
Context-Aware Mechanisms for Reducing Interactive Delays of Energy
Management in Disks

Igor Crk Chris Gniady
University of Arizona

{icrk, gniady}@cs.arizona.edu

Abstract

Aggressive energy conserving mechanisms can maxi-
mize energy efficiency, but often have the negative trade-
off of simultaneously reducing system responsiveness
due to the switching of component power modes. This
side-effect is especially prominent in hard disk drives,
where the time required to switch power modes is dic-
tated by the latency of the mechanical elements of the
drive. Existing disk activity prediction schemes provide
solutions for eliminating transition delays in the presence
of non-interactive applications and processes, but per-
form poorly on systems dominated by interactive appli-
cations. The key idea in eliminating transition delays ex-
posed to users in interactive applications is that the users
are responsible for placing energy and performance de-
mand on the systems through interactions with applica-
tions. Therefore, monitoring user interactions with appli-
cations provides an opportunity for predicting upcoming
power mode transitions and, as a result, eliminating the
delays associated with these transitions. In this paper, we
propose a set of user behavior monitoring and prediction
mechanisms that significantly reduce delays in interac-
tive applications while minimizing energy consumption.

1 Introduction

Energy is a critical system resource for both portable and
stationary systems. The need for energy efficiency in
portable systems is clear: batteries have a limited en-
ergy capacity and users are expecting not only higher
performance but longer battery life with every new sys-
tem they buy. Recently, researchers have realized the
positive financial and environmental implications of en-
ergy conservation for stand-alone servers and server clus-
ters [3, 4, 12, 22]. The challenge of designing energy ef-
ficient systems lies in understanding the role of user in-
teractions in energy consumption and in providing an en-
ergy/performance schedule that accommodates user de-

mand. Furthermore, by understanding user behavior we
can optimize system performance by tailoring it to a
user’s patterns of interaction.

Performance and energy consumption are tightly cou-
pled where higher performance is usually achieved at the
cost of increased power demand. Likewise, decreasing
energy consumption by decreasing the performance level
of a component can significantly increase interactive de-
lays. This is particularly apparent in the case of hard disk
drives, where the retrieval of data from a spun-down disk
results in a significant delay when platters are spun up to
operational speed and during which the system may be-
come unresponsive. Keeping the disk spinning and ready
to serve requests eliminates interactive delays, but wastes
energy. Stopping or slowing the rotation of disk platters
during periods of idleness, i.e. periods during which I/O
requests are absent, is the most effective means of reduc-
ing the energy consumed by a hard drive. While prior
research has focused on predicting the upcoming idle pe-
riods in order to place the disk in a lower power mode.
Little has been done in predicting the arrival of I/O ac-
tivity, especially in the arena of interactive user appli-
cations, where user-generated I/O requests alone do not
generally exhibit discernible patterns.

Timeliness of power mode transitions affects not only
the system’s performance and the overall system’s en-
ergy consumption but also user perception of the sys-
tem’s responsiveness. Significant delays are associated
with the transition to a higher performance state. For ex-
ample, waiting for I/O requests to arrive before switch-
ing to a higher power level may degrade system perfor-
mance, keep the system processing the task longer and
as result increase overall energy consumption. Switching
too early wastes energy, since the demand for high per-
formance is not present. Therefore, timely transitions to
the appropriate performance level are critical for achiev-
ing both best performance and energy efficiency. Moni-
toring user behavior provides not only the necessary con-
text of execution that was previously unavailable to the

USENIX ’08: 2008 USENIX Annual Technical ConferenceUSENIX Association 71

Busy I/O Busy I/O Spin-up Busy I/O

Last I/O New I/O

Timeout
starts

Timeout
expires

Device is off User
delayed

Figure 1: Anatomy of an idle period.

predictors, but enables timely predictions before the need
for high performance arrives [8, 1].

In this paper, we show that user interactions can be
easily monitored and exploited to increase both the time-
liness and accuracy of prediction mechanisms. More
specifically, we propose and apply the Interaction-Aware
Spin-up Predictor (IASP) to reducing the interactive de-
lays of hard disk power management. We propose a set
of mechanisms for capturing user actions and predicting
the upcoming device state, and provide a detailed design
and implementation. The proposed mechanisms gather
contextual information from user’s mouse interactions
within a GUI and use it in predicting an upcoming I/O re-
quest. The idea is motivated by the observation that with
a majority of common interactive applications, the user
fully interacts with the application through its graphical
user interface (GUI). In this context, a simple action such
as opening a file requires a sequence of mouse events. By
correlating the sequence of steps to the resulting I/O we
can predict future I/O occurrences when the user initiates
the same set of operations again.

In this paper, we make following set of contributions:
(1) we are the first to apply interaction aware predic-
tion to spin up a hard drive, (2) we are able to success-
fully apply our mechanisms to predicting disk spin-ups in
interactive applications, (3) we design, implement, and
evaluate our design, showing significant improvements
in delays exposed to the user, (4) we extend ALT mech-
anisms to predict the length of idle periods and spin-up
the disk accordingly. Furthermore, the interaction-aware
approach can easily be extended to manage other system
resources and peripheral devices whose activity is depen-
dant on user behavior.

2 Background

High performance hard drives are a significant source
of energy consumption and timeout mechanisms have
gained wide popularity due to the simplicity of imple-
mentation and the energy savings they provide to disks
that would otherwise be spinning needlessly. Figure 1
shows an example of a timeout mechanism shutting
down the device once a timer expires. The disk remains
powered down until a new I/O request arrives and the

disk has to be powered up before servicing the new re-
quest, potentially exposing several seconds of delay to
the users.

2.1 Shutdown prediction techniques
Interestingly, spinning down the disk is not always ben-
eficial. Accelerating the platters requires more energy
than keeping them spinning while the disk is idle. There-
fore, the time during which the device is off has to be
long enough to offset the extra energy needed for the
shutdown and spin-up sequence. This time is commonly
referred to as the breakeven-time, and is usually on the
order of a few seconds. Eliminating wrong shutdowns
that not only waste energy but also significantly delay
user requests is critical to conserving energy and re-
ducing interactive delays. Simple timeout-based mech-
anisms gained wide popularity but they waste energy
while waiting for a timeout to expire. As a result, various
selections and dynamic adjustments of the timeout value
have been proposed [18, 10, 14, 16] to reduce the amount
of energy consumed during the timeout period. Conse-
quently, dynamic predictors that shut down the device
much earlier than the timeout mechanisms have been
proposed to address energy consumption of the timeout
period [6, 17, 27]. Stochastic modeling techniques have
also been applied to model the idle periods in applica-
tions and shut down the disk based on the resulting mod-
els [2, 5, 23, 26].

To improve accuracy, energy management can be del-
egated to programmers, since they have a better idea of
what the application, and potentially the users, are doing
at a given time [11, 15, 20, 29]. To reduce the burden of
hint insertion on the programmer, automatic generation
of application hints was proposed [13] to exploit the ob-
servation that I/O activity is caused by unique call sites
within applications. Finally, operating systems can con-
currently evaluate multiple predictors and select the best
one for the current workload [28].

2.2 Reducing spin-up delays
The goal of shutdown mechanisms powering down the
disk is to improve energy savings. However, every shut-
down requires a corresponding spin-up to serve future
requests. It is important to note that even correct shut-
downs can expose spin-up delays to the application or
the user as shown in Figure 1. There are two approaches
for reducing the impact of spin-up delays. First, we
can prefetch and cache the data either in main mem-
ory [19, 24, 7] or an alternate storage device such as flash
memory [21, 25], however disk accesses for uncached
data will inevitably occur. Second, we propose waking
up the disk early by spinning up the platters before the

USENIX ’08: 2008 USENIX Annual Technical Conference USENIX Association72

request arrives and serving the request without any de-
lays. Both approaches are complementary since the disk
will have to be spun-up at some point even if the caching
techniques are very efficient.

