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Abstract
This paper analyzes the usage data from a live deploy-
ment of an enterprise client management system based
on virtual machine (VM) technology. Over a period of
seven months, twenty-three volunteers used VM-based
computing environments hosted by the system and cre-
ated over 800 checkpoints of VM state, where each
checkpoint included the virtual memory and disk states.
Using this data, we study the design tradeoffs in apply-
ing content addressable storage (CAS) to such VM-based
systems. In particular, we explore the impact on storage
requirements and network load of different privacy prop-
erties and data granularities in the design of the under-
lying CAS system. The study clearly demonstrates that
relaxing privacy can reduce the resource requirements of
the system, and identifies designs that provide reasonable
compromises between privacy and resource demands.

1 Introduction

The systems literature of recent years bears witness to a
significantly increased interest in virtual machine (VM)
technology. Two aspects of this technology, namely plat-
form independence and natural state encapsulation, have
enabled the application of this technology in systems de-
signed to improve scalability [6, 14, 16, 32, 40, 49], se-
curity [15, 21, 47], reliability [1, 4, 8, 25, 44], and client
management [7, 5, 20].
The benefits derived from platform independence and
state encapsulation, however, often come with an asso-
ciated cost, namely the management of significant data
volume. For example, enterprise client management sys-
tems [7, 20] may require the storage of tens of gigabytes
of data per user. For each user, these systems store an
image of the user’s entire VM state, which includes not
only the state of the virtual processor and platform de-
vices, but the memory and disk states as well.
While this cost is initially daunting, we would expect
a collection of VM state images to have significant data

redundancy because many of the users will employ the
same operating systems and applications. Content ad-
dressable storage (CAS) [3, 27, 30, 36, 44, 48] is an
emergingmechanism that can reduce the costs associated
with this volume of data by eliminating such redundancy.
Essentially, CAS uses cryptographic hashing techniques
to identify data by its content rather than by name. Con-
sequently, a CAS-based system will identify sets of iden-
tical objects and only store or transmit a single copy even
if higher-level logic maintains multiple copies with dif-
ferent names.
To date, however, the benefit of CAS in the context
of enterprise-scale systems based on VMs has not been
quantified. In this paper, we analyze data obtained from
a seven-month, multi-user pilot deployment of a VM-
based enterprise client management system called Inter-
net Suspend/Resume (ISR) [19, 37]. Our analysis aims
to answer two basic questions:

Q1: By how much can the application of CAS reduce
the system’s storage requirements?

Q2: By how much can the application of CAS reduce
the system’s network traffic?

The performance of CAS depends upon several system
parameters. The answers to Q1 and Q2, therefore, are an-
alyzed in the context of the two most important of these
design criteria:

C1: The privacy policy, and

C2: the object granularity.

The storage efficiency of a CAS system, or the extent
to which redundant data is eliminated, depends upon the
degree to which that system is able to identify redundant
data. Hence, the highest storage efficiency requires users
to expose cryptographic digests to the system and po-
tentially to other users. As we shall see, the effects of
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this exposure can be reduced but not eliminated. Conse-
quently, criterion C1 represents a trade-off between stor-
age efficiency and privacy.
Object granularity, in contrast, is a parameter that dic-
tates how finely the managed data is subdivided. Because
CAS systems exploit redundancy at the object level, large
objects (like disk images) are often represented as a se-
quence of smaller objects. For example, a multi-gigabyte
disk image may be represented as a sequence of 128 KB
objects (or chunks). A finer granularity (smaller chunk-
size) will often expose more redundancy than a coarser
granularity. However, finer granularities will also require
more meta-data to track the correspondingly larger num-
ber of objects. Hence, criterion C2 represents the trade-
off between efficiency and meta-data overhead.
The results obtained from the ISR pilot deployment
indicate that the application of CAS to VM-based man-
agement systems is more effective in reducing storage
and network resource demands than applying traditional
compression technology such as the Lempel-Ziv com-
pression [50] used in gzip. This result is especially sig-
nificant given the non-zero runtime costs of compressing
and uncompressing data. In addition, combining CAS
and traditional compression reduces the storage and net-
work resource demands by a factor of two beyond the re-
ductions obtained by using traditional compression tech-
nology alone.
Further, using this real-world data, we are able to de-
termine that enforcing a strict privacy policy requires ap-
proximately 1.5 times the storage resources required by
a system with a less strict privacy policy. Finally, we
have determined that the efficiency improvements de-
rived from finer object granularity typically outweighs
the meta-data overhead. Consequently, the disk image
chunksize should be between 4 and 16 KB.
Sections 4 and 5 will elaborate on these results from
the pilot deployment. But first, we provide some back-
ground on ISR, content addressable storage, and the
methodology used in the study.

2 Background

2.1 Internet Suspend/Resume
Internet Suspend/Resume (ISR) is an enterprise client
management system that allows users to access their per-
sonal computing environments from different physical
machines. The system is based on a combination of
VM technology and distributed storage. User comput-
ing environments are encapsulated by VM instances, and
the state of such a VM instance, when idle, is captured
by system software and stored on a carefully-managed
server. There are a couple of motivations for this idea.
First, decoupling the computing environment from the

hardware allows clients to migrate across different hosts.
Second, storing VM state on a remote storage reposi-
tory simplifies the management of large client installa-
tions. The physical laptops and desktops in the instal-
lation no longer contain any hard user-specific state, and
thus client host backups are no longer necessary; the only
system that needs to be backed up is the storage reposi-
tory.
Figure 1 shows the setup of a typical ISR system. The
captured states of user environments are known as known
as parcels and are stored on a collection of (possibly)
distributed content servers. For example, in the figure,
Bob owns two parcels. One environment includes Linux
as the operating system, and the other includes Windows
XP.

