
Using Hadoop for
Webscale Computing

Ajay Anand
Yahoo!

aanand@yahoo-inc.com
Usenix 2008

Usenix 2008

Agenda

• The Problem

• Solution Approach / Introduction to Hadoop

• HDFS File System

• Map Reduce Programming

• Pig

• Hadoop implementation at Yahoo!

• Case Study: Yahoo! Webmap

• Where is Hadoop being used

• Future Directions / How you can participate

Usenix 2008

The Problem

• Need massive scalability

– PB’s of storage, millions of files, 1000’s of nodes

• Need to do this cost effectively

– Use commodity hardware

– Share resources among multiple projects

– Provide scale when needed

• Need reliable infrastructure

– Must be able to deal with failures – hardware, software,
networking

• Failure is expected rather than exceptional

– Transparent to applications

• very expensive to build reliability into each application

Usenix 2008

Introduction to Hadoop

• Hadoop: Apache Top Level Project
– Open Source

– Written in Java

– Started in 2005 by Doug Cutting as part of Nutch project,
became Lucene sub-project in Feb 2006, became top-level
project in Jan 2008

• Hadoop Core includes:
– Distributed File System – modeled on GFS

– Distributed Processing Framework – using Map-Reduce
paradigm

• Runs on
– Linux, Mac OS/X, Windows, and Solaris

– Commodity hardware

Usenix 2008

Commodity Hardware Cluster

• Typically in 2 level architecture

– Nodes are commodity PCs

– 30-40 nodes/rack

– Uplink from rack is 3-4 gigabit

– Rack-internal is 1 gigabit

Usenix 2008

Hadoop Characteristics

• Commodity HW + Horizontal scaling

– Add inexpensive servers with JBODS

– Storage servers and their disks are not assumed to be highly reliable and available

• Use replication across servers to deal with unreliable storage/servers

• Metadata-data separation - simple design

– Storage scales horizontally

– Metadata scales vertically (today)

• Slightly Restricted file semantics

– Focus is mostly sequential access

– Single writers

– No file locking features

• Support for moving computation close to data

– i.e. servers have 2 purposes: data storage and computation

Simplicity of design

why a small team could build such a large system in the first place

Usenix 2008

Problem: bandwidth to data

• Need to process 100TB datasets

• On 1000 node cluster reading from remote storage
(on LAN)

– Scanning @ 10MB/s = 165 min

• On 1000 node cluster reading from local storage

– Scanning @ 50-200MB/s = 33-8 min

• Moving computation is more efficient than moving
data

– Need visibility into data placement

Usenix 2008

Problem: scaling reliably is hard

• Need to store petabytes of data

– On 1000s of nodes

– MTBF < 1 day

– With so many disks, nodes, switches something is always broken

• Need fault tolerant store

– Handle hardware faults transparently and efficiently

– Provide reasonable availability guarantees

Usenix 2008

HDFS

• Fault tolerant, scalable, distributed storage system

• Designed to reliably store very large files across machines in a
large cluster

• Data Model

– Data is organized into files and directories

– Files are divided into large uniform sized blocks (e.g.128 MB)
and distributed across cluster nodes

– Blocks are replicated to handle hardware failure

– Filesystem keeps checksums of data for corruption detection
and recovery

– HDFS exposes block placement so that computes can be
migrated to data

Usenix 2008

HDFS API

• Most common file and directory operations supported:

– Create, open, close, read, write, seek, list, delete etc.

• Files are write once and have exclusively one writer

• Append/truncate coming soon

• Some operations peculiar to HDFS:

– set replication, get block locations

Usenix 2008

Namenode (Filename, numReplicas, block-ids, …)
/users/sameerp/data/part-0, r:2, {1,3}, …
/users/sameerp/data/part-1, r:3, {2,4,5}, …

Datanodes

1 1

3
3

2

2
2

4

4

4
55

5

HDFS Architecture

Usenix 2008

Functions of a NameNode

• Manages the File System Namepace

– Maps a file name to a set of blocks

– Maps a block to the DataNodes where it resides

• Cluster Configuration Management

• Replication Engine for Blocks

• NameNode Metadata

– Entire metadata is in main memory

– Types of Metadata
• List of files

• List of Blocks for each file

• List of DataNodes for each block

• File attributes, e.g. creation time, replication factor

– Transaction log
• Records file creations, file deletions, etc.

