
Pulse: A Dynamic Deadlock Detection Mechanism
Using Speculative Execution

Tong Li1, Carla S. Ellis1, Alvin R. Lebeck1, and Daniel J. Sorin2

1Department of Computer Science
2Department of Electrical and Computer Engineering

Duke University
{tongli,carla,alvy}@cs.duke.edu, sorin@ee.duke.edu

Abstract

Deadlock can occur wherever multiple processes interact. Most existing static and dynamic deadlock detection tools
focus on simple types of deadlock, such as those caused by incorrect ordering of lock acquisitions. In this paper, we
propose Pulse, a novel operating system mechanism that dynamically detects various types of deadlock in application
programs. Pulse runs as a system daemon. Periodically, it scans the system for processes that have been blocked for a
long time (e.g., waiting on I/O events). To determine if these processes are deadlocked, Pulse speculatively executes
them ahead to discover their dependences. Based on this information, it constructs a general resource graph and de-
tects deadlock by checking if the graph contains cycles. The ability to look into the future allows Pulse to detect dead-
locks involving consumable resources, such as synchronization semaphores and pipes, which no existing tools can
detect. We evaluate Pulse by showing that it can detect deadlocks in the classical dining-philosophers and smokers
problems. Furthermore, we show that Pulse can detect a well-known deadlock scenario, which is widely referred to as
a denial-of-service vulnerability, in the Apache web server. Our results show that Pulse can detect all these deadlocks
within three seconds, and it introduces little performance overhead to normal applications that do not deadlock.

1 Introduction

Concurrent programs are difficult to write and debug.
One common problem is deadlock. Deadlock can occur
wherever multiple processes (or threads) interact. A set
of processes is deadlocked if each process is waiting for
an event that only another process in the set can cause.
Deadlock is a potential problem in all multithreaded
programs. Timely detection of deadlock and its cause is
essential for resolving the error and maintaining forward
progress.

To address this problem, researchers have developed
deadlock detection mechanisms. In practice, however,
deadlock detection is often not performed in an effective
manner. The drawbacks of the various existing
approaches include restrictions on the deadlock-prone
access patterns that can be handled and lack of informa-
tion provided on the causes of deadlocks that arise. We
classify existing approaches based on whether they are
dynamic or static.

One common dynamic deadlock detection approach
is to use timeouts. With timeouts, a process is assumed
deadlocked after waiting for a shared resource longer
than a certain amount of time. This approach is simple,
but inaccurate because it cannot differentiate between
processes that are deadlocked and processes that simply
need a long time to acquire a resource. Even when they
detect deadlock correctly, timeouts provide no informa-
tion to the developer about why the deadlock occurred.

An alternative dynamic approach is based on graph
modelling of process interactions. The “textbook” dead-
lock detection uses the general resource graph model
[9], which models the state of a system as a directed
graph. The nodes in the graph represent processes and
resources, and the edges represent dependences among
them. Given a general resource graph, deadlock can be
detected by checking if the graph possesses certain
properties (e.g., a cycle or a knot). The general resource
graph model classifies resources into reusable and con-
sumable. A reusable resource has a fixed number of
units; one unit can be assigned to at most one process at

2005 USENIX Annual Technical Conference USENIX Association 31

a time. A consumable resource has no fixed total num-
ber of units; when a unit is assigned to a process, it
ceases to exist. Only a process that is designated as a
producer of a consumable resource can produce units of
the resource.

In practice, deadlock detection often assumes a sim-
plified resource model: the system contains only reus-
able resources and there is only a single unit of every
resource. This model makes deadlock detection simple
to implement, but at the cost of detecting fewer types of
deadlock. Under this model, a general resource graph
takes a much simpler form as a wait-for-graph (WFG).
The nodes in a WFG represent processes and the edges
represent dependences between processes—there is an
edge from node A to node B if process A is waiting for
process B to release a resource. A cycle in a WFG indi-
cates a deadlock. Constructing a WFG requires dynami-
cally tracking the status of the resources. This includes
tracking the owner of each resource and the processes
that are waiting for the resource at any time.

A common disadvantage of all dynamic techniques is
that their analysis only considers control flow paths
actually taken. Static deadlock detection (e.g., RacerX
[5]) does not have this problem because it performs
analysis on all possible control flow paths. However,
these methods depend upon programmer specification
of lock semantics and availability of the entire code
base. Considering all possible paths also forces static
tools to face the issue of filtering out potentially large
amounts of false positives.

In this paper, we propose Pulse, an operating system
mechanism that dynamically detects deadlock. Pulse is
based on the general resource graph model. It uses high-
level speculative execution [3, 6] to construct depen-
dency information about processes that are blocked in
the OS kernel. Throughout this paper, we use the terms
processes and threads interchangeably to refer to the
basic units of scheduling. Our goal is to detect a wide
variety of deadlock situations, including those that can
and cannot be detected by existing techniques. However,
our intent is not to replace existing techniques, but to
increase the types of deadlock that can be detected by
developers. Pulse is complementary to existing tech-
niques; when Pulse and the other tools are used together,
they can provide the best coverage of deadlocks.

Our implementation of Pulse focuses on detecting
deadlocks caused by bugs in application programs as
opposed to bugs in kernel code. We have implemented
Pulse in Linux kernel version 2.6.8.1. Our results show
that Pulse can detect deadlock situations in incorrect
solutions to the classical dining-philosophers and smok-

ers problems, and a deadlock scenario in the Apache
web server version 2.0.49.

Pulse runs as a daemon process and performs dead-
lock detection within the OS kernel when necessary.
Pulse can be in one of three modes: nap, monitor, and
detection. Initially, it is in the nap mode (i.e., the Pulse
process sleeps in the kernel). Periodically, it awakens
and enters the monitor mode. In this mode, Pulse checks
if any process in the system has been asleep for a long
time (how long is a tunable parameter). If none is found,
Pulse returns to the nap mode. Otherwise, the sleeping
processes might be deadlocked, and thus Pulse enters
the detection mode. In this mode, Pulse identifies the
events on which these long sleeping processes are wait-
ing (e.g., a lock being free or a pipe being non-empty).
To discover how these long sleeping processes depend
on each other, Pulse forks each of them to create a spec-
ulative process. A speculative process first modifies its
state such that it will not block again (e.g., by setting the
status of the lock on which its parent is blocked to free
in its own address space), and then executes ahead in its
parent’s program. To prevent a speculative process from
changing the state of normal processes, Pulse leverages
the copy-on-write mechanism in Unix fork and disal-
lows a speculative process to perform I/O writes [6].

During the execution of a speculative process, Pulse
records all the events it creates (e.g., releasing a lock or
writing to a pipe). These events are then used to match
against the events awaited by the sleeping processes. A
match between processes A and B indicates that if pro-
cess A were unblocked, it would produce an event that
unblocks process B. Based on this information, Pulse
constructs a general resource graph in which the nodes
denote the sleeping processes and the events on which
they are waiting, and the edges denote the dependences
Pulse discovers. Pulse detects deadlock by checking if
this graph contains cycles. If it detects a cycle, it also
prints out the entire graph to help programmers identify
the causes of the deadlock.

