
Antfarm: Tracking Processes

in a Virtual Machine Environment

Stephen T. Jones, Andrea C. Arpaci-Dusseau, and Remzi H. Arpaci-Dusseau

Department of Computer Sciences

University of Wisconsin, Madison

{stjones,dusseau,remzi}@cs.wisc.edu

Abstract

In a virtualized environment, the VMM is the system’s

primary resource manager. Some services usually im-

plemented at the OS layer, like I/O scheduling or certain

kinds of security monitoring, are therefore more naturally

implemented inside the VMM. Implementing such ser-

vices at the VMM layer can be complicated by the lack of

OS and application-level knowledge within a VMM. This

paper describes techniques that can be used by a VMM to

independently overcome part of the “semantic gap” sep-

arating it from the guest operating systems it supports.

These techniques enable the VMM to track the existence

and activities of operating system processes. Antfarm is

an implementation of these techniques that works without

detailed knowledge of a guest’s internal architecture or

implementation. An evaluation of Antfarm for two virtu-

alization environments and two operating systems shows

that it can accurately infer process events while incurring

only a small 2.5% runtime overhead in the worst case. To

demonstrate the practical benefits of process information

in a VMM we implement an anticipatory disk scheduler

at the VMM level. This case study shows that signifi-

cant disk throughput improvements are possible in a vir-

tualized environment by exploiting process information

within a VMM.

1 Introduction

Virtual machine technology is increasingly being de-

ployed on a range of platforms from high-end servers [4,

24, 25] to desktop PCs [22]. There is a large and

growing list of reasons to use virtualization in these di-

verse computing environments, including server consol-

idation [25], support for multiple operating systems (in-

cluding legacy systems) [11], sandboxing and other secu-

rity features [9, 16], fault tolerance [3], and optimization

for specialized architectures [4]. As both software [6] and

hardware support [12, 13] for zero-overhead virtualization

develops, and as virtualization is included in dominant

commercial operating systems [2], we expect virtualized

computing environments to become nearly ubiquitous.

As virtualization becomes prevalent, the virtual ma-

chine monitor (VMM) naturally supplants the operating

system as the primary resource manager for a machine.

Where one used to consider the OS the main target for in-

novation in system services, one should now consider how

to implement some of those services within a VMM [5].

The transition of some functionality from the OS into

the VMM has many potential benefits. For example, by

implementing a feature a single time within a VMM, it

becomes available to all operating systems running above.

Further, the VMM may be the only place where new fea-

tures can be introduced into a system, as the operating

system above is legacy or closed-source or both. Finally,

the VMM is the only locale in the system that has total

control over system resources and hence can likely make

the most informed resource management decisions.

However, pushing functionality down one layer in the

software stack into the VMM has its drawbacks as well.

One significant problem is the lack of higher-level knowl-

edge within the VMM, sometimes referred to as a seman-

tic gap [5]. Previous work in virtualized environments has

partially recognized this dilemma, and researchers have

thus developed techniques to infer higher-level hardware

resource utilization [4, 20, 24]. These techniques are use-

ful because they allow a VMM to better manage the re-

sources of the system, (e.g., by reallocating an otherwise

idle page in one virtual machine to a different virtual ma-

chine that could use it [24]).

In addition, some recently proposed VMM-based ser-

vices use explicit information about the software abstrac-

tions of the operating systems running above them to

bridge the semantic gap [10, 15]. However, previous work

has not thoroughly explored how a VMM can learn about

the software abstractions of the operating systems running

above without the information being given explicitly to

it. Being able to implicitly learn about operating systems

from within a VMM is important if a guest OS is propri-

etary, untrusted, or is managed by a different entity than
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the one managing the VMM. In these cases, explicit in-

formation about the details of the guest’s memory layout

or implementation will be unavailable or unreliable.

In this paper, we develop a set of techniques that enable

a virtual machine monitor to implicitly discover and ex-

ploit information about one of the most important operat-

ing system abstractions, the process. By monitoring low-

level interactions between guest operating systems and the

memory management structures on which they depend,

we show that a VMM can accurately determine when a

guest operating system creates processes, destroys them,

or context-switches between them. These techniques op-

erate without any explicit information about the guest op-

erating system vendor, version, or implementation details.

We demonstrate the utility and efficacy of VMM-level

process awareness by building an anticipatory disk sched-

uler [14] within a VMM. In a virtual machine environ-

ment, an anticipatory disk scheduler requires information

from both the VMM and OS layers and so cannot be im-

plemented exclusively in either. Making a VMM process

aware overcomes this limitation and allows an OS-neutral

implementation at the VMM layer without any modifica-

tions or detailed knowledge of the OS above. Our imple-

mentation within the VMM is able to improve through-

put among competing sequential streams from processes

across different virtual machines or within a single guest

operating system by a factor of two or more.

In addition to I/O scheduling, process information

within the VMM has several other immediate applica-

tions, especially in the security domain. For example, it

can be used to detect that processes have been hidden from

system monitoring tools by malicious software or to iden-

tify code and data from sensitive processes that should

be monitored for runtime modification [10]. Patterns of

system calls associated with a process can be used to rec-

ognize when a process has been compromised [8, 19]. In

addition to detection, techniques exist to slow or thwart in-

trusions at the process level by affecting process schedul-

ing [21]. Finally, process information can be used as the

basis for discovering other high-level OS abstractions. For

example, the parent-child relationship between processes

can be used to identify groups of related processes asso-

ciated with a user. All of these applications are feasible

within a VMM only when process information is avail-

able.

Antfarm is the implementation of our process identifi-

cation techniques for two different virtualization environ-

ments, Xen and Simics. Antfarm has been evaluated as

applied to x86/Linux, x86/Windows, and SPARC/Linux

guest operating systems. This range of environments

spans two processor families with significantly different

virtual memory management interfaces and two operating

systems with very different process management seman-

tics. Antfarm imposes only a small runtime overhead of

about 2.4% in a worst case scenario and about 0.6% in

a more common, process-intensive compilation environ-

ment.

The rest of the paper is organized as follows. In Sec-

tion 2 we place Antfarm in context with related work.

