System- and application-level support for runtime hardware reconfiguration
on SoC platforms

Dimitris Syrivelis and Spyros Lalis
Department of Computer and Communications Engineering
University of Thessaly, Hellas

Abstract

This paper discusses the design and implementation of a
system-level mechanism and corresponding application-
level support that enables programs running on a recon-
figurable SoC to modify the underlying FPGA at run-
time. Applications may request the addition and/or re-
moval of softcore devices at any point in time. Requests
are handled in a coordinated way via a separate user-level
process that fetches the configuration bistream from an
exernal server. System reconfiguration is implemented
via a fast suspend-resume mechanism with support for
dynamic softcore device address management to achieve
flexible device placement on the reconfigurable fabric.
Even though our approach does not rely on advanced
(and expensive) hardware that supports dynamic partial
reconfiguration, the obtained functionality is sufficient
for a wide range of application scenarios.

1 Introduction

The technology of field-programmable gate arrays (FP-
GAs) has the potential to change the way computing sys-
tems are being built. While FPGAs are not as fast or en-
ergy saving as corresponding ASICs [11] they have the
considerable advantage of flexibility: it becomes possi-
ble to reconfigure a system not only in terms of software
but also in terms of underlying hardware support. In or-
der to exploit this potential one faces challenging issues,
such as codesigning hardware and software components,
and seamlessly deploying hardware logic on platforms.
In this context it is of particular importance to sup-
port a flexible yet robust runtime reconfiguration, al-
lowing for the dynamic downloading and installation
of new softcore components. This opens the way for
a wide range of possible application scenarios regard-
ing automated system upgrades and customized platform
(re)configuration. For example, one may introduce sev-
eral hardware/software codesigned components that em-

ploy customized hardware codecs and accelerators to of-
fload the CPU, boost performance and lower power con-
sumption. The system could also decide which mod-
ules fit concurrently on the reconfigurable fabric and se-
lect the most appropriate combination, based on the cur-
rent state and explicitly provided specifications. Even
more radical adaptation can be realized on systems with
a softcore CPU, in which case it becomes possible to add
mechanisms that track CPU usage and create application
execution profiles. This information can in turn be ex-
ploited to fine-tune specific CPU components as well as
to select the most beneficial combination of application-
level hardware accelerators. Notably, the efficient online
profiling for softcore CPU platforms investigated in [14]
could provide the basis for such work.

Runtime reconfiguration in essence translates to trans-
parency, i.e. the ability to maintain system and ap-
plication state so that execution may proceed after (or
even during) system reconfiguration without the need
for a restart/recovery procedure. Compared to platforms
where the FPGA is merely a peripheral of the CPU, this
is harder to achieve in a system-on-chip (SoC) because
the entire system and application runtime state resides
within the reprogrammable fabric itself. Specifically, in
order for the runtime state to be kept intact, the FPGA
hardware must: (i) support partial reconfiguration; (ii)
retain the main softcore logic active while it is being re-
configured; (iii) offer the means for self-controlling the
reconfiguration process [22]. For the time being, FPGA
vendors provide these features only in expensive product
families, and even these devices have constraints in terms
of the dynamic partial reconfiguration (DPR) that can be
achieved in practice. For this reason approaches that rely
on advanced FPGA hardware are not suitable for cheap
commodity platforms, or systems with considerable re-
configuration requirements that cannot be implemented
given the current limitations of DPR.

In this paper we present work on achieving runtime
reconfiguration for SoC platforms featuring a softcore

USENIX Association

Annual Tech *06: 2006 USENIX Annual Technical Conference

315

CPU, without relying on advanced FPGA features. Our
goal is to let applications add and remove softcore de-
vices dynamically. The main contributions of this pa-
per are: (1) the introduction of a system-level mecha-
nism and application-level support for reconfiguring a
SoC platform at runtime, (2) an implementation that runs
on an off-the-shelf embedded device, and (3) a proof-of-
concept demo system. We underline that our approach is
entirely implemented in software, thus does not achieve
the same functionality that is (theoretically) possible via
DPR. It nevertheless provides considerable runtime flex-
ibility that is sufficient for most conventional application
systems.

The remainder of the paper is organized as follows.
Section 2 discusses related work. Section 3 gives an
overview of our approach. Section 4 describes a con-
crete system-level implementation based on the uClinux
Xilinx Microblaze port. The corresponding application-
level support is described in Section 5. Section 6 presents
an extension of our scheme to achieve an integrated han-
dling of softcore devices and physical off-chip peripher-
als. Section 7 discusses performance related issues. Sec-
tion 8 presents a proof-of-concept demo setup. Finally,
Section 9 concludes the paper.

2 Related Work

Significant efforts have been done on hardware-software
codesign to exploit the potential of reconfigurable hard-
ware. Researchers try to build a unified and transparent
programming model as well as a standard interface for
the integration of hardware accelerators independently
of the underlying platform details. A metholology for
codesigning applications along with corresponding de-
velopment tool support is presented in [16]. It pro-
poses a binary level hw/sw partitioner that takes as in-
put a software binary, decompiles it to recover high-level
information, determines the regions that should be im-
plemented in hardware (using appropriate profiling in-
formation) and generates modified binaries that have the
critical code fragments replaced by instructions that ac-
cess the hardware versions. In [18] a high-level pro-
gramming model is proposed based on a virtualization
layer through which softcore devices can be accessed in
a transparent way. Both approaches assume that the un-
derlying platform provides appropriate dynamic recon-
figuration support, allowing for arbitrary modules to be
added at runtime. This is far from straightforward to
achieve in reconfigurable SoC platforms where the CPU
itself occupies an area of the reconfigurable fabric.

A lot of research has been conducted on FPGA archi-
tectures and development tools for dynamic reconfigu-
ration support. The first step has been to enable partial
reconfiguration through corresponding partial bitstream

generation tool capabilities [S][9][13], then to change
FPGA architecture design so that it can retain the rest
of the logic active while it is being partially reconfig-
ured [2][3][15][22]. It must be stressed that dynamic
partial reconfiguration (DPR) is still an active field of re-
search. For the time being there are several problems
[22] which make it hard or even practically impossible
to apply DPR, especially for large and complicated de-
signs such as SoC platforms that feature a softcore CPU:
the partially reconfigurable FPGA area placement and
size; the external IOB routing constraints that enforce
the whole FPGA board layout to be designed with DPR
scenarios in mind; and —last but not least— the limited
number of Tristate Buffers (TBUFs) that must be used to
interconnect dynamically loaded modules with the rest
of the logic [22].

