
1

Usenix Conference, Boston, MA
June, 2008

From Flapping Birds to Space Telescopes:
The Modern Science of Origami

Robert J. Lang
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Background
• Origami
• Traditional form

• Modern extension
• Most common version: One Sheet, No Cuts
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Evolution of origami
• Right: origami

circa 1797.
• The traditional
“tsuru” (crane)
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Even earlier…
• Japanese newspaper from 1734: Crane, boat, table, “yakko-san”
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Modern Origami
Reborn by Yoshizawa

A. Yoshizawa, Origami Dokuhon I
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Origami Today

• “Black Forest Cuckoo Clock,”
designed in 1987

• One sheet, no cuts
• 216 steps

–  not including repeats
• Several hours to fold
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Ibex
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Klein Bottle
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What Changed?
• Origami was discovered by mathematicians.
• Or rather, mathematical principles
• 1950-2000…

– From about 100…
– …to over 36,000! (see http://www.origamidatabase.com).
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The Technical Revolution
• The connection between art and science is made by

mathematics.
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Origami Mathematics
• The mathematics underlying origami addresses three areas:

– Existence (what is possible)
– Complexity (how hard it is)
– Algorithms (how do you accomplish something)

• The scope of origami math  include:
Plane Geometry
Trigonometry
Solid Geometry
Calculus and Differential Geometry
Linear Algebra
Graph Theory
Group Theory
Complexity/Computability
Computational Geometry
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Geometric Constructions
• What shapes and distances can be constructed entirely by

folding?
• Analogous to “compass-and-straightedge,”  but more general
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The Delian Problems
• Trisect an angle
• Double the cube
• Square the circle
• All three are impossible with compass and unmarked

straightedge, but:
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Hisashi Abe’s Trisection
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1. Begin with the
desired angle (PBC
in this example)
marked within the
corner of a square.

2. Make a horizontal
fold anywhere across
the square, defining
line EF.

3. Fold line BC up to
line EF and unfold,
creating line GH.

4. Fold the bottom
left corner up so that
point E touches line
BP and the corner,
point B, touches line
GH.

5. With the corner
still up, fold all
layers through the
existing crease that
hits the edge at point
G and unfold.

6. Unfold corner B. 7. Fold along the
crease that runs to
point J, extending it
to point B. Fold the
bottom edge BC up
to line BJ and unfold.

8. The two creases
BJ and BK divide the
original angle PBC
into thirds.
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Peter Messer’s Cube Doubling
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4. Fold corner C to
lie on line AB while
point I lies on line
FG.

3. Fold the top edge
down along a
horizontal fold to
touch the crease
intersection and
unfold. Then fold the
bottom edge up to
touch this new crease
and unfold.

2. Make a crease
connecting points A
and C and another
connecting B and E.
Only make them
sharp where they
cross each other.

1. Make a small fold
halfway up the right
side of the paper.
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5. Point C divides edge
AB into two segments
whose proportions are 1
and the cube root of 2.
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Binary Approximation for Distance

• Any distance can be approximated to 1/N using log2N folds
taken from its binary expansion

• Example: 0.7813 ~ 25/32 = .110012

a

.11001
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Generalize Constructions
• The binary algorithm is a special answer to a general question:

• Starting with a blank square,
• for a given point or line,
• construct an folding sequence accurate to a specified error,
• defining every fold in the sequence  in terms of preexisting

points and lines.
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Building Blocks
• Points and Lines (creases)
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Points
A point (mark) can only be defined as the intersection of two lines.
But a line (fold) can be made in many ways…
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Lines
• For many years, it was thought that there were only six ways to

define a fold.
• The six operations are called the Huzita “Axioms.”
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Huzita Axioms 2
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Hatori’s Axiom
• In 2002, Koshiro Hatori discovered a seventh “axiom.”

• In 2006, it was observed that Jacques Justin had identified all 7
in 1989.