Pulse differs from existing dynamic techniques in that
it discovers dependency information by looking into the
future, while existing techniques rely on past informa-
tion (e.g., who owns a lock and who is waiting for it) to
derive the dependences. Most existing techniques are
WFG-based and they commonly restrict themselves to
only detect deadlocks involving single-unit reusable
resources such as locks. Fundamental in this resource
model is the assumption that a busy resource can only
be freed by the owner that currently holds the resource.
This assumption makes it possible to discover process
dependences based on information collected from the
past, which includes the identities of the owners and

2005 USENIX Annual Technical Conference USENIX Association32

waiters of each resource. However, consumable
resources cannot be viewed as held by a process. For
example, a semaphore used for synchronization (instead
of mutual exclusion as a lock) may not be viewed as
being held by a single process—any process can poten-
tially perform an up operation on the semaphore and
unblock another waiting process. In contrast, Pulse
makes no assumption about the resource model. The
ability to look into the future allows Pulse to directly
discover what events a process can produce, as opposed
to reasoning about it based on ownership information.

The ability to detect deadlocks that involve consum-
able resources also distinguishes Pulse from existing
static approaches, such as RacerX [5]. In Figure 1, we
use a Venn diagram to illustrate the types of deadlock
that WFG-based techniques, static schemes, and Pulse
can detect. We draw the set of deadlocks detectable by
the static schemes larger than the other sets, because
static schemes detect deadlocks along all possible con-
trol flow paths, while WFG-based techniques and Pulse
only detect deadlocks that occur during execution.
There is one particular type of deadlock that Pulse can-
not detect while WFG-based techniques and static
schemes can. This happens when Pulse cannot discover
all the dependences from running ahead in the program.
For example, if a sloppy programmer forgets an unlock
operation that can unblock a waiting process, then Pulse
will not see this future event and thus will not be able to
identify a cycle of dependences.

There are also types of deadlock that Pulse can detect
but the other approaches cannot. These include dead-
locks involving consumable resources (e.g., RacerX
ignores deadlocks with synchronization semaphores)
and variable aliasing (e.g., different variables may point
to the same lock, which may not be detectable with
static analysis). On the other hand, both static detection
and Pulse can generate false positives, i.e., detect dead-
locks that do not really exist. Static detection can gener-
ate more false positives because it cannot completely

filter out control flow paths that are never taken in real
execution. However, Pulse does create a unique set of
false positives that other techniques do not encounter,
which we discuss in Section 3.5.

Pulse can be viewed as complementary to the existing
deadlock detection techniques. If Pulse and the other
techniques are used together, they can provide the best
coverage of deadlocks.

The remainder of this paper is organized as follows.
In Section 2, we discuss related work. Section 3
describes how Pulse works and its limitations. We dis-
cuss how we implement Pulse in Section 4. In Section 5,
we demonstrate that Pulse can detect deadlock situa-
tions in the classical dining-philosophers and smokers
problems, as well as in the Apache web server. Existing
techniques, including WFG-based schemes and RacerX,
can only detect deadlock in the dining-philosophers
problem, but cannot detect the other two deadlock situa-
tions. Finally, we conclude in Section 6.

2 Related Work

In this section, we provide more details about related
work on dynamic and static deadlock detection and OS-
level speculative execution.

Dynamic deadlock detection. Most dynamic schemes
detect simple deadlocks that involve only lock-like re-
sources. By tracking every acquire and release of the
shared resources, these schemes can discover cyclic de-
pendences among the processes. There is a large body of
research on deadlock detection in distributed systems
(see a survey by Singhal [11]). Some software systems
also provide dynamic deadlock detection functionalities.
For example, the Windows Driver Verifier and Java
HotSpot VM both can track the use of locks and detect
cyclic lock dependences. Database systems, such as
Berkeley DB, MySQL, Oracle, and PostgreSQL, use
timeouts and WFGs to detect deadlock. The Linux ker-
nel can perform simple deadlock detection whenever the
fcntl system call is invoked. Havelund [8] describes a
dynamic deadlock detection mechanism as an extension
to NASA’s Java PathFinder 2 model checking system
[13]. This mechanism records lock operations executed
by each Java thread and performs post-mortem analysis
to detect potential deadlocks. Different from all these
mechanisms, Pulse does not assume only lock-like re-
sources and can detect more general forms of deadlock.

Static deadlock detection. Model checking is a formal
verification technique that searches in a program’s state
space for possible errors, including deadlock. Example
model checking systems include Bandera [4], VeriSoft

WFG

Figure 1: Venn diagram for deadlocks detectable by
WFG-based techniques, static schemes, and Pulse. U
is the universal set of all deadlocks. The regions
outside the rectangle represent false positives.

Static U

Pulse

2005 USENIX Annual Technical Conference USENIX Association 33

[7], SPIN [10], and Java PathFinder [13]. However,
model checking large, complex software systems is still
impractical due to the state explosion problem.

Microsoft suggests modelling multithreaded Win32
applications as Petri Nets and using their DLDETECT
tool to statically analyze programs for potential dead-
lock [1]. Sun Solaris provides the Crash Analysis Tool
(CAT) that helps users statically analyze system crash
dumps to identify simple lock-induced deadlocks. Simi-
larly, Linux supports the Non-Maskable Interrupt (NMI)
watchdog, which periodically prints out system infor-
mation that can help statically identify deadlock.

Recently, Engler et al. [5] proposed RacerX, a static
tool for checking data races and deadlocks in large soft-
ware systems. RacerX annotates source code of the sys-
tem being checked, constructs the whole-system control
flow graph, and searches within the graph for possible
deadlocks. An important part of RacerX is to rank the
detected deadlocks in terms of how likely they are to
occur and filter out inaccurate deadlock warnings. Rac-
erX can only detect deadlocks involving lock-like
resources. In contrast, Pulse can detect more complex
deadlocks involving consumable resources.

Speculative execution. Chang and Gibson [3] pro-
posed a design for automatically transforming applica-
tions to perform speculative execution and issue hints
for their future I/O read accesses. Fraser and Chang [6]
improved this design by leveraging existing OS features
to perform speculative execution. To ensure safety, they
sever the ordinary relationships between speculative
processes and their parents, and disallow speculative
processes to execute potentially unsafe system calls.
Pulse employs similar techniques to ensure safety.

3 Deadlock Detection with Pulse

In this section, we present an overview of Pulse
(Section 3.1) and then describe its design in detail
(Section 3.2–Section 3.4). Finally, we discuss how Pulse
can be extended and its current limitations (Section 3.5).
Section 4 presents our Linux implementation of Pulse.

3.1 Overview

Pulse exploits the observation that if a set of processes is
deadlocked, the processes often sleep within the OS ker-
nel, each waiting for events that can only be produced
by another process in the set. Thus, when Pulse sees a
set of processes blocked for a long time, it considers that
a deadlock might have occurred.