Considerable work has been done to support the run-
time reconfiguration on SoCs or platforms featuring a
separate CPU. This typically concerns mission-specific
platforms, or is integrated within a proper (embedded)
operating system context. We briefly discuss indicative
systems representing a variety of different approaches.

A typical framework for achieving dynamic reconfig-
uration of a dedicated SoC based on DPR is presented in
[7]. Part of the FPGA is used for a fixed softcore con-
trol subsystem which communicates with a remote host.
The rest of the FPGA is used to place custom logic. Re-
configuration can be triggered by the remote host, at any
point in time, which sends the corresponding bistream to
the control unit. The bitstream can also be encrypted for
security purposes. This approach is suitable for single-
application systems.

In [20] runtime DPR support is provided for a SoC fea-
turing a softcore CPU and an embedded operating sys-
tem. A dedicated kernel-level driver is introduced which
provides raw access to FPGA configuration data, allow-
ing it to be modified in an online fashion. This interface
can be used by applications or shell scripts to change part
of the FPGA at runtime. However, only simple reconfig-
uration scenarios can be implemented given the limita-
tions of DPR.

A different approach is employed in [12] where the
FPGA is pre-partitioned into a fixed number of custom
softcore units, and an extra layer is used to provide the
abstraction of unit allocation. The program loader distin-
guishes between software and softcore tasks and dynam-
ically links the former with a free softcore unit. This ap-
proach has been implemented in a system with a separate
(hardware) CPU. It can be used to eliminate some DPR
constraints for a specific platform, but reduces flexibility.
This is because it partitions the FPGA to an a priori de-
fined number of nodes that communicate with each other
via a fixed interconnection architecture. It is thus impos-
sible to dynamically install arbitrary hardware compo-

316

Annual Tech ’06: 2006 USENIX Annual Technical Conference

USENIX Association

nents that are customized for different applications.

Task-based reconfiguration using a suspend-resume
model for a multi-node architecture is presented in [8].
When a node needs to reconfigure, its tasks are sus-
pended and restarted on another node. During this mi-
gration, hardware functions may be mapped to software
versions thereof, depending on the resources available on
the destination node. When reconfiguration completes
the original node can be re-assigned its old tasks and pro-
ceed with their execution. This approach enables a full
reconfiguration of a SoC node, but requires at least two
nodes. It has also been implemented using customized
hardware and a separate softcore CPU.

Our reconfiguration scheme is geared towards SoC
platforms with a softcore CPU and an embedded oper-
ating system but does not rely on DPR (merely an off-
chip reconfiguration circuit is required). It constitutes a
practical option for achieving runtime reconfiguration on
top of cheap FPGA systems, without DPR functionality
nor any special support from the softcore development
toolchain. We employ a suspend-resume model for the
entire SoC, but a node can autonomously perform the en-
tire reconfiguration without requiring a second node that
must act as its slave. The proposed approach maintains
application and operating system state during reconfigu-
ration and lets drivers initialize or even re-establish the
state of softcore devices after reconfiguration completes.

Given that we target primarily resource constrained
platforms, the hardware configuration bistreams have
to be retrieved from a remote server over the Internet.
This is similar to the Xilinx Online (Internet Reconfig-
urable Logic) framework [21], which introduces a re-
mote hardware-update capable facility on top of an op-
erating system. The difference is that in our case it is the
user applications that trigger a reconfiguration, not the
remote server. It is in fact possible for any process to re-
quest a platform reconfiguration at any point in time yet
in a controlled way that ensures graceful degradation in
case of resource shortage. Moreover, our approach trans-
parently maintains system and application state across
reconfigurations.

3 Approach overview

The goal of our work is to support runtime reconfig-
uration for SoC platforms that feature a sofcore CPU.
Specifically, we wish to let applications dynamically add
and remove softcore devices that can be accessed via a
fast bus or memory mapped I/0O. For example, special
hardware accelerators, bus drivers and controllers for ex-
ternal hardware, or extra CPU softcore units, could be
installed on demand, according to the requirements of
the applications running on the system. Again, we stress
that this functionality is to be achieved without relying

on DPR capable hardware and corresponding partial bit-
stream generation tools support. The next subsections
give an overview of our approach, motivating the various
decisions taken.

3.1 The Concept

Our approach is based on a suspend-resume technique,
as follows. In a first step, before the actual reconfigura-
tion process begins, the FPGA bitstream corresponding
to the new hardware layout for the entire SoC is stored in
external memory (we do not address the computation of
the bitstream per se). Then, the system saves its current
runtime state and initiates FPGA programming. When
this completes, the system restarts and control goes to
the first stage loader. This checks whether a reconfigura-
tion took place, in which case it overrides the default boot
sequence, restores the saved system state and adjusts ba-
sic system device information. Finally, prior to resuming
normal execution, the device drivers are notified in order
to handle the side-effects of FPGA reconfiguration; most
notably to initialize / restore the state of the devices. A
schematic illustration of this process is given in figure 1.

USER MODE OLD CONFIG \ /KERNEL MODE

New Platform Bitstream
download & install to

Save system state
agreed location

NEW CONFIG\
FPGA programming

b &

/ USER MODE ‘ NEW CONFIG\

Continue with execution
New peripheral(s) is/are
now installed

LOADER-KERNEL
MODE

j\

NEW CONFIG ‘

Restore state & notify
drivers

Figure 1: The main phases of the reconfiguration scheme

Despite the fact that the entire FPGA is programmed
from scratch in a conventional fashion, the reconfigura-
tion flexibility provided to the application level is compa-
rable to what would have been possible using techniques
that rely on DPR. We note that, in principle, the same
scheme could also be used to enable a radical modifi-
cation of the softcore CPU itself (changing the softcore
CPU characteristics according to application workload
has been shown to boost performance [6]). However, our
approach cannot be applied if part of the FPGA logic is
required to remain active during reconfiguration, e.g. for
hard real-time applications.

USENIX Association

Annual Tech *06: 2006 USENIX Annual Technical Conference

317

3.2 Device Address Assignment

Given that peripheral devices can be added and removed
dynamically, the management of device addresses (more
specifically, channel ids for devices that are accessed via
a fast bus or specific addresses in the case of memory
mapped I/O) becomes a central design issue.