• It has since been proven that these seven are the only ways to
define a single fold.
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Geometric Constructions
• One-fold-at-a-time origami can solve exactly:

– All quadratic equations with rational coefficients
– All cubic equations with rational coefficients
– Angle trisection (Abe, Justin)
– Doubling of the cube (Messer)
– Regular polygons for N=2i3j{2k3l+1}  if last term is prime (Alperin,

Geretschläger)
• All regular N-gons up to N=20 except N=11
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Simultaneous Creases
• If you allow forming

two creases at one time,
higher-order equations
are possible.

• An angle quintisection!

• Quintisections are
impossible with only
Huzita (one-fold-at-a-
time) axioms.

• There are over 400 two-
fold-at-a-time “axioms.”
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More simultaneous
• What about N-at-a-time folding?
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Crease Patterns
• The design of an origami figure is encoded in the crease pattern
• What constraints are there on such patterns?
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Properties of Crease Patterns
• 2-colorability
• Every flat-foldable origami crease pattern can be colored so

that no 2 adjacent facets are the same color with only 2 colors.
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Mountain-Valley Counting
• Maekawa Condition:

– At any interior vertex, M – V = ±2
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Angles Around a Vertex
• Kawasaki Condition:

– Alternate angles around a vertex sum to a straight line
– Independently discovered by Kawasaki, Justin, and Huffman
– Generalized to 3D by Hull & belcastro
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Layer Ordering
• A complete description of a folded form includes the layer

ordering among overlapping facets (M-V is not enough!)
• Four necessary conditions were enumerated by Jacques Justin
• Pictorially, these are the “legal” layer orderings between layers,

folded creases, and unfolded (flat) creases
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Complexity
• Satisfying M-V=±2 is “easy”
• Satisfying alternate angle sums is “easy”
• Satisfying layer order (M-V assignment) is “hard”…

• How hard?
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Pleats as logical signals
• Two parallel pleats must be opposite parity
• For a specified direction, there are 2 allowed crease assignments

a

Valley on right = “true” Valley on left = “false”
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Not-All-Equal
• A particular crease pattern enforces the condition “Not-All-Equal” on

its incident pleats

• It is possible to create multiple such conditions, thereby encoding NAE
logic problems as crease assignment problems

a

?
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True
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True

Crease Pattern Crease PatternFolded Form
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Crease Assignment Complexity

• Marshall Bern and Barry Hayes showed in 1996 that any NAE-3-
SAT problem can be encoded as a crease assignment problem

• NAE-3-SAT is NP-complete!

• Ergo, “Origami is hard!”
•

But most problems of interest are polynomial (still hard, but
solvable)
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P.S.
– Even if you have the complete crease assignment, simply

determining a valid layer ordering is still NP-complete!
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Flat-Foldability
• A crease pattern is “flat foldable” iff it satisfies:

– Maekawa Condition (M-V parity) at every interior vertex
– Kawasaki Condition (Angles) at every interior vertex
– Justin Conditions (Ordering) for all facets and creases

Within this description, there are many interesting and unsolved
problems!
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But is it useful, or just fun?
• The mathematical progression:
• Flat-foldability rules (math)…
•  lead to crease pattern matching rules (application)…
•  and thus, the generation of beauty (art)…
• and even practical functional objects ($$$)!
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Textures
• Patterns of intersecting pleats can be integrated with other

folds to create textures and visual interest
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The recipient form
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(Scaled Koi)
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Western Pond Turtle
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Flag
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Rattlesnake
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Flap Generation
• The most extensive and powerful origami tools deal with the

generation of flaps in a desired configuration.

• Why is this useful?
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Origami design
• The fundamental problem of origami design is: given a desired

subject, how do you fold a square to produce a representation
of the subject?
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Stag Beetle
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A four-step process
• The fundamental concept of design is the base
• The fundamental element of the base is the flap

– From a base, it is relatively straightforward to shape the flaps into
the appendages of the subject.

