BINDER: An Extrusion-based Break-In Detector for Personal Computers

Weidong Cui, Randy H. Katz, and Wai-tian Tan
University of California, Berkeley and Hewlett-Packard Laboratories
{wdc,randy} @cs.berkeley.edu, dtan@ hpl.hp.com

Abstract

Compromised computers have been a menace to both
personal and business computing. In this paper, we
tackle the problem of automated detection of break-ins
of new unknown threats such as worms, spyware and ad-
ware on personal computers. We propose Break-IN DE-
tectoR (BINDER), a host-based break-in detection sys-
tem. Our key observation is that many break-ins make
extrusions, stealthy malicious outgoing network connec-
tions. BINDER exploits a unique characteristic of per-
sonal computers, that most network activities are directly
or indirectly triggered by user input. Since threats tend
to run as background precesses and thus do not receive
any user input, the intuition behind BINDER is that only
threats generate connections without user input. By cor-
relating outgoing network connections and processing
information with user activities, BINDER can capture
extrusions and thus break-ins.

1 Introduction

A variety of threats such as worms, spyware and ad-
ware, have affected both personal and business com-
puting significantly. Remotely controlled bot networks
of compromised systems are growing quickly [12] and
represent a menace to today’s computing infrastruc-
ture. Many research efforts [8, 10, 14] and commer-
cial products [13, 18] have focused on preventing break-
ins by filtering known exploits or unknown ones ex-
ploiting known vulnerabilities. To protect computer sys-
tems from new threats, these solutions have two require-
ments. First, some central entities must rapidly generate
signatures of new threats after they are detected. Sec-
ond, distributed computer systems must download and
apply these signatures to their local databases in time.
However, these requirements can leave computer sys-
tems with obsolete signature database unprotected from
newly emerging threats. In particular, worms can prop-

agate much more rapidly than humans can respond in
terms of generation and distribution of signatures [11].
Instead of targeting at preventing infections, we focus on
fast mechanisms for detecting break-ins after they occur
that do not require a priori knowledge of exploit or vul-
nerability signatures. Such mechanisms can decrease the
danger of information leak and protect computers and
networks, and is complementary to existing prevention
schemes.

Many threats send malicious outgoing network traf-
fic that is usually happen unknown to users on the com-
promised personal computers. We refer to these stealthy
malicious outgoing network activities as extrusions. The
key feature of extrusions is that they are not triggered by
user input. In contrast, most normal traffic in personal
computers is initiated by users. Leveraging this anomaly
of extrusions, we tackle the problem of automated detec-
tion of break-ins of new unknown threats such as worms,
spyware and adware on personal computers in contrast
to server computers. In this paper, we present Break-IN
DEtectoR (BINDER), a host-based system that detects
break-ins on personal computers by capturing extrusions.
To capture extrusions, BINDER correlates outgoing net-
work connections (initiated by the local computer) and
process information with user activities (key strokes and
mouse clicks). BINDER can detect certain kinds of
break-ins after they occur without a priori knowledge of
exploit or vulnerability signatures.

2 Design Overview

The main objectives we want to achieve for the BINDER
design are: (1) minimal false alarms: this is the critical
requirement for any intrusion detection system to be use-
ful in practice; (2) generality: BINDER should work for
a large class of threats without the need for signatures
beforehand; (3) small overhead: BINDER must not use
intrusive probing and affect the performance of the com-
puters it sits on; (4) security with open design: we want

USENIX Association

2005 USENIX Annual Technical Conference

363



to design BINDER so threats cannot bypass it by know-
ing its scheme.

Patterns of network traffic and system calls have been
used for intrusion detection [4, 6, 17]. To the best of
our knowledge, BINDER is the first system to take ad-
vantage of a unique characteristic of personal comput-
ers: user-driven activities. By trusting the user input,
BINDER simply detects extrusions of break-ins by de-
termining they are unrelated to user actions. In Section 4,
we discuss how BINDER can verify a user input is not
faked or tricked by break-ins.