The “obvious” approach of a priori assigning each
softcore device a fixed address is not attractive. In the
case of fast bus access this would considerably limit the
number of devices that can be supported because only a
few different channel ids are typically supported in such
architectures. This holds to a far lesser extent for mem-
ory mapped I/O, but then again the corresponding ad-
dress range (though large) is not infinite. Thus an artifi-
cial upper bound for the number of peripheral devices
that can be considered is introduced in this case too.
What’s probably worse, to avoid conflicts, some central
authority or service would be required to assign chan-
nel ids and address ranges to each softcore device being
(ever) developed.

It is possible to eliminate these drawbacks by assign-
ing addresses dynamically, when a device is first installed
in the system. Still, in this case, each time the system re-
configures, the new platform memory layout would have
to be computed based on the current configuration and so
as to ensure that the addresses of all devices that continue
to be a part of the new configuration remain valid. This
implies that the new system image must be produced in
an online fashion, taking such constraints as input.

To maximize flexibility, we do not require device ids
and addresses to remain fixed across system reconfigura-
tion(s). This decouples the process of computing the new
system image from any dynamic constraints, other than
the type and number of softcore devices that need to be
placed on the FPGA. Furthermore, rather than having to
compute bitstreams on demand, it becomes possible to
exploit databases of pre-fabricated perhaps even highly
optimized hardware layouts that could be maintained by
device manufacturers.

3.3 Device Access Transparency

Since device addresses are not a priori known and may
change in the midst of program execution, additional
support is required so that applications are able to access
softcore devices in a reliable fashion.

The desired access transparency and safety at the ap-
plication level could be achieved via a device address
translation and checking mechanism, in the spirit of a
virtual memory management unit. This would have re-
quired a non-trivial modification of the softcore architec-
ture, which is beyond the scope of our current work.

For this reason we adopt a more restricted but yet

comparably functional solution, by requiring applica-
tions to access peripheral devices via corresponding
drivers. Device drivers are a natural way for intro-
ducing new hardware functionality in a structured fash-
ion. This also guarantees that applications access soft-
core devices in an explicit fashion and under system
control. Last but not least, device access transparency
can still be achieved provided that drivers offer suit-
able reconfiguration-transparent primitives to the appli-
cation.

4 Implementation of system-level support

This section presents the implementation details of our
reconfiguration scheme, for the case of a concrete em-
bedded device, softcore architecture and runtime system.
We also discuss issues concerning the development of
device drivers in order to deal with the dynamics of re-
configuration.

4.1 Platform

System-level support for our reconfiguration scheme has
been integrated into the Microblaze-uClinux kernel port
[19] that runs on top of the corresponding MMU-less
softcore architecture. Microblaze utilizes Harvard-style
separate instruction and data busses which conform to
IBM’s CoreConnect On-Chip Peripheral Bus standard.
Bus arbiters can be automatically instantiated, permit-
ting the instruction and data busses to be tied together in
order to create conventional von Neumman-style system
architectures.

The host Platform is an Atmark Techno Suzaku [1]
(Figure 2) featuring a Xilinx Spartan-3 (XS3C1000)
FPGA along with off-chip 16MB SDRAM, 8MB flash, a
MAC/PHY core and a configuration controller. The main
on-chip softcore modules are the Microblaze core with
local memory, Onboard Peripheral Bus, Local Memory
Bus, Fast Simplex Links Bus, system timer, interrupt
controller, SDRAM controller and an external memory
controller.

FPGA configuration is initiated and controlled via Se-
lect Map by the external controller and the bitstream is
stored in an external flash memory. The reconfigura-
tion procedure can be initiated both by hardware (during
power up) and software (write 0x1 to a special register)
means. Notably, the power supply is not cut-off during
reconfiguration and that the SDRAM data are not cor-
rupted because the chip supports self-refresh.

4.2 The Peripheral Device Location Table

As discussed in the previous section, devices may change
their addresses after each reconfiguration (with the ex-

318

Annual Tech ’06: 2006 USENIX Annual Technical Conference

USENIX Association

Figure 2: Atmark Techno Suzaku

ception of the execution and data memory controller
which are mapped at a specific location because code and
data are statically linked to fixed addresses). This means
that drivers must be given a mechanism for retrieving the
device addresses that are valid at any point in time.

For this purpose the kernel is augmented with the so-
called Peripheral Device Location Table (PDLT), an ar-
ray that contains the addresses of the devices that are
available in the current configuration. Each device is as-
signed a globally agreed offset in the PDLT that is known
to program developers. For convenience, we define these
offsets based on the well-known major and minor num-
bers combination of device drivers in the Linux kernel.
A PDLT of a few Kilobytes is sufficient to accommo-
date a large number (thousands) of different devices; of
course, the number of devices that can actually co-exist
in a system configuration (FPGA image) is limited.

Drivers must be programmed to retrieve the current
device base addresses from the corresponding PDLT lo-
cations. A zero value implies that the device is not avail-
able in the current configuration. The PDLT contents are
also exported in user space through the /proc filesystem
so that applications can check the current platform con-
figuration for a particular device.

When a reconfiguration takes place, the contents of the
PDLT are updated by the first stage loader during system
resume. The loader is programmed into softcore pro-
cessor local memory and is stored in the configuration
bitstream, together with the PDLT entries of the current
system layout. Updating the PDLT in kernel space there-
fore requires a simple copy operation. Since the location
of the PDLT depends on the kernel configuration, its start
address is stored into a well defined non-volatile memory
location so the bootloader can access it.

The bootloader is build using the Board Support Pack-
age tool of the Xilinx EDK (Ver 6.3) environment,
which generates C #define preprocessor directives with
BaseAddresses, thereby making the process of generat-
ing the PDLT and storing its contents in the configura-
tion bitstream quite simple. It would also be possible to
enrich the Xilinx development environment with scripts

that automate this task; though we have not done this.

4.3 Triggering Reconfiguration

Reconfiguration is triggered via a special system call that
executes as follows. First, interrupts are masked and the
old interrupt mask is stored in a local variable. Then all
pending interrupt bottom halves are executed by waking
up the linux kernel ksoftirgd daemon. The timer bottom
half is excluded from this process because it may result in
a context switch. Susequently the Interrupt Vector Table
and relevant machine registers are stored in a designated
area in the kernel image in DRAM (instead of saving the
current value of the Instruction Pointer, the address of the
resume function is stored). At this point the external con-
troller is triggered to initiate FPGA programming. When
this completes, control goes to the bootloader which re-
trieves the state saved via the system call, calculates the
PDLT address in kernel memory, copies its contents from
the image, and restores the Interrupt Vector Table and
registers. Finally, control returns to the system call con-
text, and the device drivers are notified (see next section)
before restoring the interrupt mask and proceeding with
the execution of the process that invoked the call. The
entire procedure takes less than a second to complete on
our platform.

