
Thresher: An Efficient Storage Manager for Copy-on-write Snapshots

Liuba Shrira∗

Department of Computer Science
Brandeis University
Waltham, MA 02454

Hao Xu
Department of Computer Science

Brandeis University
Waltham, MA 02454

Abstract

A new generation of storage systems exploit decreas-
ing storage costs to allow applications to take snapshots
of past states and retain them for long durations. Over
time, current snapshot techniques can produce large vol-
umes of snapshots. Indiscriminately keeping all snap-
shots accessible is impractical, even if raw disk storage
is cheap, because administering such large-volume stor-
age is expensive over a long duration. Moreover, not all
snapshots are equally valuable. Thresher is a new snap-
shot storage management system, based on novel copy-
on-write snapshot techniques, that is the first to provide
applications the ability to discriminate among snapshots
efficiently. Valuable snapshots can remain accessible or
stored with faster access while less valuable snapshots
are discarded or moved off-line. Measurements of the
Thresher prototype indicate that the new techniques are
efficient and scalable, imposing minimal (4%) perfor-
mance penalty on expected common workloads.

1 Introduction

A new generation of storage systems exploit decreasing
storage costs and efficient versioning techniques to allow
applications to take snapshots of past states and retain
them for long durations. Snapshot analysis is becoming
increasingly important. For example, an ICU monitoring
system may analyze the information on patients’ past re-
sponse to treatment.

Over time, current snapshot techniques can produce
large volumes of snapshots. Indiscriminately keeping all
snapshots accessible is impractical, even if raw disk stor-
age is cheap, because administering such large-volume
storage is expensive over a long duration. Moreover, not
all snapshots are equally valuable. Some are of value

∗This work was supported in part by NSF grant ITR-0428107 and
Microsoft.

for a long time, some for a short time. Some may re-
quire faster access. For example, a patient monitoring
system might retain readings showing an abnormal be-
havior. Recent snapshots may require faster access than
older snapshots.

Current snapshot systems do not provide applications
with the ability to discriminate efficiently among snap-
shots, so that valuable snapshots remain accessible while
less valuable snapshots are discarded or moved off-line.
The problem is that incremental copy-on-write, the basic
technique that makes snapshot creation efficient, entan-
gles on the disk successive snapshots. Separating entan-
gled snapshots creates disk fragmentation that reduces
snapshot system performance over time.

This paper describes Thresher, a new snapshot stor-
age management system, based on a novel snapshot tech-
nique, that is the first to provide applications the ability to
discriminate among snapshots efficiently. An application
provides a discrimination policy that ranks snapshots.
The policy can be specified when snapshots are taken,
or later, after snapshots have been created. Thresher effi-
ciently disentangles differently ranked snapshots, allow-
ing valuable snapshots to be stored with faster access
or to remain accessible for longer, and allowing less-
valuable snapshots to be discarded, all without creating
disk fragmentation.

Thresher is based on two key innovations. First,
a novel technique called ranked segregation efficiently
separates on disk the states of differently-ranked copy-
on-write snapshots, enabling no-copy reclamation with-
out fragmentation. Second, while most snapshot systems
rely on a no-overwrite update approach, Thresher relies
on a novel update-in-place technique that provides an ef-
ficient way to transform snapshot representation as snap-
shots are created.

The ranked segregation technique can be efficiently
composed with different snapshot representations to
lower the storage management costs for several useful
discrimination policies. When applications need to defer

Annual Tech ’06: 2006 USENIX Annual Technical ConferenceUSENIX Association 57

snapshot discrimination, for example until after examin-
ing one or more subsequent snapshots to identify abnor-
malities, Thresher segregates the normal and abnormal
snapshots efficiently by composing ranked segregation
with a compact diff-based representation to reduce the
cost of copying. For applications that need faster access
to recent snapshots, Thresher composes ranked segrega-
tion with a dual snapshot representation that is less com-
pact but provides faster access.

A snapshot storage manager, like a garbage collector,
must be designed with a concrete system in mind, and
must perform well for different application workloads.
To explore how the performance of our new techniques
depends on the storage system workload, we prototyped
Thresher in an experimental snapshot system [12] that al-
lows flexible control of workload parameters. We identi-
fied two such parameters, update density and overwrit-
ing, as the key parameters that determine the perfor-
mance of a snapshot storage manager. Measurements of
the Thresher prototype indicate that our new techniques
are efficient and scalable, imposing minimal (4%) per-
formance penalty on common expected workloads.

2 Specification and context

In this section we specify Thresher, the snapshot storage
management system that allows applications to discrimi-
nate among snapshots. We describe Thresher in the con-
text of a concrete system but we believe our techniques
are more general. Section 3 points out the snapshot sys-
tem dependent features of Thresher.

Thresher has been designed for a snapshot system
called SNAP [12]. SNAP assumes that applications
are structured as sequences of transactions accessing a
storage system. It supports Back-in-time execution (or,
BITE), a capability of a storage system where appli-
cations running general code can run against read-only
snapshots in addition to the current state. The snapshots
reflect transactionally consistent historical states. An ap-
plication can choose which snapshots it wants to access
so that snapshots can reflect states meaningful to the ap-
plication. Applications can take snapshots at unlimited
”resolution” e.g. after each transaction, without disrupt-
ing access to the current state.

Thresher allows applications to discriminate among
snapshots by incorporating a snapshot discrimination
policy into the following three snapshot operations: a
request to take a snapshot (snapshot request, or decla-
ration) that provides a discrimination policy, or indicates
lazy discrimination, a request to access a snapshot (snap-
shot access), and a request to specify a discrimination
policy for a snapshot (discrimination request).

The operations have the following semantics. Infor-
mally, an application takes a snapshot by asking for

a snapshot “now”. This snapshot request is serialized
along with other transactions and other snapshots. That
is, a snapshot reflects all state-modifications by transac-
tions serialized before this request, but does not reflect
modifications by transactions serialized after. A snap-
shot request returns a snapshot name that applications
can use to refer to this snapshot later, e.g. to specify
a discrimination policy for a snapshot. For simplicity,
we assume snapshots are assigned unique sequence num-
bers that correspond to the order in which they occur. A
snapshot access request specifies which snapshot an ap-
plication wants to use for back-in-time execution. The
request returns a consistent set of object states, allow-
ing the read-only transaction to run as if it were running
against the current storage state. A discrimination pol-
icy ranks snapshots. A rank is simply a numeric score
assigned to a snapshot. Thresher interprets the ranking
to determine the relative lifetimes of snapshots and the
relative snapshot access latency.

A snapshot storage management system needs to be
efficient and not unduly slow-down the snapshot system.

3 The snapshot system

Thresher is implemented in SNAP [12], the snapshot sys-
tem that provides snapshots for the Thor [7] object stor-
age system. This section reviews the baseline storage and
snapshot systems, using Figure 3 to trace their execution
within Thresher.

Our general approach to snapshot discrimination is
applicable to snapshot systems that separate snapshots
from the current storage system state. Such so-called
split snapshot systems [16] rely on update-in-place stor-
age and create snapshots by copying out the past states,
unlike snapshot systems that rely on no-overwrite stor-
age and do not separate snapshot and current states [13].
Split snapshots are attractive in long-lived systems be-
cause they allow creation of high-frequency snapshots
without disrupting access to the current state while pre-
serving the on-disk object clustering for the current
state [12]. Our approach takes advantage of the sep-
aration between snapshot and current states to provide
efficient snapshot discrimination. We create a special-
ized snapshot representation tailored to the discrimina-
tion policy while copying out the past states.