Then in Section 3, we cover some required background

material relating to our implementation architectures and

virtual machines in general. This is followed in Section 4

by a discussion of the techniques underlying Antfarm.

Section 5 covers the implementation details of Antfarm.

We evaluate the accuracy and overhead imposed by Ant-

farm in Section 6. In Section 7, we present our antici-

patory scheduling case study and then conclude in Sec-

tion 8.

2 Related Work

Antfarm informs a VMM about one important operating

system abstraction, the process, about which it would oth-

erwise have no information. Other research has recog-

nized that information not explicitly available to a VMM

is nevertheless useful when implementing VMM features

and services.

In some cases the information relates to hardware.

Disco [4], for example, determines when the guest is ex-

ecuting in its idle loop by detecting when it enters a low-

power processor mode. VMWare’s ESX Server [24] uses

page sampling to determine the utilization of physical

memory assigned to each of its virtual machines. Antfarm

differs from these efforts in that it focuses on inferring in-

formation about processes, a software construct.

Other projects have also recognized the value of OS-

level information in a VMM. In some cases, detailed

version-specific memory layout information as well as

the semantic knowledge to make use of that information

has been exported directly to the VMM. VMI [10] does

this to implement security techniques like detecting ma-

licious, hidden processes within a guest. IntroVirt [15]

uses memory layout and implementation details to enable

novel host-based intrusion detection features in a VMM.

Antfarm, in contrast, enables a more limited and inexact

level of information to be inferred by a VMM. It does this,

however, without any explicit information about memory

layout or implementation of affected guests and so can be

deployed in a broader set of environments.

Work by Uhlig et al. [23] is more similar to our own.

It shows how to infer guest-level information to do pro-

cessor management more intelligently in a multiprocessor

environment. Specifically, they deduce when no kernel

locks are held by observing when the OS above is execut-

ing in user versus kernel mode. Antfarm is complemen-

tary. It observes a different virtual resource, the MMU, to

infer information about operating system processes.
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Finally, as an alternative to inferring OS-level informa-

tion, such knowledge could be passed explicitly from the

OS to the VMM, as is done, (to some extent), in paravir-

tualized architectures [6, 25]. Explicit information sup-

plied by a paravirtualized OS is guaranteed to match what

is available inside the OS. By this metric, paravirtual in-

formation should be considered the gold standard of OS

information within a VMM. In some important environ-

ments, however, the explicit approach is less valuable. For

example, paravirtualization requires OS-level modifica-

tion, which implies that functionality cannot be deployed

in VMM’s running beneath legacy or closed-source op-

erating systems. For the same reasons, dependence on

explicit interfaces forces innovation in the VMM that re-

quires OS-level information to be coupled with changes to

supported operating systems. Inferring guest information

allows a VMM to innovate independent of the OS imple-

mentation. Finally, in the case of security applications, a

guest OS cannot be trusted to report on its own activities

using a paravirtualized interface because it may have been

compromised and intentionally mislead the VMM.

3 Background

The techniques we describe in this paper are based on the

observations that a VMM can make of the interactions

between a guest OS and virtual hardware. Specifically,

Antfarm monitors how a guest uses a virtual MMU to

implement virtual address spaces. In this section we re-

view some of the pertinent details of the Intel x86 and the

SPARC architectures used by Antfarm. We also discuss

some basic features of virtual machine monitors and the

runtime information available to them.

3.1 x86 Virtual Memory Architecture

Our first implementation platform is the Intel x86 family

of microprocessors. We chose the x86 because it is the

most frequently virtualized processor architecture in use

today. This section reviews the features of the x86 virtual

memory architecture that are important for our inference

techniques.

The x86 architecture uses a two-level, in-memory,

architecturally-defined page table. The page table is or-

ganized as a tree with a single 4 KB memory page called

the page directory at its root. Each 4-byte entry in the

page directory can point to a 4 KB page of the page table

for a process.

Each page table entry (PTE) that is in active use con-

tains the address of a physical page for which a virtual

mapping exists. Various page protection and status bits

are also available in each PTE that indicate, for example,

whether a page is writable or whether access to a page is

restricted to privileged software.

A single address space is active per processor at any

given time. System software informs the processor’s

MMU that a new address space should become active by

writing the physical address of the page directory for the

new address space into a processor control register (CR3).

Since access to this register is privileged the VMM must

virtualize it on behalf of guest operating systems.

TLB entries are loaded on-demand from the currently

active page tables by the processor itself. The operating

system does not participate in handling TLB misses.

An operating system can explicitly remove entries from

a TLB in one of two ways. A single entry can be removed

with the INVLPG instruction. All non-persistent entries

(those entries whose corresponding page table entries are

not marked “global”) can be flushed from the TLB by

writing a new value to CR3. Since no address space or

process ID tag is maintained in the TLB, all non-shared

entries must be flushed on context switch.

3.2 SPARC Virtual Memory Architecture

In this section we review the key aspects of the

SPARC MMU, especially how it differs from the x86. We

chose the SPARC as our second implementation architec-

ture because it provides a significantly different memory

management interface to system software than the x86.

Instead of architecturally-defined, hardware-walked

page tables as on the x86, SPARC uses a software man-

aged TLB, i.e., system software implements virtual ad-

dress spaces by explicitly managing the contents of the

hardware TLB. When a memory reference is made for

which no TLB entry contains a translation, the proces-

sor raises an exception, which gives the operating system

the opportunity to supply a valid translation or deliver an

error to the offending process. The CPU is not aware of

the operating system’s page table organization.

In order to avoid flushing the entire TLB on process

context switches, SPARC supplies a tag for each TLB en-

try, called a context ID, that associates the entry with a

specific virtual address space. For each memory refer-

ence, the current context is supplied to the MMU along

with the desired virtual address. In order to match, both

the virtual page number and context in a TLB entry must

be identical to the supplied values. This allows entries

from distinct address spaces to exist in the TLB simulta-

neously.

An operating system can explicitly remove entries from

the TLB at the granularity of a single page or at the

granularity of an entire address space. These operations

are called page demap and context demap respec-

tively.
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3.3 Virtual Machines

A VMM implements a hardware interface in software.

