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The Problem

• Need massive scalability

– PB’s of storage, millions of files, 1000’s of nodes

• Need to do this cost effectively

– Use commodity hardware

– Share resources among multiple projects

– Provide scale when needed

• Need reliable infrastructure

– Must be able to deal with failures – hardware, software, 
networking

• Failure is expected rather than exceptional

– Transparent to applications

• very expensive to build reliability into each application
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Introduction to Hadoop

• Hadoop: Apache Top Level Project
– Open Source

– Written in Java

– Started in 2005 by Doug Cutting as part of Nutch project, 
became Lucene sub-project in Feb 2006, became top-level 
project in Jan 2008

• Hadoop Core includes:
– Distributed File System – modeled on GFS

– Distributed Processing Framework – using Map-Reduce 
paradigm

• Runs on 
– Linux, Mac OS/X, Windows, and Solaris

– Commodity hardware



Usenix 2008

Commodity Hardware Cluster

• Typically in 2 level architecture

– Nodes are commodity PCs

– 30-40 nodes/rack

– Uplink from rack is 3-4 gigabit

– Rack-internal is 1 gigabit
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Hadoop Characteristics

• Commodity HW + Horizontal scaling

– Add inexpensive servers with JBODS

– Storage servers and their disks are not assumed to be highly reliable and available

• Use replication across servers to deal with unreliable storage/servers

• Metadata-data separation - simple design

– Storage scales horizontally

– Metadata scales vertically (today)

• Slightly Restricted file semantics

– Focus is mostly sequential access

– Single writers

– No file locking features

• Support for moving computation close to data

– i.e. servers have 2 purposes: data storage and computation

Simplicity of design

why a small team could build such a large system in the first place
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Problem: bandwidth to data

• Need to process 100TB datasets

• On 1000 node cluster reading from remote storage
(on LAN)

– Scanning @ 10MB/s = 165 min

• On 1000 node cluster reading from local storage

– Scanning @ 50-200MB/s = 33-8 min

• Moving computation is more efficient than moving 
data

– Need visibility into data placement
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Problem: scaling reliably is hard

• Need to store petabytes of data

– On 1000s of nodes 

– MTBF < 1 day

– With so many disks, nodes, switches something is always broken

• Need fault tolerant store

– Handle hardware faults transparently and efficiently

– Provide reasonable availability guarantees
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HDFS

• Fault tolerant, scalable, distributed storage system

• Designed to reliably store very large files across machines in a
large cluster

• Data Model

– Data is organized into files and directories

– Files are divided into large uniform sized blocks (e.g.128 MB) 
and distributed across cluster nodes

– Blocks are replicated to handle hardware failure

– Filesystem keeps checksums of data for corruption detection 
and recovery

– HDFS exposes block placement so that computes can be 
migrated to data
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HDFS API

• Most common file and directory operations supported:

– Create, open, close, read, write, seek, list, delete etc.

• Files are write once and have exclusively one writer

• Append/truncate coming soon

• Some operations peculiar to HDFS:

– set replication, get block locations
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Namenode (Filename, numReplicas, block-ids, …)
/users/sameerp/data/part-0, r:2, {1,3}, …
/users/sameerp/data/part-1, r:3, {2,4,5}, …
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Functions of a NameNode

• Manages the File System Namepace

– Maps a file name to a set of blocks

– Maps a block to the DataNodes where it resides

• Cluster Configuration Management

• Replication Engine for Blocks

• NameNode Metadata

– Entire metadata is in main memory

– Types of Metadata
• List of files

• List of Blocks for each file

• List of DataNodes for each block

• File attributes, e.g. creation time, replication factor

– Transaction log
• Records file creations, file deletions, etc.
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Block Placement

• Default is 3 replicas, but settable

• Blocks are placed

– On same node

– On different rack

– On same rack

– Others placed randomly

• Clients read from closest replica

• If the replication for a block drops below target, it is 
automatically replicated
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Functions of a DataNode

• A Block Server

– Stores data in the local file system (e.g. ext3)

– Stores metadata of a block (e.g. CRC)

– Serves data and metadata to clients

• Block Reports

– Periodically sends a report of all existing blocks to the 
NameNode

• Facilitates Pipelining of Data

– Forwards data to other specified DataNodes
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Error Detection and Recovery

• Heartbeats

– DataNodes send a heartbeat to the NameNode once every 3 
seconds

– NameNode uses heartbeats to detect DataNode failure

• Resilience to DataNode failure

– Namenode chooses new DataNodes for new replicas

– Balances disk usage

– Balances communication traffic to DataNodes

• Data Correctness

– Use checksums to validate data (CRC32)

– Client receives data and checksum from datanode

– If validation fails, client tries other replicas
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NameNode Failure