3.1 The storage system

Thor has a client/server architecture. Servers provide
persistent storage (called database storage) for objects.
Clients cache copies of the objects and run applications
that interact with the system by making calls to meth-
ods of cached objects. Method calls occur within a the
context of transaction. A transaction commit causes all

Annual Tech ’06: 2006 USENIX Annual Technical Conference USENIX Association58

modifications to become persistent, while an abort leaves
no transaction changes in the persistent state. The sys-
tem uses optimistic concurrency control [1]. A client
sends its read and write object sets with modified object
states to the server when the application asks to commit
the transaction. If no conflicts were detected, the server
commits the transaction.

An object belongs to a particular server. The object
within a server is uniquely identified by an object refer-
ence (Oref). Objects are clustered into 8KB pages. Typ-
ically objects are small and there are many of them in a
page. An object Oref is composed of a PageID and a oid.
The PageID identifies the containing page and allows the
lookup of an object location using a page table. The oid
is an index into an offset table stored in the page. The off-
set table contains the object offsets within the page. This
indirection allows us to move an object within a page
without changing the references to it.

When an object is needed by a transaction, the client
fetches the containing page from the server. Only modi-
fied objects are shipped back to the server when the trans-
action commits. Thor provides transaction durability us-
ing the ARIES no-force no-steal redo log protocol [5].
Since only modified objects are shipped back at com-
mit time, the server may need to do an installation read
(iread) [8] to obtain the containing page from disk. An
in-memory, recoverable cache called the modified object
buffer(MOB) stores the committed modifications allow-
ing to defer ireads and increase write absorption [4, 8].
The modifications are propagated to the disk by a back-
ground cleaner thread that cleans the MOB. The cleaner
processes the MOB in transaction log order to facilitate
the truncation of the transaction log. For each modified
object encountered, it reads the page containing the ob-
ject from disk (iread) if the page is not cached, installs all
modifications in the MOB for objects in that page, writes
the updated page back to disk, and removes the objects
from the MOB.

The server also manages an in-memory page cache
used to serve client fetch requests. Before returning a re-
quested page to the client, the server updates the cache
copy, installing all modifications in the MOB for that
page so that the fetched page reflects the up-to-date com-
mitted state. The page cache uses LRU replacement but
discards old dirty pages (it depends on ireads to read
them back during MOB cleaning) rather than writing
them back to disk immediately. Therefore the cleaner
thread is the only component of the system that writes
pages to disk.

3.2 Snapshots

SNAP creates snapshots by copying out the past stor-
age system states onto a separate snapshot archive disk.

A snapshot provides the same abstraction as the stor-
age system, consisting of snapshot pages and a snapshot
page table. This allows unmodified application code run-
ning in the storage system to run as BITE over a snap-
shot.

SNAP copies snapshot pages and snapshot page table
mappings into the archive during cleaning. It uses an
incremental copy-on-write technique specialized for split
snapshots: a snapshot page is constructed and copied into
the archive when a page on the database disk is about to
be overwritten the first time after a snapshot is declared.
Archiving a page creates a snapshot page table mapping
for the archived page.

Consider the pages of snapshot v and page table map-
pings over the transaction history starting with the snap-
shot v declaration. At the declaration point, all snapshot
v pages are in the database and all the snapshot v page
table mappings point to the database. Later, after several
update transactions have committed modifications, some
of the snapshot v pages may have been copied into the
archive, while the rest are still in the database. If a page
P has not been modified since v was declared, snapshot
page P is in the database. If P has been modified since
v was declared, the snapshot v version of P is in the
archive. The snapshot v page table mappings track this
information, i.e. the archive or database address of each
page in snapshot v.

Snapshot access. We now describe how BITE of un-
modified application code running on a snapshot uses
a snapshot page table to look up objects and transpar-
ently redirect object references within a snapshot be-
tween database and archive pages.

To request a snapshot v, a client application sends a
snapshot access request to the server. The server con-
structs an archive page table (APT) for version v (APTv)
and “mounts” it for the client. APTv maps each page in
snapshot v into its archive address or indicates the page
is in the database. Once APTv is mounted, the server
receiving a page fetch requests from the client looks up
pages in APTv and reads them from either archive or
database. Since snapshots are accessed read-only, APTv

can be shared by all clients mounting snapshot v.
Figure 1 shows an example of how unmodified client

application code accesses objects in snapshot v that in-
cludes both archived and database pages. For simplicity,
the example assumes a server state where all commit-
ted modifications have been already propagated to the
database and the archive disk. In the example, client
code requests object y on page Q, the server looks up
Q in APTv, loads page Qv from the archive and sends
it to the client. Later on client code follows a reference
from y to x in the client cache, requesting object x in
page P from the server. The server looks up P in APTv

Annual Tech ’06: 2006 USENIX Annual Technical ConferenceUSENIX Association 59

x

P

DATABASE

y

Q < v >

ARCHIVE

Q

P

y

Q

x

P

load load

APTv Page Table

SERVER

y : (Q, offset_in_Q) x : (P, offset_in_P)

P

Figure 1: BITE: page-based representation

and finds out that the page P for snapshot v is still in
the database. The server reads P from the database and
sends it to the client.

In SNAP, the archive representation for a snapshot
page includes the complete storage system page. This
representation is refered to as page-based. The follow-
ing sections describe different snapshot page represen-
tations, specialized to various discrimination policies.
For example, a snapshot page can have a more compact
representation based on modified object diffs, or it can
have two different representations. Such variations in
snapshot representation are transparent to the application
code running BITE, since the archive read operation re-
constructs the snapshot page into storage system repre-
sentation before sending it to the client.

Snapshot creation. The notions of a snapshot span
and pages recorded by a snapshot capture the incremen-
tal copy-on-write manner by which SNAP archives snap-
shot pages and snapshot page tables. Snapshot declara-
tions partition transaction history into spans. The span of
a snapshot v starts with its declaration and ends with the
declaration of the next snapshot (v+1). Consider the first
modification of a page P in a span of a snapshot v. The
pre-state of P belongs to snapshot v and has to be even-
tually copied into the archive. We say snapshot v records
its version of P . In Figure 2, snapshot v records pages
P and S (retaining the pre-states modified by transaction
tx2) and the page T (retaining the pre-state modified by
transaction tx3). Note that there is no need to retain the
pre-state of page P modified by transaction tx3 since it
is not the first modification of P in the span.

If v does not record a version of page P , but P is mod-
ified after v is declared, in a span of a later snapshot, the
later snapshot records v’s version of P . In above exam-
ple, v’s version of page Q is recorded by a later snapshot
v + 1 who also records its own version of P .

���
�

��� ���
���

��� ��	
���

��������	
� �
��	��
�����
� ��������	
�

���
� � ���
� ���

�

�

 ���
���� �� �

�
�	�	�� �� ���

�
�	�	�� �� ���
�
�	�	�� �� ���

�
�	�	�� �� ��	

�	��

�
��

�
��
�
�	�

��
��
��
��
�

���
���� �� ���
��� ���
�� �
 �

��������
�

���
���� �� ���

����������

�
�
���

Figure 2: Split copy-on-write

Snapshot pages are constructed and copied into the
archive during cleaning when the pre-states of modified
pages about to be overwritten in the database are avail-
able in memory. Since the cleaner runs asynchronously
with the snapshot declaration, the snapshot system needs
to prevent snapshot states from being overwritten by the
on-going transactions. For example, if several snapshots
are declared between two successive cleaning rounds,
and a page P gets modified after each snapshot declara-
tion, the snapshot system has to retain a different version
of P for each snapshot.