Pulse runs as a daemon process that can be in one of
three modes: nap, monitor, and detection. Figure 2 is a
state diagram that shows how Pulse transitions between
these modes. For most of the time, Pulse is in the nap
mode in which it sleeps in the OS kernel. Periodically, it
awakens and enters the monitor mode to check if any
process in the system has been asleep for a threshold
amount of time, where the threshold value is a tunable
parameter (e.g., five minutes). If no such processes are
found, Pulse returns to the nap mode, thus incurring low
overhead. Otherwise, Pulse enters the detection mode
and performs deadlock detection for these sleeping pro-
cesses. We show in Section 5.4 that a threshold as low as
one minute introduces negligible performance overhead.
However, if the threshold is too large, Pulse may miss
certain deadlocks that can be broken by mechanisms
such as timeouts, as we explain in Section 3.5.

Pulse uses the general resource graph model [9] to
detect deadlock. To illustrate the idea, we use the code
in Figure 3 as a running example. Suppose that the two
processes execute their second lock statements simul-
taneously. Thus process P1 blocks on lock B and process
P2 blocks on lock A, and they deadlock. When Pulse
detects that processes P1 and P2 have been asleep longer
than the threshold, it enters the detection mode.

In the detection mode, Pulse identifies the events on
which the sleeping processes are waiting (Section 3.2).
In our example, process P1 is waiting for lock B to be
free and process P2 is waiting for lock A to be free. For
each sleeping process, Pulse constructs a process node
in a general resource graph. For each event it identifies,
Pulse constructs an event node. We use the term event
node instead of resource node [9] to emphasize that a

nap

detection monitor

no long sleeping
process found

long sleeping
process found

periodic
check

detection
finished

Figure 2: Pulse state transition diagram.

Process P1 Process P2

lock(A) lock(B)

lock(B) lock(A)

unlock(A) unlock(B)

Figure 3: A circular lock example.

2005 USENIX Annual Technical Conference USENIX Association34

process often waits for an event involving a resource
(e.g., a lock being free), as opposed to the resource itself
(e.g., the lock). Pulse also constructs a request edge,
directed from a process node to an event node, if the
process is waiting for that event.

To discover dependences between the sleeping pro-
cesses, Pulse uses speculative execution. For each sleep-
ing process, Pulse forks a speculative process that
executes ahead in its parent’s program. Speculative exe-
cution allows Pulse to discover the events that a blocked
process would produce if it were not blocked. In our
example, Pulse discovers that process P1 would unlock
A and process P2 would unlock B, if they were not
blocked. Thus Pulse constructs a producer edge,
directed from the event that process P1 creates, i.e., lock
A becoming free, to process P1. Similarly, Pulse con-
structs a producer edge from the event node that P2 cre-
ates, i.e., lock B being free, to process P2.

Figure 4 shows the graph that Pulse finally obtains.
We use squares to denote process nodes and circles to
denote event nodes. Since this graph contains a cycle,
Pulse outputs that deadlock exists. It also outputs the
entire graph to help developers debug the deadlock.

The general resource graph model allows us to detect
whether a deadlock exists, and if so, which processes
are involved in the deadlock and why they are dead-
locked. To construct a general resource graph, our
design needs to address the following questions:

1. How do we construct nodes in the graph? In other
words, how do we identify the processes and events
involved in a potential deadlock? (Section 3.2)

2. How do we construct edges in the graph? That is, how
do we identify the dependences among the processes
and events? (Section 3.3)

In the rest of this section, we describe how our design
addresses these questions in detail.

3.2 Constructing nodes

When Pulse enters the detection mode, it has already
identified a set of processes that have been asleep for a
long time. These processes are potentially deadlocked;
thus, they constitute the process nodes in the general re-
source graph.

The events on which these processes are blocked con-
stitute the event nodes in the graph. To identify the
events for which a sleeping process is waiting, Pulse
requires all blocking system calls to be modified. Within
these calls, we add new code to record the events for
which the caller process is waiting. Pulse characterizes
an event by a (resource, condition) pair. The resource
field identifies the resource on which the process is
blocked (e.g., a lock or a pipe). The condition field
describes the condition about the resource for which the
process is waiting (e.g., the lock being free, or the pipe
being non-empty).

3.3 Constructing edges

Pulse models all resources as consumable resources.
This resource model enables Pulse to detect deadlocks
involving more than just single-unit reusable resources.
However, it also causes Pulse to generate certain false
positives, as we will see in Section 3.5.

There are two sets of edges that Pulse needs to con-
struct in a graph: request edges and producer edges. The
request edges can be constructed at the same time when
Pulse constructs the event nodes. As discussed in
Section 3.2, when Pulse identifies a sleeping process
and its awaited events, it can construct a request edge
from the process to each event for which it is waiting.

To construct the producer edges, Pulse uses specula-
tive execution. For each sleeping process, Pulse forks a
copy of the process, called a speculative process. The
speculative process first creates the events awaited by its
parent process, if this does not affect any other process.
For example, if the parent is blocked on a busy lock,
then the speculative process can set the lock variable
(often a user-space memory location) to free within its
own address space, not affecting any other process. On
the other hand, if the parent has been waiting for an I/O,
the speculative process is not allowed to create the
awaited event because it could affect the state of other
processes. Regardless of whether the events are created
or not, the goal of Pulse here is to enable the speculative
process to unblock and thus run ahead in its program.
The next step for the speculative process is to return
from the system call that caused its parent to sleep, pre-
tending the call was successful, and then to resume its

Process P1 Event: B is free

Process P2Event: A is free

Figure 4: Resource graph for the circular lock example.

request edge

request edge

producer edge producer edge

2005 USENIX Annual Technical Conference USENIX Association 35

parent’s user-level code after the blocking system call,
all within the speculative process’s own context (i.e., the
parent is unchanged and it continues to sleep).

The execution of a speculative process should be safe,
i.e., it should not modify the state of any other process.
The Unix fork mechanism implements copy-on-write,
which naturally protects a speculative process from
modifying the user-space memory state of its parent
(and other processes). Some systems support forking a
process (or thread) that shares the same address space
with the parent. Pulse should avoid using fork in such a
way and it should always invoke fork with copy-on-
write enabled. Similar to Fraser and Chang [6], we do
not allow a speculative process to write to the file sys-
tem (thus no I/O writes) or deliver a signal to any other
process. In Section 4, we discuss in detail the extra mea-
sures that our implementation takes to ensure the safety
of the kernel state. These safety measures, however, may
cause Pulse to produce false positives and/or false nega-
tives of deadlock, as we explain next.

During the execution of a speculative process, Pulse
records all the events produced by the process that could
potentially unblock other processes. This requires modi-
fying the system calls that counterpart the blocking sys-
tem calls. For example, a write system call can block
when trying to write to a full pipe (i.e., the pipe buffer is
full), and can be unblocked only if a process reads data
from the pipe. Thus, a pipe read system call counterparts
a blocking pipe write system call. We modify all system
calls that can unblock a process such that, if called by a
speculative process, they record the resources being
manipulated and the conditions being produced by the
speculative process. As for the pipe example, the modi-
fied read system call would record a unique resource
identifier for the pipe and some indicator representing
that the pipe is being read. For each speculative process,
Pulse maintains an event buffer that records the events
the process produces during its execution. A speculative
process adds an event to its event buffer only if the event
is not already in the buffer. If the buffer is full, the pro-
cess ignores the event (i.e., does not add it to the buffer).
As we see in Section 5, a buffer of ten events is suffi-
cient for all of our experiments.