Usenix 2008

Block Placement

• Default is 3 replicas, but settable

• Blocks are placed

– On same node

– On different rack

– On same rack

– Others placed randomly

• Clients read from closest replica

• If the replication for a block drops below target, it is
automatically replicated

Usenix 2008

Functions of a DataNode

• A Block Server

– Stores data in the local file system (e.g. ext3)

– Stores metadata of a block (e.g. CRC)

– Serves data and metadata to clients

• Block Reports

– Periodically sends a report of all existing blocks to the
NameNode

• Facilitates Pipelining of Data

– Forwards data to other specified DataNodes

Usenix 2008

Error Detection and Recovery

• Heartbeats

– DataNodes send a heartbeat to the NameNode once every 3
seconds

– NameNode uses heartbeats to detect DataNode failure

• Resilience to DataNode failure

– Namenode chooses new DataNodes for new replicas

– Balances disk usage

– Balances communication traffic to DataNodes

• Data Correctness

– Use checksums to validate data (CRC32)

– Client receives data and checksum from datanode

– If validation fails, client tries other replicas

Usenix 2008

NameNode Failure

• Currently a single point of failure

• Transaction log stored in multiple directories

– A directory on the local file system

– A directory on a remote file system (NFS, CIFS)

• Secondary NameNode

– Copies FSImage and Transaction Log from the Namenode to a
temporary directory

– Merges FSImage and Transaction Log into a new FSImage in
the temporary directory

– Uploads new FSImage to the NameNode

– Transaction Log on the NameNode is purged

Usenix 2008

Map/Reduce

• Map/Reduce is a programming model for efficient
distributed computing

• It works like a Unix pipeline:

– cat * | grep | sort | uniq -c | cat > output

– Input | Map | Shuffle & Sort | Reduce | Output

• Efficiency from

– Streaming through data, reducing seeks

– Pipelining

• Natural for

– Log processing

– Web index building

Usenix 2008

Map/Reduce

Input 0

Map 0

Input 1

Map 1

Input 2

Map 2

Reduce 0 Reduce 1

Out 0 Out 1

Shuffle

• Application writer specifies

– A pair of functions called Map and Reduce and
a set of input files

• Workflow

– Input phase generates a number of FileSplits
from input files (one per Map task)

– The Map phase executes a user function to
transform input kv-pairs into a new set of kv-pairs

– The framework sorts & Shuffles the kv-pairs to
output nodes

– The Reduce phase combines all kv-pairs with
the same key into new kv-pairs

– The output phase writes the resulting pairs to
files

• All phases are distributed with many tasks doing
the work

– Framework handles scheduling of tasks on
cluster

– Framework handles recovery when a node fails

Usenix 2008

Word Count Example

Usenix 2008

Map/Reduce optimizations

• Overlap of maps, shuffle, and sort

• Mapper locality

– Map/Reduce queries HDFS for locations of input data

– Schedule mappers close to the data.

• Fine grained Map and Reduce tasks

– Improved load balancing

– Faster recovery from failed tasks

• Speculative execution

– Some nodes may be slow, causing long tails in computation

– Run duplicates of last few tasks - pick the winners

– Controlled by the configuration variable
mapred.speculative.execution

Usenix 2008

Compression

• Compressing the outputs and intermediate data will often yield
huge performance gains

– Can be specified via a configuration file or set programatically

– Set mapred.output.compress to true to compress job output

– Set mapred.compress.map.output to true to compress map outputs

• Compression Types (mapred(.map)?.output.compression.type)

– “block” - Group of keys and values are compressed together

– “record” - Each value is compressed individually

– Block compression is almost always best

• Compression Codecs (mapred(.map)?.output.compression.codec)

– Default (zlib) - slower, but more compression

– LZO - faster, but less compression

Usenix 2008

Hadoop Map/Reduce architecture

• Master-Slave architecture

• Map/Reduce Master “Jobtracker”