A drawback of letting the system state reside on
DRAM is that after a power reset the system reverts to
its “original” state and configuration. For this reason, we
have implemented a so-called hibernation option. In this
case, the system image is copied from DRAM to non-
volatile storage (flash) before initiating FPGA program-
ming. The reconfiguration mode (normal vs hibernation)
is specified as a parameter of the system call and is stored
along with the rest of the runtime state. This informa-
tion is retrieved upon restart by the bootloader, and if
reconfiguration was performed in hibernation mode, the
system image is restored into DRAM prior to continuing
with the default resume action sequence.

While the hibernation option enhances robustness, it
also introduces a significant delay. The total time needed
to dump the DRAM image on flash is well above 30 sec-
onds for our platform. Our backup scheme is simple
(e.g. the flash is written in polling read mode since all in-
terrupts are disabled) and lacks advanced features, such
as checkpointing. Faster non-volatile media and more
elaborate I/O operations could reduce this delay, but this
could also lead to inconsistencies with respect to the state
being saved, in which case more sophisticated hiberna-
tion mechanisms [4] may have to be employed.

Notably, our approach is not directly applicable on
systems that are interfaced to complex hardware. In this
case, a system-wide quiescing of user space processes
and kernel thread activity would be required, both prior

USENIX Association

Annual Tech *06: 2006 USENIX Annual Technical Conference

319

and after the system suspend sequence so that the state of
peripherals can be properly saved and restored, respec-
tively.

4.4 Device Driver Notification

When the system reconfigures, all devices are destroyed,
and then re-installed, possibly in a different area within
the FPGA fabric; and in a state that most likely requires
further initialization before the device becomes opera-
tional. As a consequence, even though the device ad-
dresses are properly stored in the PDLT, additional de-
vice driver specific repair actions may be needed in order
to preserve the continuity of device usage at the applica-
tion level.

For this purpose device drivers may register a so-
called reconfiguration handler, which is invoked by the
kernel after reconfiguration, before returning control to
the application. This rountine can be used to perform
various housekeeping tasks, such as to initialize the de-
vice to a default operating mode, perhaps even restoring
it to a previous state, and abort pending operations whose
execution may have been compromised due to the FPGA
reconfiguration. Device drivers that do not require any
initialization/restoration actions need not provide a han-
dler. A simple priority scheme is used to enable the exe-
cution of handlers in a certain order.

In our current system prototype we have successfully
implemented reconfiguration handlers for the UART,
Ethernet, flash, GPIO, interrupt controller and system
timer drivers. Since our platform has a softcore timer,
each reconfiguration introduces a real-time clock lag (no-
ticeable from an external observer). This error could be
corrected by measuring the (fixed) amount of time re-
quired for the system to reconfigure, and letting the timer
driver increment the system time by this value after each
reconfiguration.

4.5 Reconfiguration-Transparent Drivers

Application programs should access devices without car-
ing about reconfigurations that may take place during
their execution. Put in other words, device drivers should
offer reconfiguration-transparent operations. Although
the specifics of how to achieve satisfactory functionality
are highly device-dependent, we have found the follow-
ing guidelines to be of use for most cases.

Upon startup the device driver initializes its internal
state as well as the device, as usual. When the recon-
figuration handler is called, the device is initialized so
that it can be properly accessed via the driver operations.
Moreover, all processes that have been suspended inside
a driver operation are resumed. This implies that the re-
configuration handler must be able to access all driver

specific wait queues used by blocking operations, which
can be typically achieved via a global wait queue list.

Each driver operation retrieves the device address
from the PDLT and uses it to access the device. No-
tably, the PDLT entry may contain a zero value, indicat-
ing that the device is not installed in the current config-
uration, in which case the driver operation returns an er-
ror (e.g. ENODEV). Moreover, configuration parameters
and/or additional internal state are recorded so that the
device can be properly initialized via the reconfiguration
handler. Blocking operations also maintain global state
that is used to determine, when they eventually resume,
whether a reconfiguration took place in the meantime.
If this is not the case, the operation proceeds as usual.
Else, the device address is retrieved from the PDLT and
the operation can be re-tried.

For the sake of completeness we note that some de-
vices may be asynchronous, in which case the effects of
driver operations do not necessarily take place within the
context of the respective invocations. Moreover, it may
be impractical or even impossible for the driver to main-
tain the device’s internal state so that it can be restored.
In this case, reconfiguration could lead to state loss, vio-
lating transparency. This could be avoided by introduc-
ing a locking scheme that allows a driver to block (a re-
quested) reconfiguration until all such operations are ac-
knowledged by the softcore device. We plan to address
this issue in a future version of our implementation.

5 Application-level support

The described system-level support enables applications
to trigger reconfiguration at any point in time accord-
ing to their needs. However, it is undesirable to give
applications such direct control over the system’s re-
sources. One problem is that some applications use
devices merely as a performance enhancement option,
whereas others may be unable to operate without the re-
quested devices being available. If there are not enough
hardware resources to accommodate all devices, prece-
dence should be given to the ones that are vital to appli-
cation execution. This also implies the removal of de-
vices that are currenty installed but not of vital impor-
tance to the applications using them. Another issue is
that concurrently running applications will trigger mul-
tiple consecutive reconfigurations, even though in some
cases the same result could be achieved more efficiently,
via a single reconfiguration.

This functionality cannot be achieved if each appli-
cation is allowed to reconfigure the system while being
oblivious to the needs of others. With this motivation we
do not allow the reconfiguration call to be invoked from
within user processes, and instead introduce a separate
mechanism through which reconfiguration is triggered in

320

Annual Tech ’06: 2006 USENIX Annual Technical Conference

USENIX Association

a coordinated way that ensures maximum overall perfor-
mance.

5.1 API and background processing

To control reconfiguration according to system-wide
policies, applications send device addition and removal
requests to a system process with root privileges, called
the reconfiguration daemon. The corresponding API
(shown below) is implemented as a shared library and
communicates with the daemon via unix domain sock-
ets.