Content servers

Clients (work) Clients (home)

winxp winxp
Checkin
(upload)

alice bob chuck

linux winxp

v1, …, vn-1, vn

Checkout
(download)

S D

Figure 1: An ISR system.

Each parcel captures the complete state of some VM
instance. The two most significant pieces of state are
the memory image and the disk image. In the current
ISR deployment, memory images are 256 MB and disk
images are 8 GB. Each memory image is represented as
a single file. Each disk image is partitioned into a set of
128 KB chunks and stored on disk, one file per chunk.
For each parcel, the system maintains a sequence of
checkpointed diff-based versions, v1, . . . ,vn−1,vn. Ver-
sion vn is a complete copy of the memory and disk im-
age. Each version vk, 1≤ vk ≤ vn−1, has a complete copy
of the memory image, along with the chunks from the vk
version of the disk image that changed between version
vk and vk+1.
Each client host in the ISR system runs a VM moni-
tor that can load and execute any parcel. ISR provides
a mechanism for suspending and transferring the execu-
tion of these parcels from one client host to another. For
example, Figure 1 shows a scenario where a user trans-
fers the execution of a VM instance from a source host S
at the office to a destination host D at home.
The transfer occurs in two phases: a checkin step fol-
lowed by a checkout step. After the user suspends exe-
cution of the VM monitor on S, the checkin step uploads
the memory image and any dirty disk chunks from S to
one of the content servers, creating a new parcel version
on the server. The checkout step downloads the memory
image of the most recent parcel version from the content
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server to D. The user is then able to resume execution
of the parcel on D (even before the entire disk image is
present). During execution, ISR fetches any missing disk
chunks from the content server on demand and caches
those chunks at the client for possible later use.

2.2 Content Addressable Storage
Content addressable storage (CAS) is a data manage-
ment approach that shows promise for impoving the effi-
ciency of ISR systems. CAS uses cryptographic hashing
to reduce storage requirements by exploiting commonal-
ity across multiple data objects [13, 23, 29, 42, 43, 48].
For example, to apply CAS to an ISR system, we would
represent each memory and disk image as a sequence of
fixed-sized chunk files, where the filename of each chunk
is computed using a collision-resistant cryptographic
hash function. Since chunks with identical names are as-
sumed to have identical contents, a single chunk on disk
can be included in the representations of multiple mem-
ory and disk images. The simplest example of this phe-
nomenon is that many memory and disk images contain
long strings of zeros, most of which can be represented
by a single disk chunk consisting of all zeros. A major
goal of this paper is to determine to what extent such re-
dundancy exists in realistic VM instances.

3 Methodology

Sections 4 and 5 present our analysis of CAS technology
in the context of ISR based on data collected during the
first 7 months of a pilot ISR deployment at CarnegieMel-
lon University. This section describes the deployment,
and how the data was collected and analyzed.

3.1 Pilot Deployment
The pilot deployment (pilot) began in January, 2005,
starting with about 5 users and eventually growing to
23 active users. Figure 2 gives the highlights. Users

Number of users 23
Number of parcels 36
User environment Windows XP or Linux
Memory image size 256 MB
Disk image size 8 GB
Client software ISR+Linux+VMware
Content server IBM BladeCenter
Checkins captured 817
Uncompressed size 6.5 TB
Compressed size 0.5 TB

Figure 2: Summary of ISR pilot deployment.

were recruited from the ranks of Carnegie Mellon stu-
dents and staff and given a choice of a Windows XP par-
cel, a Linux parcel, or both. Each parcel was configured
with an 8 GB virtual disk and 256 MB of memory. The
gold images used to create new parcels for users were
updated at various times over the course of the pilot with
security patches.
The content server is an IBM BladeCenter with 9
servers and a 1.5 TB disk array for storing user parcels.
Users downloaded and ran their parcels on Linux-based
clients running VMware Workstation 4.5.

3.2 Data Collection
During the course of the pilot, users performed numer-
ous checkin operations, eventually creating 817 distinct
parcel versions on the content server. In August, 2005,
after 7 months of continuous deployment, a snapshot of
the memory and disk images of these parcel versions
was taken on the content server. In uncompressed form,
the snapshot state would have consumed about 6.5 TB.
However, due to ISR’s diff-based representation and gzip
compression, it only required about 0.5 TB of disk space.
This snapshot state was copied to another server, where
it was post-processed and stored in a database for later
analysis.

 0.01

 0.1

 1

 10

 50  100  150  200  250

C
he

ck
in

s 
/ D

ay

Days Active

 0.01

 0.1

 1

 10

 50  100  150  200  250

C
he

ck
in

s 
/ D

ay

Days Active

 0.01

 0.1

 1

 10

 50  100  150  200  250

C
he

ck
in

s 
/ D

ay

Days Active

 0.01

 0.1

 1

 10

 50  100  150  200  250

C
he

ck
in

s 
/ D

ay

Days Active
Figure 3: Observed parcel checkin frequency

Figure 3 summarizes parcel usage statistics for the de-
ployment data. Each point in the figure represents a sin-
gle parcel and indicates the number of days that parcel
was active as well as its checkin frequency (average num-
ber of checkins per day). Parcels could be active for less
than the entire duration of the deployment either because
the parcel was created after the initial deployment launch
or because a user left the study early (e.g. due to stu-
dent graduation or end-of-semester constraints). Since
new users were added throughout the course of the pilot,
during post-processing we normalized the start time of
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each user to day zero. No extrapolation of data was per-
formed, thus the usage data for a user who has used the
system for n days appears in the first n days worth of data
in the corresponding analysis. We also removed several
parcels that were used by developers for testing, and thus
were not representative of typical use.