A natural approach for BINDER to take is to corre-
late network traffic with user input directly. However,
a “smart” threat can bypass it by monitoring user in-
put and sending traffic at appropriate times. To avoid
this, BINDER also uses process information to limit the
correlation. The intuition behind it is that only mali-
cious processes of break-ins generate connections with-
out user input. BINDER assumes that the boundary be-
tween processes is protected by the operating system. In
other words, break-ins cannot inject their malicious code
into other running processes and must run as independent
processes. Although this may not be guaranteed until
the next generation operating systems [7] are available,
a large class of today’s threats run as independent pro-
cesses.

3 BINDER

BINDER detects break-ins by capturing extrusions. In-
stead of searching for conditions that can detect extru-
sions directly, BINDER looks for the cases where nor-
mal connections may be generated. This is in concert
with our objectives of minimizing false alarms and de-
tecting a large class of threats. By covering all normal
cases, we can first control false alarms. Then, we can
detect any threat that generates connections in a way that
does not match any normal case.

3.1 Normal Connection Rules

In the following discussion, we use three kinds of events:
user events (user input), process events (process start and
process finish), and network events (connection request,
data arrival and domain name lookup). A normal out-
going network connection of a process may be triggered
either by user inputs directly (e.g., download a news web
page after a mouse click) or indirectly (e.g., download
an image file embedded in the news web page or refresh
a news web page periodically after it is loaded) or by
schedule (e.g., a system daemon or a software update
check). These cases can be covered by three rules: (1)
intra-process rule: a connection of a process may be trig-
gered by a user input, data arrival or connection request

event of the same process; (2) inter-process rule: a con-
nection of a process may be triggered by a user input
or data arrival event of another process; (3) whitelisting
rule: a connection of a process may be triggered accord-
ing to a rule in the whitelist.

To verify if a connection is triggered by the intra-
process rule, we just need to monitor all user and net-
work activities of each single process. However, we
need to monitor all possible communications among run-
ning processes to verify if a connection is triggered by
the inter-process rule. This contradicts our objective of
small overhead. Instead, we use the following two rules
to approximate it: (1) parent-process rule: a connection
of a process may be triggered by a user input or data
arrival event received by its parent process before it is
created; (2) web-browser rule: a connection of a web
browser process may be triggered by a user input or data
arrival event of other processes. The web-browser rule
cannot be covered by the parent-process rule because,
when a user clicks a hyperlink in a window of a process,
the corresponding web page is loaded by an existing web
browser process if there is any. The advantages of this
approximation are that (1) the two rules do not require
more information than the intra-process rule; (2) they
cover a dominant fraction of connections triggered by the
inter-process rule. The whitelisting rule can be classified
into three categories: system daemons, software updates
and network applications automatically started by the op-
erating system.

3.2 Extrusion Detection Algorithm

The extrusion detection algorithm is based on the intra-
process, parent-process and web-browser rule as well as
whitelisting. It is actually about detecting normal con-
nections correctly. If a connection is not triggered by
any of the normal connection rules and thus is detected
as anomalous, it is treated as an extrusion. The main idea
of the extrusion detection algorithm is to limit the de-
lay from a triggering event to a connection request event.
There are three possible delays for a connection request
though some of them may not exist. For a connection
request made by process P, we define the three delays:
(1) Dyew: the delay since the last user input or data ar-
rival event received by the parent process of P before P
is created; (2) Dyq4: the delay since the last user input or
data arrival event received by P (note that the triggering
event can be from any process if P is a web browser pro-
cess according to the web browser rule); (3) Dy the
delay since the last connection request to the same host
or IP address made by P. For normal connections, D4
and D,,c,, are in the order of seconds while D¢, is in
the order of minutes. Depending on how a normal con-
nection is triggered, it must have at least one of the three

364

2005 USENIX Annual Technical Conference

USENIX Association



delays fall into a normal range.

The extrusion detection algorithm needs 3 parameters
for the upper bound of the delays (defined as DpEPe",
D7e", and DpPper). We also assume BINDER can
learn rules from previous false alarms. Each rule in-
cludes an application name (the image file name of a
process) and a remote host name. The rule means any
connection to the host made by a process of the applica-
tion is always normal. Thus, given a connection request,
it is a normal connection if it is in the rule set of previous
false alarms, or is in the whitelist, or D,,;..,, exists and is
less than DIDE", or Dye,, exists and is less than Dp2ie",
or Dgq exists and is less than D '7". Otherwise, it is
an extrusion.