The interface includes the privileged, or system, portions

of the microprocessor architecture as well as peripherals

like disk, network, and user interface devices. Note that

the non-privileged, or user, portion of the microprocessor

instruction set is not virtualized; when running unprivi-

leged instructions, the guest directly executes on the pro-

cessor with no additional overhead.

A key feature of a virtualized system environment is

that guest operating systems execute using the unprivi-

leged mode of the processor, while the VMM runs with

full privilege. All guest OS accesses to sensitive system

components, like the MMU or I/O peripherals, cause the

processor to trap to the VMM. This allows the VMM to

virtualize sensitive system features by mediating access to

the feature or emulating it entirely. For example, because

the MMU is virtualized, all attempts by a guest operating

system to establish a virtual-to-physical memory mapping

are trapped by the VMM; hence, the VMM can observe

all such attempts. Similarly, each request to a virtual disk

device is available for a VMM to examine. The VMM

can choose to service a request made via a virtualized in-

terface in any way it sees fit. For example, requests for

virtual mappings can be altered or disk requests can be

reordered.

4 Process Identification

The key to our process inference techniques is the logical

correspondence between the abstraction process, which is

not directly visible to a VMM, and the virtual address

space, which is. This correspondence is due to the tra-

ditional single address space per process paradigm shared

by all modern operating systems.

There are three major process events we seek to ob-

serve: creation, exit, and context switch. To the extent

address spaces correspond to processes, these events are

approximated by address space creation, destruction, and

context switch. Hence, our techniques track processes by

tracking address spaces.

Our approach to tracking address spaces on both x86

and SPARC is to identify a VMM-visible value with

which we can associate a specific address space. We call

this value an address space identifier (ASID). Tracking

address space creation and context switch then becomes

simply observing the use of a particular piece of VMM-

visible operating system state, the ASID.

For example, when an ASID is observed that has not

been seen before, we can infer that a new address space

has been created. When one ASID is replaced by an-

other ASID, we can conclude that an address space con-

text switch has occurred. The technique we use to identify

address space deallocation consists of detecting when an

ASID is available for reuse. We assume that the address

space, to which an ASID refers, has been deallocated if its

associated ASID is available for reuse.

4.1 Techniques for x86

On the x86 architecture we use the physical address of

the page directory as the ASID. A page directory serves

as the root of the page table tree that describes each ad-

dress space. The address of the page directory is therefore

characteristic of a single address space.

4.1.1 Process Creation and Context Switch

To detect address space creation on x86 we observe how

page directories are used. A page directory is in use when

its physical address resides in CR3. The VMM is notified

whenever a guest writes a new value to CR3 because it is

a privileged register. If we observe an ASID value being

used that has not been seen before, we can infer that a new

address space has been created. When an ASID is seen for

the first time, the VMM adds it to an ASID registry, akin

to an operating system process list, for tracking purposes.

Writes to CR3 also imply address space context switch.

By monitoring these events, the VMM always knows

which ASID is currently “active”.

4.1.2 Process Exit

To detect address space deallocation, we use knowledge

about the generic responsibilities of an operating system

to maintain address space isolation. These requirements

lead to distinctive OS behavior that can be observed and

exploited by a VMM to infer when an address space has

been destroyed.

Operating systems must strictly control the contents

of page tables being used to implement virtual address

spaces. Process isolation could be breached if a page di-

rectory or page table page were reused for distinct pro-

cesses without first being cleared of their previous entries.

To ensure this invariant holds, Windows and Linux sys-

tematically clear the non-privileged portions of page table

pages used by a process prior to reusing them. Privileged

portions of the page tables used to implement the pro-

tected kernel address space need not be cleared because

they are shared between processes and map memory not

accessible to untrusted software.

An OS must also ensure that no stale entries remain

in any TLB once an address space has been deallocated.

Since the x86 architecture does not provide a way for en-

tries from multiple address spaces to coexist in a TLB, a

TLB must be completely flushed prior to reusing address

space structures like the page directory. On x86, the TLB
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is flushed by writing a value to CR3, an event the VMM

can observe.

Hence, to detect user address space deallocation, a

VMM can keep a count of the number of user virtual

mappings present in the page tables describing an address

space. When this count drops to zero, the VMM can infer

that one requirement for address space reuse has been met.

It is simple for a VMM to maintain such a counter because

the VMM must be informed of all updates to a process’s

page tables in order for those updates to be effective. This

requirement follows from the VMM’s role in virtualizing

the MMU. Multi-threading does not introduce additional

complexity, because updates to a process’s page tables

must always be synchronized within the VMM for cor-

rectness.

By monitoring TLB flushes on all processors, a VMM

can detect when the second requirement for address space

deallocation has been met. Once both events have been

observed for a particular ASID, the VMM can consider

the corresponding address space dead and its entry in the

ASID registry can be removed. A subsequent use of the

same ASID implies the creation of a new and distinct pro-

cess address space.

4.2 Techniques for SPARC

The key aspect that was used to enable process aware-

ness on x86 is still present on SPARC. Namely, there is a

VMM-visible identifier associated with each virtual ad-

dress space. On x86 this was the physical address of

the page directory. On SPARC we use the virtual ad-

dress space context ID as an ASID. Making the obvi-

ous substitution leads to a process detection technique for

SPARC similar to that for x86.

4.2.1 Creation and Context Switch

On SPARC, installing a new context ID is a privileged op-

eration and so it is always visible to a VMM. By observing

this operation, a VMM can maintain a registry of known

ASIDs. When a new ASID is observed that is not in the

ASID registry, the VMM infers the creation of a new ad-

dress space. Context switch is detected on SPARC when

a new context ID is installed on a processor.

4.2.2 Exit

The only requirement for the reuse of a context ID on

SPARC is that all stale entries from the previously asso-

ciated address space be removed from each processor’s

TLBs. SPARC provides the context demap operation for

this purpose. Instead of monitoring page table contents, as

on x86, a VMM can observe context demap operations. If

all entries for a context ID have been flushed from every

x86 SPARC

ASID Page directory PA Context ID

Creation New ASID New ASID

Exit No user mappings

and TLB flushed

Context demap

Context

switch

CR3 change Context ID

change

Table 1: Process identification techniques. The table lists the

techniques used by Antfarm to detect each process event on the

x86 and SPARC architectures.

processor it implies that the associated address space is no

longer valid.