2.3 Predicting spin-up time
In this paper, we focus on spin-up prediction, which can
be achieved in two ways. First, we can predict the length
of the idle period and spin-up before the end of the pre-
dicted period. Second, we can predict spin-up itself by
observing system events, such as user interactions. Pre-
diction of the idle period lengths was previously pro-
posed by Adaptive Learning Tree (ALT) [6]. The ALT
approach is to predict the best current power mode based
on a sequence of idle periods. Idle periods are discretized
according to the time spent idling, and in relation to the
number of available sleep states and device specifica-
tions. Previously observed states or sequences of states
are encoded in a tree, the paths of which are matched ac-
cording to newly observed sequences of discretized idle
periods. Each leaf node in the tree constitutes a predic-
tion and the most likely prediction is selected to transi-
tion the disk to the matching power state. ALT has shown
significant improvement for power mode prediction in
static, non-interactive applications and motivated us to
adapt the design to predict the length of idle times and
spin-up the disk before the predicted idle time ends.

ALT’s discretization of idle periods depends on the
number of available power states of the disk, and the pre-
diction of the period lengths allows transition into shal-
lower sleep states, where the disk’s RPMs are reduced,
but not halted, and the time to ready the disk is lessened.
These periods are on the order of seconds and correspond
to the breakeven time of each state. We can extend the
design of ALT to predict longer idle periods and for the
purpose of differentiation we will refer to our modified
design as ALT+. The discretization of idle periods in
ALT+ results not in the prediction for the best power
mode, but rather for the duration of the current idle pe-
riod. In order to spin up the disk in ALT+, we consider
thresholds to be multiples of the disk’s breakeven time,
where the multiple is given by the discretization and en-
coded in the same tree structure as found in ALT. With
this modification, ALT+ generates a likely time to ready
the disk in anticipation of upcoming I/O activity, allow-
ing the disk to be spun up on time to service the request.

2.4 Challenges in predicting spin-up time
Accurately spinning up the disk is challenging since the
idle period has to be predicted very accurately. There
are three possible situations that can occur following the
prediction. The first and best scenario is when the pre-

diction is accurate and the disk is powered up just before
the request arrives. In this situation, there is no energy
wasted in waiting for the request to arrive and also the
spin-up delay is hidden from the user. The second sce-
nario occurs when the predicted idle period is longer than
actual idle period. In this case, the device is powered-up
upon I/O arrival and the latency of the spin-up is exposed
to the user. The last scenario occurs when the predicted
idle period is much shorter than the actual idle period. In
this case, the disk is powered up and subsequently shut
down without serving any disk requests. The disk is shut
down to prevent it from remaining in the powered-up
state for long idle periods. As a result, energy is wasted
performing the unnecessary spin-up and shutdown tran-
sitions and spin-up delay is exposed when I/O requests
do arrive.

Predicting the exact length of idle periods in interac-
tive applications is difficult since it depends on the con-
stantly changing frequency of user interactions with the
application. Therefore, we propose to observe user in-
teractions and infer from them the impending arrival of
I/O activity, since users are responsible for the major-
ity of I/O activity in interactive applications. Our mech-
anisms reconstruct the user’s interaction context from
mouse events directed at the application’s GUI, thereby
providing the necessary hints transparently and without
application modification. The captured user context re-
sults in high accuracy and prediction timeliness in the
proposed IASP.

3 Design

The key idea in IASP design is that the correlation be-
tween user interactions and disk I/O activity can be trans-
parently exploited to predict I/O activity ahead of time
and perform a timely disk spin-up to serve the request.
Subsequently, our design faces several requirements:

• User interactions have to be captured transparently
without modification of applications.

• Capture and prediction should be efficient to pre-
vent excessive energy consumption by the CPU to
train and generate predictions.

• The system should handle multiple applications in a
graphically rich environment.

• User behavior correlation and classifications should
be performed online and without direct user in-
volvement.

The first three items are addressed by a novel implemen-
tation we propose in this paper. The last item is addressed
by the proposed predictor design.

USENIX ’08: 2008 USENIX Annual Technical ConferenceUSENIX Association 73

3.1 The Näıve Predictor

The observation that user interactions are responsible for
the majority of disk I/O, in the interactive applications,
leads us to a proposal of a simple mechanism that spins
up the disk upon mouse clicks. The intuition dictates that
if the user actively interacts with an application, which
may require disk I/O, the disk should stay on to satisfy
user requests. If the user is not actively interacting with
the application the likelihood that the disk will be needed
drops and the disk can be shut down. Therefore, our
näıve All-Click Spin-Up mechanism (ACSU) spins the
disk up upon each mouse click and keeps it spinning as
long as the user is interacting with the application. Once
the user stops interacting, the disk shuts down after a
timeout period.

ACSU mechanisms act on all mouse clicks and spin
up the disk as soon as possible, with the downside of un-
necessary spin-ups for clicks that are not followed by any
disk I/O. It is important to note that user interactions that
require disk I/O are a small subset of all user interactions
with the application. Therefore, ACSU mechanisms have
the greatest potential for reducing spin-up delays at the
expense of energy consumption caused by unnecessar-
ily spinning the disk up and keeping the disk spun up
without serving any disk I/Os. ACSU mechanisms set a
lower bound on the spin-up delays for the proposed IASP
and also illustrate the need for more intelligent prediction
schemes that decide when the disk should be spun up to
improve energy efficiency.

3.2 Capturing user interactions

The basis for the energy efficient design of IASP is the
accurate and detailed monitoring of user activity. Most
interactive applications are driven by simple point-and-
click interactions. All operating systems targeted for
consumers offer a Graphical User Interface (GUI) to fa-
cilitate uniform interfaces for interactions between users
and application. As a result, virtually all interactions can
be accomplished through mouse clicks [9]. Users inter-
act with an application to accomplish specific tasks, like
opening or saving a file. Many tasks can be accomplished
by a single point and click, but other tasks require se-
quences of interactions. For example, to save a new file,
the user commonly clicks on the File menu then selects
the Save option and is presented by a directory selection
menu, once the filename is entered and the user clicks
OK, the file is saved and disk I/O may be requested. We
argue that all GUI interactions resulting in disk I/O activ-
ity can be accurately captured and correlated to the activ-
ity they initiate, however, it should be noted that this does
not always account for all occurring I/O activity.

User activity can be captured at various levels of de-

Mouse Display

X Server

X Monitor

App 1 App 2

HDD

Daemon

Kernel

Prediction Table

System
Calls: I/O

Count times observed
Count times I/O followed

Mouse Event ID

Disk I/O
History Prediction

Figure 2: IASP architecture.

tail. The simplest method is to capture the coordinates
of mouse clicks relative to the application window and
approximate the graphical interface features from clus-
ters of clicks [1]. However, this method either requires
off-line processing or complicated on-line mechanisms
for clustering of incoming clicks. Clustering is neces-
sary since the only available information about user in-
teractions are the relative coordinates of mouse events.
K-means clustering is an effective approach, but suffers
from several inefficiencies. First, the number of clusters
has to be known a priori, meaning that for each applica-
tion, we are faced with pre-determining the number of
interactive elements. Second, assigning newly observed
clicks to their respective clusters has a high processing
overhead. Finally, each time the layout of the window
changes, the mechanisms will generate mispredictions
and also require retraining. This method is clearly far
from the goals we set above, since it is neither very trans-
parent nor computationally efficient. In order to address
these problems, we turn to monitoring the GUI protocol
streams and directly identifying the interactive elements.