A speculative process terminates if one of the follow-
ing conditions is true:

1. It exits normally.

2. Its event buffer is full.

3. T seconds have passed since the creation of the specu-
lative process, where T is adjustable by the user.

After all the speculative processes terminate, Pulse
matches their produced events against the events
awaited by the sleeping (parent) processes. If the specu-
lative version of process A produces an event that pro-
cess B is waiting for, then Pulse constructs a producer
edge from this event to process A. A speculative process
could produce events that are not awaited by any sleep-
ing process. We do not include these events in the graph,
because this reduces the graph size and does not affect
the correctness of deadlock detection.

3.4 Putting it all together

The nodes and edges that Pulse constructs collectively
form a general resource graph. If the graph contains cy-
cles, Pulse outputs that a deadlock exists. To facilitate
debugging, Pulse also prints out the entire resource
graph. It is also possible to perform symbol table look-
ups such that the application programmer can map the
graph to specific points in the code. Based on all this in-
formation and knowledge of the applications, the pro-
grammer could easily verify whether a deadlock indeed
exists, and, if so, identify its cause.

Pulse requires OS kernel support (e.g., for speculative
execution). Compared to user-space solutions, Pulse
provides a general solution for all applications, thus
freeing programmers from the burden of designing
deadlock detection for each individual application. On
the other hand, for applications that already have some
deadlock detection built-in, they can use Pulse together
with their own mechanisms to obtain the best coverage
of deadlock.

3.5 Discussion

In this section, we first briefly describe our design plans
for handling deadlocks involving spinning processes
and deadlocks due to kernel bugs, but we leave a full
evaluation of these designs as future work. We then dis-
cuss in detail the limitations of Pulse.

Spin deadlocks. A process can wait for synchroniza-
tion events via spinning (a.k.a., busy-waiting). Although
most commercial software puts a waiting process to
sleep (possibly after spinning for a short period), spin-
ning can be prevalent in scientific applications. To detect
deadlocks involving spinning processes, we need to
dynamically identify the spinning processes and the
events for which they are waiting. We can achieve this
by instrumenting synchronization libraries. After this
information is obtained, Pulse can detect deadlock in the
same way as it does for sleeping processes.

2005 USENIX Annual Technical Conference USENIX Association36

Kernel deadlocks. Applying Pulse to detect deadlocks
due to kernel bugs is difficult, because allowing pro-
cesses to speculatively execute within the kernel can
cause unwanted changes to kernel structures and even
crash the system. However, with the help of virtual ma-
chine technologies, such as VMware [2] or Xen [14], we
could perform speculative execution on different virtual
machines, making Pulse possibly applicable to detecting
kernel deadlocks.

Limitations of Pulse. Pulse can output false positives,
i.e., deadlocks that do not actually exist. There are three
reasons why false positives can occur. First, because the
execution of a speculative process must be safe, it can-
not perform potentially unsafe operations, such as writ-
ing to a file. This could cause a speculative process to
execute unrealistic program paths, making Pulse obtain
incorrect dependences. Such false positives also exist in
static detection tools because they often cannot identify
unrealistic program paths statically.

Second, as we discussed in Section 3.3, Pulse models
all resources as consumable resources. Thus it could
construct more than one producer edge for resources
(e.g., locks) that can be held and freed by only a single
owner. The extra edges could cause Pulse to detect
cycles that do not actually exist. Such false positives
cannot occur in existing static and dynamic detection
tools because they model only reusable resources.

Third, for systems with resources more complex than
single-unit reusable resources, a cycle in a general
resource graph is only a necessary, but not sufficient
condition for deadlock [9]. For example, Pulse may
detect a cycle when multiple processes block on a set of
synchronization semaphores. However, a new process
may later enter the system and perform an up operation
on one of the semaphores, thus breaking the “deadlock”.
Such false positives are unique for Pulse; all the existing
approaches do not consider resources more complex
than single-unit reusable resources and thus do not have
such false positives.

There are two types of deadlock that Pulse cannot
detect (i.e., false negatives). First, some applications
employ a timeout mechanism on operations that take too
much time. For example, as we will see in Section 5,
Pulse can detect a deadlock scenario due to cyclic pipe
access dependences in the Apache web server. However,
Apache can abort the pipe operations after they take
longer than five minutes. The timeout effectively breaks
the deadlock, although it also silently fails the client’s
request without providing any information about what
has happened. Pulse could miss such deadlocks if its
threshold value for entering the monitor mode is too
large. However, such false negatives can be avoided by

adjusting the threshold, possibly at the cost of impacting
application performance.

The second type of false negative is due to Pulse’s
reliance on the future events it discovers. Pulse is able to
detect deadlock because it can discover the future events
that the sleeping processes could produce if awakened.
However, if such events are unavailable, Pulse will not
detect the deadlock. There are four scenarios in which
the future events can be unavailable.

1. Such events do not exist in the application program.
For example, the programmer forgets the unlock
statements in the code in Figure 3.

2. Speculative processes do not run long enough to dis-
cover the events.

3. The event buffers fill up before speculative processes
see the relevant events.

4. Speculative processes may execute unrealistic pro-
gram paths that do not manifest the relevant events.

The first scenario is a fundamental limitation of Pulse.
However, the second and third scenarios are not funda-
mental limitations; they can be avoided by increasing
the run time and event buffer sizes of speculative pro-
cesses. The reason for the fourth scenario is that Pulse
does not allow speculative processes to execute poten-
tially unsafe system calls. This scenario may be consid-
ered as a fundamental limitation of Pulse, if our
implementation chooses to run speculative processes on
the same operating system on which the normal pro-
cesses run (which is what we do in this paper). However,
we may avoid some cases of this scenario if each specu-
lative process can run on a different operating system,
e.g., using VMware [2] or Xen [14].

4 Implementation

In this section, we discuss how we implement the design
described in the previous section. We implement Pulse
by modifying Linux kernel version 2.6.8.1. We add a
new system call that allows Pulse to be invoked from the
user level.

4.1 Constructing process nodes

To construct the process nodes, Pulse needs to identify
long sleeping processes. We add a flag, was_asleep,
to each process’s task_struct, which is set to false
when the process is created. When Pulse enters the mon-
itor mode, it scans the system for processes that satisfy
the following three conditions:

• The process is asleep.

2005 USENIX Annual Technical Conference USENIX Association 37

• The process was put to sleep by one of our modified
system calls (see Section 4.2).

• The process’s was_asleep flag is true, which indi-
cates that the process was asleep when Pulse checked
it last time.

If a process satisfies the first two conditions, but not the
last one, Pulse sets the process’s was_asleep flag to
true. This flag is reset to false when the Linux scheduler
switches this process to run, i.e., when it is awakened.
For each process that satisfies all the three conditions,
Pulse constructs a process node for it.

Some system daemon processes (e.g., automount)
sleep in the kernel for a long time. If they satisfy the
above conditions, Pulse will construct process nodes for
them. Alternatively, we could implement a mechanism
to disable the construction of nodes for these processes,
if the user of Pulse (e.g., a system administrator)
believes that these processes do not deadlock.