SNAP prevents snapshot state overwriting, without
blocking the on-going transactions. It retains the pre-
states needed for snapshot creation in an in-memory
data structure called versioned modified object buffer
(VMOB). VMOB contains a queue of buckets, one for
each snapshot. Bucket v holds modifications committed
in v’s span. As transactions commit modifications, modi-
fied objects are added to the bucket of the latest snapshot
(Step 1, Figure 3). The declaration of a new snapshot
creates a new mutable bucket, and makes the preceding
snapshot bucket immutable, preventing the overwriting
of the needed snapshot states.

A cleaner updates the database by cleaning the mod-
ifications in the VMOB, and in the process of cleaning,
constructs the snapshot pages for archiving. Steps 2-5
in Figure 3 trace this process. To clean a page P , the
cleaner first obtains a database copy of P . The cleaner
then uses P and the modifications in the buckets to create
all the needed snapshot versions of P before updating P
in the database. Let v be the first bucket containing mod-
ifications to P , i.e. snapshot v records its version of P .
The cleaner constructs the version of P recorded by v
simply by using the database copy of P . The cleaner
then updates P by applying modifications in bucket v,
removes the modifications from the bucket v, and pro-

Annual Tech ’06: 2006 USENIX Annual Technical Conference USENIX Association60

ceeds to the following bucket. The updated P will be
the version of P recorded by the snapshot that has the
next modification to P in its bucket. This process is re-
peated for all pages with modifications in VMOB, con-
structing the recorded snapshot pages for the snapshots
corresponding to the immutable VMOB buckets.

The cleaner writes the recorded pages into the archive
sequentially in snapshot order, thus creating incremental
snapshots. The mappings for the archived snapshot pages
are collected in versioned incremental snapshot page ta-
bles. VPTv (versioned page table for snapshot v) is a
data structure containing the mappings (from page id to
archive address) for the pages recorded by snapshot v.
As pages recorded by v are archived, mappings are in-
serted into VPTv. After all pages recorded by v have
been archived, VPTv is archived as well.

The cleaner writes the VPTs sequentially, in snapshot
order, into a separate archive data structure. This way, a
forward sequential scan through the archived incremen-
tal page tables from VPTv and onward finds the map-
pings for all the archived pages that belong to snapshot v.
Namely, the mapping for v′s version of page P is found
either in VPTv, or, if not there, in the VPT of the first
subsequently declared snapshot that records P . SNAP
efficiently bounds the length of the scan [12]. For brevity,
we do not review the bounded scan protocol here.

To construct a snapshot page table for snapshot v for
BITE, SNAP needs to identify the snapshot v pages that
are in the current database. HAV is an auxiliary data
structure that tracks the highest archived version for each
page. If HAV(P) < v, the snapshot v page P is in the
database.

4 Snapshot discrimination

�

�� ����� �	
���

	�����

����

���� �����

��������

 � �!�

"� !�	# �����
 	�����
�!	� �$�%�

�!#�	$� �	��

�&��'��

�

#!��	(�(�!��

�$�%�

�)� �!�*�# �!#�	$� �	�� �

+� ,!�� �	
���
 �

���

���(�

��- ����

���

�$�%�

� �*	!�.��#
 ��!����	(

�	(-.��#
 ��!����	(

���

/� �!�(�����	(�	�����0 �$��! �	
���
 	�����

Figure 3: Archiving split snapshots

A snapshot discrimination policy may specify that
older snapshots outlive more recently declared snap-

shots. Since snapshots are archived incrementally, man-
aging storage for snapshots according to such a discrim-
ination policy can be costly. Pages that belong to a
longer-lived snapshot may be recorded by a later short-
lived snapshot thus entangling short-lived and long-lived
pages. When different lifetime pages are entangled, dis-
carding shorter-lived pages creates archive storage frag-
mentation. For example, consider two consecutive snap-
shots v and v+1 in Figure 2, with v recording pages ver-
sions Pv , and Sv, and v + 1 recording pages Pv+1, Qv+1

and Sv+1. The page Qv+1 recorded by v + 1 belongs to
both snapshots v and v + 1. If the discrimination policy
specifies that v is long-lived but v + 1 is transient, re-
claiming v + 1 before v creates disk fragmentation. This
is because we need to reclaim Pv+1 and Sv+1 but not
Qv+1 since Qv+1 is needed by the long-lived v.

In a long-lived system, disk fragmentation degrades
archive performance causing non-sequential archive disk
writes. The alternative approach that copies out the pages
of the long-lived snapshots, incurs the high cost of ran-
dom disk reads. But to remain non-disruptive, the snap-
shot system needs to keep the archiving costs low, i.e.
limit the amount of archiving I/O and rely on low-cost
sequential archive writes. The challenge is to support
snapshot discrimination efficiently.

Our approach exploits the copying of past states in a
split snapshot system. When the application provides a
snapshot discrimination policy that determines the life-
times of snapshots, we segregate the long-lived and the
short-lived snapshot pages and copy different lifetime
pages into different archive areas. When no long-lived
pages are stored in short-lived areas, reclamation creates
no fragmentation. In the example above, if the archive
system knows at snapshot v + 1 creation time that it
is shorter-lived than v, it can store the long-lived snap-
shot pages Pv , Sv and Qv+1 in a long-lived archive area,
and the transient Pv+1, Sv+1 pages in a short-lived area,
so that the shorter-lived pages can be reclaimed without
fragmentation.

Our approach therefore, combines a discrimination
policy and a discrimination mechanism. Below we
characterize the discrimination policies supported in
Thresher. The subsequent sections describe the discrim-
ination mechanisms for different policies.

Discrimination policies. A snapshot discrimination
policy conveys to the snapshot storage management sys-
tem the importance of snapshots so that more important
snapshots can have longer lifetimes, or can be stored
with faster access. Thresher supports a class of flexi-
ble discrimination policies described below using an ex-
ample. An application specifies a discrimination policy
by providing a relative snapshot ranking. Higher-ranked
snapshots are deemed more important. By default, every

Annual Tech ’06: 2006 USENIX Annual Technical ConferenceUSENIX Association 61

snapshot is created with a lowest rank. An application
can ”bump up” the importance of a snapshot by assign-
ing it a higher rank. In a hospital ICU patient database,
a policy may assign the lowest rank to snapshots corre-
sponding to minute by minute vital signs monitor read-
ings, a higher rank to the monitor readings that corre-
spond to hourly nurses’ checkups, yet a higher rank to the
readings viewed in doctors’ rounds. Within a given rank
level, more recent snapshots are considered more impor-
tant. The discrimination policy assigns longer lifetimes
to more important snapshots, defining a 3-level sliding
window hierarchy of snapshot lifetimes.

The above policy is a representative of a general class
of discrimination policies we call rank-tree. More pre-
cisely, a k-level rank-tree policy has the following prop-
erties, assuming rank levels are given integer values 1
through k:

• RT1: A snapshot ranked as level i, i > 1, corre-
sponds to a snapshot at each lower rank level from
1 to (i − 1).

• RT2: Ranking a snapshot at a higher rank level in-
creases its lifetime.

• RT2: Within a rank level, more recent snapshots
outlive older snapshots.

Figure 4 depicts a 3-level rank-tree policy for the hospi-
tal example, where snapshot number 1, ranked at level
3, corresponds to a monitor reading that was sent for in-
spection to both the nurse and the doctor, but snapshot
number 4 was only sent to the nurse.

An application can specify a rank-tree policy eagerly
by providing a snapshot rank at snapshot declaration
time, or lazily, by providing the rank after declaring a
snapshot. An application can also ask to store recent
snapshots with faster access. In the hospital example
above, the importance and the relative lifetimes of the
snapshots associated with routine procedure are likely
to be known in advance, so the hospital application can
specify a snapshot discrimination policy eagerly.