3.3 Analysis
The August 2005 snapshot provided a complete history
of the memory and disk images produced by users over
time. This history allowed us to ask a number of inter-
esting “what if” questions about the impact of different
design choices, or policies, on the performance of the
ISR system. In particular, we explored three different
storage policies: a baseline non-CAS Delta policy and
two different CAS policies called IP and ALL. These are
summarized in Figure 4. In each approach, a parcel’s

Policy Encryption Meta-data
Delta private per-parcel key none
IP private per-parcel key (tag) array
ALL convergent encryption (tag, key) array

Figure 4: Storage policy encryption technique summary.

memory and disk images are partitioned into fixed-sized
chunks, which are then encrypted, and optionally com-
pressed using conventional tools like gzip.
As will be shown in sections 4 and 5, differences in the
storage and encryption of data chunks affect not only the
privacy afforded to users but also dramatically alter the
resources required for storage and network transmission.
For our evaluations, we chose chunksizes of 4KB (a typ-
ical disk-allocation unit for most operating systems) and
larger.
Delta policy. In this non-CAS approach, the most re-
cent disk image vn contains a complete set of chunks.
For each version k< n, disk image vk contains only those
chunks that differ in disk image vk+1. Thus, we say that
Delta exploits temporal redundancy across the versions.
Chunks in all of the versions in a parcel are en-
crypted using the same per-parcel private key. Individ-
ual chunks are addressed by their position in the image
(logical block addressing), hence no additional meta-data
is needed. Memory images are represented in the same
way. Delta is similar to the approach used by the cur-
rent ISR prototype (the current prototype only chunks
the disk image and not the memory image). We chose
it as the baseline because it is an effective state-of-the-
art non-CAS approach for representing versions of VM
images.
IP (intra-parcel) policy. In this CAS approach, each
parcel is represented by a separate pool of unique chunks

shared by all versions, v1, . . . ,vn, of that parcel. Similar
to Delta, IP identifies temporal redundancy between con-
tiguous parcel versions. However, IP can also identify
temporal redundancy in non-contiguous versions (e.g.,
disk chunk i is identical in versions 4 and 6, but different
in version 5), and it can also identify any spatial redun-
dancy within each version.
As with Delta, each chunk is encrypted using a single
per-parcel private key. However, each version of each
disk image (and each memory image) requires additional
meta-data to record the sequence of chunks that comprise
the image. In particular, the meta-data for each image is
an array of tags, where tag i is the SHA-1 hash of chunk
i. This array of tags is called a keyring.
ALL policy. In this CAS approach, all parcels for
all users are represented by a single pool of unique
chunks. Each chunk is encrypted using convergent en-
cryption [11], where the encryption key is simply the
SHA-1 hash of the chunk’s original plaintext contents.
This allows chunks to be shared across different parcels
and users, since if the original plaintext chunks are iden-
tical, then the encrypted chunks will also be identical.
As with IP, each version of each disk image (and each
memory image) requires additional keyring meta-data to
record the sequence of chunks that compose the image,
in this case an array of (tag,key) tuples, where key i is the
encryption key for chunk i, and tag i is the SHA-1 hash
of the encrypted chunk. Each keyring is then encrypted
with a per-parcel private key.
The IP and ALL policies provide an interesting trade-
off between privacy and space efficiency. Intuitively,
we would expect the ALL policy to be the most space-
efficient because it identifies redundancy across the max-
imum number of chunks. However, this benefit comes
at the cost of decreased privacy, both for individual
users and the owners/operators of the storage repository.
The reason is that ALL requires a consistent encryp-
tion scheme such as convergent encryption for all blocks.
Thus, individual users are vulnerable to dictionary-based
traffic analysis of their requests, either by outside attack-
ers or the administrators of the systems. Owner/operators
are vulnerable to similar analysis, if, say, the contents of
their repository are subpoenaed by some outside agency.
Choosing appropriate chunk sizes is another interest-
ing policy decision. For a fixed amount of data, there is
a tension between chunk size and the amount of storage
required. Intuitively, we would expect that smaller chunk
sizes would result in more redundancy across chunks,
and thus use less space. However, as the chunk size de-
creases, there are more chunks, and thus there is more
keyring meta-data. Other chunking techniques such as
Rabin Fingerprinting [26, 31, 38] generate chunks of
varying sizes in an attempt to discover redundant data
that does not conform to a fixed chunk size. The evalua-
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tion of non-fixed-size chunk schemes is beyond the scope
of this paper but is on our agenda for future work.
The remainder of the paper uses the data from the ISR
deployment to quantify the impact of CAS privacy and
chunksize policies on the amount of storage required for
the content servers, and the volume of data that must be
transferred between clients and content servers.

4 Results: CAS & Storage

Because server storage represents a significant cost in
VM-based client management systems, we begin our dis-
cussion by investigating the extent to which a CAS-based
storage system could reduce the volume of data managed
by the server.