• Currently a single point of failure

• Transaction log stored in multiple directories

– A directory on the local file system

– A directory on a remote file system (NFS, CIFS)

• Secondary NameNode

– Copies FSImage and Transaction Log from the Namenode to a 
temporary directory

– Merges FSImage and Transaction Log into a new FSImage in 
the temporary directory

– Uploads new FSImage to the NameNode

– Transaction Log on the NameNode is purged



Usenix 2008

Map/Reduce

• Map/Reduce is a programming model for efficient 
distributed computing

• It works like a Unix pipeline:

– cat *    | grep |       sort            | uniq -c      |  cat > output

– Input | Map | Shuffle & Sort |  Reduce | Output

• Efficiency from 

– Streaming through data, reducing seeks

– Pipelining

• Natural for

– Log processing

– Web index building



Usenix 2008

Map/Reduce

Input 0

Map 0

Input 1

Map 1

Input 2

Map 2

Reduce 0 Reduce 1

Out 0 Out 1

Shuffle

• Application writer specifies 

– A pair of functions called Map and Reduce and 
a set of input files

• Workflow

– Input phase generates a number of FileSplits
from input files (one per Map task)

– The Map phase executes a user function to 
transform input kv-pairs into a new set of kv-pairs

– The framework sorts & Shuffles the kv-pairs to 
output nodes

– The Reduce phase combines all kv-pairs with 
the same key into new kv-pairs

– The output phase writes the resulting pairs to 
files

• All phases are distributed with many tasks doing 
the work

– Framework handles scheduling of tasks on 
cluster

– Framework handles recovery when a node fails
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Word Count Example
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Map/Reduce optimizations

• Overlap of maps, shuffle, and sort

• Mapper locality

– Map/Reduce queries HDFS for locations of input data

– Schedule mappers close to the data.

• Fine grained Map and Reduce tasks

– Improved load balancing

– Faster recovery from failed tasks

• Speculative execution

– Some nodes may be slow, causing long tails in computation

– Run duplicates of last few tasks - pick the winners

– Controlled by the configuration variable 
mapred.speculative.execution
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Compression

• Compressing the outputs and intermediate data will often yield 
huge performance gains

– Can be specified via a configuration file or set programatically

– Set mapred.output.compress to true to compress job output

– Set mapred.compress.map.output to true to compress map outputs

• Compression Types (mapred(.map)?.output.compression.type)

– “block” - Group of keys and values are compressed together

– “record” - Each value is compressed individually

– Block compression is almost always best

• Compression Codecs (mapred(.map)?.output.compression.codec)

– Default (zlib) - slower, but more compression

– LZO - faster, but less compression
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Hadoop Map/Reduce architecture

• Master-Slave architecture

• Map/Reduce Master “Jobtracker”

– Accepts MR jobs submitted by users

– Assigns Map and Reduce tasks to Tasktrackers

– Monitors task and tasktracker status, re-executes tasks upon 
failure 

• Map/Reduce Slaves “Tasktrackers”

– Run Map and Reduce tasks upon instruction from the 
Jobtracker

– Manage storage and transmission of intermediate output
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Jobtracker front page
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Job counters
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Task status
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Drilling down
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Scaling by input size (on 250 
nodes)

Scaling by input size on 250 nodes
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Scaling by increasing number of 
nodes (30 days input)

Scaling by number of nodes
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Queuing and Scheduling

• Hadoop does not have an advanced scheduling system

– MapReduce JobTracker manages one or more jobs running within a 
set of machines

– Works well for “dedicated” applications, but does not work so well for 
shared resources

• Hadoop on Demand (HOD)

– Bridge between Hadoop and resource managers, such as Torque and 
Condor

– Virtual private JobTracker clusters

– Job isolation
• Users create clusters of the size they need

• Submit jobs to their private JobTracker

– Disadvantages:
• Lose data locality

• Increased complexity

• Lose a node for private JobTracker

• Single reducer doesn’t free unused nodes: ~30% efficiency loss
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Pig

• Pig: Apache incubator project initiated by Yahoo!

• Pig Latin: High level dataflow language that generates 
Map/Reduce jobs

• Simpler for users

– High-level, extensible data processing primitives

• Comparing Pig and Map-Reduce

– Map-Reduce welds together 3 primitives:

• Process records -> create groups -> process groups

– Using Pig:

a = FOREACH input GENERATE flatten(Map(*));

b = GROUP a BY $0;

c = FOREACH b GENERATE Reduce(*)
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Grid Computing at Yahoo!

• Drivers
– 500M unique users per month

– Billions of interesting events per day

– “Data analysis is the inner-loop at Yahoo!”

