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Abstract

Server network performance is increasingly dominated
by poorly scaling operations such as I/O bus crossings,
cache misses and interrupts. Their overhead prevents
performance from scaling even with increased CPU, link
or I/O bus bandwidths. These operations can be reduced
by redesigning the host/adapter interface to exploit addi-
tional processing on the adapter. Of�oading processing
to the adapter is bene�cial not only because it allows
more cycles to be applied but also of the changes it en-
ables in the host/adapter interface. As opposed to other
approaches such as RDMA, TCP of�oad provides bene-
�ts without requiring changes to either the transport pro-
tocol or API.

We have designed a new host/adapter interface that
exploits of�oaded processing to reduce poorly scaling
operations. We have implemented a prototype of the
design including both host and adapter software com-
ponents. Experimental evaluation with simple network
benchmarks indicates our design signi�cantly reduces
I/O bus crossings and holds promise to reduce other
poorly scaling operations as well.

1 Introduction
Server network throughput is not scaling with CPU
speeds. Various studies have reported CPU scaling fac-
tors of 43% [23], 60% [15], and 33% to 68% [22] which
fall short of an ideal scaling of 100%. In this paper,
we show that even increasing CPU speeds and link and
bus bandwidths does not generate a commensurate in-
crease in server network throughput. This lack of scala-
bility points to an increasing tendency for server network
throughput to become the key bottleneck limiting system
performance. It motivates the need for an alternative de-
sign with better scalability.

Server network scalability is limited by operations
heavily used in current designs that themselves do not
scale well, most notably bus crossings, cache misses and
interrupts. Any signi�cant improvement in scalability
must reduce these operations. Given that the problem is
one of scalability and not simply performance, it will not
be solved by faster processors. Faster processors merely

expend more cycles on poorly scaling operations.
Research in server network performance over the

years has yielded signi�cant improvements including:
integrated checksum and copy, checksum of�oad, copy
avoidance, interrupt coalescing, fast path protocol pro-
cessing, ef�cient state lookup, ef�cient timer manage-
ment and segmentation of�oad, a.k.a. large send. An-
other technique, full TCP of�oad, has been pursued for
many years. Work on of�oad has generated both promis-
ing and less than compelling results [1, 38, 40, 42].
Good performance data and analysis on of�oad is scarce.

Many improvements in server scalability were de-
scribed more than �fteen years ago by Clark et al. [9].
The authors demonstrated that the overhead incurred by
network protocol processing, per se, is small compared
to both per-byte (memory access) costs and operating
system overhead, such as buffer and timer management.
This motivated work to reduce or eliminate data touch-
ing operations, such as copies, and to improve the ef-
�ciency of operating system services heavily used by
the network stack. Later work [19] showed that over-
head of non-data touching operations is, in fact, signi�-
cant for real workloads, which tend to feature a prepon-
derance of small messages. Today, per-byte overhead
has been greatly reduced through checksum of�oad and
zero-copy send. This leaves per-packet overhead, oper-
ating system services and zero-copy receive as the main
remaining areas for further improvement.

Nearly all of the enhancements described by Clark et
al. have seen widespread adoption. The one notable ex-
ception is �an ef�cient network interface.� This is a net-
work adapter with a fast general-purpose processor that
provides a much more ef�cient interface to the network
than the current frame-based interface devised decades
ago. In this paper, we describe an effort to develop a
much more ef�cient network interface and to make this
enhancement a reality as well.

Our work is pursued in the context of TCP for three
reasons: 1) TCP’s enormous installed base, 2) the
methodology employed with TCP will transfer to other
protocols, and 3) the expectation that key new architec-
tural features, such as zero copy receive, will ultimately
demonstrate their viability with TCP.
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The work described here is part of a larger effort to
improve server network scalability. We began by ana-
lyzing server network performance and recognizing, as
others have, a significant scalability problem. Next, we
identified specific operations to be the cause, specifi-
cally: bus crossings, cache misses, and interrupts. We
formulated a design that reduces the impact of these op-
erations. This design exploits additional processing at
the network adapter, i.e. offload, to improve the effi-
ciency of the host/adapter interface which is our primary
focus. We have implemented a prototype of the new de-
sign which consists of host and adapter software com-
ponents and have analyzed the impact of the new design
on bus crossings. Our findings indicate that offload can
substantially decrease bus crossings and holds promise
to reduce other scalability limiting operations such as
cache misses. Ultimately, we intend to evaluate the de-
sign in a cycle-accurate hardware simulator. This will
allow us to comprehensively quantify the impact of de-
sign alternatives on cache misses, interrupts and overall
performance over several generations of hardware.

This paper is organized as follows. Section 2 pro-
vides motivation and background. Section 3 presents
our design, and the current prototype implementation is
described in Section 4. Section 5 presents our experi-
mental infrastructure and results. Section 6 surveys and
contrasts related work, and Section 7 summarizes our
contributions and plans for future work.

2 Motivation and Background
To provide the proper motivation and background for
our work, we first describe the current best practices of
techniques and optimizations for network server perfor-
mance. Using industry standard benchmarks we then
show that, despite these practices, servers are still not
scaling with CPU speeds via several benchmarks. Since
TCP offload has been a controversial topic in the re-
search community, we review the critiques of offload,
providing counterarguments to each point. How TCP of-
fload addresses these scaling issues is described in more
detail in Section 3.