4.1 Eager ranked segregation

The eager ranked segregation protocol provides efficient
discrimination for eager rank-tree policies. The proto-
col assigns a separate archive region to hold the snapshot
pages (volumesi) and snapshot page tables (VPTi) for
snapshots at level i. During snapshot creation, the pro-
tocol segregates the different lifetime pages and copies
them into the corresponding regions. This way, each re-
gion contains pages and page tables with the same life-
time and temporal reclamation of snapshots (satisfying
policy property RT2) within a region does not create disk
fragmentation. Figure 3 shows a segregated archive.

At each rank level i, snapshots ranked at level i are
archived in the same incremental manner as in SNAP and
at the same low sequential cost. The cost is low because
by using sufficiently large write buffers (one for each vol-
ume), archiving to multiple volumes can be as efficient as
strictly sequential archiving into one volume. Since we
expect the rank-tree to be quite shallow the total amount
of memory allocated to write buffers is small.

The eager ranked segregation works as follows. The
declaration of a snapshot v with a rank specified at level
k(k ≥ 1), creates a separate incremental snapshot page
table, VPTi

v for every rank level i(i ≤ k). The incre-

S1
1 S1

2

11 1298652 3
S1

3 S1
4 S1

6S1
5

1041 7

S3
1

S2
4S2

1 S2
7

Figure 4: Example rank-tree policy

mental page table VPTi
v collects the mappings for the

pages recorded by snapshot v at level i. Since the in-
cremental tables in VPTi map the pages recorded by all
the snapshots at level i, the basic snapshot page table re-
construction protocol based on a forward scan through
VPTi (Section 3.2) can be used in region i to reconstruct
snapshot tables for level i snapshots.

The recorded pages contain the pre-state before the
first page modification in the snapshot span. Since the
span for snapshot v at level i (denoted Si

v) includes the
spans of all the lower level snapshots declared during S i

v,
pages recorded by a level i snapshot v are also recorded
by some of these lower-ranked snapshots. In Figure 4,
the span of snapshot 4 ranked at level 2 includes the
spans of snapshots (4), 5 and 6 at level 1. Therefore,
a page recorded by the snapshot 4 at level 2 is also
recorded by one of the snapshots (4), 5, or 6 at level 1.

A page P recorded by snapshots at multiple levels is
archived in the volume of the highest-ranked snapshot
that records P . We say that the highest recorder captures
P . Segregating archived pages this way guarantees that a
volume of the shorter-lived snapshots contains no longer-
lived pages and therefore temporal reclamation within a
volume creates no fragmentation.

The mappings in a snapshot page table VPTi
v in area

i point to the pages recorded by snapshot v in what-
ever area these pages are archived. Snapshot reclamation
needs to insure that the snapshot page table mappings are
safe, that is, they do not point to reclaimed pages. The
segregation protocol guarantees the safety of the snap-
shot page table mappings by enforcing the following in-
variant I that constrains the intra-level and inter-level
reclamation order for snapshot pages and page tables:

Annual Tech ’06: 2006 USENIX Annual Technical Conference USENIX Association62

1. V PT i
v and the pages recorded by snapshot v that

are captured in volumei are reclaimed together, in
temporal snapshot order.

2. Pages recorded by snapshot v at level k(k > 1),
captured in volumek, are reclaimed after the pages
recorded by all level i(i < k) snapshots declared in
the span of snapshot v at level k.

I(1) insures that in each given rank-tree level, the snap-
shot page table mappings are safe when they point to
pages captured in volumes within the same level. I(2)
insures that the snapshot page table mappings are safe
when they point to pages captured in volumes above their
level. Note that the rank-tree policy property RT2 only
requires that “bumping up” a lower-ranked snapshot v
to level k extends its lifetime but it does not constrain
the lifetimes of the lower-level snapshots declared in the
span of v at level k. I(2) insures the safety of the snapshot
table mappings for these later lower-level snapshots.

��������
�

	

����

�

	

�
	
���
���

���
���
	
���

���
	
�
���

��
��

���

���

���

���

�
��

��

���

���

���

���

�

�

�������� ������� ����

���
���
���
���

�����

����

���	�
 	 � 	

�	������

��	�������
 ��	�������

Figure 5: Eager ranked segregation

Figure 5 depicts the eager segregation protocol for a
two-level rank-tree policy shown in the figure. Snap-
shot v4, specified at level 2, has a snapshot page table at
both level 1 and level 2. The archived page P modified
within the span of snapshot v5, is recorded by snapshot
v5, and also by the level 2 snapshot v4. This version
of P is archived in the volume of the highest record-
ing snapshot (denoted volumev4). The snapshot page
tables of both recording snapshots V PT 1

v5
and V PT 2

v4

contain this mapping for P . Similarly, the pre-state of
page Q modified within the span of v6 is also captured in
volumev4 . P is modified again within the span of snap-
shot v6. This later version of P is not recorded by snap-
shot v4 at level 2 since v4 has already recorded its version
of P . This later version of P is archived in volumev6 and
its mapping is inserted into VPT1

v6
. Invariant I(1) guar-

antees that in VPT1
v6

mappings for page P in volumev6

is safe. Invariant I(2) guarantees that in VPT1
v6

the map-
ping for page Q in volume v4 is safe.

4.2 Lazy segregation

Some applications may need to defer snapshot ranking to
after the snapshot has already been declared (use a lazy
rank-tree policy). When snapshots are archived first and
ranked later, snapshot discrimination can be costly be-
cause it requires copying. The lazy segregation protocol
provides efficient lazy discimination by combining two
techniques to reduce the cost of copying. First, it uses
a more compact diff-based representation for snapshot
pages so that there is less to copy. Second, the diff-based
representation (as explained below) includes a compo-
nent that has a page-based snapshot representation. This
page-based component is segregated without copying us-
ing the eager segregation protocol.

Diff-based snapshots. The compact diff-based repre-
sentation implements the same abstraction of snapshot
pages and snapshot page tables, as the page-based snap-
shot representation. It is similar to database redo recov-
ery log consisting of sequential repetitions of two types
of components, checkpoints and diffs. The checkpoints
are incremental page-based snapshots declared periodi-
cally by the storage management system. The diffs are
versioned page diffs, consisting of versioned object mod-
ifications clustered by page. Since typically only a small
fraction of objects in a page is modified by a transaction,
and moreover, many attributes do not change, we expect
the diffs to be compact.

The log repetitions containing the diffs and the check-
points are archived sequentially, with diffs and check-
points written into different archive data structures. Like
in SNAP, the incremental snapshot page tables collect the
archived page mappings for the checkpoint snapshots. A
simple page index structure keeps track of page-diffs in
each log repetition (the diffs in one log repetition are re-
ferred to as diff extent).

To create the diff-based representation, the cleaner
sorts the diffs in an in-memory buffer, assembling the
page-based diffs for the diff extents. The available sort-
ing buffer size determines the length of diff extents.
Since frequent checkpoints decrease the compactness of
the diff-based representation, to get better compactness,
the cleaner may create several diff extents in a single log
repetition. Increasing the number of diff extents slows
down BITE. This trade-off is similar to the recovery log.
For brevity, we omit the details of how the diff-based
representation is constructed. The details can be found
in [16]. The performance section discusses some of the
issues related to the diff-based representation compact-
ness that are relevant to the snapshot storage manage-
ment performance.

The snapshots declared between checkpoints are re-
constructed by first mounting the snapshot page table for

Annual Tech ’06: 2006 USENIX Annual Technical ConferenceUSENIX Association 63

the closest (referred to as base) checkpoint and the cor-
responding diff-page index. This allows BITE to access
the checkpoint pages, and the corresponding page-diffs.
To reconstruct Pv , the version of P in snapshot v, the
server reads page P from the checkpoint, and then reads
in order, the diff-pages for P from all the needed diff
extents and applies them to the checkpoint P in order.
Figure 6 shows an example of reconstructing a page P in

������� 	�
�

�

���

�����

�����

���� ��	

�� �

����� �	

�

����� �	

�

����

��

��	

 ��	

���

Figure 6: BITE: diff-based representation

a diff-based snapshot v from a checkpoint page Pv0 and
diff-pages contained in several diff extents.