3.3 Why BINDER Works

In this section, we discuss why connections made by a
large class of threats can be detected as extrusions by the
detection algorithm. When a threat breaks into a personal
computer, the break-in can be split into two phases by the
time of the first restart of the victim computer. The dif-
ference of these two phases is how malicious processes
of a threat are started.

In the first phase, malicious processes are started either
by an existing infected process or by a user. Connections
made by those processes may not be initially detected
as extrusions because, before they are started, their par-
ent processes may have received user input (e.g., a user
opens a virus attachment in an email client program) or
data (e.g., a vulnerable process receives malicious traf-
fic). However, BINDER can detect a break-in by observ-
ing even a single extrusion it makes. The chance of de-
tecting a single extrusion is high unless an attacker crafts
the exploit intentionally to evade BINDER in this phase.

In the second phase, malicious processes are started
by the operating system without any user input or data
arrival in history. Moreover, threats tend to run as back-
ground processes to avoid being detected or shutdown
by computer users. A feature of background processes is
that they do not receive any user input. BINDER can de-
tect the break-in by capturing the first connection made
by its malicious processes as an extrusion. This is be-
cause their parent processes do not receive any user input
before they are created, and they do not receive any user
input after it. So D4, Dpew and Dy, do not exist for
such a connection. Therefore, BINDER can be guaran-
teed to detect break-ins of worms, spyware and adware
after the victim computer is restarted.

4 Countermeasures and Solutions

When BINDER’s scheme is known to attackers, there are
potential countermeasures that allow break-ins to send

malicious traffic without being detected. Though we try
to investigate all possible attacks against BINDER, we
cannot argue that we have considered all possible vul-
nerabilities. To evade BINDER’s detection, a break-in
can (1) stop or remove BINDER from the compromised
host; (2) fake user input by using system APIs or trick-
ing a user to input on its window; (3) fake data arrivals by
keeping receiving data from a collusive site on a connec-
tion triggered by a user; (4) fake whitelist applications
by replacing their executables; (5) use covert channels to
leak information. To eliminate these countermeasures,
we can (1) run BINDER at kernel level and monitor its
running status; (2) monitor related APIs and detect pop-
up windows of processes that do not receive any user
input; (3) add more constraints on how a normal con-
nection may be triggered; (4) use the scheme proposed
in [1]; (5) use techniques presented in [3].

5 Related Work

Many research efforts [8, 10, 14] and commercial prod-
ucts [13, 18] have focused on preventing break-ins by
filtering known exploits or unknown ones exploiting
known vulnerabilities. Anomaly-based intrusion detec-
tion [4, 6, 17] have been studied for detecting unknown
exploits. The performance of anomaly-based approaches
is very limited in practice due to its high false positive
rate [2]. Computer worms and spyware [9] have been a
menace to both personal computing and large networks.
Fast worm detection and containment becomes critical
since worms can propagate much more rapidly than hu-
man response [11]. Most research efforts [5, 15, 16] have
focused on random scanning worms. Compared to pre-
vious work, BINDER has three features: (1) it detects
break-ins without a priori knowledge of exploit or vul-
nerability signatures; (2) it leverages the unique charac-
teristics of personal computers that most normal traffic
is triggered by users to achieve minimal false positives;
(3) it detects a large class of threats that infect personal
computers.

6 Future Work

We are implementing a prototype of BINDER on Win-
dows operating systems because they are the largest
group attacked by the most threats [12]. We plan to eval-
uate BINDER in two environments. In a real world envi-
ronment, we want to install BINDER on computers used
for daily work and evaluate its performance on both false
positives and false negatives. In a controlled testbed, we
want to test BINDER with real world email worms to
evaluate its performance on false negatives. We focus on
email worms because it is harder for BINDER to detect

USENIX Association

2005 USENIX Annual Technical Conference

365



their break-ins due to the fact that they are usually trig-
gered by user input. Our preliminary results show that
BINDER can limit false alarms to once per week and de-
tect break-ins of real world email worms and spyware
successfully.