5 Implementation

Antfarm has been implemented for two virtualization en-

vironments. The first, Xen [6], is a true VMM. The other

is a low-level system simulator called Simics [17] which

we use to explore process awareness for operating systems

and architectures not supported by Xen.

5.1 Antfarm for Xen

Xen is an open source virtual machine monitor for the In-

tel x86 architecture. Xen provides a paravirtualized [25]

processor interface, which enables lower overhead vir-

tualization at the expense of porting system software.

We explicitly do not make use of this feature of Xen;

hence, the mechanisms we describe are equally applica-

ble to a more conventional virtual machine monitor such

as VMWare [22, 24]. Because operating systems must be

ported to run on Xen, proprietary commercial operating

systems like Microsoft Windows are not currently sup-

ported.

Antfarm for Xen is implemented as a set of patches

to the Xen hypervisor. Changes are concentrated in the

handlers for events like page faults, page table updates,

and privileged register access. Additional hooks were

added to Xen’s back-end block device driver. The Ant-

farm patches to Xen, including debugging and measure-

ment infrastructure, total approximately 1200 lines across

eight files.

5.2 Antfarm for Simics

Simics [17] is a full system simulator capable of executing

unmodified, commercial operating systems and applica-

tions for a variety of processor architectures. While Sim-

ics is not a virtual machine monitor in the strict sense of

direct execution of user instructions [18], it can play the

Annual Tech ’06: 2006 USENIX Annual Technical ConferenceUSENIX Association 5



role of a VMM by allowing Antfarm to observe and in-

terpose on operating system and application hardware re-

quests in the same way a VMM does. Simics allows us to

explore process awareness techniques for SPARC/Linux

and x86/Windows which would not be possible with a

Xen-only implementation.

Antfarm for Simics is implemented as a Simics ex-

tension module. Simics extension modules are shared

libraries dynamically linked with the main Simics exe-

cutable. Extension modules can read or write OS and

application memory and registers in the same way as a

VMM.

Simics provides hooks called “haps” for various hard-

ware events for which extension modules can register call-

back functions. Antfarm for Simics/x86 uses a hap to de-

tect writes to CR3 and Antfarm for Simics/SPARC uses a

hap to detect when the processor context ID is changed.

Invocation of a callback is akin to the exception raised

when a guest OS accesses privileged processor registers

on a true VMM. A memory write breakpoint is installed

by Antfarm for Simics/x86 on all pages used as page ta-

bles so that page table updates can be detected. A VMM

like Xen marks page tables read-only to detect the same

event.

Antfarm for Simics/x86 consists of about 800 lines of

C code. For Simics/SPARC the total is approximately 450

lines.

6 Process Awareness Evaluation

In this section we explore the accuracy of Antfarm in each

of our implementation environments. We also character-

ize the runtime overhead of Antfarm for Xen.

The analysis of accuracy can be decomposed into two

components. The first is the ability to correctly detect pro-

cess creations, exits, and context switches. We call this

aspect completeness. The second component is the time

difference or lag between process events as they occur

within the operating system and when they are detected

by the VMM.

6.1 x86 Evaluation

Our evaluation on x86 uses Xen version 2.0.6. Version

2.6.11 of the Linux kernel was used in Xen’s privileged

control VM. Linux kernel version 2.4.30 and 2.6.11 are

used in unprivileged VMs as noted. Our evaluation hard-

ware consists of a 2.4 GHz Pentium IV PC with 512 MB

of RAM. Virtual machines are each allocated 128 MB of

RAM in this environment.

We also evaluate our techniques as applied to Microsoft

Windows NT4. Since Windows does not currently run on

Xen, Simics/x86 is used for this purpose. Our Simics/x86

virtual machines were configured with a 2.4 GHz Pen-

tium IV and 256 MB of RAM.

6.1.1 Completeness

To quantify completeness, each guest operating system

was instrumented to report process creation, exit, and con-

text switch. Event records include the appropriate ASID,

as well as the time of the event obtained from the proces-

sor’s cycle counter. These OS traces were compared to

similar traces generated by Antfarm. Guest OS traces are

functionally equivalent to the information that would be

provided by a paravirtualized OS that included a process

event interface. Hence, our evaluation implicitly com-

pares the accuracy of Antfarm to the ideal represented by

a paravirtual interface.

In addition to process creation, exit, and context

switch, guests report address space creation and destruc-

tion events so that we can discriminate between errors

caused by a mismatch between processes and address

spaces and errors induced by inaccurate address space in-

ferences made by Antfarm.

We categorize incorrect inferences as either false neg-

atives or false positives. A false negative occurs when a

true process event is missed by Antfarm. A false positive

occurs when Antfarm incorrectly infers events that do not

exist.

To determine if false negatives occurred, one-to-one

matches were found for every OS-reported event in each

pair of traces. We required that the matching event have

the same ASID, and that it occur within the range for

which the event was plausible. For example, to match

an OS process-creation event, the corresponding inferred

event must occur after any previous OS-reported process

exit events with the same ASID and before any subsequent

OS-reported process creation events with the same ASID.

Table 2 reports the process and address space event

counts gathered by our guest OSes and by Antfarm during

an experiment utilizing two process intensive workloads.

The first workload is synthetic. It creates 1000 processes,

each of which runs for 10 seconds then exits. The pro-

cess creation rate is 10 processes/second. On Linux, this

synthetic workload has three variants. The first creates

processes using fork only; the second uses fork followed

by exec; the third employs vfork followed by exec. Under

Windows, processes are created using the CreateProcess

API.

The second workload is a parallel compile of the bash

shell sources using the command “make -j 20” in a clean

object directory. A compilation workload was chosen be-

cause it creates a large number of short-lived processes,

stressing Antfarm’s ability to track many concurrent pro-

cesses that have varying runtimes.