On Unix-like systems, the X Window System is
the common display protocol built on the client-server
model. It is responsible for accepting graphical output
requests from and reporting user input to clients. The
stream of data from the client to the server contains the
information about the window layout, while the data sent
from the server to the client applications contains the in-
formation about user interactions. By adding an interme-
diary layer, as shown in Figure 2, between the server and
its clients, we can observe the exact sequence of requests
and events. This layer allows for transparent monitoring
of user behavior. No modification of applications is nec-
essary. Furthermore, user interactions are captured ex-
actly, eliminating both the excessive computational over-
head of computing a clustering and the inaccuracies as-
sociated with the clustering present in the previously de-
scribed solution [1]. Since the need for cluster formation
and behavior detection is eliminated, the offline process-

USENIX ’08: 2008 USENIX Annual Technical Conference USENIX Association74

ing needed in the clustering approach is eliminated, fully
allowing for detection, correlation, and prediction to be
performed online.

The X Window System tracks GUI windows in trees,
whose structure remains the same across executions of
an application. Mouse event IDs are generated by stor-
ing and traversing the trees, generating a single unique
integer for each node. The IDs generated by tree traver-
sals are augmented with the size and location of the vi-
sual element that the mouse event occurs in. Information
regarding the application’s window tree structure is ob-
tained from the X Window server. Internally, the server
tracks window nodes and their children with identifiers
that are unique to the application during an execution.
Upon subsequent executions these server-side identifiers
may change, but the structure of the tree remains the
same. By performing a tree traversal and labeling all vis-
ited nodes in turn, we generate IDs based on a structural
representation of the tree. This allows us to reuse the
training across multiple executions of the application.

3.3 Monitoring & correlating I/O activity

Our mechanisms monitor each application individually
for mouse clicks and file I/O. This allows a more accurate
correlation of file I/O activity to user interactions with an
application. We use two levels of correlations. First, the
application’s file I/O activity is captured by the kernel
in the modified I/O system call functions that check for
file I/Os. For example, we modified sys read to check if
the I/O call that entered sys read is indeed file I/O since
sys read can be used for many types of I/O. This stage
does not consider buffer cache effects since file I/O ac-
tivity is captured before the buffer cache. As a result, we
obtain a more accurate correlation between file I/O and
mouse interactions. Second, once potential file I/O activ-
ity is detected, we follow the call to see if it resulted in
an actual disk I/O or it was satisfied by the buffer cache.
We use this information to correlate the user interactions
that invoke file I/O to the actual disk I/O. We argue that
the usage patterns in the buffer cache will also correlate
to the user interactions, since user behavior is repetitive,
and we show that IASP is able to predict actual disk I/Os
with a high degree of accuracy.

3.3.1 Correlating file I/O activity

We record correlation statistics in the prediction table
that is organized as a hash table indexed by the hash cal-
culated using the mouse event IDs. Figure 2 shows the
prediction table organization and the content of the table
entry that is maintained by the IASP daemon. The click
IDs are unique to the window organization and therefore
do not result in aliasing between different applications

��������

�	
��
��
�

�	
��
��

�	
��

�	

�	
��
��
��

�	
��
��

�	
��

�	

�����������

�����

�������������

������

�	����

����

����������

������������

�	����

	
�����

��
�

��

���������

��
��

���������� �����!"��"

#����������$�$

%�������$��������$

����������&�"��������

��$�� �"�������

�	�'������� ��(������

�#"��)�$
�"�������

�������������"�����$

Figure 3: Example of interaction sequences.

and windows as explained earlier. The data stored by the
prediction table contains only the unique event ID, the
number of times the event was observed, and the number
of times I/O activity followed. The counts are a simple,
but efficient means of computing an empirical probabil-
ity for future predictions. The table resides globally in
a daemon and is shared among processes to allow table
reuse across multiple or concurrent executions of the ap-
plication. Furthermore, the table can be easily retained
in the kernel across multiple executions of the applica-
tion due to its small size.

In addition to the global prediction table, IASP records
the history of recent click activity for each process in
the system. Consider a typical usage scenario shown in
Figure 3 where a user is editing a file in a word proces-
sor. After a while, the user clicks through a file menu
to change properties of the edited file. The recorded his-
tory of clicks is C1, C2, C3, C4. At this point, the user
decides to work on the file again. If the time is long
enough we can consider the clicks to be uncorrelated and
the history of clicks is cleared. Alternatively, the user
may immediately proceed to open a new file with click
sequence of C1, C5, C6, C7. In this case, the history is
also reset when the user clicks on C1. Since all menus
are organized as trees in the application, clicking on C1
signifies return to the root of the File menu tree. There-
fore, when IASP detect a repeated click ID in the history,
the history is restarted with the current click. It is still
possible to record uncorrelated clicks in the history. For
example, user interacts with the Edit menu and subse-
quently opens a file. In this case, the history will contain
clicks for edit menu interactions and the file open inter-
actions. However, the uncorrelated clicks will have low
probability and will eventually be made insignificant to
the predictor with further training.

IASP uses very simple training where the observed
count is updated every time a particular click is detected.
In order to correlate file I/O activity, the history of clicks
that lead to file I/O is traversed and the I/O count for ev-

USENIX ’08: 2008 USENIX Annual Technical ConferenceUSENIX Association 75

ery click present in the history is incremented. Ratio of
both counts gives us the probability of file I/O following
the particular click.

3.3.2 Correlating disk I/O activity

File I/Os issued by the application can be satisfied by the
buffer cache and as a result may not require any disk I/O
and the disk can remain in a power saving state. Since
not all file I/Os result in disk I/O, we introduce an addi-
tional correlation step to correlate the mouse click to the
disk I/O. We use a history of file I/Os generated by the
particular click IDs to predict the future disk I/O gener-
ated by the particular click. We add a 2-bit history ta-
ble with a 2-bit saturating counter to record the history
of file I/Os that resulted in disk I/O after a given mouse
click was observed. We update the prediction table using
the history of file I/Os and the resulting disk I/O and the
current outcome of the file I/O. Combination of the file
I/O probability and the resulting I/O prediction results in
a final decision about disk spin-up.

We are relying on file I/O prediction and disk I/O
prediction to separate application behavior from the file
cache behavior. By considering both the probability of
a particular click being followed by file I/O and the be-
havior of the resulting I/O in the buffer cache, IASP can
accurately discern whether that click will result in actual
disk I/O. Separating the predictor’s training into file I/O
and buffer cache behavior allows accurate correlation of
clicks to the application’s file I/O, which is the funda-
mental goal of this paper. Mouse interactions with the
application’s GUI are strongly correlated to file I/O, so,
intuitively, the goal of the described implementation is to
filter all uncorrelated clicks first before the buffer cache
impact on disk I/O is considered. Finally, we use a sim-
ple 2-bit history to predict buffer cache behavior, which
provided sufficient accuracy. However, more sophisti-
cated buffer-cache behavior prediction can be potentially
employed to further improve IASP accuracies.

3.4 To predict or not to predict

The critical issues that we are addressing in our design
are timeliness and accuracy, which turn out to be com-
peting optimizations. Many application functions can be
invoked with just a single click, however certain opera-
tion may require several steps. In case of multiple clicks,
the last click initiates a system action that is a response
to the user’s interaction. More specifically, we can ob-
serve only the last click just before disk I/O occurred and
correlate the click to the particular disk behavior with
high accuracy. While this approach is very accurate, it
is not very timely. Correlating disk I/O to the last click
occurring before the I/O request was observed does not

���������	
���

���������
�

���

��

��

���

��

���

��������������

������������

������������ �

!����������"��#

$���������
�

%&'(

)������(

*�������

���
�(

Figure 4: IASP decision flowchart.

provide adequate time before the I/O arrives to offset a
significant portion of the spin-up latency, and so has a
negligible impact on reducing the associated interactive
delays. This scenario is illustrated in Figure 3. Click-
ing on C7, which is the final Open button in file open
sequence, will result in an I/O system call. However, the
click is immediately followed by I/O and waiting for pre-
diction until last click will provide little benefit in reduc-
ing delays exposed to users. Spinning up the disk upon
C1 click provides sufficient time to reduce delays; how-
ever, it may result in erroneous spin-ups, since the user
may perform other operations that do not lead to file I/O.