7 Conclusions

In this paper, we present the design of BINDER, a host-
based system that detects break-ins of worms, spyware
and adware on personal computers by capturing extru-
sions. BINDER takes advantage of a unique character-
istic of personal computers: user-driven activities. By
trusting the user input, BINDER simply detects break-
in extrusions by determining they are unrelated to user
actions. This implies a new direction for tackling the
problem of intrusion detection on personal computers.

Acknowledgments

We would like to thank the anonymous reviewers and our
shepherd, Erich Nahum, for their valuable comments and
suggestions. We are grateful to Minghua Chen, Yanmei
Li, Mukund Seshadri, Rui Xu, Fang Yu, Haibo Zeng,
Jianhui Zhang and Wei Zheng for their generous help
of allowing us to install and evaluate BINDER on their
computers. We are thankful to Dan Ellis, Jaeyeon Jung,
Jon Kuroda and Zhenmin Li for sharing virus emails with
us. We would like to thank Chris Karlof, Yaping Li and
Zhi-Li Zhang for their insightful comments on a draft
of this paper. Special thanks go to Vern Paxson, David
Wagner, Nicholas Weaver and Li Yin for their helpful
discussion and valuable feedback.

References

[1] A. Apvrille, D. Gordon, S. Hallyn, M. Pourzandi,
and V. Roy. Digsig: Run-time authentication of
binaries at kernel level. In Proceedings of LISA,
November 2004.

[2] S. Axelsson. The base-rate fallacy and its impli-
cations for the difficulty of intrusion detection. In
Proceedings of ACM CCS, November 1999.

[3] K. Borders and A. Prakash. Web tap: Detecting
covert web traffic. In Proceedings of ACM CCS,
October 2004.

[4] S. A. Hofmeyr, S. Forrest, and A. Somayaji. In-
trusion detection using sequences of system calls.
Journal of Computer Security, 6(3):151-180, 1998.

[5] J. Jung, V. Paxson, A. W. Berger, and H. Balakrish-
nan. Fast portscan detection using sequential hy-
pothesis testing. In 2004 IEEE Symposium on Se-
curity and Privacy, May 2004.

[6] W. Lee and S. Stolfo. A framework for construct-
ing features and models for intrusion detection sys-
tems. ACM Transactions on Information and Sys-
tem Security, 3(4), November 2000.

[7] Microsoft, Next-Generation Secure Computing
Base. http://www.microsoft.com/resources/ngscb/
default.mspx.

[8] V. Paxson. Bro: a system for detecting network
intruders in real-time. Computer Networks, 31(23-
24):2435-2463, 1999.

[9] S. Saroiu, S. D. Gribble, and H. M. Levy. Measure-
ment and analysis of spyware in a university envi-
ronment. In Proceedings of NSDI, March 2004.

[10] Snort, The Open Source Network Intrusion Detec-
tion System. http://www.snort.org/.

[11] S. Staniford, V. Paxson, and N. Weaver. How to
own the Internet in your spare time. In Proceed-
ings of the 11th Usenix Security Symposium, Au-

gust 2002.

[12] Symantec Internet Security Threat Report.
http://enterprisesecurity.symantec.com/content.cfm?

articleid=1539, September 2004.

[13] Symantec Norton Antivirus.

http://www.symantec.com/.

[14] H. J. Wang, C. Guo, D. R. Simon, and A. Zugen-
maier. Shield: Vulnerability-driven network filters
for preventing known vulnerability exploits. In Pro-

ceedings of ACM SIGCOMM, August 2004.

[15] N. Weaver, S. Staniford, and V. Paxson. Very fast
containment of scanning worms. In Proceedings of

the 13th Usenix Security Symposium, August 2004.

[16] M. M. Williamson. Throttling viruses: Restricting
propagation to defeat malicious mobile code. Tech-
nical Report Technical Report HPL-2002-172, HP

Labs Bristol, 2002.

[17] Y.Zhang and V. Paxson. Detecting stepping stones.
In Proceedings of the 9th USENIX Security Sympo-

sium, August 2000.

[18] ZoneAlarm. http://www.zonelabs.com/.

366

2005 USENIX Annual Technical Conference

USENIX Association