#define DEV_RMV 0
#define DEV_ADD 1
#define DEV_MND 2

struct dev_req {
char dev_name[64];
int actionflags;
}i

int device_request (struct *dev_req, \
int nofreqgs);

Applications may use the device_request call to issue
one or more device addition and/or removal requests.
Each request contains the device name (the file name
of the corresponding kernel driver) and the action to
be performed (the DEV_ADD and DEV_RMV flag is
used to specify device addition and removal, respec-
tively). An addition can be specified as mandatory (via
the DEV_MND flag) indicating that the device is needed
for the application to perform properly.

Requests are processed asynchronously and notifica-
tion occurs via a SIGRECONF signal. This signal is
sent to processes that issued an optional addition request
which was satisfied. It is also sent after each reconfigu-
ration to processes that requested a mandatory addition,
even if this was not satisfied; allowing them to take cor-
rective action or abort. Applications may catch the SI-
GRECONF signal in a conventional manner, by register-
ing a handler which can determine the presence of the
requested device via the /proc file system.

The reconfiguration daemon maintains a list of re-
quests issued by applications, each carrying the id of the
sender process and status information (pending or ap-
plied). When a new request arrives, the daemon inserts
it in the list and waits for more requests to arrive. If no
new request arrives within a given time threshold, the
list contents are combined to produce the new platform
configuration. In case it is not possible (due to resource
constraints) to satisfy all addition requests, these are con-
sidered in a first-come-first-serve order, and priority is

given to the mandatory requests. When a feasible con-
figuration has been determined, the daemon writes the
corresponding FPGA bitstream to the designated mem-
ory area and triggers reconfiguration via the system call.
It then updates the status of the requests to reflect the cur-
rent configuration and notifies application processes via a
SIGRECONEF signal. As a trivial optimization, removal
requests do not lead to a reconfiguration unless the list
contains at least one pending (and feasible) device addi-
tion request.

A process that has issued an addition request may ter-
minate without issuing a corresponding removal request.
For this reason the daemon periodically checks (through
the /proc filesystem) the liveness of all processes that is-
sued addition requests. If a process terminates and its
addition request has not yet been applied, it is removed,
else a corresponding removal request is added to the list
to ensure that the device that has been added by this pro-
cess will be removed. Moreover, at this point it is also
convenient for the daemon to remove the kernel drivers,
that were used by processes that are no longer alive, since
they will no longer be useful in the new configuration.

5.2 Example

This functionality is illustrated in Figure 3 for an indica-
tive scenario. The application processes, softcore devices
and request list maintained by the reconfiguration dae-
mon are shown for each step. The eclipses on the top
left area denote running processes that issue reconfigu-
ration requests. The installed softcore devices are repre-
sented by rectangles in the top right area. The request
list is depicted in the bottom part, showing for each en-
try its process id (upper left), device name (lower left),
action type (lower right) and status (upper right, where
white and black color stands for pending and applied, re-
spectively). For simplicity, we assume that all addition
requests are flagged optional.

We briefly discuss each illustrated step in the follow-
ing. Initially (a) there are three processes, P1, P2 and P3.
At some point in time P1 issues a request to the recon-
figuration daemon for the addition of device D1, and P3
issues a request for device D3. Assuming that both de-
vices can be accomodated using the available hardware
resources, these are installed via a single reconfiguration
(b). Later on (c) P1 terminates (a remove request for D1
is added on its behalf) and P2 issues a request for device
D2, leading to a new configuration where D2 is added
and D1 is removed (d). Then P4 requests the addition of
device D4 (e), but assuming there are not enough hard-
ware resources no reconfiguration takes place. Eventu-
ally (f) P2 requests the removal of D2, making it possible
to install a new configuration with D4 (g). Finally (h) P4
terminates and, as a result, a remove request is added on

USENIX Association

Annual Tech *06: 2006 USENIX Annual Technical Conference

321

(@ P1

P3

add(D1)

\ / add(D3)
Teconfig HW!—\ P3]

daemon L D1 |ADD| [D3 [ADD]

;r - D1
|
S [(5)
daemon [DT]ADD] D3]ADD]
© ‘
el B2 ! o1
|
/R
recanTg (Za -]]
daemon. L D2 [ADD| [D1 [RM]
‘
@ l - D2
|
|
— }
(e) |
addod)\ CPED— :' T
P]
) !
Cp> || o
|

;
- o ‘
T D4
-+
T B }
;
== |
‘
rEEoTG f!WV—\
daemon L D4 R

Figure 3: A reconfiguration scenario

its behalf, but no reconfiguration occurs (yet) since there
are no pending addition requests to be satisfied.

5.3 Application-level transparency

Applications that rely on basic platform features (e.g
CPU, RAM, Ethernet) run safely on our system. They
can be executed without any modification, and remain
unaffected despite the (repeated) system reconfigurations
that may take place at runtime.

If however a program wishes to use a custom soft-
core device, it must be implemented accordingly. To
begin with, it must explicitly issue a device addition re-
quest and register a reconfiguration handler that will re-
sult in the desired adaptive behavior, e.g. start exploiting
the device as soon as it becomes available. Once a de-

vice is added to the current configuration, transparency
is achieved if (a) the device is mandatory and (b) it is
accessed via a reconfiguration-transparent device driver.
Else, a program may fail to access the device due to its
relocation or removal from the FPGA; and should be pre-
pared to deal with this case in a robust way.

We note that the addition of a device must be explic-
itly requested, even if it already exists in the current plat-
form configuration. This is to let the reconfiguration
daemon keep a correct reference count for each device.
Also, given that device references are kept in user space,
these are not inherited from parent to child processes and
kernel-level threads. Thus separate device addition re-
quests must be issued on behalf of each execution con-
text, independently of whether this has already been done
by the parent.

5.4 Remote bitstream fetch

To achieve a clean separation of concerns the FPGA
bistream of the desired platform configuration is pro-
vided by a separate process, called the bistream server.
The communication between the reconfiguration daemon
and the bistream server is over TCP/IP, hence the server
can be conveniently placed on a remote host; which is
particularly useful in the case of resource constrained
platforms.

When the daemon wishes to reconfigure the system,
it sends to the bitstream server the list of optional and
mandatory devices that may need to remain or become
available, respectively. Based on this input, the server
replies with the configuration that can be implemented
given the amount of hardware resources available (per-
haps depending on other limitations as well) and a corre-
sponding bitstream url. The daemon then downloads the
bitstream from the server using the netflash utility [17].