• The hard step is:
– Given a tree (stick figure), how do you fold a Base with the same

number, length, and distribution of flaps as the stick figure?

a

Subject Tree ModelBase

easy Hard easy
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How to make a flap
• To make a single flap, we pick a corner and make it narrower.
• The boundary of the flap divides the crease pattern into:

– Inside the flap
– Everything else

• “Everything else” is available to make other flaps

a

L L
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Limiting process
• What does the paper look like as we make a flap skinner and

skinnier?
• A circle!

a

L L LL
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Other types of flap
• Flaps can come from edges…
• …and from the interior of the paper.

a

L L

a

L L
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Circle Packing
• In the early 1990s, several of us realized that we could design

origami bases by representing all of the flaps of the base by
circles overlaid on a square.

a

Subject Hypothetical
Base

Circle Packing
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Creases
• The lines between the centers of touching circles are always

creases.
• But there needs to be more. Fill in the polygons, but how?
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Molecules
• Crease patterns that collapse a polygon so that its edges form a

stick figure are called “bun-shi,” or molecules (Meguro)
• Each polygon forms a piece of the overall stick figure (Divide

and conquer).
• Different molecules are known from the origami literature.
• Triangles have only one possible molecule.
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the “rabbit ear” molecule
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Quadrilateral molecules
• There are two possible trees and several different molecules for a

quadrilateral.
• Beyond 4 sides, the possibilities grow rapidly.

a

“4-star” “sawhorse”

Husimi/Kawasaki Maekawa Lang
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Circles and Rivers
• Pack circles, which represent all the body parts.
• Fill in with molecular crease patterns.
• Fold!
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Circle-River Design
• The combination of circle-river packing and molecules allows an

origami composer to construct bases of great complexity using
nothing more than a pencil and paper.

• But what if the composer had more…
• Like a computer?
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Formal Statement of the Solution

• The search for the largest possible base from a given square
becomes a well-posed nonconvex nonlinear constrained
optimization:
– Linear objective function
– Linear and quadratic constraints
– Nonconvex feasible region

• Solving this system of tens to hundreds of equations gives the
same crease pattern as a circle-river packing:

aaa

optimize m subject to:

m lij − ui,x − uj ,x( )2
+ ui, y − uj , y( )2[ ]

1/2

≤ 0 for all i, j

0 ≤ ui, x ≤ 1, 0 ≤ ui, y ≤1 for all i

Usenix Conference, Boston, MA
June, 2008

Computer-Aided Origami Design

• 16 circles (flaps)
• 9 rivers of assorted lengths
• 120 possible paths
• 184 inequality constraints
• Considerations of symmetry add

another 16 more equalities
• 200 equations total!
• Child’s play for computers.
• I have written a computer

program, “TreeMaker,” which
performs the optimization and
construction.

a

body

tail

hind leg hind leg

foreleg foreleg

neck
head

ears

antlers (4 tines each side)
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The crease pattern
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(The folded figure)
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Roosevelt Elk
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Bull Moose
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Tarantula
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Dragonfly
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Praying Mantis
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Two Praying
Mantises
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Grizzly Bear
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Tree Frog
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Murex
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Spindle Murex
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12-Spined Shell
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Instrumentalists
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Organist
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TreeMaker
• Algorithms are described in

– R. J. Lang, “A Computational Algorithm for Origami Design,” 12th
ACM Symposium on Computational Geometry, 1996

– R. J. Lang, Origami Design Secrets (A K Peters, 2003)
• Macintosh/Linux/Windows binaries and source available (free!)

from
– http://www.langorigami.com/treemaker.htm
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Origami on Demand
• Tools for origami design allow one to create an origami version

of “almost anything”
• Recent years have seen origami commissioned for graphics,

advertisements, commercials
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Mitsubishi Endeavor
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Assembly
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Origami SoAware
• TreeMaker (Lang) -- shapes with appendages
• Origamizer (Tachi) -- arbitrary surfaces
• ReferenceFinder (Lang) -- finds folding sequences
• Tess (Bateman) -- constructs origami tessellations
• Rigid Simulator (Tachi) -- flexible surface linkages
• Oripa (Jun Mitani) -- crease pattern folder
• …and more!
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Tachi’s Teapot