3.5 Predicting upcoming activity
Figure 4 shows the decision-making process. Upon each
mouse click, we use the ID of the current click to cal-
culate the prediction table hash index. The daemon per-
forms a prediction table lookup with three possible out-
comes: the entry is found indicating that the interaction
leads to file I/O with probability above the threshold, the
corresponding entry is found but contains a low prob-
ability of upcoming file I/O, or the entry is not found.
Events which are not found in the table are added and up-
dated accordingly to our training routine described ear-
lier. Once the entry is found that satisfies the desired
probability threshold, we use the current history of disk
I/Os for the given mouse click and perform final lookup
into history prediction table for the selected click. The
prediction from the history table dictates the outcome of
the disk state and the disk is transition to the predicted
state.

In our experimental implementation, we consider only
two possible states for the disk, standby and sleep.
Therefore, the decision to spin-up the disk is binary,
i.e. the determination is made that either I/O activity
is forthcoming following the mouse event or it is not.
However, our binary decision predictor can easily be ex-

USENIX ’08: 2008 USENIX Annual Technical Conference USENIX Association76

Appl. Number of Read (MB) Write (MB) Read (MB) Write (MB) Number of Number
I/O Periods Without Cache Without Cache With Cache With Cache Clicks of IDs

Firefox 814 1903.35 350.8 851.91 120.39 3857 130
Writer 1385 2043.62 2186.28 1434.05 2120.47 5755 195

Impress 1485 1230.42 263.6 517.06 60.44 25375 194
Calc 2846 1840.4 116.7 1280.7 59.67 9102 35
Gimp 844 1443.32 957.3 796.9 936.54 8465 157
Dia 6362 174.31 65.3 123.64 10.28 46864 118

Table 1: Applications and execution details

tended to devices with multiple sleep states. The only
required modification is the discretization of the prob-
abilities computed from the prediction table. Consider
the case of 2 sleep states, one having the platters fully
spun-down, and the other having the platters spinning at
a reduced RPM. The third possible state is full idle. This
scenario is easily handled by adding a second threshold.
With two thresholds, probability values falling beneath
the lower one generate a prediction favoring the halted
platters sleep state. Probability values falling between
the two thresholds would cause the disk to enter the re-
duced RPM sleep state. Finally, any probability values
above the higher threshold would fully spin-up the disk.
Clearly this modification can be extended to an arbitrary
number of sleep states.

3.6 Multiprogramming environment

As described, our mechanisms work in a multiprocess
environment since training and prediction are made in-
dependently of other processes. The described monitor-
ing mechanism allows us to uniquely identify windows
from multiple processes and allow for accurate correla-
tion without any aliasing from other applications. The
prediction performed by IASP is also easily integrated
into a multiprocess environment since as soon as IASP
predict spin-up for a single process the disk is spun up
without considering other processes. This is opposite of
the shutdown mechanisms which have to consider other
processes that are currently ruining and may need the
disk. In case of spin-up, once the disk is needed it has
to be spun-up.

4 Methodology

We evaluate the performance of ACSU and IASP mech-
anisms, comparing them to ALT+. In order to fully eval-
uate the effectiveness of our proposed mechanisms, we
use a trace-based simulator as well as an implementation
of the mechanisms that replays the traces in real time
with an actual disk. We focus on predicting spin-ups

State WD2500JD 40GNX
Read/Write Power 10.6W 2.5W
Seek Power 13.25W 2.6W
Idle Power 10W 1.3W
Standby Power 1.8W 0.25W
Spin-up Energy 148.5J 17.1J
Shutdown Energy 6.4J 1.08J
State Transition
Spin-up time 9 sec. 4.5 sec.
Shutdown time 4 sec. 0.35 sec

Table 2: Disk energy consumption specifications.

and as a result, we use a simple timeout based shutdown
mechanism with the timeout set to 20 seconds which is
comparable to the breakeven time of both disks. This
means that the disk is shut down after 20 seconds of
idleness. This also applies to erroneous spin-ups, where
when the disk is spun up, it waits for the timeout to expire
before subsequently shutting down.

Detailed traces of user-interactive sessions for each
application were obtained by a modified strace util-
ity over a number of days. The modified strace utility
allows us to obtain the PID, access type, time, file de-
scriptor, as well as the amount of data that is fetched for
each I/O operation. The specifications of the simulated
disks belong to Western Digital Caviar WD2500JD and
Hitachi Travelstar 40GNX hard drives and are shown in
Table 2. The WD2500JD has a spin-up time of about 9
seconds from the sleep state, the surprising duration of
which appears to be remarkably common for high-speed
commodity drives. The 40GNX is designed for portable
systems and as such has much lower energy consumption
and spin-up time than the WD2500JD.

Table 1 shows six popular desktop applications chosen
for our evaluation: Firefox, Writer, Impress, Calc, Gimp,
and Dia. Firefox is a web browser with which a user
spends time reading page content and following links.
In this case, I/O behavior depends on the content of the
page and user behavior. Impress (presentation editor),
Writer (word processor), and Calc (spreadsheet editor),

USENIX ’08: 2008 USENIX Annual Technical ConferenceUSENIX Association 77

� �

�
�
�
�

�
�
�
�

	�
�

� �
�
�
�

�
�
�
�

	�
�

� �
�
�
�

�
�
�
�

	�
�

� �
�
�
�

�
�
�
�

	�
�

� �
�
�
�

�
�
�
�

	�
�

� �
�
�
�

�
�
�
�

	�
�

���

��

���

��

���

��
��� ��������� ����

������������������������ ����	!��������"�!��������#��

$
�
�!

��
�%
�&

��

'
��
 (

Figure 5: Prediction accuracy normalized to the total
number of disk spin-ups without the buffer cache.

are part of the Open Office suite of applications. All three
are interactive applications with both user driven I/O and
periodic automated I/O, i.e. autosaves. Gimp is an image
manipulation program used to prepare and edit figures,
graphs, and photos. Finally, Dia is an application used
for drawing diagrams for papers and presentations.

Table 1 also lists the total number of idle periods for
which a potential shutdown and a corresponding spin-up
are required, the total amount of read and write activity, a
total number of mouse click interactions and the number
of unique click interactions encountered in the studied
applications. We show statistics for I/O requests that are
generated by the application (shown as ’Without Cache’)
and I/O requests that are not filtered by the buffer cache
and are send to the disk (shown as ’With Cache’). In our
experiments, we use an LRU managed buffer cache of
size 512MB, which is representative of current systems’
capabilities.

5 Results

5.1 File I/O Correlation Accuracy

Accurate prediction ensures that the disk is not spun-up
needlessly, when no activity is forthcoming. We first
consider the accuracy of correlating mouse clicks to file
I/O at the application level, before it is filtered by the
buffer cache. Figure 5 shows the breakdown of correct
and incorrect spin-ups, i.e. hits and misses, for ACSU,
IASP and ALT+ that result from predicting file I/O when
the system does not employ buffer caching. Hits are
counted when the prediction to spin-up the disk is made
and it is followed by file I/O. Misses are those spin-ups
which were not followed by any I/O, and Missed Op-
portunities are periods for which the mechanism failed
to provide a prediction, but a spin-up was needed. Each
missed opportunity results in the disk being spun up on

� �

�
�
�
�

�
�
�
�

	�
�

� �
�
�
�

�
�
�
�

	�
�

� �
�
�
�

�
�
�
�

	�
�

� �
�
�
�

�
�
�
�

	�
�

� �
�
�
�

�
�
�
�

	�
�

� �
�
�
�

�
�
�
�

	�
�

���

��

���

��

���

��
��� ��������� ����

������������������������ ����	!���������"�!�������#��

$
�
�!