4.1 Effect of Privacy Policy on Storage
As expected, storage policy plays a significant role in
the efficiency of the data management system. Figure 5
presents the growth in storage requirements over the life-
time of the study for the three different policies using a
fixed chunksize (128 KB). As mentioned in Section 3.2,
the graph normalizes the starting date of all users to day
zero. The growth in the storage from thereon is due to
normal usage of disks and storage of memory check-
points belonging to the users. The storage requirement
shown includes both the disk and memory images.
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Figure 5: Growth of storage needs for Delta, IP, and ALL.

CAS provides significant savings. As shown in Fig-
ure 5, adopting CAS with the IP policy reduces the re-
quired server resources at day 201 under the Delta policy
by 306 GB, from 717 GB to 411 GB. This reduction rep-
resents a savings of 42%.
Recall that adopting CAS is a lossless operation; CAS
simply stores the same data more efficiently than the
Delta policy. The improved efficiency is due to the fact

that the Delta policy only exploits temporal redundancy
between versions. That is, the Delta policy only identi-
fies identical objects when they occur in the same loca-
tion in subsequent versions of a VM image. The IP pol-
icy, in contrast, identifies redundancy anywhere within
the parcel – within a version as well as between versions
(including between non-subsequent versions).
Note that the 42% space savings was realized with-
out compromising privacy. Users in a CAS-IP-backed
system do not expose the contents of their data to any
greater degree than users of a Delta-backed system.
Relaxing privacy introduces additional gains. In
systems where a small relaxation of privacy guarantees
is acceptable, additional savings are possible. When the
privacy policy is relaxed from IP to ALL, the system is
able to identify additional redundancy that may exist be-
tween different users’ data. From Figure 5, we see that
such a relaxation will reduce the storage resources re-
quired by another 133 GB, to 278 GB. The total space
savings realized by altering the policy fromDelta to ALL
is 61%.
On comparingALLwith IP in Figure 5, we see that the
curves are approximately parallel to each other. How-
ever, under certain situations, a system employing the
ALL policy could dramatically outperform a similar sys-
tem that employs the IP policy. Imagine for example a
scenario where a security patch is applied by each of
a large number, N, of users in an enterprise. Assum-
ing that the patch affected each user’s environment in the
same way, by introducingX MB of new data, an IP server
would register a total addition of NX MB. In contrast, an
ALL server would identify the N copies of the patched
data as identical and would consequently register a total
addition of X MB.
The starting points of the curves in Figure 5 are also
of interest. Because the X-axis has been normalized, this
point corresponds to the creation date of all parcels. To
create a new parcel account, the system administrator
copies a gold image as version 1 of the parcel. Hence,
we would assume that the systemwould exhibit very pre-
dictable behavior at time zero.
For example, under the Delta policy which only re-
duces redundancy between versions, the system data
should occupy storage equal to the number of users times
the space allocated to each user. In the deployment, users
were allocated 8 GB for disk space and 256 MB for
memory images. Thirty-six parcels should then require
approximately 300 GB of storage space which is exactly
the figure reported in the figure.
For the IP policy, one would also expect the server to
support a separate image for each user. However, CAS
had eliminated the redundant data within each of these
images yielding an average image size of approximately
4 GB. The observed 171 GB storage space is consistent
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Figure 6: Storage space growth for various chunksizes without meta-data overhead (y-axis scale varies).
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(a) Without meta-data overhead
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Figure 7: Server space required, after 201 deployment days.

with this expectation.
Under the ALL policy in contrast, one would expect
the system to store a single copy of the gold image
shared by all users, yielding a total storage requirement
of 8 GB plus 256 MB (closer to 4 GB, actually, due to
the intra-image redundancy elimination). We were quite
surprised, consequently, to observe the 72 GB value re-
ported in the figure. After reviewing the deployment
logs, we determined that this value is due to the introduc-
tion of multiple gold images into the system. To satisfy
different users, the system administrators supported im-
ages of several different Linux releases as well as several
instances of Windows images. In all, the administrators
had introduced 13 different gold images, a number that
is consistent with the observed 72 GB of occupied space.
Another point of interest is a disturbance in the curve
that occurs at the period around 100 days. We note that
the disturbance is significant in the Delta curve, smaller
in the IP curve, and almost negligible in the ALL curve.
We’ve isolated the disturbance to a single user and ob-
serve that this anomaly is due to the user reorganizing his

disk image without creating new data that did not already
exist somewhere in the system. Hence, we conclude that
this must have been an activity similar to defragmenta-
tion or re-installation of an operating system.

4.2 Effect of Chunksize on Storage
In addition to privacy considerations, the administrator
of a VM-based client management system may choose to
optimize the system efficiency by tuning the chunksize.
The impact of this parameter on storage space require-
ments is depicted in Figure 6; in this figure, we present
what the growth curves of Figure 5 would have been had
we chosen different chunksizes.
Note that the effect of this parameter is not straightfor-
ward. Varying the chunksize has three different effects
on efficiency.
First, smaller chunksizes tend to expose more redun-
dancy in the system. As a trivial exercise, consider two
objects each of which, in turn, comprises two blocks
(Ob ject1 = AB and Ob ject2 = CA). If the chunksize
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Figure 8: Meta-data overhead expressed as a percentage of user data.

