－a－time folding？

CVNV谷 Crease Patterns

－The design of an origami figure is encoded in the crease pattern
－What constraints are there on such patterns？

GNMA
 Properties of Crease Patterns

- 2-colorability
- Every flat-foldable origami crease pattern can be colored so that no 2 adjacent facets are the same color with only 2 colors.

GイNA Mountain-Valley Counting

- Maekawa Condition:
- At any interior vertex, $M-V= \pm 2$

- Kawasaki Condition:
- Alternate angles around a vertex sum to a straight line
- Independently discovered by Kawasaki, Justin, and Huffman
- Generalized to 3D by Hull \& belcastro

END)

Layer Ordering

- A complete description of a folded form includes the layer ordering among overlapping facets ($\mathrm{M}-\mathrm{V}$ is not enough!)
- Four necessary conditions were enumerated by Jacques Justin
- Pictorially, these are the "legal" layer orderings between layers, folded creases, and unfolded (flat) creases

CFFCO

GイN9 Complexity

－Satisfying $M-V= \pm 2$ is＂easy＂
－Satisfying alternate angle sums is＂easy＂
－Satisfying layer order（M－V assignment）is＂hard＂．．．
－How hard？

GイヘA Pleats as logical signals

－Two parallel pleats must be opposite parity
－For a specified direction，there are 2 allowed crease assignments

GイNA
 Not-All-Equal

- A particular crease pattern enforces the condition "Not-All-Equal" on its incident pleats

- It is possible to create multiple such conditions, thereby encoding NAE logic problems as crease assignment problems

5
 Crease Assignment Complexity

- Marshall Bern and Barry Hayes showed in 1996 that any NAE-3SAT problem can be encoded as a crease assignment problem
- NAE-3-SAT is NP-complete!
- Ergo, "Origami is hard!"
-

But most problems of interest are polynomial (still hard, but solvable)

GイVAG P.S.

- Even if you have the complete crease assignment, simply determining a valid layer ordering is still NP-complete!

GイNA Flat-Foldability

- A crease pattern is "flat foldable" iff it satisfies:
- Maekawa Condition (M-V parity) at every interior vertex
- Kawasaki Condition (Angles) at every interior vertex
- Justin Conditions (Ordering) for all facets and creases

Within this description, there are many interesting and unsolved problems!

GANS But is it useful, or just fun?

- The mathematical progression:
- Flat-foldability rules (math)...
- lead to crease pattern matching rules (application)...
- and thus, the generation of beauty (art)...
- and even practical functional objects (\$ફइ)!

GイNG Textures

- Patterns of intersecting pleats can be integrated with other folds to create textures and visual interest

EオND The recipient form

Usenix Conference, Boston, MA
June, 2008

Rattlesnake

GイNA Flap Generation

- The most extensive and powerful origami tools deal with the generation of flaps in a desired configuration.
- Why is this useful?

GイNA育 Origami design

- The fundamental problem of origami design is: given a desired subject, how do you fold a square to produce a representation of the subject?

GイNロ今
 A four－step process

－The fundamental concept of design is the base
－The fundamental element of the base is the flap
－From a base，it is relatively straightforward to shape the flaps into the appendages of the subject．
－The hard step is：
－Given a tree（stick figure），how do you fold a Base with the same number，length，and distribution of flaps as the stick figure？

Usenix Conference，Boston，MA
June， 2008

END）
 How to make a flap

－To make a single flap，we pick a corner and make it narrower．
－The boundary of the flap divides the crease pattern into：
－Inside the flap
－Everything else
－＂Everything else＂is available to make other flaps

GイN

- What does the paper look like as we make a flap skinner and skinnier?
- A circle!

GUND

- Flaps can come from edges...
- ...and from the interior of the paper.

GNMA
 Circle Packing

- In the early 1990s, several of us realized that we could design origami bases by representing all of the flaps of the base by circles overlaid on a square.

Subject Hypothetica
Circle Packing Base
Usenix Conference, Boston, MA
June, 2008

GヘN5
 Creases

- The lines between the centers of touching circles are always creases.
- But there needs to be more. Fill in the polygons, but how?

Usenix Conference, Boston, MA
June, 2008

 Molecules

- Crease patterns that collapse a polygon so that its edges form a stick figure are called "bun-shi," or molecules (Meguro)
- Each polygon forms a piece of the overall stick figure (Divide and conquer).
- Different molecules are known from the origami literature.
- Triangles have only one possible molecule.

E(N)
 Quadrilateral molecules

- There are two possible trees and several different molecules for a quadrilateral.
- Beyond 4 sides, the possibilities grow rapidly.

GAN9 Circles and Rivers

- Pack circles, which represent all the body parts.
- Fill in with molecular crease patterns.
- Fold!

E(A)
 Circle-River Design

- The combination of circle-river packing and molecules allows an origami composer to construct bases of great complexity using nothing more than a pencil and paper.
- But what if the composer had more...
- Like a computer?