��
�%
�&

��

'
��
 (

�
�
�
�

�
�
�
�

	�
�

� �
�
�
�

�
�
�
�

	�
�

� �
�
�
�

�
�
�
�

	�
�

� �
�
�
�

�
�
�
�

	�
�

� �
�
�
�

�
�
�
�

	�
�

� �
�
�
�

�
�
�
�

	�
�

���

��

���

��

���

��
��� ��������� ����

������������������������ ����	!���������"�!�������#��

$
�
�!

��
�%
�&

��

'
��
 (

Figure 6: Prediction accuracy normalized to the total
number of spin-ups with the buffer cache.

demand, essentially spinning up when an I/O request
arrives. ACSU mechanisms keep the disk powered up
while a user is interacting with the application, minimiz-
ing the interactive delays. While it provides an upper
bound for the number of I/O periods that may be pre-
dicted by clicks (i.e. the number of periods covered by
IASP can equal but not exceed the number of periods
covered by ACSU), it näıvely spins-up the disk for all
clicks, resulting in excess misses. Low coverage and
high inaccuracies in ALT+ illustrate the behavior of the
mechanisms that solely rely on observing system events
without considering user interactions.

ACSU on average covers 81% of all file I/O periods,
while IASP correctly covers an average of 79% of peri-
ods. The lack of contextual information and the random
nature of idle period duration results in ALT+ correctly
covering an average of 7% of periods. ACSU shows the
greatest number of misses for all applications, 52% of
spin-ups are misses. This miss rate reflects the num-
ber of existing mouse clicks that do not correlate to any
I/O. When the disk is spun-up in ACSU, it will remain
spinning as long as new clicks are observed and the idle
threshold is not reached between any two clicks. IASP
consistently results in the fewest misses, averaging 2%,
which mostly occur while the predictor is warming up.

Whereas ALT+ considers solely I/O patterns when
generating predictions, coverage by the ACSU and IASP
mechanisms is contingent on the availability of mouse
events preceding I/O activity. Firefox, Writer, and Calc
show the greatest number of misses and missed oppor-
tunities for both ACSU and IASP, meaning that there is
a good deal more ambiguity in the mouse events avail-
able for prediction generated by these applications than
the others. In the case of Firefox, most mouse activity oc-
curs within the window displaying the visited web pages.
As such, the constantly changing structure of the window
increases the number of mouse IDs that are encountered

USENIX ’08: 2008 USENIX Annual Technical Conference USENIX Association78

resulting in a high misprediction rate for ACSU. IASP, on
the other hand, does not spin-up the disk for these clicks,
since their IDs are not observed as often as those that be-
long to the static part of the GUI. In the case of Writer
and Calc, the relatively low coverage by both ACSU
and IASP mechanisms is caused by lower availability of
clicks preceding I/O. While most or all functionality of
these applications is accessible through the GUI, the in-
teraction is made simpler through the use of keyboard
shortcuts. As we are only considering mouse events, any
I/O that occurs in response to a keyboard shortcut is not
predicted by the mechanisms. The applicability of key-
board events to I/O prediction will be explored in future
research.

The applications for which both ACSU and IASP per-
form best are Impress, Dia and Gimp. These applications
have more complex GUIs for which extensive keyboard
shortcuts are not intuitive to an average user. This is the
case with Dia and especially Gimp. All three of these
applications also depend heavily upon the mouse, due to
the graphical nature of their content and usage. Manip-
ulating images, graphs, and figures is done most easily
with the mouse and in our traces the user depended more
heavily on the mouse for all interactions with these ap-
plications.

5.2 Impact of the Buffer Cache

High file I/O prediction accuracy shown in Figure 5 rep-
resents the strong correlation between mouse clicks and
file I/O. However, file I/O may also be satisfied by a
buffer cache access, making a disk spin-up unnecessary.
Hence, we have to consider the impact of the buffer cache
on prediction accuracy. From this point on, all figures
show the mechanism with the buffer cache enabled. We
set the buffer cache to 512MB, which is representative
of current systems’ capabilities. The buffer cache can
satisfy many file I/Os resulting in fewer required disk ac-
cesses. In addition to introducing additional randomness
into file I/O patterns, the buffer cache also increases the
training time of prediction mechanisms due to both in-
clusion of the access history and and fewer spin-ups en-
countered in the system. Similarly to Figure 5, Figure 6
shows hits, misses, and missed opportunities, but those
metrics now realistically reflect the actual required disk
I/O.

The aggressiveness of our ACSU mechanism again
makes it a top performer when we consider the amount
of periods covered with correct spin-ups. This behav-
ior can be expected since the mechanism just keeps the
disk on no matter if the buffer cache satisfies the request
or not. Therefore, this mechanism’s behavior is not im-
pacted by the presence of the buffer cache. The different
fraction of period misses, and hits, as compared to Fig-

� �

� ��� ��� ��� ��� ��� ��	 ��
 ��� ��� �

����

����

����

��	�

��	�

��
�

��
�

����

����

���	

���

����

����

����

����

����

����

�������

��������

�
��
��
�
��

�
�
��
��

���������

�
��
��

��
�

Figure 7: Hit/Miss ratio and I/O activity period coverage
vary as the acceptable confidence level is increased.

ure 5 are due to a change in the periods’ composition
since we have fewer and longer periods due to filtering
of I/O by the buffer cache. In this case, ACSU is able to
spin up the disk ahead of time for 66% of required peri-
ods, while incurring misprediction rates as high as 54%
with the average of 52%. The ALT+ mechanism is also
not impacted much by the buffer cache since the random-
ness observed by the file I/O in the interactive application
is already large rendering this mechanism not very useful
in either case. The coverage is as low as 3% with an av-
erage of 7%, incurring a high misprediction rate of 24%
on average.

The impact is more pronounced in the case of IASP,
since IASP uses contextual prediction selectively to pre-
dict what user activity will result in disk I/O. Therefore,
the introduction of any randomness by the buffer cache
affects the accuracy of our history-based IASP disk I/O
prediction. IASP remains the most accurate mechanism,
resulting in only 2% mispredictions while achieving 65%
of correct spin-ups, on average. Low misprediction rate
indicates that the randomness introduced by the buffer
cache is insignificant and the history-based prediction is
able to capture correctly the behavior of the disk I/O.
Lower coverage indicates that the fewer I/O periods in-
crease the fraction of learning time. It is worth noting
that the significance of learning time decreases the longer
the system stays on.

In the case of all applications except for Dia, the lower
coverage of the IASP mechanism as compared to the
coverage of the uncached I/O is due to learning, since
predictions followed by an absence of disk I/O due to
caching result in fewer learning opportunities. Interac-
tion with GUI elements results in the requisite file data
being stored in the cache. In the absence of a cache,
even the infrequently used elements would generate disk

USENIX ’08: 2008 USENIX Annual Technical ConferenceUSENIX Association 79

� �

�
�
�
�

�
�
�
�

	�
�

� �
�
�
�

�
�
�
�

	�
�

� �
�
�
�

�
�
�
�

	�
�

� �
�
�
�

�
�
�
�

	�
�

� �
�
�
�

�
�
�
�

	�
�

� �
�
�
�

�
�
�
�

	�
�

���

��

���

���

����������������������������	�������������������� ��

��
�!
�"
��
��
#
$
�%

Figure 8: Average delay in seconds, WD2500JD.

I/O, but not so with the cache. In general, IASP greatly
reduces the number of unnecessary spin-ups that are
present in ACSU, at the cost of lower coverage, due to
more energy-efficient spin-up policies.

In the case of Dia, the type of interactions encountered
during tracing were limited to very simple actions, such
as opening, creating and saving a number of files contain-
ing various simple figures, meaning that the availability
or absence of I/O was quickly learned by IASP. Creating
even the simplest diagrams may require a large number
of clicks. ACSU therefore exhibits a large number of
mispredictions in this case, while IASP easily filters out
the events that cause the program to, for example, draw
a triangle rather than open a file.