is chosen to be a whole object, the content addresses of
Ob ject1 and Ob ject2 will differ and no redundancy will
be exposed. If the chunksize is chosen to be a block, in
contrast, the identical A blocks will be identified and a
space savings of 25% will result.
Second, smaller chunksizes require the maintenance
of more meta-data. With the whole-object chunksize
from the example above, the system would maintain
two content addresses, for Ob ject1 and Ob ject2. With
the block chunksize, however, the system must main-
tain two sets of two content addresses so that Ob ject1
and Ob ject2 may each be properly reconstructed. Note
further that this additional meta-data maintenance is re-
quired whether or not any redundancy was actually iden-
tified in the system.
Third, smaller chunksizes tend to provide a reduced
opportunity for post-chunking compression. In addition
to chunk-level redundancy elimination through CAS,
intra-chunk redundancy may be reduced through tradi-
tional compression techniques (such as gzip). However,
as the chunksize is reduced, these techniques have access
to a smaller intra-chunk data pool on which to operate,
limiting their efficiency.
To better understand the effect of chunksize, we an-
alyzed the deployment data for all three storage poli-
cies with and without compression under several differ-
ent chunksizes. The results are shown in Figure 7.
All three effects of chunksize can be observed in
this figure. For example, Figure 7(a), which ignores
the increased meta-data required for smaller chunksizes,
clearly indicates that smaller chunksizes expose more re-
dundancy. These gains for small chunk sizes, however,
are erased when the meta-data cost is introduced to the
storage requirements in Figure 7(b). Finally, the reduced
opportunities for compression due to smaller chunksize
can be observed in Figure 7(b) by comparing the IP and
IP(gzip) or ALL and ALL(gzip) curves.

CAS is more important than compression. In Fig-
ure 7(a), the Delta curve with compression intersects the
IP and ALL curves without compression. The same
is true in Figure 7(b) with respect to the ALL curve.
This indicates, that given appropriate chunksizes, a CAS-
based policy can outperform compression applied to a
non-CAS-based policy.
Considering meta-data overheads, the ALL policy out-
performs Delta with compression for all the chunksizes
less than 64KB. This is a very remarkable result. Com-
pression in the storage layer may be a high latency opera-
tion, and it may considerably affect virtual disk operation
latencies. By use of CAS, one can achieve savings that
exceed traditional compression techniques! If additional
space savings are required, compression can be applied
after the application of content addressing.
Figure 7(a) shows that compression provides an addi-
tional savings of a factor of two to three. For example,
the space demands for the ALL policy, drops from 87GB
to 36GB when using 4KB chunks, and from 342GB to
137GB when using 512KB chunks.
Exposing redundancy outweighs meta-data over-
head. Figure 8 shows the ratio of meta-data (keyring
size) to the size of the data. We observe that this ratio is
as high as 80% for ALL, and 35% for IP at 4KB chunk-
size without compression and even higher after compres-
sion is applied to the basic data. Yet, from Figure 7(b),
we observe from the IP and ALL curves that reducing
chunksize always yields a reduction in storage require-
ments. This indicates that the gains through CAS-based
redundancy elimination far exceed the additional meta-
data overhead incurred from smaller chunksize.
The picture changes slightly with the introduction of
traditional compression. The IP(gzip) and ALL(gzip)
curves of Figure 7(b) indicate that the smallest chunk-
size is not optimal. In fact, we see from Figure 8 that
the meta-data volume becomes comparable to the data
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volume at small chunksizes.
Small chunk sizes improve efficiency. With Fig-
ure 7(b), we are in a position to recommend opti-
mal chunk sizes. Without compression, the optimal
chunksize is 4 KB for the Delta, IP and ALL policies.
With compression, the optimal chunksize is 8 KB for
the Delta(gzip) policy and 16 KB for the IP(gzip) and
ALL(gzip) policies.

5 Results: CAS & Networking

In a VM-based client management system, the required
storage resources, as discussed in the previous section,
represent a cost to the system administrator in terms
of physical devices, space, cooling, and management.
However, certain user operations, such as check-in and
checkout, require the transmission of data over the net-
work. While the system administrator must provision the
networking infrastructure to handle these transmissions,
perhaps the more significant cost is the user time spent
waiting for the transmissions to complete.
For example, a common telecommuting scenario may
be that a user works at the office for some time, checks-
in their new VM state, travels home, and attempts to
checkout their VM state to continue working. In the
absence of CAS or traditional compression, download-
ing just the 256 MB memory, which is required before
work can resume, over a 1 Mbps DSL line requires more
than 30 minutes of wait time. After working at home
for some time, the user will also want to checkin their
new changes. Because the checkin image is typically
larger than the checkout image, and because the upload
speed of ADSL is often much slower than the download
speed, the checkin operation can often require two hours
or more.
Consequently, we devote this section to characterizing
the benefits that CAS provides in terms of reducing the
volume of data to be transmitted during typical upload
(checkin) or download (checkout) operations.

5.1 Effect of Privacy Policy on Networking
As with storage, we begin the discussion by considering
the effect of privacy policy on networking. We note that
our definition of privacy policy affects the representation
of data chunks in storage, not the mechanics of chunk
transmission. However, the chosen storage policy can
affect the capability of the system to identify redundant
data blocks that need not be sent because they already
exist at the destination.
As an example, suppose that a user copies a file within
their virtual environment. This operation may result in
a virtual disk that contains duplicate chunks. Under the
IP and ALL policies, at the time of upload, the client

will send a digest of modified chunks to the server, and
the server may respond that the duplicate chunks need
not be sent because the chunks (identified by the chunks’
tags) already exist on the server. Such redundant data
can occur for a variety of reasons (particularly under the
ALL policy) including the push of software patches, user
download of popular Internet content, and the installation
and compilation of common software packages.
During download (checkout) operations, the client
code will search through the existing version(s) of the
user’s data on that client to identify chunks that need not
be retrieved from the server. As the system is only com-
paring the latest version on the server with the existing
version on the client, the volume of data to be transmit-
ted does not depend on the privacy policy. In contrast,
the volume of data transmitted during upload (checkin)
operations does depend on the privacy policy employed
because, at the server, redundant chunks are only identi-
fied within that user’s version history under the IP policy,
but can be identified acrosss all users’ version histories
under the ALL policy. These differences based on stor-
age policy are summarized in Figure 9 and affect our dis-
cussion in two ways: (1) this section (Section 5.1), which
investigates the effects of privacy policy, only considers
the upload operation, and (2) Figures 12 and 13 in Sec-
tion 5.2 contain curves simply labeled CAS that repre-
sent the identical download behaviors of the IP and ALL
policies.