4.2 Constructing event nodes

To identify the events for which a sleeping process is
waiting, we need to modify all system calls that can
block. For the purposes of this paper, we have modified
only three blocking system calls: futex, write, and
poll. In each call, before putting the caller to sleep, we
add code to construct the following two lists and store
them in a structure pointed to by the caller process.

• A resource list, (resource1, resource2, …), where
resourcei is an integer that uniquely identifies a
resource being manipulated by the system call.

• A condition list, (<op1, val1>, <op2, val2>, …), where
the pair <opi, vali> encodes the condition about
resourcei that can unblock the caller process.

The futex and write system calls involve only one
resource and thus their resource and condition lists con-
sist of only one element. The poll system call, how-
ever, can operate on multiple file descriptors. Thus it
may record more than one resource and condition. We
now describe how we modify these three system calls.

Futex. Futex stands for fast user-space mutex. The fu-
tex system call is the basis of various synchronization
primitives in the Native POSIX Thread Library (NPTL),
which has been integrated in the recent versions of
glibc. For the purposes of demonstrating Pulse, we con-
sider NPTL’s mutex and semaphore primitives in glibc
2.3.2. A thread acquiring a busy mutex or semaphore
blocks via the futex system call. Each NPTL mutex or
semaphore corresponds to a user-space memory ad-
dress, which is passed to futex as an argument. Thus,
in futex (before the caller is about to sleep), we add

code to record this memory address, which uniquely
identifies the resource on which the caller thread is
blocked. The condition to unblock the caller, however,
depends on the context in which the futex system call
is invoked, and thus requires modifications to the NPTL
library. Note that the applications using the library do
not need to be modified.

For the NPTL function that acquires a mutex lock,
(pthread_mutex_lock), we pass <equal-to, 0> as
two extra arguments to the futex system call. They
signify that the condition to unblock the caller thread is
when the mutex value is zero (i.e., the mutex is free).

For the NPTL function that does a semaphore down
operation (sem_wait), we modify it to pass <greater-
than, 0> as two extra arguments to the futex system
call. They signify that the condition to unblock the caller
is when the semaphore value is greater than zero.

Write. Linux’s write system call is a generic inter-
face to a wide range of file systems. Our implementation
currently considers only writes to pipes, which is imple-
mented in the pipe_writev function. For a blocking
pipe write, the caller process blocks if the pipe buffer is
full. We add code in function pipe_writev (before
the caller is about to sleep) to record the address of the
pipe’s inode structure, which uniquely identifies the pipe
resource. The condition under which the caller unblocks
is when another process reads data from the pipe. We
use the pair <and, POLLOUT | POLLWRNORM> to
encode this condition. The fields POLLOUT and POLL-
WRNORM are kernel-defined bit masks, denoting that
writing now becomes unblocked. As we will see in
Section 4.3, we also record similar bit masks in system
calls that can unblock the write to denote the events pro-
duced by those calls. The and operator here helps match
the blocked process with the process that can potentially
unblock it: if the logical and of POLLOUT | POLL-
WRNORM and the bit mask produced by another pro-
cess is true, then that process can unblock this process.

Poll. The poll system call takes a list of file descrip-
tors and events as arguments. If none of the events has
occurred for any of the file descriptors, the caller blocks,
waiting for one of these events to occur. The events are
represented by bit masks, similar to the ones we dis-
cussed above. We add code in the poll system call (be-
fore the caller is about to sleep) to construct a resource
list. Each resource is a file descriptor, denoted by the ad-
dress of its inode structure. We also record a condition
list. Each condition is denoted by a <op, val> pair,
where op equals and, similar to what we do for pipe
writes. The val field is simply the event bit mask that the
caller passed to the poll system call.

2005 USENIX Annual Technical Conference USENIX Association38

Based on the information recorded by the modified
system calls, Pulse can identify what events a sleeping
process is waiting for and create the event nodes for
them. The three modified system calls allow us to dem-
onstrate the ability of Pulse in this paper. In general, the
same approach can be applied to modify other blocking
system calls.

4.3 Constructing edges

As we discussed in Section 3.3, Pulse can construct re-
quest edges at the same time when it constructs the pro-
cess and event nodes. Thus, in this section, we focus on
constructing producer edges via speculative execution.
We explain our implementation by following the flow of
speculative execution in time.

Creating speculative processes. After Pulse identifies
the long sleeping processes, it forks a speculative pro-
cess for each of them. The Unix fork mechanism allows
a speculative process to run in its own address space, not
affecting the state of its parent. The difficulty, however,
is that the existing fork implementation assumes its
caller process to be the same as the one to be forked.
What we need, instead, is a function that can fork an ar-
bitrary given process. Our first attempt was to write such
a function by modifying Linux’s existing do_fork
function such that it took one more argument: a
task_struct pointer to the process to be forked.
Soon we found that this approach would require us to
rewrite many existing kernel functions. First, they all
needed to take this one extra argument. Second, they all
needed to be modified to operate on data structures of
the specified process instead of those of the caller pro-
cess. To avoid this tedious work, we designed an in-ker-
nel fork mechanism that allows us to use the existing
do_fork function with only slight modifications.

Figure 5 illustrates our in-kernel fork design. To fork
process P, Pulse first switches P in (thus switching itself
out), but to a predefined function. Within this function,
Process P calls do_fork to create a copy of itself, P’.
Finally, it switches the Pulse process back in, which
then resumes execution from where it was left off. Simi-
lar to ordinary processes, the speculative process P’ par-
ticipates in Linux’s normal scheduling.

To implement this design, we wrote a simple context
switch function, similar to Linux’s context switch func-
tion. To fork a process P, Pulse calls our context switch
function, which switches process P in by saving the
memory and register state of the Pulse process and load-
ing the state of process P. With a normal context switch,
process P would then resume its execution from the

point where it was suspended previously. However, in
our context switch function, we force it to enter an
in_kernel_fork function that we added to the ker-
nel. Within this function, process P calls do_fork to
create a speculative process P’. It then calls our context
switch function to switch the Pulse process in and
switch itself out such that it goes back to sleep again.

Certain fields, such as the instruction and stack point-
ers, in the task_struct of process P may be changed
by the do_fork call. Thus, after being switched back
in, Pulse restores these fields. Our goal is to ensure that
the parent process stays exactly the same before and
after the creation of a speculative (child) process. Thus,
we modify do_fork such that it does not link a specu-
lative process to the children list of its parent. The spec-
ulative process does keep a pointer back to its parent,
because it needs to know to which sleeping process it
corresponds. To allow the speculative process to exit
independently of its parent, we reset its parent to be the
init process in the do_exit function. In do_fork, we
also initialize the speculative process such that it does
not send any signal to its parent when it exits. As such,
the speculative process is completely independent of its
parent and does not affect the parent in any way.

Starting speculative processes. After a speculative
process is created, it participates in normal process
scheduling. The normal fork semantics would make the
speculative process resume the code in which the parent
was suspended. Thus, the speculative process would re-
sume the system call that blocked the parent process
previously. However, allowing the speculative process to

CPU

P

CPU

P
P’

Figure 5: Illustration of in-kernel fork.