5.3 Confidence Levels

Confidence levels are dynamically set thresholds for pre-
diction within IASP. Recall that confidence levels asso-
ciated with the mouse events represent the ratio of how
many times the event was observed and the number of
times the event was followed by file I/O. A given confi-
dence level dictates the amount of predictions made and
the prediction accuracy as illustrated in Figure 7. Con-
fidence of 1 means that the click is always followed by
I/O activity, confidence of .9 means that the click is fol-
lowed by I/O activity 90% of the time, and so on. If the
confidence level is set too low, the predictor may spin-
up the disk early in response to events that rarely lead to
I/O activity. For example, the user clicked on File menu
but interacted with options that did not involve disk I/O.
However, early spin-ups hide more latency if the inter-
action leads to disk I/O. Setting the confidence level too
high, however, may delay the disk spin-up and poten-
tially expose the entire spin-up latency to the users. It is
therefore important to set confidence levels such that the
energy consumption caused by early-erroneous spin-ups
and the delay reduction offered by the early spin-ups are

� �

�
�
�
�

�
�
�
�

	�
�

� �
�
�
�

�
�
�
�

	�
�

� �
�
�
�

�
�
�
�

	�
�

� �
�
�
�

�
�
�
�

	�
�

� �
�
�
�

�
�
�
�

	�
�

� �
�
�
�

�
�
�
�

	�
�

���

��

���

���

����������������������������	����������� ��������!��

!
��
�"
�#
��
��
$
%
�&

Figure 9: Average delay in seconds, 40GNX.

in balance.
Figure 7 illustrates impact of confidence on Hit/Miss

ratios and file I/O period coverages. We define coverage
as a fraction of correctly predicted spin-ups in the appli-
cations. The ratio of hits to misses shows the average ac-
curacy over all applications in predicting upcoming I/O
activity. We see that due to optimistic prediction, the
hit/miss ratio declines slightly as the acceptable confi-
dence level increases past 0.5, but overall remains steady
at just over 80%. The sharp increase and steady behavior
in the hit/miss ratio indicates quick convergence during
training and stable behavior for each mouse event. In-
creasing confidence level past 0.5 results in longer train-
ing and the predictor’s coverage drops sharply, since it
attempts to predict fewer and fewer disk spin-ups.

5.4 Delay Reduction

Figures 8 and 9 show the average spin-up delays that are
exposed to the user in the case of each of the two disks.
Each missed opportunity seen in Figure 6 results in delay
equal to the average spin-up time, 9 seconds in the case
of WD2500JD and 4.5 seconds in the case of 40GNX.
On the other hand, hits described in Figure 6 are predic-
tions that result in the disk spinning up correctly and may
arrive either early enough to allow the disk to spin-up be-
fore the I/O arrives, resulting in no delay, or late, where
the disk is in the process of spinning up when I/O arrives.
The demand based spin-up exposes full spin-up delay to
the application, during every spin-up, and therefore the
average delay in demand based system is full 9 seconds
in the case of WD2500JD and 4.5 seconds in the case of
40GNX.

ACSU is very aggressive in reducing spin-up delays
at the expense of increased energy consumption. High
coverage of file I/O periods in Figure 6 results in an
average spin-up delay reduction from 9 seconds to 3.3,
which is only 37% of the spin-up delay exposed by the

USENIX ’08: 2008 USENIX Annual Technical Conference USENIX Association80

� �

�
��

��
�

�
	

�

�
�

�

��

�

� �
��

��
�

�
	

�

�
�

�

��

�

� �
��

��
�

�
	

�

�
�

�

��

�

� �
��

��
�

�
	

�

�
�

�

��

�

� �
��

��
�

�
	

�

�
�

�

��

�

� �
��

��
�

�
	

�

�
�

�

��

�

���

���

���

���

���

���
������ ���� �������

���� !"��#��$�����������������%��&&����'��%���������

(
!
��

��
�)

��
��

�&
*
�+

�
��

�
�

Figure 10: Energy consumption, WD2500JD.

demand-based spin-up for the WD2500JD. In the case of
the 40GNX disk, shown in Figure 9, the average spin-
up delay is reduced to 1.36 seconds, which is 30% of
demand-based spin-up delay. As expected from Figure 6
ALT+ performs poorly exposing high delays of 8.58 sec-
onds and 4.35 seconds for the WD2500JD and 40GNX,
respectively. The exposed delays in ALT+ are compara-
ble to demand based spin-up delays, since most periods
require on-demand spin-up.

IASP is able to shorten interactive delays exposed to
the users down to 5.89 seconds and 2.67 seconds for
WD2500JD and 40GNX, respectively, while maintain-
ing high accuracy and low energy consumption. IASP
exposes 2.6 seconds and 1.3 seconds more delay than
ACSU for WD2500JD and 40GNX, respectively. ACSU
sets the lower bound on the spin-up delay for mecha-
nisms that utilize mouse interaction since it spins up or
keeps the disk on for all mouse interaction as shown by
the higher coverage in Figure 6. ACSU not only captures
more I/O periods, but also does so earlier than IASP,
since it is not governed by the confidence requirement set
in IASP to prevent erroneous spin-ups. ACSU is there-
fore most effective in situations where low delay is de-
sired, assuming that of course energy-efficiency is also a
desired attribute, but to a lesser extent. The higher accu-
racy of IASP makes it the most desirable choice when en-
ergy efficiency is important and users are willing to tol-
erate slightly higher delays than ACSU provides, which
are still much lower than delays exposed by the demand-
based spin-ups.

Highest delay reduction is present in Dia, where the
delay is reduced by 93% and 85% by ACSU and IASP
for 40GNX, and 96% and 85% for the WD2500JD, in-
dicating that there is plenty of user think time to over-
lap spin-up delays. On the other hand, Writer shows the
lowest reduction in spin-up delays. The most significant
factor contributing to the low reduction in spin-up delays
in case of Writer is single button interaction with tool-

� �

�
��

��
�

�
	

�

�
�

�

��

�

� �
��

��
�

�
	

�

�
�

�

��

�

� �
��

��
�

�
	

�

�
�

�

��

�

� �
��

��
�

�
	

�

�
�

�

��

�

� �
��

��
�

�
	

�

�
�

�

��

�

� �
��

��
�

�
	

�

�
�

�

��

�

���

���

���

���

���

���
������ ���� �������

���� !"��#��$�����������������%��&&���'��%���������

(
!
��

��
�)

��
��

�&
*
�+

�
��

�
�

�
��

��
�

�
	

�

�
�

�

��

�

� �
��

��
�

�
	

�

�
�

�

��

�

� �
��

��
�

�
	

�

�
�

�

��

�

� �
��

��
�

�
	

�

�
�

�

��

�

� �
��

��
�

�
	

�

�
�

�

��

�

� �
��

��
�

�
	

�

�
�

�

��

�

���

���

���

���

���

���
������ ���� �������

���� !"��#��$�����������������%��&&���'��%���������

(
!
��

��
�)

��
��

�&
*
�+

�
��

�
�

Figure 11: Energy consumption, 40GNX.

bars, which results in I/O activity. For example, if the
user clicks on the spell-check button in the toolbar rather
than finding spell-check in the Tools menu, the resulting
activity arrives quickly following the single mouse event
that predicted it.

Reduction in delay is generally accompanied by in-
crease in energy consumption, since we need the disk
to remain on in order to minimize the delay. For ex-
ample, if we allow the disk to remain spinning for the
entirety of an application’s run, the interactive delays are
eliminated, but at the cost of vastly increased disk energy
consumption. On the other hand, simple demand-based
mechanisms are often the lowest energy solution, due to
the fact that they do not have extraneous spin-ups, but
they incur delays each time the disk is spun up. We have
seen that delay can be significantly improved using our
proposed ACSU and IASP mechanisms and now we turn
to a discussion of energy consumption.