The underlying working assumption is that the bit-
stream server knows the host platform details and has
access to a database of pre-fabricated configuration bit-
streams. For example, it could be a platform vendor ser-
vice responsible for providing fully tested and highly op-
timized configurations. In principle, it would also be
possible to integrate the bitstream server functionality
with the hardware development toolchain so as to be able
to synthesize new platform configurations on demand.
Given that this task is quite time consuming (10 minutes
approx. on a PC), this is not a very attractive solution for
the time being.

6 Support for off-chip peripherals

Functional units requested by applications may require
not only a softcore module but also additional off-chip
peripherals, e.g. a sensor. In this particular case it makes

322

Annual Tech ’06: 2006 USENIX Annual Technical Conference

USENIX Association

no sense to add the sofcore module unless the peripheral
is also physically connected to the system. Wishing to
unify the softcore and physical aspect of peripherals, we
extended the reconfiguration mechanism to handle appli-
cation requests and the asynchronous event of a periph-
eral plug-in in an integrated fashion.

6.1 The hotplug detector

To accomplish this we introduce a special softcore de-
vice, the so-called hotplug detector. Its role is to capture
the fact that external hardware has been connected to or
disconnected from the system, respectively. In our pro-
totype we allow up to 4 peripherals to be simultaneously
plugged on the Suzaku board.

The corresponding module amounts to 1% of our
FPGA resources. It is hooked on the Microblaze On-
Chip Peripheral bus and is accessed through 4 memory
mapped registers. Eight of the least significant bits of
each register are connected to external I/O FPGA pins
while the rest are grounded. We assume that an off-chip
peripheral will be attached to the pins of a register, and
will redirect Vcc and Gnd to form a code that uniquely
identifies it (in our implementation we require this to be
the major number of the corresponding kernel driver).
We also expect Vcc to be redirected to the peripheral in-
terrupt line which is connected to an external I/O pin as
well. An illustrative schematic is shown in Figure 4.

Deviceid and Deviceid and
interrupt iine interrupt fine

input Ins # input pins #3
I 8 8
i

\/I\Z)dule G

<@)dule 4

Modulej>
Modulej2>

Register 1

nterrupt ine|

iinterrupt line

Register 2

Register 3
Deviceid and Register 4 Deviceid and|
interrupt line interrupt line
input_pins #2 '8 Interupt input pins #4
™ s
Interrupt

logic

interrupt ine | H [_interrupt iine

Figure 4: The hotplug detector high-level schematic

Access to the hotplug detector is provided via a char-
acter device driver, which supports the standard file op-
erations interface as well as the select and poll system
calls. The driver also registers an interrupt handler that is
invoked when an off-chip peripheral is connected to and
disconnected from the interface pins. The read operation
is blocking and waits for an interrupt to occur.

The memory mapped registers have the value of zero
when no peripheral is hooked and the driver remembers
previous register states so it can determine whether a pe-

ripheral is connected or disconnected. When an interrupt
occurs the Interrupt Service Routine scans all registers to
determine which one has changed value, reads its con-
tents and unblocks any waiting processes. Subsequent
read operations then return the device id, the register
number of the pin region, and a value (zero or one) indi-
cating whether the device is connected to or disconnected
from the system. To discover peripherals that have been
hooked on the platform before starting the reconfigura-
tion daemon (or powering up the system), the hotplug
registers are examined via the ioctl system call when the
daemon starts.

In our implementation we tried to avoid a complex
hardware design that consumes a significant amount of
resources. This is because we want to keep the hotplug
detector as a basic platform feature that will be included
in every configuration. By keeping state information in
the device driver, rather than the hardware logic, we are
also able to achieve reconfiguration transparency for the
hotplug driver. Admittedly, using a 8 pin interface for
device identification is a waste of external I/O resources.
In principle one may use just 1 pin but this requires a
more sophisticated communication protocol; see[10] for
a similar DPR-based implementation.

6.2 Unified reconfiguration handling

The hotplug detector is accessed by the reconfiguration
daemon to receive information about the addition and re-
spectively removal of an off-chip peripheral. This infor-
mation is then sent to the bitstream server, along with the
contents of the request list.

It is the responsibility of the bitstream server to deter-
mine the possible layouts that may be installed on the
FPGA, also taking into account the dependencies be-
tween softcore devices and off-chip peripherals. More
specifically, a pending addition request for a softcore de-
vice that requires an off-chip peripheral is considered
only if the peripheral is connected to the system. This
decision naturally belongs to the bitstream server (rather
than the reconfiguration daemon) since in our model it
is the former that has access to platform-specific imple-
mentation data.

Once a mandatory softcore device that relies on a pe-
ripheral is installed, it is not automatically removed even
if the required peripheral is disconnected from the sys-
tem. In this case, the application will simply receive an
error from the corresponding device driver. It may then
explicitly request the removal of the device or terminate.
On the other hand, the application may wish to keep the
softcore device installed, expecting the peripheral to be
re-connected to the system; this may involve out-of-the-
loop information (e.g. the user’s intention) which is not
available to the low-level system mechanisms such as the

USENIX Association

Annual Tech *06: 2006 USENIX Annual Technical Conference

323

reconfiguration handler.

6.3 Example

Figure 5 gives a scenario illustrating this additional func-
tionality (employing the same visual metaphors as in the
previous example). Note that the hotplug detector mod-
ule is considered to be already installed as a mandatory
device.

© G

/

.

EnC KN
(b) !
I

S) N Hotplt

- o st @
I
I
I

-
i = }

%
=] o

|
|
|

s (=T
Gaemon | Corleo) [ortmw

®

Hotplug

---{-1 DI
Detector|

D2

Figure 5: A reconfiguration scenario with hotplug event

Initially (a) process P1 requests the addition of device
D1. At the same time, the user plugs in sensor S (that
can be used only via device D2). The hotplug detector
informs the reconfiguration daemon, which in turn adds
a corresponding presence entry. The system then recon-
figures and D1 is installed (b). After a while (c) a new
process P2 starts, and requests the addition of device D2
(which requires the S). Given that S is already connected
to the system, the system will reconfigure and D2 will
be installed (d). Later on (e) S is disconnected from the

system, leading to a corresponding update of the recon-
figuration daemon, but D2 remains installed. Finally (f)
P2 receives an error from D2 (which tries to access S
without success) and terminates (a removal request for
D2 is added on its behalf).