Antfarm incurs no false negatives in any of the tested
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Process Addr Spc Inferred Process Addr Spc Inferred Context CS

Create Create Create Exit Exit Exit Switch Inferred

Linux 2.4 x86

Fork Only 1000 1000 1000 1000 1000 1000 3331 3331

Fork + Exec 1000 1000 1000 1000 1000 1000 3332 3332

Vfork + Exec 1000 1000 1000 1000 1000 1000 3937 3937

Compile 815 815 815 815 815 815 4447 4447

Linux 2.6 x86

Fork Only 1000 1000 1000 1000 1000 1000 3939 3939

Fork+Exec 1000 2000 2000 1000 2000 2000 4938 4938

Vfork + Exec 1000 1000 1000 1000 1000 1000 3957 3957

Compile 748 1191 1191 748 1191 1191 2550 2550

Windows

Create 1000 1000 1000 1000 1000 1000 74431 74431

Compile 2602 2602 2602 2602 2602 2602 835248 835248

Table 2: Completeness. The table shows the total number of creations and exits for processes and address spaces reported by the

operating system. The total number of process creations and exits inferred by Antfarm are shown in comparison. Antfarm detects

all process creates and exits without false positives or false negatives on both Linux 2.4 and Windows. Fork and exec, however,

lead to false positives under Linux 2.6 (bold face values). All false positives are due to the mismatch between address spaces and

processes indicated by matching counts for address space creates and inferred creates. Actual and inferred context switch counts

are also shown for completeness and are accurate as expected.

cases, i.e., all process-related events reported by our in-

strumented OSes are detected by the VMM. The fact that

inferred counts are always greater than or equal to the

reported counts suggests this, but we also verified that

each OS-reported event is properly matched by at least

one VMM-inferred event.

Under Linux 2.4 and Windows, no false positives oc-

cur, indicating Antfarm can precisely detect address space

events and that there is a one-to-one match between ad-

dress spaces and processes for these operating systems.

Under Linux 2.6, however, false positives do occur, indi-

cated in Table 2 by the inferred event counts that are larger

than the OS-reported counts. This discrepancy is due to

the implementation of the Linux 2.6 fork and exec system

calls.

UNIX programs create new user processes by invoking

the fork system call which, among other things, constructs

a new address space for the child process. The child’s

address space is a copy of the parent’s address space. In

most cases, the newly created child process immediately

invokes the exec system call which replaces the child’s

virtual memory image with that of another program read

from disk.

In Linux 2.4, when exec is invoked the existing process

address space is cleared and reused for the newly loaded

program. In contrast, Linux 2.6 destroys and releases the

address space of a process invoking exec. A new address

space is allocated for the newly exec’d program. Hence,

under Linux 2.6, a process that invokes exec has two dis-

tinct address spaces associated with it, which do not over-

lap in time. In other words, the runtime of the process is

partitioned into two segments. One segment corresponds

to the period between fork and exec and the other corre-

sponds to the period between exec and process exit. Ant-

farm, because it is based on address space tracking, con-

cludes that two different processes are created leading to

twice as many inferred process creations and exits as ac-

tually occurred.

Due to the idiomatic use of fork and exec, however,

a process is partitioned in a distinctive way. The Linux

2.6/x86 case in Figure 1 depicts the temporal relationship

between the two inferred pseudo-processes. The duration

of the first pseudo-process will nearly always be small.

For example, in the case of our compilation workload,

the average time between fork and exec is less than 1 ms,

compared to the average lifetime of the second pseudo-

process, which is more than 2 seconds, a difference of

three orders of magnitude.

The two pseudo-processes are separated by a short time

period where neither is active. This interval corresponds

to the time after the original address space is destroyed

and before the new address space is created. During

the compilation workload this interval averaged less than

0.1 ms and was never larger than 2.3 ms. Since no user

instructions can be executed in the absence of a user ad-

dress space, the combination of the two pseudo-processes

detected by Antfarm encompasses all user activity of the

true process. Conventional use of fork and exec imply

Annual Tech ’06: 2006 USENIX Annual Technical ConferenceUSENIX Association 7



Figure 1: Effects of error. The figure shows where each type of process identification error occurs for each tested platform. Error

is either lag between when the true event occurs and when the VMM detects it, (e.g., A and B in the figure) or consists of falsely

partitioning a single OS process into multiple inferred processes. In Linux 2.6/x86, this only occurs on exec, which typically

happens immediately after fork. On SPARC this partitioning happens whenever a process calls either fork or exec.
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Figure 2: Lag vs. System Load. The figure shows average and

maximum create and exit lag time measurements for a variety of

system load levels in each of our x86 evaluation environments.

Average and worst case create lag are affected by system load

in Linux 2.4 and Windows, but are small and nearly constant

under Linux 2.6. Except for a large exit lag with no competing

processes on Linux, exit lag does not appear to be sensitive to

system load.

that nearly all substantive activity of the true user process

is captured within the second pseudo-process.

6.1.2 Lag

The second aspect of process identification accuracy that

we consider is the time difference between a process event

and when the same event is detected by the VMM. We de-

fine a process to exist at the instant the fork (or its equiv-

alent) system call is invoked. Exit is defined as the start

of the exit system call. These definitions are maximally

conservative. In Figure 1 create lag is labeled A and exit

lag is labeled B.

Lag is similar in nature to response time, so we expect

it to be sensitive to system load. To evaluate this sensi-

tivity, we conduct an experiment that measures lag times

for various levels of system load on Linux 2.4, Linux 2.6,

and Windows. In each experiment, 0, 1, 10, or 50 CPU-

bound processes were created. 100 additional test pro-

cesses were then created and the create and exit lag time

of each were computed. Test process creations were sepa-

rated by 10 ms and each test process slept for one second

before exiting.

The results of these experiments are presented in Fig-

ure 2. For each graph, the x-axis shows the number of

concurrent CPU-bound processes and the y-axis shows

lag time. Create lag is sensitive to system load on both

Linux 2.4 and Windows, as indicated by the steadily in-

creasing lag time for increasing system load. This result

is intuitive since a call to the scheduler is likely to occur

between the invocation of the create process API in the

parent (when a process begins) and when the child pro-

cess actually runs (when the VMM detects it). Linux 2.6,

however, exhibits a different process creation policy that

leads to relatively small and constant creation lag. Since

Antfarm detects a process creation when a process first

runs, the VMM will always be informed of a process’s

existence before any user instructions are executed.