– Accepts MR jobs submitted by users

– Assigns Map and Reduce tasks to Tasktrackers

– Monitors task and tasktracker status, re-executes tasks upon
failure

• Map/Reduce Slaves “Tasktrackers”

– Run Map and Reduce tasks upon instruction from the
Jobtracker

– Manage storage and transmission of intermediate output

Usenix 2008

Jobtracker front page

Usenix 2008

Job counters

Usenix 2008

Task status

Usenix 2008

Drilling down

Usenix 2008

Scaling by input size (on 250
nodes)

Scaling by input size on 250 nodes

1
7

30

90

0

10

20

30

40

50

60

70

80

90

100

0 10 20 30 40 50 60 70 80 90 100

input size (in days)

ti
m

e
 (

m
in

s
)

Usenix 2008

Scaling by increasing number of
nodes (30 days input)

Scaling by number of nodes

250

128

64

0

0.5

1

1.5

2

2.5

3

3.5

0 50 100 150 200 250 300

nodes

s
p

e
e
d

 u
p

 v
s
.

6
4
 n

o
d

e
s

30 days

Usenix 2008

Queuing and Scheduling

• Hadoop does not have an advanced scheduling system

– MapReduce JobTracker manages one or more jobs running within a
set of machines

– Works well for “dedicated” applications, but does not work so well for
shared resources

• Hadoop on Demand (HOD)

– Bridge between Hadoop and resource managers, such as Torque and
Condor

– Virtual private JobTracker clusters

– Job isolation
• Users create clusters of the size they need

• Submit jobs to their private JobTracker

– Disadvantages:
• Lose data locality

• Increased complexity

• Lose a node for private JobTracker

• Single reducer doesn’t free unused nodes: ~30% efficiency loss

Usenix 2008

Pig

• Pig: Apache incubator project initiated by Yahoo!

• Pig Latin: High level dataflow language that generates
Map/Reduce jobs

• Simpler for users

– High-level, extensible data processing primitives

• Comparing Pig and Map-Reduce

– Map-Reduce welds together 3 primitives:

• Process records -> create groups -> process groups

– Using Pig:

a = FOREACH input GENERATE flatten(Map(*));

b = GROUP a BY $0;

c = FOREACH b GENERATE Reduce(*)

Usenix 2008

Grid Computing at Yahoo!

• Drivers
– 500M unique users per month

– Billions of interesting events per day

– “Data analysis is the inner-loop at Yahoo!”

• Yahoo! Grid Vision and Focus
– On-demand, shared access to vast pool of resources

– Support for massively parallel execution (1000s of processors)

– Data Intensive Super Computing (DISC)

– Centrally provisioned and managed

– Service-oriented, elastic

• What We’re Not
– Not “Grid” in the sense of scientific community (Globus, etc)

– Not focused on public or 3rd-party utility (Amazon EC2/S3, etc)

Usenix 2008

Yahoo! / Apache Grid Ecosystem

• Open Source Stack

– Commitment to Open Source Development

– Y! is Apache Platinum Sponsor

• Hadoop

– Distributed File System

– MapReduce Framework

– Dynamic Cluster Manager (HOD)

• Pig

– Parallel Programming Language and Runtime

• Zookeeper

– High-Availability Directory and Configuration Service

• Simon

– Cluster and Application Monitoring

Usenix 2008

Yahoo! Grid Services

• Operate multiple Grid clusters within
Yahoo!

• 10,000s nodes, 100,000s cores, TBs
RAM, PBs disk

• Support internal user community

– Account management, training, etc

• Manage data needs

– Ingest TBs per day

• Deploy and manage software stack

• 24x7 support

Usenix 2008

Case Study: Yahoo! Webmap

• What’s a WebMap?

– Gigantic table of information about every web site, page and link
Yahoo knows about

– Directed graph of the web

– Various aggregated views (sites, domains, etc)

– Various algorithms for ranking, duplicate detection, region
classification, spam detection, etc.

• Why port to Hadoop?