7 Performance considerations

Since applications exploit softcore devices via kernel de-
vice drivers, each access operation comes at the cost
of a system call. Each driver operation must also re-
trieve the base address of the device via the PDLT. This
amounts to one extra instruction compared to the code
that would have been generated using a fixed address
scheme. A second instruction is needed for each differ-
ent base-relative address used within a driver operation.
We believe that this overhead is reasonable given that our
approach is implemented in software, without requiring
a modification of the softcore CPU architecture.

In our current implementation platform and setup,
switching to a new configuration takes about 12 seconds
to complete from the moment a process issues a device
addition request (assuming the reconfiguration daemon
does not wait for other requests to arrive). This delay
is decomposed as follows. The communication with the
bistream server including the download of the FPGA bit-
stream takes about 1.5 seconds (over a 10 Mbit Ethernet).
Writing the bitstream on flash takes about 9 seconds. Fi-
nally, performing the reconfiguration system call (saving
state, programming the FPGA, restarting and notifying
drivers) takes less than 1 second. It is important to note
that application processes continue their (concurrent) ex-
ecution during this amount of time, except for the last
step, i.e. the execution of the reconfiguration system call.

These figures are obviously specific to our implemen-
tation platform. The FPGA programming delay, for ex-
ample, could grow for larger platforms; though these also
tend to support higher programming speeds. What is
more important, if it were possible to program the FPGA
directly from DRAM (rather than requiring the bistream
to be copied on flash), the total reconfiguration delay (in-
cluding the bitstream download from the network) could
shrink to about 2-3 seconds.

8 Demonstration

To demonstrate our implementation we have developed
a simple environment that comprises two different ap-
plications: a mandelbrot calculation and an audio signal
monitor. Both applications are structured in the form of
a client-server pair. The servers run on the Suzaku board
as convetional application processes. The clients run on
a PC providing a graphical user interface for controlling

324

Annual Tech ’06: 2006 USENIX Annual Technical Conference

USENIX Association

the servers. Client-server communication is over TCP/IP
and a LAN to which the Suzaku is connected via its Eth-
ernet adapter. A schematic of the various components is
given in Figure 6. A picture of the Suzaku board setup
is shown in Figure 7.

PC SUZAKU FPGA platform
p Monitor Mandelbrot
Mandelbrot Monitor reconfd
[GUI }[GUI [] E Server]E Server]
N
Linux karnel uClinux|kernel
Mandelbrot

Parallel port
driver

Sensor
board

Figure 6: Demo Setup

accelerator
driver

TCPIP |
!

-]
Ethernet

Figure 7: Suzaku board setup

8.1 The mandelbrot application

The mandelbrot client is used to send the computation
parameters to the server and display the results produced.
Moreover, it can be used to request the addition or re-
moval of an accelerator module that is exploited by the
server to perform the computation faster.

The server waits for incoming requests, performs the
computation and sends the results back to the client. It
is initially in a default state, performing the computation
without relying on the accelerator module. When it re-
ceives a client command to add the accelerator, it issues
a corresponding request, and enters an optimized mode
of computation as soon as the softcore module is added
to the system. Similarly, the server issues a removal re-
quest when it receives a corresponding client command.
It continues however to opportunistically exploit the ac-
celerator until the driver returns an error; indicating that
the module has been actually removed.

As expected, hardware acceleration boosts perfor-
mance both in terms of time and power consumption.
Notably, our softcore CPU does not have a floating-point
unit, hence the software version of mandelbrot uses the
integer-based floating point operations of the gcc library.
Figure 8 depicts the average energy needed to perform
a certain computation for the software-only versus the
hardware accelerated version. The average power con-
sumption of the system in idle mode is used as a refer-
ence. Specifically, the hardware-based version requires
about 7,6% of the energy the software version needs and
is 7,33 times faster (labels 2 and 4 vs 1 and 5). The
former version includes the extra delay and power con-
sumption for downloading the bistream and reconfigur-
ing the system before initiating the computation (labels 2
and 3). The hardware-based version requires about 5,6%
of the power that the software version consumed and is
10 times faster in case the accelerator is already installed
(labels 3 and 4).

1.140

— Sw Version - - -Hw Version —Idle

1.130 +

F1120 [0
G-

(Watts|

T1.110 4

'ower

o ' 8
1:100 HOIE®) 4 (5)

1.090 -

1.080

~ N N O © M O~ T — ©
M W N~ OO0 N MWL~ OoO N T W
- N NN NN Mm MmO oM

Time (Secs)

375

Figure 8: Suzaku power consumption diagram

8.2 The sensor monitor application

The monitor client is used to start / stop the sensing activ-
ity of the server and to display the values received. The
server starts in an idle state. When it receives a start com-
mand, it launches a child process that requests the addi-
tion of a sensor specific softcore module. If the request is
not satisfied the process terminates and the server sends
back a failure message. Else, the child process starts
reading sensor values and forwards them to the client.
The child process can be terminated at any point in time
via a corresponding client command.

The softcore device requested by the child process
cannot function properly without a corresponding sensor
being attached to the Suzaku board. For this reason the
addition request is not considered unless the appropriate
sensor is connected (by hand) to the board. When the
sensor is disconnected from the board, the child process

USENIX Association

Annual Tech *06: 2006 USENIX Annual Technical Conference

325

receives a driver error and terminates, making it possible
for the corresponding softcore module to be removed.

8.3 Configuration scenarios

We have configured the bitstream server to deliver four
bitstream files that have been pre-built for this particu-
lar setup: (1) the base system configuration, (2) the base
configuration plus the mandelbrot accelerator module,
(3) the base configuration plus the sensor access mod-
ule, and (4) the base configuration plus the mandelbrot
accelerator and the sensor access modules.

The system is started with the first configuration.
From that point onwards, any other configuration can be
dynamically installed, depending on the sequence of re-
quests issued by the mandelbrot and monitor applications
(via their respective clients) as well as the physical pres-
ence of the sensor. Given that reconfiguration does not
take place solely for the purpose of device removal, the
system will stop reconfiguring once configuration (4) has
been installed, because in this case all (future) requests
issued by these applications are trivially satisfied.

9 Conclusion

In this paper we have presented the design and imple-
mentation of system-level mechanisms and application-
level support for the dynamic addition and removal of
softcore devices on a reconfigurable SoC featuring a soft-
core CPU and embedded operating system. This func-
tionality is achieved without relying on DPR. Although
the entire FPGA is re-programmed from scratch when a
reconfiguration takes place, system, application and rel-
evant device state can be maintained to a large degree,
thereby achieving satisfactory transparency.