• Yahoo! Grid Vision and Focus
– On-demand, shared access to vast pool of resources

– Support for massively parallel execution (1000s of processors)

– Data Intensive Super Computing (DISC)

– Centrally provisioned and managed

– Service-oriented, elastic

• What We’re Not
– Not “Grid” in the sense of scientific community (Globus, etc)

– Not focused on public or 3rd-party utility (Amazon EC2/S3, etc)
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Yahoo! / Apache Grid Ecosystem

• Open Source Stack

– Commitment to Open Source Development

– Y! is Apache Platinum Sponsor

• Hadoop

– Distributed File System

– MapReduce Framework

– Dynamic Cluster Manager (HOD)

• Pig

– Parallel Programming Language and Runtime

• Zookeeper

– High-Availability Directory and Configuration Service

• Simon

– Cluster and Application Monitoring
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Yahoo! Grid Services

• Operate multiple Grid clusters within 
Yahoo!

• 10,000s nodes, 100,000s cores, TBs
RAM, PBs disk

• Support internal user community

– Account management, training, etc

• Manage data needs

– Ingest TBs per day

• Deploy and manage software stack

• 24x7 support
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Case Study: Yahoo! Webmap

• What’s a WebMap?

– Gigantic table of information about every web site, page and link 
Yahoo knows about

– Directed graph of the web

– Various aggregated views (sites, domains, etc)

– Various algorithms for ranking, duplicate detection, region 
classification, spam detection, etc.

• Why port to Hadoop?

– Leverage scalability, load balancing and resilience of Hadoop
infrastructure

– Reduce management overhead

– Provide access to many researchers

– Focus on application vs infrastructure

– Leverage open source, rapidly improving platform
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Webmap Results

• 33% time savings over previous similarly sized cluster

• Largest job:

– 100,000+ maps, ~10,000 reduces

– ~70 hours runtime

– ~300 TB shuffling

– ~200 TB compressed output

• Over 10,000 cores in system

• Reduced operational cost

• Simplified access to researchers

• Many opportunities for further improvement
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Who else is using Hadoop?

• Still pre-1.0, but already used by many: http://wiki.apache.org/hadoop/PoweredBy

• Some examples from this site:
– A9.com – Amazon

• We build Amazon's product search indices using the streaming API and pre-existing C++, Perl, and Python tools. 

• We process millions of sessions daily for analytics, using both the Java and streaming APIs. 

• Our clusters vary from 1 to 100 nodes. . 

– Facebook
• We use Hadoop to store copies of internal log and dimension data sources and use it as a source for reporting/analytics and machine 

learning. 

• Currently have a 320 machine cluster with 2,560 cores and about 1.3 PB raw storage. Each (commodity) node has 8 cores and 4 TB 
of storage. 

• We are heavy users of both streaming as well as the Java apis. We have built a higher level data warehousing framework using 
these features called Hive (see the JIRA ticket). We have also written a read-only FUSE implementation over hdfs. 

– Fox Interactive Media

– Google University Initiative

– IBM

– Joost

– Last.fm

– Mahout

– The New York Times

– PARC

– Powerset

– Veoh

– Yahoo!

– Multiple Universities
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Running on Amazon EC2/S3

• Amazon sells cluster services

– EC2: priced per cpu hour

– S3: priced per GB month

• Hadoop supports: 

– EC2: cluster management scripts included

– S3: file system implementation included

• Tested on 400 node cluster

• Combination used by several startups
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M45 Program -- Open Academic 
Clusters

• Collaboration with Major Research 
Universities

– Foster open research

– Focus on large-scale, highly parallel computing

• Seed Facility:  Datacenter in a Box (DiB)

– 500 nodes, 4000 cores, 3TB RAM, 1.5PB disk

– High bandwidth connection to Internet

– Located on Yahoo! corporate campus

• Runs Yahoo! / Apache Grid Stack

• Carnegie Mellon University is Initial 
Partner

• Public Announcement 11/12/07
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Subprojects

• Pig (initiated by Yahoo!)

– Programming language and runtime for data analysis

• Hbase (initiated by Powerset)

– Table storage for semi-structured data

• Zookeeper (initiated by Yahoo!)

– Coordinating distributed systems

• Hive (initiated by Facebook, coming soon)

– SQL-like query language and metastore

• Mahout

– Machine learning algorithms
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Tracking patches per release
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Join the Apache Hadoop
Community

• Hosted Hadoop summit in March 08

– Registrants from over 100 organizations

• Hadoop is now in universities in several continents

– Yahoo! initiatives in US, India
• M45 Program

• Initiative with Tata / CRL in India

– IBM / Google university initiative

• http://wiki.apache.org/hadoop/ProjectSuggestions

– Ideas for folks who want to get started

• http://hadoop/apache.org - the main Apache site

– Mailing lists, the code, documentation and more

• http://wiki.apache.org/hadoop/PoweredBy

– A list of users, please add yourself!



Usenix 2008

Questions?
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