– Leverage scalability, load balancing and resilience of Hadoop
infrastructure

– Reduce management overhead

– Provide access to many researchers

– Focus on application vs infrastructure

– Leverage open source, rapidly improving platform

Usenix 2008

Webmap Results

• 33% time savings over previous similarly sized cluster

• Largest job:

– 100,000+ maps, ~10,000 reduces

– ~70 hours runtime

– ~300 TB shuffling

– ~200 TB compressed output

• Over 10,000 cores in system

• Reduced operational cost

• Simplified access to researchers

• Many opportunities for further improvement

Usenix 2008

Who else is using Hadoop?

• Still pre-1.0, but already used by many: http://wiki.apache.org/hadoop/PoweredBy

• Some examples from this site:
– A9.com – Amazon

• We build Amazon's product search indices using the streaming API and pre-existing C++, Perl, and Python tools.

• We process millions of sessions daily for analytics, using both the Java and streaming APIs.

• Our clusters vary from 1 to 100 nodes. .

– Facebook
• We use Hadoop to store copies of internal log and dimension data sources and use it as a source for reporting/analytics and machine

learning.

• Currently have a 320 machine cluster with 2,560 cores and about 1.3 PB raw storage. Each (commodity) node has 8 cores and 4 TB
of storage.

• We are heavy users of both streaming as well as the Java apis. We have built a higher level data warehousing framework using
these features called Hive (see the JIRA ticket). We have also written a read-only FUSE implementation over hdfs.

– Fox Interactive Media

– Google University Initiative

– IBM

– Joost

– Last.fm

– Mahout

– The New York Times

– PARC

– Powerset

– Veoh

– Yahoo!

– Multiple Universities

Usenix 2008

Running on Amazon EC2/S3

• Amazon sells cluster services

– EC2: priced per cpu hour

– S3: priced per GB month

• Hadoop supports:

– EC2: cluster management scripts included

– S3: file system implementation included

• Tested on 400 node cluster

• Combination used by several startups

Usenix 2008

M45 Program -- Open Academic
Clusters

• Collaboration with Major Research
Universities

– Foster open research

– Focus on large-scale, highly parallel computing

• Seed Facility: Datacenter in a Box (DiB)

– 500 nodes, 4000 cores, 3TB RAM, 1.5PB disk

– High bandwidth connection to Internet

– Located on Yahoo! corporate campus

• Runs Yahoo! / Apache Grid Stack

• Carnegie Mellon University is Initial
Partner

• Public Announcement 11/12/07

Usenix 2008

Subprojects

• Pig (initiated by Yahoo!)

– Programming language and runtime for data analysis

• Hbase (initiated by Powerset)

– Table storage for semi-structured data

• Zookeeper (initiated by Yahoo!)

– Coordinating distributed systems

• Hive (initiated by Facebook, coming soon)

– SQL-like query language and metastore

• Mahout

– Machine learning algorithms

Usenix 2008

Tracking patches per release

0

50

100

150

200

250

300

350

400

4
/
2
/
0
6

5
/
5
/
0
6

6
/
2
/
0
6

6
/
2
8
/
0
6

8
/
4
/
0
6

9
/
8
/
0
6

1
0
/
6
/
0
6

1
1
/
3
/
0
6

1
2
/
1
/
0
6

1
/
5
/
0
7

2
/
2
/
0
7

3
/
2
/
0
7

6
/
8
/
0
7

8
/
2
0
/
0
7

1
0
/
1
9
/
0
7

2
/
7
/
0
8

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 0.10 0.11 0.12 0.13 0.14 0.15 0.16

Hbase

Non-Yahoo

Yahoo

Usenix 2008

Join the Apache Hadoop
Community

• Hosted Hadoop summit in March 08

– Registrants from over 100 organizations

• Hadoop is now in universities in several continents

– Yahoo! initiatives in US, India
• M45 Program

• Initiative with Tata / CRL in India

– IBM / Google university initiative

• http://wiki.apache.org/hadoop/ProjectSuggestions

– Ideas for folks who want to get started

• http://hadoop/apache.org - the main Apache site

– Mailing lists, the code, documentation and more

• http://wiki.apache.org/hadoop/PoweredBy

– A list of users, please add yourself!

Usenix 2008

Questions?

Using Hadoop for
Webscale Computing

Ajay Anand
Yahoo!

aanand@yahoo-inc.com
Usenix 2008