CPU

Pulse

T
im

e

CPU

Pulse

Pulse calls our own context
switch function to switch P in.

Process P calls do_fork to
make a copy of itself.

A speculative process, P’, is cre-
ated. Process P now context-
switches Pulse back in.

Pulse runs again. All is the same
as before, except that a specula-
tive process has been created.

2005 USENIX Annual Technical Conference USENIX Association 39

execute in the kernel freely may cause changes to im-
portant kernel structures (e.g., the semaphore protecting
a pipe’s inode). Such changes should never occur be-
cause they could affect the normal execution of other
processes, violating the safety property. To solve this
problem, we force all speculative processes to execute a
common function, ret_from_spec_fork, when
they are scheduled to run the first time after creation.
This is achieved by setting the initial program counter
(EIP) value of each speculative process to be the address
of this common function when the process is created.

In ret_from_spec_fork, a speculative process
first creates the event awaited by its parent as follows.
The speculative process checks what events its parent is
waiting for by looking up the resource and condition
lists maintained for the parent. For example, if the par-
ent is blocked in a futex system call, then it must be
waiting for the data at a user-space address (resource) to
become equal to or greater than (op) a certain value
(val). If op is equal-to, the speculative process writes val
to the address identified by resource within its own
address space. If op is greater-than, it writes val + 1 to
that address. In fact, for the latter case, any value greater
than val would be fine since the parent is not waiting for
a specific value. However, it is possible that different
values may have different meanings. For example, a
semaphore’s value often represents how many processes
are allowed to enter a critical section simultaneously.
Thus, our choice of setting the value to val + 1 is only
heuristic; the parent process may indeed expect a differ-
ent value at the given address, although it did not explic-
itly say so when it invoked the futex system call.

If the parent process is blocked in a pipe write or
poll system call, the speculative process is not allowed
to create the events awaited by the parent. This is
because creating the events requires doing I/O on a pipe,
which can affect normal processes that access the pipe.

Regardless of whether the events are created or not,
the ret_from_spec_fork function then forces the
speculative process to exit the system call in which its
parent is blocked. This is done by jumping to Linux’s
syscall_exit routine and returning the value that
represents success for the corresponding system call.
Thus, after returning to the user-level code, the applica-
tion program will have the illusion that the blocking sys-
tem call has returned successfully. The speculative
process then runs ahead in the program.

Recording events. During execution, a speculative pro-
cess records all of the events that can awaken a sleeping
process. Since our implementation considers only three
blocking system calls, we only modify the counterpart
system calls of these three calls. Similar to recording

events for which a sleeping process waits, we record the
events that a speculative process produces as resource
and condition lists too. For the system calls we modify,
these lists happen to both have only one element.

A process blocked in the futex system call can
unblock only if another process calls futex with a
FUTEX_WAKE argument. Thus the futex system call
is the counterpart of itself. We add code in futex such
that, when called by a speculative process to perform a
wakeup, it records this event. We modify the corre-
sponding NPTL library functions, such as mutex unlock
(pthread_mutex_unlock) and semaphore up
(sem_post), such that they pass the necessary infor-
mation to allow futex to fill in the values for the
resource, op, and val fields, which characterize the
wakeup event produced by the speculative process. For
example, if the speculative process invokes futex from
pthread_mutex_unlock, it records that this pro-
cess is producing an event, that is, the memory location
of the mutex (resource) now obtains a new value (val).
The op field is set to be the same as what is used for the
counterpart system call (in this case, equal-to).

A process blocked in a pipe write system call can be
unblocked if another process reads the pipe. Thus we
add code in the read system call to record the read
event. When called by a speculative process to read a
pipe, the read system call records resource to be the
address of the pipe’s inode structure, op to be the same
as what is used for the corresponding blocking pipe
write call, i.e., and, and val to be POLLOUT | POLL-
WRNORM, which are exactly the bit masks for which
the blocking write call is waiting.

For the poll system call, we modify two counterpart
system calls: write and writev. For both of them,
we record resource to be the address of the pipe’s inode
structure, op to be and, and val to be POLLIN | POLL-
RDNORM, which are kernel-defined macros represent-
ing that the pipe has data available to read.

To ensure safety, all of these system calls return
immediately with a success code after they record the
produced events. Thus, a speculative process calling
these system calls does not really perform the wakeup
and read/write operations that these calls normally do.
Similar to Fraser and Chang [6], we modify all poten-
tially unsafe system calls such that a speculative process
returns immediately when entering these calls. In this
way, any state change made by a speculative process is
contained within itself, not affecting any other process.

Constructing producer edges. A speculative process
terminates according to the conditions in Section 3.3.
We limit the lifetime of a speculative process to be less

2005 USENIX Annual Technical Conference USENIX Association40

than one second. After all speculative processes termi-
nate, Pulse matches their produced events against those
awaited by the sleeping processes. If two events have the
same resource and op values, then Pulse applies the op-
eration represented by op on the val fields of the two
events. For example, if op is and, then Pulse does a logi-
cal and on the two val fields. A result of true indicates
that the speculative process produces an event for which
the sleeping process is waiting. Thus Pulse constructs a
producer edge from the node that represents the event to
the node that represents the parent process of the specu-
lative process.

4.4 Summary

The major components of our implementation are the
in-kernel fork and modification of the blocking system
calls and their counterpart calls. The in-kernel fork im-
plementation is the most involved part in our coding;
however, our code is small and highly efficient, consist-
ing of only 94 lines of C code, 47 lines of inline assem-
bly, and 7 lines of assembly. Modifying the system calls
is easy since it simply involves identifying the corre-
sponding resources and conditions, and recording them
in a per-process structure (~160 bytes). For this paper,
we have modified only three blocking system calls and
their counterpart calls. The same methodology, however,
can be easily applied to modify other system calls.

5 Evaluation

We apply Pulse against deadlocked solutions to the clas-
sical dining-philosophers and smokers problems, and a
well-known deadlock scenario in the Apache web server
version 2.0.49. This section describes how Pulse works
for these different deadlock cases and evaluates its over-
head. The evaluation is performed on an IBM xSeries
445 eServer with eight Intel Xeon 2.8 GHz processors
and 32 GB memory. We configure Pulse to transition
from nap mode to monitor mode with a default value of
every five minutes, unless otherwise mentioned. We set
the event buffers of speculative processes to store at
most ten events, and every speculative process exists in
the system for at most one second. Our results show that
Pulse can detect deadlocks caused by incorrect ordering
of lock acquisitions, as well as deadlocks involving syn-
chronization semaphores and pipes, which, to the best of
our knowledge, no existing tools can detect. Further-
more, Pulse generates no false positives and negatives of
deadlock throughout our experiments.

5.1 The dining-philosophers problem

Figure 6 shows one incorrect solution to the dining-phi-
losophers problem. We implement the locks as NPTL
mutexes. The lock routine is implemented using the
pthread_mutex_lock function and unlock using
pthread_mutex_unlock. In Figure 6, suppose that
all five philosophers take their left forks simultaneously.
Then they will all block on their right forks, and there
will be a deadlock. We choose this problem as an exam-
ple of deadlock caused by incorrect use of mutual exclu-
sion locks. All existing dynamic and static tools target
this type of deadlock.