Exit lag is typically small for each of the platforms. The

exception is for an otherwise idle Linux which shows a

relatively large exit lag average of 10 ms. The reason for

this anomaly is that most Linux kernel tasks, including

the idle task, do not need an associated user address space

and therefore borrow the previously active user address

space when they need to run. This mechanism allows a

kernel task to run without incurring the expense of a TLB

flush. In the case of this experiment, test processes were

started at intervals of 10 ms and each process sleeps for

one second; hence, when no other processes are ready to

run, approximately 10 ms elapse between process exit and

when another process begins. During this interval, the

Linux idle task is active and prevents the previous address

space from being released, which leads to the observed

delay.

6.1.3 The Big Picture

Figure 3 shows a set of timelines depicting how Antfarm

tracks process activity over time for a parallel compilation
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Figure 3: Compilation Workload Timelines. For x86/Linux

2.4, x86/Linux 2.6 and x86/Windows a process count timeline

is shown. Each timeline depicts the OS-reported process count,

the VMM-inferred process count and the difference between the

two versus time. Lag has a larger impact on accuracy than false

positives. x86/Linux 2.6, which exhibits significantly smaller lag

than x86/Linux 2.4 is able to track process counts more accu-

rately.

workload on each of our x86 platforms. The top curve in

each graph shows the true, current process count over time

as reported by the operating system. The middle curve

shows the current process count as inferred by Antfarm.

The bottom curve shows the difference between the two

curves calculated as Inferred − Actual.

The result of the relatively large creation lag under

Linux 2.4 is apparent in the larger negative process count

differences compared to Linux 2.6. For this workload and

metric combination, creation lag is of greater concern than

the false positives experienced by Linux 2.6. In another

environment such as a more lightly loaded system, which

would tend to reduce lag, or for a metric like total cumu-

lative process count, the false positives incurred by Linux

2.6 could be more problematic.

Exit lag is not prominent in any of the graphs. Large,

persistent exit lag effects would show up as significant

positive deviations in the difference curves. The fact that

errors due to fork and exec do not accumulate over time

under Linux 2.6 is also apparent because no increasing

inaccuracy trend is present.

6.2 Overhead

To evaluate the overhead of our process awareness tech-

niques we measure and compare the runtime of two work-

loads under Antfarm and under a pristine build of Xen.

The first workload is a microbenchmark that represents

a worst case performance scenario for Antfarm. Experi-

ments were performed using Linux 2.4 guests.

Since our VMM extensions only affect code paths

where page tables are updated, our first microbenchmark

focuses execution on those paths. The program allocates

100 MB of memory, touches each page once to ensure a

page table entry for every allocated page is created and

then exits, causing all of the page tables to be cleared

and released. This program is run 100 times and the total

elapsed time is computed. The experiment was repeated

five times and the average duration is reported. There was

negligible variance between experiments. Under an un-

modified version of Xen this experiment required an av-

erage of 24.75 seconds to complete. Under Antfarm for

Xen the experiment took an average of 25.35 seconds to

complete. The average slowdown is 2.4% for this worst

case example.

The runtime for configuring and building bash was also

compared between our modified and unmodified versions

of Xen. In the unmodified case the average measured run-

time of five trials was 44.49 s. The average runtime of the

same experiment under our modified Xen was 44.74 s.

The variance between experiments was negligible yield-

ing a slowdown of about 0.6% for this process-intensive

application workload.
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Process Addr Spc Inferred Process Addr Spc Inferred Context CS

Create Create Create Exit Exit Exit Switch Inferred

SPARC/Linux

Fork Only 1000 1000 2000 1000 1000 2000 3419 3419

Fork & Exec 1000 1000 3000 1000 1000 3000 3426 3426

Vfork 1000 1000 1000 1000 1000 1000 4133 4133

Compile 603 603 1396 603 603 1396 1678 1678

Table 3: Completeness for SPARC. The table shows the results for the same experiments reported for x86 in Table 2, but for

SPARC/Linux 2.4. False positives occur for each fork due to an implementation which uses copy-on-write. Antfarm also infers an

additional, non-existent exit/create event pair for each exec. This error is not due to multiple address spaces per process as on x86,

but rather stems from the flush that occurs to clear the caller’s address space upon exec.

6.3 SPARC Evaluation

Our implementation of process tracking on SPARC uses

Simics. Each virtual machine is configured with a

168 MHz UltraSPARC II processor and 256 MB of RAM.

We use SPARC/Linux version 2.4.14 as the guest operat-

ing system for all tests. The guest operating system is

instrumented to report the same information as described

for x86.

6.3.1 Completeness

We use the same criteria to evaluate process awareness

under SPARC as under x86. Table 3 lists the total event

counts for our process creation micro-benchmark and for

the bash compilation workload.

As on x86, no false negatives occur. In contrast to x86,

the fork-only variant of the microbenchmark incurs false

positives. The reason for this is the copy-on-write im-

plementation of fork under Linux. During fork all of the

writable portions of the parent’s address space are marked

read-only so that they can be copy-on-write shared with

the child. Many entries in the parent’s page tables are

updated and all of the corresponding TLB entries must

be flushed. SPARC/Linux accomplishes this efficiently

by flushing all of the parent’s current TLB entries using

a context demap operation. The context demap is incor-

rectly interpreted by Antfarm as a process exit. As soon as

the parent is scheduled to run again, we detect the use of

the address space and signal a matching spurious process

creation.

The false positives caused by the use of fork under

SPARC are different in character than those caused by

exec under x86. These errors are not limited (by con-

vention) to the usually tiny time interval between fork

and exec. They will appear whenever fork is invoked,

which for processes like a user shell can occur repeatedly

throughout the process’s lifetime. The Linux 2.4/SPARC

case in Figure 1 depicts how a process that repeatedly

invokes fork might be partitioned into many inferred

pseudo-processes by Antfarm.

When exec is used we see additional false positives, but

for a different reason than under x86/Linux 2.6. In this

case the process inference technique falsely reports the

creation of new address spaces that don’t really exist. The

cause of this behavior is a TLB demap operation that oc-

curs when a process address space is cleared on exec. This

error mode is different than under x86 where observed er-

rors were due to a faulty assumption of a single address

space per process. On SPARC, the error occurs because

our chosen indicator, context demap, can happen without

the corresponding address space being deallocated.