Segregation. When an application eventually provides
a snapshot ranking, the system simply reads back the
archived diff extents, assembles the diff extents for the
longer-lived snapshots, creates the corresponding long-
lived base checkpoints, and archives the retained snap-
shots sequentially into a longer-lived area. If diffs are
compact, the cost of copying is low.

The long-lived base checkpoints are created with-
out copying by separating the long-lived and short-lived
checkpoint pages using eager segregation. Since check-
points are simply page-based snapshots declared period-
ically by the system, the system can derive the ranks for
the base checkpoints once the application specifies the
snapshot ranks. Knowing ranks at checkpoint declara-
tion time enables eager segregation.

Consider two adjacent log repetitions Li, Li+1 for
level-1 snapshots, with corresponding base checkpoints
Bi, and Bi+1. Suppose the base checkpoint Bi+1 is to
be reclaimed when the adjacent level-1 diff extents are
merged into one level 2 diff extent. Declaring the base
checkpoint Bi a level-2 rank tree snapshot, and base
checkpoint Bi+1 as level-1 rank tree snapshot, allows
to reclaim the pages of Bi+1 without fragmentation or
copying.

Figure 7 shows an example eager rank-tree policy for
checkpoints in lazy segregation. A representation for
level-1 snapshots has the diff extents E1, E2 and E3

(in the archive region G1
diffs) associated with the base

��
�����

�	

�����
�����

�� �� ��

���

�������	�
���	 ����� ���� ���� ������

�� �����������

���� ����������� �
 	�

�

�	
�����

�� �

�

Figure 7: Lazy segregation

checkpoints B1, B2 and B3. To create the level-2 snap-
shots, E1, E2 and E3 are merged into extent E (in region
G2

diffs). This extent E has a base checkpoint B1. Even-
tually, extents E1, E2, E3 and checkpoints B2, B3 are
reclaimed. Since B1 was ranked at declaration time as
rank-2 longer-lived snapshot, the eager segregation pro-
tocol lets B1 capture all the checkpoint pages it records,
allowing to reclaim the shorter-lived pages of B2 and B3

without fragmentation.
Our lazy segregation protocol is optimized for the case

where the application specifies snapshot rank within a
limited time period after snapshot declaration, which we
expect to be the common case. If the limit is exceeded,
the system reclaims shorter-lived base checkpoints by
copying out longer-lived pages at a much higher cost.
The same approach can also be used if the application
needs to change the discrimination policy.

4.3 Faster BITE

The diff-based representation is more compact but has a
slower BITE than the page-based representation. Some
applications require lazy discrimination but also need
low-latency BITE on a recent window of snapshots. For
example, to examine the recent snapshots and identify
the ones to be retained. The eager segregation proto-
col allows efficient composition of diff-based and page-
based representations to provide fast BITE on recent
snapshots, and lazy snapshot discrimination. The com-
posed representation, called hybrid, works as follows.
When an application declares a snapshot, hybrid creates
two snapshot representations. A page-based represen-
tation is created in a separate archive region that main-
tains a sliding window of W recent snapshots, reclaimed
temporally. BITE on snapshots within W runs on the
fast page-based representation. In addition, to enable ef-
ficient lazy discrimination, hybrid creates for the snap-
shots a diff-based representation. BITE on snapshots
outside W runs on the slower diff-based representation.

Annual Tech ’06: 2006 USENIX Annual Technical Conference USENIX Association64

Snapshots within W therefore have two representations
(page-based and diff-based).

��
�����

�	

�����
�����

�� �	 �

���

������������� ����� ���� ���
������ ��� �� ��� ����������

���� ���������� �� �����

�	
�����

�� �

�

�� �	 ��
�
 �� ��

Figure 8: Reclamation in Hybrid

The eager segregation protocol can be used to effi-
ciently compose the two representations and provide ef-
ficient reclamation. To achieve the efficient composition,
the system specifies an eager rank-tree policy that ranks
the page-based snapshots as lowest-rank (level-0) rank-
tree snapshots, but specifies the ones that correspond to
the system-declared checkpoints in the diff-based repre-
sentation, as level-1. As in lazy segregation, the check-
points can be further discriminated by bumping up the
rank of the longer-lived checkpoints. With such ea-
ger policy, the eager segregation protocol can retain the
snapshots declared by the system as checkpoints with-
out copying, and can reclaim the aged snapshots in the
page-based window W without fragmentation. The cost
of checkpoint creation and segregation is completely ab-
sorbed into the cost of creating the page-based snapshots,
resulting in lower archiving cost than the simple sum of
the two representations.

Figure 8 shows reclamation in the hybrid system that
adds faster BITE to the snapshots in Figure 7. The sys-
tem creates the page-based snapshots Vi and uses them
to run fast BITE on recent snapshots. Snapshots V1 and
V4 are used as base checkpoints B1 and B2 for the diff-
based representation, and checkpoint B1 is retained as
a longer-lived chekpoint. The system specifies an ea-
ger rank-tree policy, ranking snapshots Vi at level-0, and
bumping up V1 to level-2 and V4 to level-1. This allows
the eager segregation protocol to create the checkpoints
B1, and B2, and eventually reclaim B2, V5 and V6 with-
out copying.

5 Performance

Efficient discrimination should not increase significantly
the cost of snapshots. We analyze our discrimination
techniques under a range of workloads and show they

have minimal impact on the snapshot system perfor-
mance. Section 6 presents the results of our experiments.
This section explains our evaluation approach.

Cost of discrimination. The metric λdp [12] captures
the non-disruptiveness of an I/O-bound storage system.
We use this metric to gauge the impact of snapshot dis-
crimination. Let rpour be the “pouring rate” – aver-
age object cache (MOB/VMOB) free-space consumption
speed due to incoming transaction commits, which insert
modified objects. Let rdrain be the “draining rate” – the
average growth rate of object cache free space produced
by MOB/VMOB cleaning. We define:

λdp =
rdrain

rpour

λdp indicates how well the draining keeps up with the
pouring. If λdp ≥ 1, the system operates within its
capacity and the foreground transaction performance is
not be affected by background cleaning activities. If
λdp < 1, the system is overloaded, transaction commits
eventually block on free object cache space, and clients
experience commit delay.

Let tclean be the average cleaning time per dirty
database page. Apparently, tclean determines rdrain.
In Thresher, tclean reflects, in addition to the database
ireads and writes, the cost of snapshot creation and snap-
shot discrimination. Since snapshots are created on a
separate disk in parallel with the database cleaning, the
cost of snapshot-related activity can be partially “hid-
den” behind database cleaning. Both the update work-
load, and the compactness of snapshot representation af-
fect rpour, and determine how much can be hidden, i.e.
non-disruptiveness.

Overwriting (α) is an update workload parameter,
defined as the percentage of repeated modifications to
the same object or page. α affects both rpour and
rdrain. When overwriting increases, updates cause less
cleaning in the storage system because the object cache
(MOB/VMOB) absorbs repeated modifications, but high
frequency snapshots may need to archive most of the
repeated modifications. With less cleaning, it may be
harder to hide archiving behind cleaning, so snapshots
may become more disruptive. On the other hand, work-
loads with repeated modifications reduce the amount of
copying when lazy discrimination copies diffs. For ex-
ample, for a two-level discrimination policy that retains
one snapshot out of every hundred, of all the repeated
modifications to a given object o, archived for the short-
lived level-1 snapshots, only one (last) modification gets
retained in the level-2 snapshots. To gage the impact
of discrimination on the non-disruptiveness, we measure
rpour and rdrain experimentally in a system with and
without discrimination for a range of workloads with

Annual Tech ’06: 2006 USENIX Annual Technical ConferenceUSENIX Association 65

low, medium and high degree of overwriting, and ana-
lyze the resulting λdp.