When Pulse enters the detection mode, it identifies
that each philosopher process is waiting for an address
(corresponding to its right fork) to contain a value zero
(corresponding to the release of the right fork). It then
forks a speculative process for each philosopher. The
speculative processes first unlock their right forks within
their own address spaces, and then execute ahead. Dur-
ing execution, they discover that they produce the
unlock events that could unblock their left neighbors.
Finally, Pulse constructs the resource graph shown in
Figure 7. This graph contains a cycle, indicating the
existence of a deadlock.

5.2 The smokers problem

The smokers problem is a classic example of using
semaphores for synchronization, instead of mutual ex-
clusion. The static deadlock detection tool RacerX [5]
specifically ignores checking deadlocks involving such
semaphores. With speculative execution, Pulse is able to
detect such deadlocks.

Figure 8 shows a solution to the smokers problem that
can deadlock. The processes share four binary sema-
phores: tobacco, paper, matches, and order. The sema-
phores are implemented using the NPTL library. A P
operation is implemented using the sem_wait func-

while (1) {

think();

lock(fork[i]); // take left fork

lock(fork[(i + 1) % 5]; // take right fork

eat();

unlock(fork[i]); // put left fork

unlock(fork[(i + 1) % 5]); // put right fork

}

Figure 6: The code of philosopher i.

2005 USENIX Annual Technical Conference USENIX Association 41

tion, and V is implemented using sem_post. In
Figure 8, suppose that the agent releases tobacco and
matches, smoker 1 grabs the tobacco, and smoker 3
grabs the matches. Then smoker 1 will block in
P(paper), waiting for the address corresponding to paper
to have a value greater than zero. Similarly, smoker 2
will block in P(paper), smoker 3 in P(tobacco), and the
agent in P(order). Thus all processes will deadlock.

By speculatively unblocking smoker 1, Pulse
observes an event corresponding to V(order), which
matches the event awaited by the agent. Thus Pulse con-
structs a producer edge from an event node representing
V(order) to smoker 1’s node. Then the speculative pro-
cess executes P(tobacco) again. Tobacco is not available
any more, so this speculative process blocks again. For
smoker 2, after the speculative process is unblocked
from P(paper), it blocks immediately in P(matches), and

thus it does not produce any event that could unblock
another process. So the process node of smoker 2 has no
incoming producer edges. Smoker 3 executes similarly
to smoker 1.

Suppose that after the agent is speculatively
unblocked, it executes V(tobacco) and V(paper). Then
Pulse will discover producer edges from both the event
nodes, corresponding to V(tobacco) and V(paper), to the
agent. Figure 9 shows the final graph we obtain. This
graph contains two cycles, agent → V(order) → smoker
1 → V(paper) → agent, and agent → V(order) →
smoker 3 → V(tobacco) → agent, indicating the exist-
ence of deadlock.

5.3 Apache web server deadlock

We have reproduced a well-known deadlock situation in
Apache 2.0.49 with the prefork Multi-Processing Mod-
ule (MPM). A full description of this bug (number
22030) can be found in the Apache bug database
(http://nagoya.apache.org/bugzilla/). This bug is widely
referred to as the Apache oversized stderr buffer denial-
of-service vulnerability by security companies like Sy-
mantec [12]. In the extreme case, this bug can cause an
entire web site to stop functioning.

To reproduce the deadlock effect of this bug, we cre-
ate a Perl CGI script, which first writes 4097 bytes to
stderr and then some arbitrary data to stdout. When a
client requests this CGI script from a remote browser, a
deadlock happens on the server side. This deadlock
involves two processes: the CGI script’s process and the
httpd process that handles the CGI request. The reason
for this deadlock is because Apache redirects stderr and
stdout of the CGI script to two pipes. The pipe buffer
size in Linux is 4096 bytes; a blocking write to a pipe

Figure 7: Resource graph for the dining-
philosophers problem. The hex numbers are virtual
addresses corresponding to the locks.

PID 19271
philosopher0

0x804a038
(lock0)

0x804a050
(lock1)

PID 19272
philosopher1

0x804a068
(lock2)

0x804a080
(lock3)

0x804a098
(lock4)

PID 19273
philosopher2

PID 19274
philosopher3

PID 19275
philosopher4

= 0 = 0

= 0

= 0

= 0

smoker 1
while (1) {
P(tobacco)
P(paper) // block
V(order)

}

smoker 2
while (1) {
P(paper) // block
P(matches)
V(order)

}

smoker 3
while (1) {
P(matches)
P(tobacco) // block
V(order)

}

agent
while (1) {

P(order) // block
V(one of tobacco, paper, matches at random)
V(one of the three at random but not above)

}

Figure 8: A deadlocked solution to the smokers problem.

0x8049edc

V(order)

PID 19630
(smoker1)

PID 19631
(smoker2)

PID 19632
(smoker3)

PID 19629
(agent)

0x8049eec

V(paper)

0x8049eb8

V(tobacco)

Figure 9: Resource graph for the smoker’s
problem. The hex numbers are virtual addresses
corresponding to the semaphores.

> 0 > 0 > 0

2005 USENIX Annual Technical Conference USENIX Association42

blocks if the write data exceeds 4096 bytes. Thus when
the CGI script writes 4097 bytes to stderr, it blocks in
the write system call, waiting for the httpd process to
read data out of the pipe. Meanwhile, the httpd process
is blocked in the poll system call, waiting for the CGI
script to write data to the stdout pipe.

No existing techniques can detect this deadlock; with
Pulse, we successfully detect it. Figure 10 shows the
resource graph constructed by Pulse. This graph con-
tains a cycle, indicating the existence of deadlock. It is
worth noting that Apache has a timeout mechanism that
allows it to fail the CGI request after about five minutes,
thus breaking the deadlock. However, Apache provides
no debugging information for the deadlock; it even has
no idea that a deadlock has occurred. When this dead-
lock is triggered simultaneously from multiple sites, it
can effectively become a denial-of-service attack.

5.4 Performance Overhead

We evaluate three aspects of Pulse’s performance over-
head: overhead of the modified system calls, overhead
of periodic checking, and overhead of deadlock detec-
tion using speculative execution.

System call overhead. We write a microbenchmark for
each of the three blocking system calls we modify. Our
goal is to measure the overhead that our modified sys-
tem calls introduce to correct, non-deadlocked applica-
tions. Since the additional code in our modified system
calls that counterpart the blocking calls is executed only
by speculative processes, we do not measure the over-
head of these counterpart calls.

Our microbenchmark for the futex system call
repeatedly invokes futex for a total of one million
times. The arguments passed to futex are chosen such
that the microbenchmark executes the new code we add,
but it does not block (thus allowing the microbenchmark
to repeatedly invoke the system call). We run the

microbenchmark using the modified and unmodified
futex call, and compare the average time taken per
call. We run similar microbenchmarks for write and
poll. Compared to the unmodified versions, the slow-
downs of our modified system calls are: 0.2% for
futex, 0.9% for write, and 1% for poll. These
slowdowns are small, and most importantly, they occur
mostly when a process is about to block.