5.5 Energy

Figures 10 and 11 show the details of energy consump-
tion of the two disks. The energy consumption is di-
vided into I/O serving energy, power-cycle energy, and
idle energy. I/O serving energy is consumed by the disk
while reading, writing, and seeking data. I/O serving en-
ergy is the same for all mechanisms, since the amount of
I/O served is the same. Power-cycle energy is consumed
by the disk during spin-up and shutdown and is directly
related to number of spin-ups which also include erro-
neous spin-ups. Finally, idle energy is the energy con-
sumed by the disk while it is spinning but not serving
any I/Os. Idle energy is dependent on the number of I/O
periods and the timeout before the disk is shutdown after
an I/O period, additional idle energy consumption occurs
in ACSU, IASP, and ALT+ due to mispredictions, dur-
ing which the disk idles before shutting down when I/O
does not arrive. In addition, early spin-ups result in ad-

USENIX ’08: 2008 USENIX Annual Technical ConferenceUSENIX Association 81

ditional energy being consumed by the disk between the
time when the disk is ready to serve data and the arrival
of the first I/O, which is most prevalent in ACSU.

Due to a large number of mispredictions, ACSU con-
sumes significantly more idle and power-cycle energy
than IASP. On average, IASP consumes 30% less energy
idling than ACSU, and 40% less energy cycling power
modes when using WD2500JD. In 40GNX’s case, IASP
consumes 27% less idle energy than ACSU, and 25% less
cycling energy. On average, with the WD2500JD, IASP
consumes 6% more energy than the on-demand mech-
anism due to waiting after early spin-ups and the few
mispredictions that result in the consumption of energy
not present in the on-demand mechanism. Similarly, in
the 40GNX case, IASP consumes 7% more energy than
the on-demand mechanism. Keeping the disk always on
has the effect of increasing idle energy consumption to
levels that are prohibitively large for energy constrained
systems. Overall, the energy consumed by WD2500JD
using ACSU is 49% lower than keeping the disk always
on, 70% lower in case of IASP, and 65% lower for ALT+.
The energy consumed by 40GNX when using IASP is
64% lower, 60% lower for ALT+. Differences in rela-
tive energy consumption result from the different power
profiles of the two disks in question.

5.6 Overheads

The computational and storage overheads of any power
management mechanism have to be taken into considera-
tion, since improving the energy consumption of one de-
vice while equally increasing that of another does not re-
sult in energy-efficiency. Therefore, it is critical to keep
computational requirements to minimum to avoid the ex-
cess energy consumption in the processor. Additionally,
the storage overheads of a power management mecha-
nism’s data should be low enough to be considered in-
significant, since storing a large amount of data could
potentially impact the execution of interactive applica-
tions by polluting data caches in the processor.

Considering those requirements, ACSU has a clear ad-
vantage since it does not have to store or compute any-
thing. It simply spins the disk up when the disk is shut-
down and a click arrives or resets the timeout variable
when the disk is active. IASP, on the other hand, com-
putes IDs that uniquely identify user mouse interactions
and store the interaction predictions in a prediction table.
Due to the efficiency of hash tables, the only measur-
able computational overhead is incurred when the unique
window ID is computed. Firefox has the deepest tree
of 27 levels in the studied applications. Therefore, we
setup an experiment to measure the average overhead of
traversing 27 levels of tree hierarchy and we found the
overhead to be negligible. Furthermore, this overhead

Figure 12: The experimental setup used for measuring
power.

can be almost eliminated by modifying the X-Window
Server to automatically generate mouse click IDs as it
itself builds the window tree, rather than building a sep-
arate representation as shown in Figure 2.

The storage overhead is likewise relatively low in
IASP. For each unique mouse event we are storing its
ID (32 bits), the number of times the event was observed
(32 bits), the number of times it was followed by I/O
activity (32 bits), and the two-bit history table (8 bits)
with two bit saturating counters for the prediction out-
come (8 bits). The resulting table entry is 14 bytes. The
number of unique click IDs in the studied applications
ranged widely from 35 in Calc to 195 in Writer. There-
fore, in the worst case Writer requires 2.67KB to store
195 entries. An 11.3KB table would suffice for storing
all entries from every one of the six applications we have
studied.

5.7 Experimental Evaluation
Experiments were conducted using a setup of two desk-
top machines with dual-core 3.0GHz processors and
2GB of memory. As shown in Figure 12, a multi-channel
data acquisition board (DAQ) from NI was connected to
the power cable of a WD2500JD hard drive dedicated to
replying the traces. To measure the power consumed, a
0.1 ohms resistor was placed in series with the hard disk
power supply and the voltage drop across the resistor was
fed to the DAQ. The second machine, running Windows
XP and the DAQ drivers, ran the LabView setup sam-
pling measurements at 1000Hz from the DAQ. The sim-
ulated trace-driven prediction mechanisms were ported
to a driver that replays the traces on the measured hard
drive.

Figure 13 shows a selected portion of the Dia trace, as
replayed on the hardware and captured through the ex-
perimental setup. We show several activity periods for
on-demand spin-up, ACSU, and IASP. We omit ALT+

USENIX ’08: 2008 USENIX Annual Technical Conference USENIX Association82

due to its low accuracy. Figure 13 shows several Lines
C, E, and G which show the spin-ups that were initiated
on-demand when the I/O arrived. The period of disk ac-
tivity beginning at A, as initiated by ACSU, illustrates
ACSU’s aggressive spin-up policy. At A the user begins
a series of interactions which cause the disk to spin up
and remain spinning until the interaction ends and I/O is
served. The I/O arrived at C and the disk was spun up
on-demand to serve the request. IASP, on the other hand,
spun-up early at B, in response to a user interaction that
predicted that I/O will follow.

Similarly, we see that the next interaction at D, caused
both IASP and ACSU to spin-up the disk ahead of E,
where the disk was spun up on-demand. Another exam-
ple occurs at G, with on-demand spin-up shortly follow-
ing the IASP and ACSU spin-ups. Matching up the trace
replay to the simulator output, we have verified that this
behavior is indeed expected and due to space constraints
we include only limited results from the hardware replay.

6 Conclusion

In this paper, we proposed two disk spin-up mechanisms:
ACSU that simply keeps the disk powered when users are
interacting with the application and IASP that accurately
and efficiently monitors user behavior. Both mechanisms
reduce interactive delays exposed to the users due to en-
ergy management in hard disk drives. Hard disks con-
tribute significantly to the overall energy consumption in
computer systems. Therefore, aggressive energy man-
agement techniques attempt to maintain the hard drive in
a low power state as much as possible exposing long la-
tency spin-up delays to the users. Reducing the spin-up
delays provides twofold benefit. First, the users are less
irritated by constant lags in the responsiveness of the sys-
tem due to disk spin-ups. Second, shorter delays allow
the system to accomplish tasks quicker resulting in less
energy being consumed by other components that have
to wait for the disk spin-up.

The key observation used in our design is that users
are responsible for the demand placed on the system
through interactive applications. Therefore, monitoring
user interaction patterns with applications provides the
opportunity for predicting I/O requests that follow the
interactions and use this to spin-up the disk ahead of
time, reducing delays. Our evaluation of proposed ACSU
and IASP shows significant improvement over modified
ALT+ mechanisms in terms of predicting upcoming disk
I/O activity and thereby shortening the interactive de-
lay associated with energy management. ALT+ mech-
anisms are not able to accurately predict I/O activity in
interactive applications resulting in an average mispre-
diction rate of 25% that increases energy consumption
in the system without providing any benefit of reducing

� ������

� � � � 	
 �

�����

����

����

�
�
�
��

�
�
�
��

�
�
�
��

�������������

Figure 13: Power consumption in a selected 550 second
period from Dia under Demand-based spin-up, ACSU,
and IASP.

delays with only 7% of periods correctly predicted spin-
ups, on average. ACSU mechanisms are very aggressive
and achieve 81% of accurate predictions that reduce de-
lays at a cost of 52% misprediction rate. As a result,
ACSU is able to reduce spin-up delays on average by
over 60% (over 5 seconds), albeit at the cost high en-
ergy consumption. Finally, IASP is much more accurate
since it is monitors user interactions. IASP on average
achieves 79% of accurate predictions that reduce delays
with only 2% of mispredictions. As a result, IASP is
able to reduce spin-up delays on average by 35% (over 3
seconds), while maintaining low energy consumption.