Redundancy Comparison
Upload Download

(between client copy (between server version N
and...) and ...)

Delta server version N-1 current client version
IP server versions [1, N-1] current client version

ALL all versions/all parcels current client version

Figure 9: Search space for identifying redundant blocks dur-
ing data synchronization operations. Note that for download,
the system inspects the most recent version available at the
client (which may be older than N−1).

CAS is essential. The upload volume for each of the
storage policies with and without compression is pre-
sented in Figure 10. Because the upload size for any
user session includes the 256MB memory image and any
hard disk chunks modified during that session, the up-
load data volumes vary significantly due to user activ-
ity across the 800+ checkin operations collected. Conse-
quently, we present the data as a cumulative distribution
function (CDF) plots. In the ideal case, most upload sizes
would be small; therefore, curves that tend to occupy the
upper left corner are better. Note that the ALL policy
strictly outperforms the IP policy, which in turn, strictly
outperforms the Delta policy.
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Figure 10: CDF of upload sizes for different policies, without and with the use of compression.

The median (50th percentile) and 95th percentile sizes
from Figure 10 are presented along with average upload
sizes in Figure 11. Note that the median upload sizes tend
to be substantially better than the mean sizes, indicating
that the tail of the distribution is somewhat skewed in
that the user will see a smaller than average upload sizes
for 50% of the upload attempts. Even so, we see from
Figure 11(c) that the tail is not so unwieldy as to present
sizes more than a factor of 2 to 4 over the average upload
size 95% of the time.
Figure 11(a) shows that, for the 128 KB chunksize
used in the deployment, the use of CAS reduces the aver-
age upload size from 880 MB (Delta policy) to 340 MB
(ALL policy). The use of compression reduces the up-
load size to 293 MB for Delta and 132 MB for ALL.
Further, CAS policies provide the most significant ben-
efits where they are needed most, for large upload sizes.
From Figure 11(b) we see that CAS improves small up-
load operations by a modest 20 to 25 percent, while from
Figure 11(c), we see that CAS improves the performance
of large uploads by a factor of 2 to 5 without compres-
sion, and by a factor of 1.5 to 3 with compression. Thus,
we observe that CAS significantly reduces the volume of
data transmitted during upload operations, and hence the
wait time experienced at the end of a user session.
CAS outperforms compression. Figure 11(a) indi-
cates that the ALL policy without compression outper-
forms the Delta policy with compression for chunk sizes
less than 64 KB (as does the IP policy at a 4 KB chunk
size). This shows that for our application, inter-chunk

CAS techniques may identify and eliminate more re-
dundancy than traditional intra-chunk compression tech-
niques. The difference may be substantial, particularly
when the upload size is large. As Figure 11(c) shows,
the ALL policy without compression (chunksize=4 KB)
outperforms the Delta policy with compression (chunk-
size=512 KB) by a factor of 4.
IP identifies both temporal and spatial redundancy.
For each of the components of Figure 10, we see that the
IP policy consistently outperforms the Delta policy. Both
of these policies restrict the search space for redundancy
identification to a single parcel. However, the Delta pol-
icy only detects temporal redundancy between the cur-
rent and last versions of the parcel, while the IP policy
detects temporal and spatial redundancy across all ver-
sions of the parcel. The savings of IP over Delta indicate
that users often create modified chunks in their environ-
ment that either existed at some point in the past, or in
another location within the parcel.
ALL identifies inter-parcel savings. In all of Fig-
ure 10, the common observation between an IP and ALL
comparison is that the ALL policy consistently outper-
forms the IP policy. This observation is consistent with
our intuition that for upload operations, the ALL policy
must perform at least as well as the IP policy because
the ALL policy identifies redundancy within the set of
blocks visible to the IP policy as well as blocks in other
parcels. In fact, Figure 11(a) indicates that the ALL pol-
icy performs about twice as well as the IP policy for
small chunk sizes and approximately 25 percent better
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Figure 11: Upload sizes for different chunksizes.

at larger chunk sizes.
This difference shows the benefit of having a larger
pool of candidate chunks when searching for redundant
data. As mentioned, one source of this gain can be the
“broadcast” of objects to many users (e.g. from software
installation, patches, popular documents, big email at-
tachments, etc.). In systems leveraging the ALL policy,
therefore, operations that might be expected to impose
a significant burden such as the distribution of security
patches may result in very little realized cost because the
new data need only be stored once and transmitted once
(across all users in the system).

5.2 Effect of Chunksize on Networking

The choice of chunksize will affect both the download
size and upload size to a server. We continue our dis-
cussion of upload operations first, and then discuss the
appropriate chunksize for download operations.