Given these two sources of false positives, one would

expect our compilation workload to experience approxi-

mately the same multiple of false positives as seen for the

fork+exec synthetic benchmark. We see, however, fewer

false positives than we expect, due to the use of vfork by

both GNU make and gcc. Vfork creates a new process

but does not duplicate the parent’s address space. Since

no parent page tables are changed, no flush is required.

When exec is invoked we detect the creation of the single

new address space. Hence, when vfork and exec are used

to create new processes under SPARC/Linux, Antfarm ex-

periences no false positives. The build process, however,

consists of more than processes created by make and gcc.

Many processes are created by calls to an external shell

and these process creations induce the false positives we

observe.

6.3.2 Lag

Lag between OS-recorded and VMM-inferred process

events under SPARC/Linux is comparable to Linux

on x86. The average and maximum lag values for

SPARC/Linux under various system loads are shown in

Figure 4. Create lag is sensitive to system load. Exit lag

is unaffected by load as on x86.
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Figure 5: Compilation Workload Timeline. Compilation time-

line comparable to Figure 3 for SPARC/Linux.

6.3.3 Limitations

While the SPARC inference technique is simple, it suffers

drawbacks relative to x86. As shown, the technique in-

curs more false positives than the x86 techniques. In spite

of the additional false positives, Figure 5 shows that the

technique can track process events during a parallel com-

pilation workload at least as accurately as x86/Linux 2.4.

Unlike the x86, where one can reasonably assume that

a page directory page would not be shared by multiple

runnable processes, one cannot make such an assump-

tion for context IDs on SPARC. The reason is the vastly

smaller space of unique context IDs. The SPARC pro-

vides only 13 bits for this field which allows up to 8192

distinct contexts to be represented concurrently. If a sys-

tem exceeds this number of active processes, context IDs

must necessarily be recycled. In some cases, system soft-
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Figure 6: Context ID Overflow. When more processes exist

than can be represented by the available SPARC context IDs our

techniques fail to detect context ID reuse.

ware will further limit the number of concurrent contexts

it supports. For example, Linux on SPARC architectures

uses only 10 of the available 13 context bits, so only

1024 concurrent address spaces are supported without re-

cycling.

Figure 6 shows the behavior of our SPARC process de-

tection techniques when more processes exist than can be

distinguished by the available context IDs. Once the limit

is reached at 1024, the technique fails to detect additional

process creations.

The importance of this second limitation is somewhat

reduced because even very busy servers rarely have more

than 1000 active processes, a fact which no doubt influ-

enced the selection of the context ID field’s size.

6.4 Discussion

The process event detection techniques used by Antfarm

are based on the mechanisms provided by a CPU archi-

tecture to implement and manage virtual address spaces,

and on the responsibilities of general-purpose operating

systems to maintain process isolation. The techniques as-

sume an OS will follow the address space conventions

suggested by the MMU features available in an architec-

ture. If an OS deviates from the convention, detection

accuracy will likely differ from what we have reported

here. Our evaluation shows that two widely used operat-

ing systems adhere to our assumptions. Antfarm precisely

identifies the desired process events on x86/Windows

and x86/Linux 2.4. Some false positives occur under

x86/Linux 2.6 and SPARC/Linux. However, the false pos-

itives are stylized and affect the ability of Antfarm to keep

an accurate process count very little.

New architectures devoted to hardware-assisted virtu-

alization [1, 13] will, in some configurations, reduce or

eliminate the need for a VMM to track guest page ta-
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ble updates and context switches. For example, AMD

plans to include two levels of address translation and a pri-

vate guest-CR3 as options in its Secure Virtual Machine

(SVM) architecture. This fact does not prevent a VMM

from observing its guest operating systems; shadow page

tables are explicitly supported by these architectures. It

will, however, likely increase the performance penalty ex-

acted by the techniques used in Antfarm.

7 Case Study:

Anticipatory Scheduling

The order in which disk requests are serviced can make

a large difference to disk I/O performance. If requests to

adjacent locations on disk are serviced consecutively, the

time spent moving the disk head unproductively is min-

imized. This is the primary performance goal of most

disk scheduling algorithms. This case study explores the

application of one innovative scheduling algorithm called

anticipatory scheduling [14] in a virtual machine environ-

ment. The implementation makes use of Antfarm for Xen.

7.1 Background

Iyer et al.[14] have demonstrated a phenomenon they call

deceptive idleness for disk access patterns generated by

competing processes performing synchronous, sequential

reads. Deceptive idleness leads to excessive seeking be-

tween locations on disk. Their solution, called antici-

patory scheduling, introduces a small amount of waiting

time between the completion of one request and the ini-

tiation of the next if the process whose disk request just

completed is likely to issue another request for a nearby

location. This strategy leads to substantial seek savings

and throughput gains for concurrent disk access streams

that each exhibit spatial locality.

Anticipatory scheduling makes use of process-specific

information. It decides whether to wait for a process to

issue a new read request and how long to wait based on

statistics the disk scheduler keeps for all processes about

their recent disk accesses. For example, the average dis-

tance from one request to the next is stored as an estimate

of how far away the process’s next access will be. If this

distance is large, there is little sense waiting for the pro-

cess to issue a request nearby. Statistics about how long

a process waits after one request completes before it is-

sues another are also kept in order to determine how long

it make sense to wait for the next request to be issued.

Anticipatory scheduling does not work well in a virtual

machine environment. System-wide information about

disk requests is required to estimate where the disk head

is located, which is essential in deciding if a request is

nearby. Information about individual process’s I/O behav-

ior is required to determine whether and how long to wait.

This information is not completely available to either a

single guest, which only knows about its own requests,

or to the VMM, which cannot distinguish between guest-

level processes. While guests and the VMM could coop-

erate to implement anticipatory scheduling, this requires

the introduction of additional, specialized VMM-to-guest

interfaces. New interfaces may not be possible in the case

of legacy or binary-only components. In any case, such

interfaces do not exist today.