λdp determines the maximum throughput of an
I/O bound storage system. Measuring the maximum
throughput in a system with and without discrimination
could provide an end-to-end metric for gauging the im-
pact of discrimination. We focus on λdp because it al-
lows us to explain better the complex dependency be-
tween workload parameters and cost of discrimination.

Compactness of representation. The effectiveness of
diff-based representation in reducing copying cost de-
pends on the compactness of the representation. We
characterize compactness by a relative snapshot reten-
tion metric R, defined as the size of snapshot state writ-
ten into the archive for a given snapshot history length
H , relative to the size of the snapshot state for H cap-
tured in full snapshot pages. R = 1 for the page-
based representation. R of the diff-based representation
has two contributing components, Rckp for the check-
points, and Rdiff for the diffs. Density (β), a work-
load parameter defined as the fraction of the page that
gets modified by an update, determines Rdiff . For ex-
ample, in a static update workload where any time a
page is updated, the same half of the page gets modi-
fied, Rdiff = 0.5. Rckp depends on the frequency of
checkpoints, determined by L – the number of snapshots
declared in the history interval corresponding to one log
repetition. In workloads with overwriting, increasing L
decreases Rckp since checkpoints are page-based snap-
shots that record the first pre-state for each page modi-
fied in the log repetition. Increasing L by increasing d,
the number of diff extents in a log repetition, raises the
snapshot page reconstruction cost for BITE. Increasing L
without increasing d requires additional server memory
for the cleaner to sort diffs when assembling diff pages.

Diff-based representation will not be compact if trans-
actions modify all the objects in a page. Common up-
date workloads have sparse modifications because most
applications modify far fewer objects than they read. We
determine the compactness of the diff-based representa-
tion by measuring Rdiff and Rckp for workloads with
expected medium and low update density.

6 Experimental evaluation

Thresher implements in SNAP [12] the techniques we
have described, and also support for recovery during
normal operation without the failure recovery proce-
dure. This allows us to evaluate system performance in
the absence of failures. Comparing the performance of
Thresher and SNAP reveals a meaningful snapshot dis-
crimination cost because SNAP is very efficient: even at

high snapshot frequencies it has low impact on the stor-
age system [12].

Workloads. To study the impact of the workload we
use the standard multiuser OO7 benchmark [2] for object
storage systems. We omit the benchmark definition for
lack of space. An OO7 transaction includes a read-only
traversal (T1), or a read-write traversal (T2a or T2b). The
traversals T2a and T2b generate workloads with fixed
amount of object overwriting and density. We have im-
plemented extended traversal summarized below that al-
low us to control these parameters. To control the degree
of overwriting, we use a variant traversal T2a’ [12], that
extends T2a to update a randomly selected AtomicPart
object of a CompositePart instead of always modifying
the same (root) object in T2a. Like T2a, each T2a’ traver-
sal modifies 500 objects. The desired amount of over-
writing is achieved by adjusting the object update history
in a sequence of T2a’ traversals. Workload parameter α
controls the amount of overwriting. Our experiments use
three settings for α, corresponding to low (0.08), medium
(0.30) and very high (0.50) degree of overwriting.

To control density, we developed a variant of traversal
T2a’, called T2f (also modifies 500 objects), that allows
to determine β, the average number of modified Atomic-
Part objects on a dirty page when the dirty page is written
back to database (on average, a page in OO7 has 27 such
objects). Unlike T2a’ which modifies one AtomicPart
in the CompositePart, T2f modifies a group of Atomic-
Part objects around the chosen one. Denote by T2f-g the
workload with group of size g. T2f-1 is essentially T2a’.

The workload density β is controlled by specifying
the size of the group. In addition, since repeated T2f-g
traversals update multiple objects on each data page due
to write-absorption provided by MOB, T2f-g, like T2a’,
also controls the overwriting between traversals. We
specify the size of the group, and the desired overwriting,
and experimentally determine β in the resulting work-
load. For example, given 2MB of VMOB (the standard
configuration in Thor and SNAP for single-client work-
load), the measured β of multiple T2f-1 is 7.6 (medium
α, transaction 50% on private module, 50% on public
module). T2f-180 that modifies almost every Atomic-
Part in a module, has β = 26, yielding almost the highest
possible workload density for OO7 benchmark. Our ex-
periments use workloads corresponding to three settings
of density β, low (T2f-1,β=7.6), medium (T2f-26,β=16)
and very high (T2f-180,β=26) Unless otherwise speci-
fied, a medium overwriting rate is being used.

Experimental configuration. We use two experimen-
tal system configurations. The single-client experiments
run with snapshot frequency 1, declaring a snapshot af-
ter each transaction, in a 3-user OO7 database (185MB

Annual Tech ’06: 2006 USENIX Annual Technical Conference USENIX Association66

in size). The multi-client scalability experiments run
with snapshot frequency 10 in a large database (140GB
in size). The size of a single private client module is
the same in both configurations. All the reported results
show the mean of at least three trials with maximum stan-
dard deviation at 3%.

The storage system server runs on a Linux (ker-
nel 2.4.20) workstation with dual 64-bit Xeon 3Ghz
CPU, 1GB RAM. Two Seagate Cheetah disks (model
ST3146707LC, 10000 rpm, 4.7ms avg seek, Ultra320
SCSI) directly attach to the server via LSI Fusion MPT
adapter. The database and the archive reside on sep-
arate raw hard disks. The implementation uses Linux
raw devices and direct I/O to bypass file system cache.
The client(s) run on workstations with single P3 850Mhz
CPU and 512MB of RAM. The clients and server are
inter-connected via a 100Mbps switched network. In
single-client experiments, the server is configured with
18 MB of page cache (10% of the database size), and
a 2MB MOB in Thor. In multi-client experiments, the
server is configured with 30MB of page cache and 8-
11MB of MOB in Thor. The snapshot systems are con-
figured with slightly more memory [12] for VMOB so
that the same number of dirty database pages is generated
in all snapshot systems, normalizing the rdrain compari-
son to Thor.

6.1 Experimental results

We analyze in turn, the performance of eager segrega-
tion, lazy segregation, hybrid representation, and BITE
under a single-client workload, and then evaluate system
scalability under a multiple concurrent client workload.

6.1.1 Snapshot discrimination

Eager segregation. Compared to SNAP, the cost of ea-
ger discrimination in Thresher includes the cost of cre-
ating VPTs for higher-level snapshots. Table 1 shows
tclean in Thresher for a two-level eager rank-tree with
inter-level retention fraction fraction f set to one snap-
shot in 200, 400, 800, and 1600. The tclean in SNAP

Table 1: tclean: eager segregation

f 200 400 800 1600

tclean 5.08ms 5.07ms 5.10ms 5.08ms

is 5.07ms. Not surprisingly, the results show no notice-
able change, regardless of retention fraction. The small
incremental page tables contribute a very small fraction
(0.02% to 0.14%) of the overall archiving cost even for
the lowest-level snapshots, rendering eager segregation

essentially free of cost. This result is important, because
eager segregation is used to reduce the cost of lazy seg-
regation and hybrid representation.