5.2.1 Effect on Upload Size

Smaller chunksize is better for CAS. Figure 11(a)
shows very clearly that smaller chunksizes result in more
efficient upload transmission for CAS policies. In fact,
under the ALL policy, users with 4 KB chunk sizes will
experience average upload sizes that are approximately
one-half the average size experienced by users with a
128 KB chunk size (whether compression is employed
or not).
Chunk sizes of 4 KB turned out to be optimal for all
policies when considering the average upload size. How-
ever, chunksize plays a very limited role for the non-CAS
(Delta) policy, and Figure 11(c) indicates that smaller
chunk sizes may even be a liability for transfer size out-
liers under the Delta policy with compression.

5.2.2 Effect on Download Size

Employing CAS techniques also potentially affects the
volume of data transmitted during download operations
in two ways. First, CAS can identify intra-version redun-
dancy and reduce the total volume of data transmission.
Second, when a user requests a download of their envi-
ronment to a particular client, CAS has the potential to
expose any chunks selected for download that are iden-
tical to chunks that happen to have been cached on that
client from previous sessions.
To simplify our discussion we assume that the client
has cached at most one previous version of the parcel
in question, and if a cached version is present, it is the
version prior to the one requested for download. This
assumption corresponds to an expected common user
telecommuting behavior. Namely, the user creates ver-
sion N−1 of a parcel at home and uploads it to the server.
The user then retrieves versionN−1 at work, creates ver-
sion N, and uploads that to the server. Our operation of
interest is the user’s next download operation at home;
upon returning home, the user desires to download ver-
sion N and modify it. Fortunately, the user may still have
version N−1 cached locally, and thus, only the modified
data that does not exist in the cache need be retrieved.
Note that this CAS technique can be likened to a sub-set
of the IP policy which inspects chunks of a single user,
but only for a single previous version.
Our client management system, ISR, supports two ba-
sic modes for download: demand-fetch and complete-
fetch. Demand-fetch mode instantiates the user’s envi-
ronment after downloading the minimum data needed
to reconstruct the user’s environment, essentially the
physical memory image corresponding to the user’s VM
(256 MB in our test deployment). In particular, the
largest portion of the VM image, the virtual disk drive, is
not retrieved before instantiating the user’s environment.
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Figure 12: Download size when fetching memory image of latest version.

During operation, missing data blocks (chunks) must be
fetched on demand in a manner analogous to demand-
paging in a virtual memory system. The complete-fetch
mode, in contrast, requires that the entire VM image in-
cluding the virtual disk image (8.25 GB in our test de-
ployment) be present at the client before the environment
is instantiated.

Caching improves demand-fetch. To evaluate the ef-
fect of client-side caching on demand-fetch download
volume, we calculated how much data would need to
be transferred from the server to a client under various
conditions and collected those results in Figure 12. The
curve labeled “No-cache” depicts the volume of data that
would be transmitted if no data from the previous ver-
sion of the parcel were present in the client cache. Un-
der the “Delta” policy, the chunks in the memory image
are compared with the same chunks (those at the same
offset within the image) in the previous version of the
memory image to determine whether they match. The
“CAS+CacheM” policy compares the keyring for the new
memory image with the keyring for the previous memory
image to determine which chunks need to be transferred.
The “CAS+CacheM+D” policy is similar except that it
searches all the data cached on the client (memory and
disk) to identify chunks that are already present on the
client. Each basic curve in Figure 12 also has a com-
panion curve depicting the download volumes observed
when compression is employed during the transfer.

As shown in Figure 12(a), introducing a differencing
mechanism (either Delta or CAS) yields a reduction of
approximately 20% (for the 128 KB chunk size) in the
download size relative to the size when no cached copy
is present. Using compression alone, however, is very
effective– reducing the transfer size from 256 MB to ap-
proximately 75 MB in the absence of caching. Lever-
aging cached data in addition to compression yields a

further 20% reduction.
Chunk size dramatically affects demand-fetch.
Moving to a smaller chunk size can have a significant
effect on the volume of data transmitted during a down-
load operation, particularly if compression is not used, as
shown in Figure 12. The average download size, in par-
ticular, is reduced by a factor of two (for Delta) to four
(for “CAS+CacheM+D”) when the chunk size is reduced
from 128 KB to 4 KB when comparing the policies ei-
ther with or without compression. Further, we see again
that, with a 4 KB chunk size, the CAS policies without
compression outperform the no-cache policy with com-
pression.
The difference between the “CAS+CacheM” and
“CAS+CacheM+D” policies is also most apparent with
a 4 KB chunk size. At this size, in the absence of com-
pression, leveraging the cached disk image in addition
to the memory image reduces the average transfer size to
56MB from the 65MB requiredwhen leveraging just the
memory image. A similar gain is observed when com-
pression is employed; the transfer size is reduced from
23 MB (for “M”) to 18 MB (for “M+D”)– a savings of
more than 20%.
However, the added benefit of inspecting additional
cached data diminishes quickly as the chunk size in-
creases beyond 4 KB. We believe this phenomenon is
due, at least in part, to the fact that the 4 KB size cor-
responds to the size of both memory pages disk blocks
in these VMs. Consequently, potentially redundant data
is most likely to be exposed when chunks are aligned to
4 KB boundaries.
Caching significantly improves complete-fetch. The
need for efficient download mechanisms is perhaps
greatest in the complete-fetch mode due to the volume
of data in question. In this mode, the user is requesting
the download of the entire VM image, the most signifi-
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Figure 13: Download size when fetching memory and disk of latest version.