The primary goal of this paper was to reduce inter-
active delays due to disk spin-up exposed to the users,
while maintaining the energy efficiency of the shutdown
mechanism. Spin-up mechanisms do not reduce energy
consumption of the individual device, however they have
a side effect of making the system more energy efficient
by accomplishing tasks quicker and reducing the energy
consumed by the system waiting for the disk to spin-up.

References
[1] ALBINALI, F., AND GNIADY, C. CPM: Context-aware power

management in wlans. In Proceedings of the Eighteenth Inno-
vative Applications of Artificial Intelligence Conference (IAAI)
(2006).

[2] BENINI, L., BOGLIOLO, A., PALEOLOGO, G. A., AND
MICHELI, G. D. Policy optimization for dynamic power man-
agement. IEEE Transactions on Computer-Aided Design of Inte-
grated Circuits and Systems 18, 6 (June 1999), 813–833.

[3] BIANCHINI, R., AND RAJAMONY, R. Power and energy man-
agement for server systems. Tech. Rep. DCS-TR-528, Depart-
ment of Computer Science, Rutgers University, June 2003.

[4] CHASE, J., ANDERSON, D., THACKAR, P., VAHDAT, A., AND
BOYLE, R. Managing energy and server resources in hosting
centers. In Proceedings of the 18th Symposium on Operating
Systems Principles (October 2001).

USENIX ’08: 2008 USENIX Annual Technical ConferenceUSENIX Association 83

[5] CHUNG, E.-Y., BENINI, L., BOGLIOLO, A., LU, Y.-H., AND
MICHELI, G. D. Dynamic power management for nonstation-
ary service requests. IEEE Transactions on Computers 51, 11
(November 2002), 1345–1361.

[6] CHUNG, E.-Y., BENINI, L., AND MICHELI, G. D. Dynamic
power management using adaptive learning tree. In Proceed-
ings of the International Conference on Computer-Aided Design
(Novemebr 1999), pp. 274–279.

[7] CRAVEN, M., AND AMER, A. Predictive reduction of power and
latency (purple). In MSST ’05: Proceedings of the 22nd IEEE /
13th NASA Goddard Conference on Mass Storage Systems and
Technologies (MSST’05) (Washington, DC, USA, 2005), IEEE
Computer Society, pp. 237–244.

[8] CRK, I., BI, M., AND GNIADY, C. Interaction-aware energy
management for wireless network cards. In Proceedings of the
ACM SIGMETRICS International Conference on Measurement
and Modeling of Computer Systems (2008).

[9] DIX, A., FINLEY, J., ABOWD, G., AND BEALE, R. Human-
computer interaction (3rd ed.). Prentice-Hall, Inc., Upper Saddle
River, NJ, USA, 2003.

[10] DOUGLIS, F., KRISHNAN, P., AND BERSHAD, B. Adaptive disk
spin-down policies for mobile computers. In Proceedings 2nd
USENIX Symp. on Mobile and Location-Independent Computing
(1995), pp. 381–413.

[11] ELLIS, C. S. The case for higher-level power management. In
Workshop on Hot Topics in Operating Systems (Rio Rico, AZ,
USA, March 1999), pp. 162–167.

[12] ELNOZAHY, M., KISTLER, M., AND RAJAMONY, R. Energy
conservation policies for web servers. In Proceedings of the
4th USENIX Symposium on Internet Technologies and Systems
(March 2003).

[13] GNIADY, C., HU, Y. C., , AND LU, Y.-H. Program counter
based techniques for dynamic power management. In Proceed-
ings of the 6th Symposium on Operating Systems Design and Im-
plementation (Dec. 2004).

[14] GOLDING, R. A., II, P. B., STAELIN, C., SULLIVAN, T., AND
WILKES, J. Idleness is not sloth. In Proceedings of the USENIX
Winter Conference (1995), pp. 201–212.

[15] HEATH, T., PINHEIRO, E., HOM, J., KREMER, U., AND
BIANCHINI, R. Application transformations for energy and
performance-aware device management. In Proceedings of the
11th International Conference on Parallel Architectures and
Compilation Techniques (September 2002).

[16] HELMBOLD, D. P., LONG, D. D. E., AND SHERROD, B. A dy-
namic disk spin-down technique for mobile computing. In Mobile
Computing and Networking (1996), pp. 130–142.

[17] HWANG, C.-H., AND WU, A. C. A predictive system shutdown
method for energy saving of event driven computation. ACM
Transactions on Design Automation of Electronic Systems 5, 2
(April 2000), 226–241.

[18] KARLIN, A. R., MANASSE, M. S., MCGEOCH, L. A., AND
OWICKI, S. Competitive randomized algorithms for non-uniform
problems. In Symposium on Discrete Algorithms (1990), pp. 301–
309.

[19] LARKBY-LAHET, J., SANTHANAKRISHNAN, G., AMER, A.,
AND CHRYSANTHIS, P. K. Step: Self-tuning energy-safe pre-
dictors. 125–133.

[20] LU, Y.-H., MICHELI, G. D., AND BENINI, L. Requester-aware
power reduction. In Proceedings of the International Symposium
on System Synthesis (2000), pp. 18–24.

[21] NIGHTINGALE, E. B., AND FLINN, J. Energy efficiency and
storage flexibility in the blue file system. In Proceedings of the
6th Symposium on Operating Systems Design and Implementa-
tion (OSDI) (December 2004).

[22] PINHEIRO, E., BIANCHINI, R., CARRERA, E. V., AND HEATH,
T. Load balancing and unbalancing for power and performance in
cluster-based systems. In Proceedings of the Workshop on Com-
pilers and Operating Systems for Low Power (September 2001).

[23] QIU, Q., AND PEDRAM, M. Dynamic power management based
on continuous-time markov decision processes. In Proceedings
of the Design Automation Conference (New Orleans, LA, USA,
June 1999), pp. 555–561.

[24] RYBCZYNSKI, J. P., LONG, D. D. E., AND AMER, A. Ex-
pecting the unexpected: adaptation for predictive energy conser-
vation. In StorageSS ’05: Proceedings of the 2005 ACM work-
shop on Storage security and survivability (New York, NY, USA,
2005), ACM Press, pp. 130–134.

[25] SAMSUNG. Samsung teams with microsoft to develop first hybrid
hard drive with nand flash memory, 2005.

[26] SIMUNIC, T., BENINI, L., GLYNN, P., AND MICHELI, G. D.
Dynamic power management for portable systems. In Proceed-
ings of the International Conference on Mobile Computing and
Networking (2000), pp. 11–19.

[27] SRIVASTAVA, M. B., CHANDRAKASAN, A. P., AND BRODER-
SEN, R. W. Predictive system shutdown and other architecture
techniques for energy efficient programmable computation. IEEE
Transactions on VLSI Systems 4, 1 (March 1996), 42–55.

[28] WEISSEL, A., AND BELLOSA, F. Self-learning hard disk power
management for mobile devices. In Proceedings of the Second
International Workshop on Software Support for Portable Storage
(IWSSPS 2006) (Seoul, Korea, Oct. 2006), pp. 33–40.

[29] WEISSEL, A., BEUTEL, B., AND BELLOSA, F. Cooperative
I/O—a novel I/O semantics for energy-aware applications. In
Proceedings of the Fifth Symposium on Operating System Design
and Implementation (December 2002).

USENIX ’08: 2008 USENIX Annual Technical Conference USENIX Association84