Lazy segregation. We analyzed the cost of lazy segre-
gation for a 2-level rank-tree by comparing the cleaning
costs, and the resulting λdp in four different system con-
figurations, Thresher with lazily segregated diff-based
snapshots (“Lazy”), Thresher with unsegregated diff-
based snapshots (“Diff”), page-based (unsegregated)
snapshots(“SNAP”), and storage system without snap-
shots (“Thor”), under workloads with a wide range of
density and overwriting parameters. The complete re-

Table 2: Lazy segregation and overwriting

α tclean tdiff λdp

low

Lazy 5.30ms 0.13ms 2.24
Diff 5.28ms 0.08ms 2.26
SNAP 5.37ms 2.24
Thor 5.22ms 2.30

medium

Lazy 4.98ms 0.15ms 3.67
Diff 5.02ms 0.10ms 3.69
SNAP 5.07ms 3.72
Thor 4.98ms 3.79

high

Lazy 4.80ms 0.21ms 4.58
Diff 4.80ms 0.14ms 4.66
SNAP 4.87ms 4.61
Thor 4.61ms 4.83

sults, omitted for lack of space, can be found in [16].
Here we focus on the low and medium overwriting and
density parameter values we expect to be more common.

A key factor affecting the cleaning costs in the diff-
based systems is the compactness of the diff-based rep-
resentation. A diff-based system configured with a 4MB
sorting buffer, with medium overwriting, has a very low
Rckp (0.5% - 2%) for the low density workload (Rdiff

is 0.3%). For medium density workload (Rdiff is 3.7%),
the larger diffs fill sorting buffer faster but Rckp de-
creases from 10.1% to 4.8% when d increases from 2
to 4 diff extents. These results point to the space saving
benefits offered by the diff-based representation.

Table 2 shows the cleaning costs and λdp for all four
systems for medium density workload with low, medium,
and high overwriting. The tclean measured in the Lazy
and Diff systems includes the database iread and write
cost, the CPU cost for processing VMOB, the page

Annual Tech ’06: 2006 USENIX Annual Technical ConferenceUSENIX Association 67

archiving and checkpointing cost via parallel I/O, snap-
shot page table archiving, and the cost for sorting diffs
and creating diff-extents but does not directly include the
cost of reading and archiving diffs, since this activity is
performed asynchronously with cleaning. The measured
tdiff reflects these diff related costs (including I/O on
diff extents, and diff page index maintenance) per dirty
database page. The tclean measured for SNAP and Thor
includes the (obvious) relevant cost components.

Compared to Diff, Lazy has a higher tdiff reflecting
the diff copying overhead. This overhead decreases as
overwriting rate increases. tdiff does not drop propor-
tionally to the overwriting increase because the dominant
cost component of creating higher level extents, reading
back the extents in the lowest level, is insensitive to the
overwriting rate. Lazy pays no checkpoint segregation
cost because it uses the eager protocol.

Next consider non-disruptiveness. We measure rpour

and conservatively compute λdp for Diff and Lazy by
adding tdiff to tclean, approximating a very busy system
where diff I/O is forced to run synchronously with the
cleaning. When overwriting is low, λdp in all snapshot
systems is close to Thor. When overwriting is high, all
systems have high λdp because there is very little clean-
ing in the storage system, and R is low in Diff and Lazy.
Importantly, even with the conservative adjustment, λdp

in both diff-based systems is very close to SNAP, while
providing significantly more compact snapshots. Notice,
all snapshot systems declare snapshots after each traver-
sal transaction. [12] shows that λdp increases quickly as
snapshot frequency decreases.

Hybrid. The Hybrid system incurs the archiving costs
of a page-based snapshot system, plus the costs of diff
extent creation and segregation, deeming it the costli-
est of Thresher configurations. Workload density im-
pacts the diff-related costs. Figure 9 shows how the non-
disruptiveness λdp of Hybrid decreases relative to Thor
for workloads with low, medium and high density and a
fixed medium overwriting. The denser workload implies

0.00%

2.00%

4.00%

6.00%

8.00%

10.00%

12.00%

14.00%

16.00%

low medium high

workload density

� dp
d e

c r
e a

s e
o v

e r
T

ho
r

medium �

Figure 9: Hybrid: λdp relative to Thor

more diff I/O. Under the densest possible workload, in-
cluded here for comparison, the drop of λdp of hybrid
over Thor is 13.6%, where for the common expected
medium and low workloads the drop is 3.2% and 1.8%
respectively. Note in all configurations, because system’s
λdp is greater than 1, there is no client-side performance
difference observed between Hybrid and Thor. As a re-
sult, the metric λdp directly reflects the server’s “clean-
ing” speed (tclean). The results in Figure 9 indicate
that Hybrid is a feasible solution for systems that need
fast BITE and lazy discrimination (or snapshot compact-
ness).

6.1.2 Back-in-time execution

We compare BITE in Diff and SNAP to Thor. Our ex-
periment creates Diff and SNAP archives by running
16000 medium density, medium overwriting traversals
declaring a snapshot after each traversal. The incre-
mental VPT protocol [12] checkpoints VPTs at 4MB
intervals to bound reconstruction scan cost. The APT
mounting time, depending on the distance from the VPT
checkpoint is of a seesaw pattern, between 21.05ms and
48.77ms. The latency of BITE is determined by the av-
erage fetch cost via APT (4.10ms per page).

Diff mounts snapshot by mounting the closest check-
point, i.e. reconstructing the checkpoint page table (same
cost as VPT in SNAP), and mounting the involved page
index structures at average mounting time of page index
at 7.61ms. To access a page P , Diff reads the checkpoint
page and the d diff-pages of P . The average cost to fetch
a checkpoint page is 5.80ms, to fetch a diff-page from
one extent is 5.42ms. The cost of constructing the re-
quested page version by applying the diff-pages back to
the checkpoint page is negligible.

Table 3: End-to-end BITE performance

current db page-based diff-based

T1 traversal 17.53s 27.06s 42.11s

Table 3 shows the average end-to-end BITE cost mea-
sured at the client side by running one standard OO7
T1 traversal against Thor, SNAP and Diff respectively.
Hybrid has the latency of SNAP for recent snapshots,
and latency of Diff otherwise. The end-to-end BITE la-
tency (page fetch cost) increases over time as pages are
archived. Table 3 lists the numbers corresponding to a
particular point in system execution history with the in-
tention of providing general indication of BITE perfor-
mance on different representations compared to the per-
formance of accessing the current database. The perfor-

Annual Tech ’06: 2006 USENIX Annual Technical Conference USENIX Association68

mance gap between page-based and diff-based BITE mo-
tivates the hybrid representation.

6.1.3 Scalability

To show the impact of discrimination in a heavily loaded
system we compare Thresher (hybrid) and Thor as the
storage system load increases, for single-client, 4-client
and 8-client loads, for medium density and medium over-
writing workload. (An 8-client load saturates the capac-
ity of the storage system).

The database size is 140GB, which virtually contains
over 3000 OO7 modules. Each client accesses its pri-
vate module (45MB in size) in the database. The pri-
vate modules of the testing clients are evenly allocated
within the space of 140GB. Under 1-client, 4-client and
8-client workloads, the λdp of Thor is 2.85, 1.64 and
1.30 respectively. These λdp values indicate, that Thor
is heavily loaded under multi-client workloads. Figure

0.00%

1.00%

2.00%

3.00%

4.00%

5.00%

6.00%

1-client 4-client 8-client

number of concurrent clients

� dp
de

cr
ea

se
ov

er
T

h o
r

medium density, medium overwriting

Figure 10: multiple clients: λdp relative to Thor

10 shows the decrease of λdp in Hybrid relative to Thor
when load increases. Note, that adding more concurrent
clients doesn’t cause Hybrid to perform worse. In fact,
with 8-client concurrent workload, Hybrid performs bet-
ter than single-client workload. This is because with pri-
vate modules evenly allocated across the large database,
the database random read costs increase compared to
the single-client workload, hiding the cost of sequen-
tial archiving during cleaning more effectively. Under
all concurrent client workloads, Hybrid, the costliest
Thresher configurations, is non-disruptive.