cant component of which is the virtual disk drive image.
In our test deployment, the virtual disk drive was a very
modest 8 GB in size. One can readily imagine that users
might desire virtual disk drive spaces an order of mag-
nitude larger. However, even with a modest size (8 GB)
and a fast network (100 Mbps), a complete-fetch down-
load will require at least 10 minutes. Consequently, re-
ducing the volume of data to be transferred by at least an
order of magnitude is essential to the operation of these
client management systems.
The basic tools are the same as those mentioned for
demand-fetch mode. That is, a cache of at least one pre-
vious version of the parcel is maintained at the client, if
possible. Redundancy between the cached version and
the current version on the server is identified and only
non-redundant chunks are transferred during the down-
load. Further, the transferred chunks are (optionally)
compressed prior to transmission. One difference be-
tween our treatment of demand-fetch and complete-fetch
is that the CAS policy for complete-fetch mode always
compares the entire current server version with the entire
cached client version. Consequently, Figure 13 includes
a single “CAS” curve rather than the separate “M” and
“M+D” curves of Figure 12.
Figure 13(a) indicates that intelligent transfer mecha-
nisms can, in fact, significantly reduce the volume of data
transmitted during a complete-fetch operation. Compres-
sion reduces the average data volume from 8394 MB to
3310 MB, a factor of 2.7. In contrast, the Delta policy
without compression yields a factor of 9.5 and a factor of
28.6 with compression, assuming a 128 KB chunk size.
At the same chunk size, CAS provides even more im-
pressive savings: factors of 12.6 and 29.5, without and
with compression, respectively.
Small chunk sizes yield additional savings. While
the slopes of the “CAS” and “CAS,gzip” curves are not
as dramatic as in previous figures, reducing the chunk

size from 128 KB to 4 KB still yields significant savings.
At this chunk size, the average download size shrinks
from the nominal 8+ GB size by a factor of 31.4 without
compression and a factor of 55 (fifty-five!) by employing
both CAS and compression.
CAS has a big impact where it’s needed most. Fig-
ure 13(c) indicates that the 4 KB “CAS,gzip” combi-
nation may be particularly effective for download op-
erations that may otherwise have resulted in large data
transfers. The performance gap between “CAS,gzip” and
“Delta,gzip” is particularly large in this graph. In fact,
for small chunk sizes “CAS”without compression signif-
icantly outperforms the Delta policy with compression.
Note in particular that when employing the “CAS,gzip”
policy with the 4 KB chunk size, the 95th percentile up-
load sizes are not significantly larger than the average
size, thus providing the user with better expected bounds
on the time required for a complete-fetch download.

6 Related Work

Our results are most directly applicable to VM-based
client management systems such as the Collective [7,
35], Soulpad [5], and ISR [19, 37], as well as systems
that use VMs for Grid applications [9, 14, 22, 24, 39].
Further, our results also provides guidelines for the stor-
age design of applications that need to version VM his-
tory. Examples include intrusion detection [12], oper-
ating systems development [18], and debugging system
configurations [46]. Related applications include storage
cluster and web services where VMs are being used for
balancing load, increasing availability, and simplifying
administration [28, 45].
The study could also help a large number of systems
that use use CAS to improve storage and network utiliza-
tion. Examples of CAS-based storage systems include
EMC’s Centera [13], Deep Store [48], the Venti [30], the
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Pastiche [10] backup system, the TAPER [17] scheme for
replica synchronization and Farsite [2]. Other systems
use similar CAS-based techniques to eliminate duplicate
data at various levels in the network stack. Systems such
as the CASPER [42] and LBFS [27] file systems, Rhea
et al.’s CAS-enabled WWW [33], etc. apply these opti-
mizations at the application layer. Other solutions such
as the DOT transfer service [41] and Riverbed’sWAN ac-
celerator [34] use techniques such as Rabin Fingerprint-
ing [26, 31, 38] to detect data duplication at the transfer
layer. However, most of these systems have only concen-
trated on the mechanism behind using CAS. Apart from
Bolosky et al. [3] and Policroniades and Pratt [29], there
have been few studies that measure data commonality in
real workloads. The study in this paper helps by pro-
viding a point of reference for commonality seen in VM
migration workloads.

7 Conclusions
Managing large volumes of data is one of the major chal-
lenges inherent in developing and maintaining enterprise
client management systems based on virtual machines.
Using empirical data collected during seven-months of a
live-deployment of one such system, we conclude that
leveraging content addressable storage (CAS) technol-
ogy can significantly reduce the storage and networking
resources required by such a system (questions Q1 and
Q2 from Section 1).
Our analysis indicates that CAS-based management
policies typically benefit from dividing the data into very
small chunk sizes despite the associated meta-data over-
head. In the absence of compression, 4 KB chunks
yielded the most efficient use of both storage and net-
work resources. At this chunk size, a privacy-preserving
CAS policy can reduce the system storage requirements
by approximately 60% when compared to a block-based
differencing policy (Delta), and a savings of approxi-
mately 80% is possible by relaxing privacy.
Similarly, CAS policies that leverage data cached on
client machines reduce the average quantity of data that
must be transmitted during both upload and download
operations. For upload, this technique again results in a
savings (compared to Delta) of approximately 70%when
preserving privacy and 80% when not. This technique
also reduces the cost of complete-fetch download opera-
tions by more than 50% relative to the Delta policy (ir-
respective of CAS privacy policy) and by more than an
order of magnitude relative to the cost when caching is
not employed.
Leveraging compression in addition to CAS tech-
niques provides additional resource savings, and the
combination yields the highest efficiency in all cases.
However, a surprising finding from this work is that CAS
alone yields higher efficiency for this data set than com-

pression alone, which is significant because the use of
compression incurs a non-zero runtime cost for these sys-
tems.
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