Application programming support comes in the form
of a library for issuing device addition/removal requests
that are asynhcronously acknowledged via signals. Re-
configuration is triggered via a user-level process that
collects and handles application requests in a bundled
fashion. The configuration bistream is downloaded from
a remote server over the network, making it possible to
support resource constrained systems with communica-
tion capability. In case of resource scarcity, priority is
given to critical devices. Once the bitsream is saved in
the designated memory area for programming the FPGA,
reconfiguration (during which application processes re-
main frozen) takes less than a second to complete in our
current platform.

Finally, we have considered softcore devices that rely
on off-chip peripherals, and have extended our imple-
mentation to take such device addition requests into ac-
count only if the required peripheral is physically con-
nected to the system.

10 Acknowledgments

This work was supported by the Greek General Secre-
tariat for Research and Technology through the 3rd Com-
munity Support Programme; Measure 8.3: Research and
Technology Human Resources; Action 8.3.1: “Rein-
forcement Programme of Human Research Manpower -
PENED2003”.

11 Availability

More information about this work and uClinux patches
are all available at http://www.inf.uth.gr/vss

References

[1] ATMARK TECHNO INC. Suzaku Series.
techno.com/en/products/suzaku.

http://www.atmark-

[2

—

ATMEL, 1. Field Programmable System Level Integrated Circuits
(FPSLIC)(2002). http://www.atmel.com/products/FPSLIC/.

[3] BLODGET, B., JAMES-ROXBY, P., KELLER, E., MCMILLAN,
S., AND SUNDARARAJAN, P. A Self-Reconfiguring Platform.
In Proceedings of Field Programmable Logic and Applications
(2003), pp. 565-574.

[4

=

CUNNINGHAM, N. Suspend?2 project. http://www.suspend2.net/.

[5] DYER, M., PLESSL, C., AND PLATZNER, M. Partially recon-
figurable cores for xilinx virtex. In FPL ’02: Proceedings of
the Reconfigurable Computing Is Going Mainstream, 12th Inter-
national Conference on Field-Programmable Logic and Applica-
tions (London, UK, 2002), Springer-Verlag, pp. 292-301.

[6

=

FLETCHER, B. FPGA Embedded Processors: Revealing True
System Performance. In Embedded Systems Conference San
Fransisco (2005), no. ETP-367.

[7] FONG, R.J., HARPER, S. J., AND ATHANAS, P. M. A versatile
framework for fpga field updates: An application of partial self-
reconfiguation. In IEEE International Workshop on Rapid System

Prototyping (2003), pp. 117-123.

—

[8

—

HAUBELT, C., KocH, D., AND TEICH, J. Basic OS Support
for Distributed Reconfigurable Hardware. In Proceedings of the
Third International Workshop on Systems, Architectures, Model-
ing, and Simulation (Samos, Greece, July 2003), pp. 18-22.

[9

—

HORTA, E. L., AND LOCKWOOD, J. W. Parbit: A tool to trans-
form bitfiles to implement partial reconfiguration of field pro-
grammable gate arrays (fpgas). Tech. Rep. WUCS-01-13, Wash-
ington University Department of Computer Science, 2001.

[10] LuY, BERGMANN N, W. J. Dynamic loading of peripherals on
reconfigurable system-on-chip. In SPIE Microelectronics: De-

sign, Technology, and Packaging II (2005), vol. 6035.

[11] MATSUMOTO, Y., AND MASAKI, A. Speed improvement of
FPGA by mixing multiple-gate-width routing switches. In Elec-
tronics and Communications in Japan (Part III: Fundamental

Electronic Science) (2005), pp. 14-22.

[12] NOLLET, V., MIGNOLET, J.-Y., BARTIC, A., VERKEST, D.,
VERNALDE, S., AND LAUWEREINS, R. Hierarchical run-time
reconfiguration managed by an operating system for reconfig-
urable systems. In Engineering of Reconfigurable Systems and

Algorithms (2003), pp. 81-87.

326

Annual Tech ’06: 2006 USENIX Annual Technical Conference

USENIX Association

[13]

[14]

[15]

[16]

[17]
[18]

[19]

[20]

[21]

[22]

RAGHAVAN, A. K., AND SUTTON, P. Jpg - a partial bitstream
generation tool to support partial reconfiguration in virtex fpgas.
In IPDPS ’02: Proceedings of the 16th International Parallel
and Distributed Processing Symposium (Washington, DC, USA,
2002), IEEE Computer Society, p. 192.

SHANNON, L., AND CHOW, P. Using reconfigurability to
achieve real-time profiling for hardware/software codesign. In
FPGA ’04: Proceedings of the 2004 ACM/SIGDA 12th inter-
national symposium on Field programmable gate arrays (2004),
pp. 190-199.

SIDHU, R. P. S., AND PRASANNA, V. K. Efficient metacom-
putation using self-reconfiguration. In FPL ’02: Proceedings of
the Reconfigurable Computing Is Going Mainstream, 12th Inter-
national Conference on Field-Programmable Logic and Applica-
tions (London, UK, 2002), Springer-Verlag, pp. 698-709.

STITT, G., VAHID, F., MCGREGOR, G., AND EINLOTH, B.
Hardware/software partitioning of software binaries: a case study
of h.264 decode. In CODES+ISSS (2005), pp. 285-290.

UNGERER, G. netflash utility. http://docs.linux.com, Oct. 2002.

VULETIC, M., PozzI, L., AND IENNE, P. Programming trans-
parency and portable hardware interfacing: Towards general-
purpose reconfigurable computing. In ASAP (2004), pp. 339—
351.

WILLIAMS, J. The Microblaze-uClinux kernel port Project.
http://www.itee.uq.edu.au/ jwilliams/mblaze-uclinux/.

WILLIAMS, J., AND BERGMANN, N. Embedded Linux as a
platform for dynamically self-reconfiguring systems-on-chip. In
Proceedings of the International Conference on Engineering of
Reconfigurable Systems and Algorithms (2004), pp. 163—-169.

XILINX INC. Architecting Systems for Upgradability with IRL,
2001. Aplication Note XAPP412.

XILINX INC. Two Flows for Partial Reconfiguration: Module
Based or Difference Based., 2003. Aplication Note XAPP290.

USENIX Association

Annual Tech *06: 2006 USENIX Annual Technical Conference

327