7 Related work

Most storage systems that retain snapshots use incremen-
tal copy-on-write techniques. To the best of our knowl-
edge none of the earlier systems provide snapshot storage
management or snapshot discrimination policies beyond
aging or compression.

Versioned storage systems built on top of log-
structured file systems and databses [13, 14], and write-
anywhere storage [6], provide a low-cost way to retain
past state by using no-overwrite updates. These sys-
tems does not distinguish between current and past states
and use same representation for both. Recent work in
ext3cow system [9], separates past and present meta-data
states to preserve clustering, but uses no-overwrite up-
dates for data.

Elephant [11] is an early versioned file system that
provides consistent snapshots of a file system, allows
faster access to recent versions, and provides a sliding
window of snapshots but does not support lazy discrimi-
nation or different time-scale snapshots.

Compact diff-based representation for versions is used
in the CVS source control system. Large-scale stor-
age systems for archiving past state(e.g. [10, 17]) im-
prove the compactness of storage representation (and
reduce archiving bandwidth) by eliminating redundant
blocks in the archive. These techniques, based on con-
tent hashes [10], and differential compression [17], incur
high cost at version creation time and do not seem suited
for non-disruptive creation of snapshots. However, these
systems may benefit from snapshot discrimination.

Generational garbage collectors [15] use efficient stor-
age reclamation techniques that reduce fragmentation by
grouping together objects with similar lifetimes. The
rank tree technique adopts a similar idea for immutable
past states shared by snapshots with different lifetimes.

8 Conclusions

We have described new efficient storage management
techniques for discriminating copy-on-write snapshots.
The ranked segregation technique, borrowing from gen-
erational garbage collection, provides no-copy reclama-
tion when the application specifies a snapshot discrimi-
nation policy eagerly at snapshot declaration time. Com-
bining ranked segregation with a compact diff-based rep-
resentation enables efficient reclamation when the ap-
plication specifies the discrimination policy lazily, after
snapshot declaration. Hybrid, an efficient composition
of two representations, provides faster access to recent
snapshots and supports lazy discrimination at low addi-
tional cost.

We have prototyped the new discrimination techniques
and evaluated the effect of workload parameters on the
efficiency of discrimination. The results indicate that our
techniques are very efficient. Eager discrimination incurs
no performance penalty. Lazy discrimination incurs a
low 3% storage system performance penalty on expected
common workoads. The diff-based representation pro-
vides more than ten-fold reduction in snapshot storage
that can be further reduced with discrimination. Further-

Annual Tech ’06: 2006 USENIX Annual Technical ConferenceUSENIX Association 69

more, the hybrid system that provides lazy discrimina-
tion and fast BITE incurs a 10% penalty to the storage
system in the worst case of extremely dense update work-
load, and a low 4% penalty in the expected common case.

Snapshot discrimination could become an attractive
feature in future storage systems. The paper has de-
scribed the first step in this direction. Our prototype is
based on a transactional object storage system, although
we believe our techniques are more general. We have al-
ready applied them to a more general ARIES [5] STEAL
system. A file system prototype would be especially
worthwhile. It would require modifications to the file
system interface along the lines of a recent proposal [3]
to enable more efficient capture of updates.

References

[1] ADYA, A., GRUBER, R., LISKOV, B., AND MA-
HESHWARI, U. Efficient optimistic concurrencty
control using loosely synchronized clocks. In Pro-
ceedings of the ACM SIGMOD International Con-
ference on Management of Data (1995).

[2] CAREY, M. J., DEWITT, D. J., AND NAUGHTON,
J. F. The OO7 Benchmark. In Proceedings of
the 1993 ACM SIGMOD International Conference
on Management of Data (Washington D.C., May
1993), pp. 12–21.

[3] DE LOS REYES, A., FROST, C., KOHLER, E.,
MAMMARELLA, M., AND ZHANG, L. The Ku-
dOS Architecture for File Systems. In Proceedings
of the 20th ACM Symposium on Operating Systems
Principles (SOSP), WIP Session (Brighton,UK,
October 2005).

[4] GHEMAWAT, S. The Modified Object Buffer:
A Storage Management Technique for Object-
Oriented Databases. PhD thesis, Massachusetts
Institute of Technology, Cambridge, MA, USA,
September 1995.

[5] GRAY, J. N., AND REUTER, A. Transaction Pro-
cessing: Concepts and Techniques. Morgan Kauf-
mann Publishers Inc., 1993.

[6] HITZ, D., LAU, J., AND MALCOM, M. File Sys-
tem Design for an NFS File Server Appliance. In
Proceedings of the USENIX Winter Technical Con-
ference (San Francisco, CA, January 1994).

[7] LISKOV, B., CASTRO, M., SHRIRA, L., AND

ADYA, A. Providing persistent objects in dis-
tributed systems. In Proceedings of the 13th Euro-
pean Conference on Object-Oriented Programming
(ECOOP) (Lisbon, Portugal, June 1999).

[8] O’TOOLE, J., AND SHRIRA, L. Opportunistic
Log: Efficient Installation Reads in a Reliable Stor-
age Server. In Proceedings of the 1st USENIX
Symposium on Operating Systems Design and Im-
plementation (OSDI) (Monterey, CA, November
1994).

[9] PETERSON, Z. N., AND BURNS, R. C. The De-
sign, Implementation and Analysis of Metadata for
Time Shifting File-system. Technical Report HSSL-
2003-03, Computer Science Department, The John
Hopkins University (Mar. 2003).

[10] QUINLAN, S., AND DORWARD, S. Venti: A New
Approach to Archival Data Storage. In Proceedings
of the 1st Conference on File and Storage Technolo-
gies (FAST) (Monterey, CA, USA, January 2002).

[11] SANTRY, D., FEELEY, M., HUTCHINSON, N.,
VEITCH, A., CARTON, R., AND OFIR, J. Decid-
ing When to Forget in the Elephant File System. In
Proceedings of the 17th ACM Symposium on Oper-
ating Systems Principles (SOSP) (Charleston, SC,
USA, December 1999).

[12] SHRIRA, L., AND XU, H. Snap: Efficient snap-
shots for back-in-time execution. In Proceedings
of the 21st International Conference on Data Engi-
neering (ICDE) (Tokyo, Japan, Apr. 2005).

[13] SOULES, C. A. N., GOODSON, G. R., STRUNK,
J. D., AND GANGER, G. R. Metadata Efficiency
in Versioning File Systems. In Proceedings of the
2nd Conference on File and Storage Technologies
(FAST) (San Francisco, CA, USA, March 2003).

[14] STONEBRAKER, M. The Design of the POST-
GRES Storage System. In Proceedings of the
13th International Conference on Very-Large Data
Bases (Brighton, England, UK, September 1987).

[15] UNGAR, D., AND JACKSON, F. An adaptive tenur-
ing policy for generation scavengers. ACM Trans-
actions on Programming Languages and Systems
14, 1 (Mar. 1992), 1–27.

[16] XU, H. Timebox: A High Performance Archive for
Split Snapshots. PhD thesis, Brandeis University,
Dec. 2005.

[17] YOU, L., AND KARAMANOLIS, C. Evaluation of
efficient archival storage techniques. In Proceed-
ings of the 21st IEEE Symposium on Mass Storage
Systems and Technologies (MSST) (College Park,
MD, Apr. 2004).

Annual Tech ’06: 2006 USENIX Annual Technical Conference USENIX Association70