7.2 Information

To implement anticipatory scheduling effectively in a

VMM, the VMM must be able to distinguish between

guest processes. Additionally, it must be able to associate

disk read requests with specific guest processes. Given

those two pieces of information, a VMM implementation

of anticipatory scheduling can maintain average seek dis-

tance and inter-request waiting time for processes across

all guests. We use Antfarm to inform an implementation

of anticipatory scheduling inside of Xen.

To associate disk read requests to processes, we em-

ploy a simple context association strategy that associates

a read request with whatever process is currently active.

This simple strategy does not take potential asynchrony

within the operating system into account. For example,

due to request queuing inside the OS, a read may be is-

sued to the VMM after the process in which it originated

has blocked and context switched off the processor. This

leads to association error. We have researched more ac-

curate ways of associating reads to their true originating

process by tracking the movement of data from the disk

through memory towards the requesting process. These

methods have proven effective in overcoming association

error due to queuing. Because of limited space, however,

we do not present these techniques here. The implemen-

tation of anticipatory scheduling described in this paper

uses simple context association.

7.3 Implementation

Xen implements I/O using device driver virtual machines

(DDVM) [7]. A DDVM is a virtual machine that is al-

lowed unrestricted access to one or more physical de-

vices. DDVMs are logically part of the Xen VMM. Oper-

ationally, guests running in normal virtual machines make

disk requests to a DDVM via an idealized disk device in-

terface and the DDVM carries out the I/O on their behalf.

In current versions of Xen, these driver VMs run Linux

to take advantage of the broad device support it offers. A

device back-end in the driver VM services requests sub-

mitted by an instance of a front-end driver located in all
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Figure 7: Benefit of process awareness for anticipatory

scheduling. The graph shows the aggregate throughput for vari-

ous configurations of I/O scheduler, number of virtual machines

and number of processes per virtual machine. The experiment

uses the Linux deadline scheduler (DL), the standard anticipa-

tory scheduler (AS), and our VMM-level anticipatory scheduler

(VMAS). Adding process awareness enables VMAS to achieve

single process sequential read performance in aggregate among

competing sequential streams. AS running at the guest layer

is somewhat effective in the 1 VM / 2 process case since it has

global disk request information.

normal VMs.

The standard Linux kernel includes an implementation

of anticipatory scheduling. We implement anticipatory

scheduling at the VMM layer by enabling the Linux an-

ticipatory scheduler within a Xen DDVM that manages a

disk drive. To make this existing implementation process-

aware, we introduce a foreign process abstraction that rep-

resents processes running in other VMs. When a disk

request arrives from a foreign virtual machine, the Xen

back-end queries our process-aware Xen hypervisor about

which process is currently active in the foreign virtual

machine. Given the ability to distinguish between pro-

cesses we expect that our VMM-level anticipatory sched-

uler (VMAS) will improve synchronous read performance

for competing processes whether they exist in the same or

different VMs.

7.4 Evaluation

To demonstrate the effectiveness of our implementation of

VMAS, we repeat one of the experiments from the origi-

nal anticipatory scheduling paper in a virtual machine en-

vironment. Our experiment consists of running multiple

instances of a program that sequentially reads a 200 MB

segment of a private 1 GB file. We vary the number

of processes, the assignment of processes to virtual ma-

chines, and the disk scheduler used by guests and by the

VMM to explore how process awareness influences the

effectiveness of anticipatory scheduling in a VMM. We

make use of the Linux deadline I/O scheduler as our non-

anticipatory baseline. Results for each of four scheduler

configurations combined with three workloads are shown

in Figure 7. The workloads are: (1) one virtual machine

with two processes, (2) two virtual machines with one

process each, and (3) two virtual machines with two pro-

cesses each.

The first experiment shows the results from a config-

uration without anticipatory scheduling. It demonstrates

the expected performance when anticipation is not in use

for each of the three workloads. On our test system this

results in an aggregate throughput of about 8 MB/sec.

The second configuration enables anticipatory schedul-

ing in the guest while the deadline scheduler is used by

Xen. In the one virtual machine/two process case, where

the guest has complete information about all processes

actively reading the disk, we expect that an anticipatory

scheduler at the guest level will be effective. The figure

shows that this is in fact the case. Anticipatory schedul-

ing is able to improve aggregate throughput by 75% from

about 8 MB/sec to about 14 MB/sec. In the other cases

guest-level anticipatory scheduling performs about as well

as the deadline scheduler due to its lack of information

about processes in other virtual machines.

Our third experiment demonstrates the performance of

unmodified anticipatory scheduling at the VMM layer.

Similar to the case of anticipatory scheduling running at

the guest layer we would expect performance improve-

ment for the two-virtual-machine/one-process-each case

to be good because a VMM can distinguish between vir-

tual machines just as an operating system can distinguish

between processes. The improvement does not occur,

however, because of an implementation detail of the Xen

DDVM back-end driver. The back-end services all foreign

requests in the context of a single dedicated task so the an-

ticipatory scheduler interprets the presented I/O stream as

a single process making alternating requests to different

parts of the disk. The performance is comparable to the

configuration without anticipation for all workloads.

The final configuration shows the benefit of process

awareness to anticipatory scheduling implemented at the

VMM layer. In each of the workload configurations an-

ticipatory scheduling works well, improving aggregate

throughput by more than a factor of two, from about

8 MB/sec to about 20 MB/sec. Because it is implemented

at the VMM layer, anticipatory scheduling in this configu-

ration has complete information about all requests reach-

ing the disk. Our process awareness extensions allow it to

track statistics for each individual process enabling it to

make effective anticipation decisions.
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8 Conclusion

The widespread adoption of virtual machines brings with

it interesting research opportunities to reevaluate where

and how certain operating system services are imple-

mented. Implementing OS-like services in a VMM is

made more challenging by the lack of high-level OS and

application information.

The techniques developed in this paper and their imple-

mentation in Antfarm are an explicit example of how in-

formation about one important operating system abstrac-

tion, the process, can be accurately and efficiently inferred

inside a VMM by observing the interaction of a guest OS

with its virtual hardware. This method is a useful alterna-

tive to explicitly exporting the required information to the

VMM directly. By enabling a VMM to independently in-

fer the information it needs, the VMM is decoupled from

the specific vendor, version, and even correctness of the

guests it supports.
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