GNM音
 Formal Statement of the Solution

- The search for the largest possible base from a given square becomes a well-posed nonconvex nonlinear constrained optimization:
- Linear objective function
- Linear and quadratic constraints
- Nonconvex feasible region
- Solving this system of tens to hundreds of equations gives the same crease pattern as a circle-river packing:
optimize m subject to:
$m l_{i j}-\left[\left(u_{i, x}-u_{j, x}\right)^{2}+\left(u_{i, y}-u_{j, y}\right)^{2}\right]^{1 / 2} \leq 0$ for all i, j
$0 \leq u_{i, x} \leq 1,0 \leq u_{i, y} \leq 1$ for all i

Kis

Computer-Aided Origami Design

- 16 circles (flaps)
- 9 rivers of assorted lengths
- 120 possible paths
- 184 inequality constraints
- Considerations of symmetry add another 16 more equalities
- 200 equations total!
- Child's play for computers.
- I have written a computer program, "TreeMaker," which performs the optimization and construction.

Tarantula

Praying Mantis

Grizzly Bear

Tree Frog

Spindle Murex

- Algorithms are described in
- R. J. Lang, "A Computational Algorithm for Origami Design," 12th ACM Symposium on Computational Geometry, 1996
- R. J. Lang, Origami Design Secrets (A K Peters, 2003)
- Macintosh/Linux/Windows binaries and source available (free!) from
- http://www.langorigami.com/treemaker.htm

Gイヘ9
 Origami on Demand

- Tools for origami design allow one to create an origami version of "almost anything"
- Recent years have seen origami commissioned for graphics, advertisements, commercials

GUND

- TreeMaker (Lang) -- shapes with appendages
- Origamizer (Tachi) -- arbitrary surfaces
- ReferenceFinder (Lang) -- finds folding sequences
- Tess (Bateman) -- constructs origami tessellations
- Rigid Simulator (Tachi) -- flexible surface linkages
- Oripa (Jun Mitani) -- crease pattern folder
- ...and more!

GイND Geometric Origami

- Mathematical descriptions have permitted the construction of elaborate geometrical objects from single-sheet folding:
- Flat Tessellations (Resch, Palmer, Bateman, Verrill)

3-D faceted tessellations (Fujimoto, Huffman)
Curved surfaces (Huffman, Mosely)
...and more!

Egg17 Tessellation

GNNG

Ron Resch

- Computer scientist and artist Ron Resch designed (and patented) 2- and 3-D tessellations back in the 1960 s
- See US Patent 3,407,588

ENAS Applications in the Real World

- Mathematical origami has found many applications in solving real-world technological problems, in:
- Space exploration (telescopes, solar arrays, deployable antennas)
- Automotive (air bag design)
- Medicine (sterile wrappings, implants)
- Consumer electronics (fold-up devices)
- ...and more.
- Application in technology: origami rules don't matter
- ...but no-cut-folding can be driven by technological reasons!

GイNA James Webb Space Telescope

- Multiply segmented mirror folds into thirds

Figure 10. Telescope Deployment Sequence (Deployment steps 4 and 5)

CNAM The "Eyeglass" Telescope

- Under development at Lawrence Livermore National Laboratory
- 25,000 miles above the earth
- 100 meter diameter (a football field)
- Look up: see planets around distant stars
- Look down...

GイNA

- The 100-meter lens must fold up to 3 meters (shuttle bay)
- Lens must be made from ultra-thin sheets of glass with flexures along hinges
- What pattern to use?

GNNA

Analysis

- Analyzed several families of collapsing structures, including "flashers" and umbrella-liked patterns
- Initial modeling in Mathematica ${ }^{T M}$ solving NLCO that enforce isometry between folded and unfolded state, followed by
 3D modeling at LLNL

GイNCM Manufacturability

- "Umbrella" was selected based on manufacturability issues
- Non-origami issues drive applications of origami

CNM,
 5-meter prototype

- The 5-meter prototype folds up to about 1.5 meter diameter.

GイNG Solar Sail

- Japanese Aerospace Exploration Agency
- Mission flown in August 2004
- First deployment of a solar sail in space
- Pleated when furled, expands into sail

GイNG Solar Sail

http://www.isas.jaxa.jp/e/snews/2004/0809.shtml

Usenix Conference, Boston, MA
June, 2008

GANA

NASA Sail

- NASA, too, is developing unfolded and inflatable solar sails.

Video courtesy Dave Murphy, AEC-Able Engineering, developed under NASA contract NAS803043

Usenix Conference, Boston, MA
June, 2008

CANA

Paper Airplanes

- JAXA approved "paper airplane" from space studies
- Prototype has survived Mach 7 and $446^{\circ} \mathrm{F}$ temperature!
- Tracking?

GNMA Stents

- Origami Stent graft developed by Zhong You (Oxford University) and Kaori Kuribayashi

An origami stent made from stain-less steel. Its diameter expends from 12 mm to 23 mm .

GイN4
 Optics

- "Optigami" -- simulation of optical systems using origami reverse folds
- --Jon Myer, Hughes Research Laboratories, Applied Optics, 1969

- "Folded Cavity Laser" produces higher brightness than conventional broad-area semiconductor lasers

U.S. Patent $6,542,529$ by Mats Hagberg and Robert J. Lang

GイNA Airbag Algorithm

- The airbag-flattening algorithm was derived directly from the universal molecule algorithm used in insect design.
- More complex airbag shapes (nonconvex) can be flattened using derivatives of Erik Demaine's fold-and-cut algorithm.
- No one foresaw these technological applications.
- (Not uncommon in mathematics!)

GイNA
 Resources

- Further information may be found at http://www.langorigami.com, or email me at robert@langorigami.com