Periodic checking overhead. We evaluate the perfor-
mance overhead that Pulse introduces to correct, non-
deadlocked applications. This overhead comes from
Pulse’s periodic activities of transitioning from nap to
monitor mode and checking if it needs to enter the de-
tection mode. For correct applications, Pulse does not
enter the detection mode—after the periodic checking, it
returns back to the nap mode. Our experiments show
that, for a system with 100 threads, Pulse takes 0.29 sec-
onds to transition from nap to monitor mode, scan all the
threads to determine if it needs to enter the detection
mode, and finally transition back to the nap mode. This
time stays almost constant as we create more threads in
the system, and only increases to 0.32 seconds when the
system has a total of 2000 threads.

To measure how much performance overhead Pulse
introduces to normal applications over time, we run
Apache Bench from a remote machine to stress test our
server running Apache 2.0.49. We set Apache Bench to
perform a total of five million HTTP requests and send
1000 simultaneous requests at any time (thus keeping
the server busy). The entire test takes about 30 minutes
to complete. During this period, without Pulse running,
Apache Bench obtains throughput of 2689 requests per
second. We then run Pulse in the background, and set it
to periodically transition from nap to monitor mode
every one minute. Apache Bench now obtains through-
put of 2684 requests per second, which is almost the
same as the throughput obtained without Pulse running.
These results show that Pulse has negligible impact on
the performance of applications that do not deadlock.

Deadlock detection overhead. We measure the time
Pulse takes to detect a deadlock, which is the duration
from the time Pulse enters the detection mode to the
time it finishes the detection and prints out the results.
We obtain the following results: it takes Pulse 2.1 sec-
onds to detect the deadlock in the dining-philosophers
problem, 1.7 seconds in the smokers problem, and 1.5
seconds in the Apache web server. We also run these
three benchmarks together such that they all deadlock at
the same time. We see that Pulse can construct a general
resource graph that has three subgraphs, each corre-
sponding to one of the deadlock scenarios, and the entire
detection only takes three seconds.

PID 31036
(httpd)

PID 31042
(CGI script)

0xee3b9380
stderr pipe

Figure 10: Resource graph for the Apache deadlock.
The hex numbers are addresses of the corresponding
pipe inode structures. We label the events in words
although Pulse encodes them abstractly.

read

0xee3b9500
stdout pipe

write

2005 USENIX Annual Technical Conference USENIX Association 43

6 Conclusion

Deadlock can occur in any concurrent system and is of-
ten difficult to debug. Existing deadlock detection tech-
niques are either impractical for large software systems
or over-simplified in their assumptions about deadlock-
sensitive resources. In this paper, we propose Pulse, a
novel operating system mechanism that dynamically de-
tects deadlock in user applications.

Pulse runs as a system daemon. Periodically, it identi-
fies long sleeping processes and the events they are
waiting for. For each of these processes, Pulse forks a
speculative process, which executes ahead in its parent’s
program. Speculative execution enables Pulse to dis-
cover dependences among the sleeping processes. Based
on this information, it constructs a general resource
graph. If the graph contains cycles, Pulse outputs that
deadlock exists. It also prints out the entire graph to help
application developers identify causes of the deadlock.

Our evaluation demonstrates that Pulse can detect
various types of deadlock, including those involving
consumable resources, which no existing tool can
detect. Our results show that Pulse can detect deadlock
quickly and that it introduces little performance over-
head to normal applications that do not deadlock. For
application developers, Pulse can be viewed as another
tool to add to the deadlock detection toolbox. When
Pulse and the existing tools are used together, they can
provide the best coverage of deadlocks.

Acknowledgments

We thank the anonymous reviewers for their comments
and suggestions on the early draft of this paper. We
thank David Becker and Jaidev Patwardhan for their
help with the experiments. This work is supported in
part by the US National Science Foundation (CCR-
0312561, EIA-9972879, CCR-0204367, CCR-0208920,
and CCR-0309164), Intel, IBM, Microsoft and the Duke
University Graduate School. Sorin is supported by a
Warren Faculty Scholarship.

References

[1] Ruediger R. Asche. Putting DLDETECT to
Work. MSDN Library Technical Articles, Mi-
crosoft Corporation, January 1994.

[2] Paul Barham, Boris Dragovic, Keir Fraser,
Steven Hand, Tim Harris, Alex Ho, Rolf Neuge-
bauer, Ian Pratt, and Andrew Warfield. Xen and
the Art of Virtualization. In Proceedings of the

20th ACM Symposium on Operating System
Principles, pages 164–177, October 2003.

[3] Fay Chang and Garth A. Gibson. Automatic I/O
Hint Generation Through Speculative Execution.
In Proceedings of the Third USENIX Symposium
on Operating Systems Design and Implementa-
tion, pages 1–14, February 1999.

[4] James C. Corbett, Matthew B. Dwyer, John Hat-
cliff, Shawn Laubach, Corina S. Puasuareanu,
Robby, and Hongjun Zheng. Bandera: Extracting
Finite-State Models from Java Source Code. In
Proceedings of the 22nd International Confer-
ence on Software Engineering, June 1999.

[5] Dawson Engler and Ken Ashcraft. RacerX: Ef-
fective, Static Detection of Race Conditions and
Deadlock. In Proceedings of the 20th ACM Sym-
posium on Operating System Principles, pages
237–252, October 2003.

[6] Keir Fraser and Fay Chang. Operating System
I/O Speculation: How Two Invocations Are
Faster Than One. In Proceedings of the 2003 US-
ENIX Annual Technical Conference, pages 325–
338, June 2003.

[7] Patrice Godefroid. Model Checking for Program-
ming Languages using VeriSoft. In Proceedings
of The 24th ACM SIGPLAN/SIGACT Symposium
on Principles of Programming Languages
(POPL), pages 174–186, January 1997.

[8] Klaus Havelund. Using Runtime Analysis to
Guide Model Checking of Java Programs. In
Proceedings of the 7th SPIN Workshop, pages
245–264, August 2000.

[9] Richard C. Holt. Some Deadlock Properties of
Computer Systems. ACM Computing Surveys,
4(3):179–196, September 1972.

[10] Gerard J. Holzmann. The Model Checker SPIN.
IEEE Transactions on Software Engineering,
23(5):279–295, May 1997.

[11] Mukesh Singhal. Deadlock Detection in Distrib-
uted Systems. IEEE Computer, 22(11):37–48,
November 1989.

[12] Symantec. Symantec NetRecon™ 3.6 Security
Update 6 Release Notes. Symantec Corporation,
August 2003.

[13] Willem Visser, Klaus Havelund, Guillaume Brat,
SeungJoon Park, and Flavio Lerda. Model
Checking Programs. Journal of Automated Soft-
ware Engineering, 10(2):203–232, April 2003.

[14] Carl A. Waldspurger. Memory Resource Man-
agement in VMware ESX Server. In Proceedings
of the Fifth Symposium on Operating Systems
Design and Implementation, pages 181–194, De-
cember 2002.

2005 USENIX Annual Technical Conference USENIX Association44