The “Utah teapot” Computed crease pattern
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Geometric Origami
• Mathematical descriptions have permitted the construction of

elaborate geometrical objects from single-sheet folding:
– Flat Tessellations (Resch, Palmer, Bateman, Verrill)
3-D faceted tessellations (Fujimoto, Huffman)
Curved surfaces (Huffman, Mosely)
…and more!
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Spiral Tessellation
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Egg17 Tessellation
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Ron Resch
• Computer scientist and artist

Ron Resch designed (and
patented) 2- and 3-D
tessellations back in the 1960s

• See US Patent 3,407,588.
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Ron Resch
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Applications in the Real World
• Mathematical origami has found many applications in solving

real-world technological problems, in:
– Space exploration (telescopes, solar arrays, deployable antennas)
– Automotive (air bag design)
– Medicine (sterile wrappings, implants)
– Consumer electronics (fold-up devices)
– …and more.

• Application in technology: origami rules don’t matter
• …but no-cut-folding can be driven by technological reasons!
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Muira-Ori, by Koryo Miura
• First “origami in

space”
• Solar array, flew

in 1995
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James Webb Space Telescope
• Multiply segmented mirror folds into thirds
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JWST Stowage
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The “Eyeglass” Telescope
• Under development at

Lawrence Livermore
National Laboratory

• 25,000 miles above the
earth

• 100 meter diameter (a
football field)

• Look up: see planets around
distant stars

• Look down…
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The lens and the problem
• The 100-meter lens must

fold up to 3 meters
(shuttle bay)

• Lens must be made from
ultra-thin sheets of glass
with flexures along
hinges

• What pattern to use?
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Analysis
• Analyzed several families of

collapsing structures,
including “flashers” and
umbrella-liked patterns

• Initial modeling in
Mathematica™ solving NLCO
that enforce isometry
between folded and
unfolded state, followed by
3D modeling at LLNL
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Umbrella
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Manufacturability
• “Umbrella” was selected based on

manufacturability issues
• Non-origami issues drive

applications of origami
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Foldable 3.7 meter Eyeglass
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5-meter prototype
• The 5-meter

prototype folds up
to about 1.5 meter
diameter.
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Solar Sail
• Japanese Aerospace Exploration Agency
• Mission flown in August 2004
• First deployment of a solar sail in space
• Pleated when furled, expands into sail
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Solar Sail

http://www.isas.jaxa.jp/e/snews/2004/0809.shtml
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NASA Sail
• NASA, too, is

developing
unfolded and
inflatable solar
sails.

Video courtesy Dave Murphy, AEC-Able Engineering,
developed under NASA contract NAS803043
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Paper Airplanes
• JAXA approved “paper

airplane” from space studies
• Prototype has survived

Mach 7 and 446°F
temperature!

• Tracking?
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Stents

www.tulane.edu/~sbc2003/pdfdocs/0257.PDF

• Origami Stent graA developed by Zhong You (Oxford
University) and Kaori Kuribayashi
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Optics
• “Optigami” -- simulation of

optical systems using origami
reverse folds

• --Jon Myer, Hughes Research
Laboratories, Applied Optics,
1969
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Lasers
• “Folded Cavity Laser” produces higher brightness than

conventional broad-area semiconductor lasers

U.S. Patent 6,542,529 by Mats Hagberg and Robert J. Lang
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Airbags
• A mathematical

algorithm developed
for origami design
turned out to be the
proper algorithm for
simulating the flat-
folding of an airbag.

Animation courtesy EASi Enginering GmbH
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Airbag Algorithm
• The airbag-flattening algorithm was derived directly from the

universal molecule algorithm used in insect design.
• More complex airbag shapes (nonconvex) can be flattened

using derivatives of Erik Demaine’s fold-and-cut algorithm.
• No one foresaw these technological applications.
• (Not uncommon in mathematics!)
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Resources
• Further information may be found at

http://www.langorigami.com, or email me at
robert@langorigami.com