2.1 Current Best Practices
Current high-performance servers have adopted many
techniques to maximize performance. We provide a
brief overview of them here.

Send�le with zero copy. Most operating systems
have a sendfile or transmitfile operation that allows send-
ing a file over a socket without copying the contents of
the file into user space. This can have substantial perfor-
mance benefits [30]. However, the benefits are limited to
send-side processing; it does not affect receive-side pro-
cessing. In addition, it requires the server application to
maintain its data in the kernel, which may not be feasible

for systems such as application servers, which generate
content dynamically.

Checksum of�oad. Researchers have shown that
calculating the IP checksum over the body of the data
can be expensive [19]. Most high-performance adapters
have the ability to perform the IP checksum over both
the contents of the data and the TCP/IP headers. This
removes an expensive data-touching operation on both
send and receive. However, adapter-level checksums
will not catch errors introduced by transferring data over
the I/O bus, which has led some to advocate caution with
checksum offload [41].

Interrupt coalescing. Researchers have shown that
interrupts are costly, and generating an interrupt for each
packet arrival can severely throttle a system [28]. In re-
sponse, adapter vendors have enabled the ability to de-
lay interrupts by a certain amount of time or number of
packets in an effort to batch packets per interrupt and
amortize the costs [14]. While effective, it can be diffi-
cult to determine the proper trigger thresholds for firing
interrupts, and large amounts of batching may cause un-
acceptable latency for an individual connection.

Large send/segmentation of�oad. TCP/IP imple-
menters have long known that larger MTU sizes pro-
vide greater efficiency, both in terms of network utiliza-
tion (fewer headers per byte transferred) and in terms
of host CPU utilization (fewer per-packet operations in-
curred per byte sent or received). Unfortunately, larger
MTU sizes are not usually available due to Ethernet’s
1516 byte frame size. Gigabit Ethernet provides “jumbo
frames” of 9 KB, but these are only useful in specialized
local environments and cannot be preserved across the
wide-area Internet. As an approximation, certain operat-
ing systems, such as AIX and Linux, provide large send
or TCP segmentation offload (TSO) where the TCP/IP
stack interacts with the network device as if it had a large
MTU size. The device in turn segments the larger buffers
into 1516-byte Ethernet frames and adjusts the TCP se-
quence numbers and checksums accordingly. However,
this technique is also limited to send-side processing. In
addition, as we demonstrate in Section 2.2, the technique
is limited by the way TCP performs congestion control.

Ef�cient connection management. Early networked
servers did not handle large numbers of TCP connec-
tions efficiently, for example by using a linear linked-
list to manage state [26]. This led to operating systems
using hash table based approaches [24] and separating
table entries in the TIME WAIT state [2].

Asynchronous interfaces. To maximize concur-
rency, high-performance servers use asynchronous in-
terfaces as not to block on long-latency operations [33].
Server applications interact using an event notification
interface such as select() or poll(), which in turn
can have performance implications [5]. Unfortunately,
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Machine BIOS Clock Cycle Bus Bus L1 L2 E1000
Release Speed Time Width Speed Size Size NICs

Date (MHz) (ns) (bits) (MHz) (KB) (KB) (num)
Workstation-Class
500 MHz P3 Jul 2000 500 2.000 32 33 32 512 1
933 MHz P3 Mar 2001 933 1.070 32 33 32 256 1
1.7 GHz P4 Sep 2003 1700 0.590 64 66 8 256 2
Server-Class
450 MHz P2-Xeon Jan 2000 450 2.200 64 33 32 2048 2
1.6 GHz P4-Xeon Oct 2001 1600 0.625 64 100 8 256 3
3.2 GHz P4-Xeon May 2004 3200 0.290 64 133 8 512 4

Table 1: Properties for Multiple Generations of Machines

these interfaces are typically only for network I/O and
not file I/O, so they are not as general as they could be.

In-kernel implementations. Context switches, data
copies, and system calls can be avoided altogether by
implementing the server completely in kernel space
[17, 18]. While this provides the best performance, in-
kernel implementations are difficult to implement and
maintain, and the approach is hard to generalize across
multiple applications.

RDMA. Others have also noticed these scaling prob-
lems, particularly with respect to data copying, and have
offered RDMA as a solution. Interest in RDMA and
Infiniband [4] is growing in the local-area case, such
as in storage networks or cluster-based supercomputing.
However, RDMA requires modifications to both sides of
a conversation, whereas Offload can be deployed incre-
mentally on the server side only. Our interest is in sup-
porting existing applications in an inter-operable way,
which precludes using RDMA.

While effective, these optimizations are limited in that
they do not address the full range of scenarios seen by a
server. The main restrictions are: 1) that they do not ap-
ply to the receive side, 2) they are not fully asynchronous
in the way they interact with the operating system, 3)
they do not minimize the interaction with the network
interface, or 4) they are not inter-operable. Addition-
ally, many techniques do not address what we believe to
be the fundamental performance issue, which is overall
server scalability.

2.2 Server Scalability

The recent arrival of 10 gigabit Ethernet and the promise
of 40 and 100 gigabit Ethernet in the near future show
that raw network bandwidth is scaling at least as quickly
as CPU speed. However, it is well-known that mem-
ory speeds are not scaling as quickly as CPU speed in-
creases [16]. As a consequence of this and other factors,
researchers have observed that the performance of host

TCP/IP implementations is not scaling at the same rate
as CPU speeds in spite of raw network bandwidth in-
creases.

To quantify how performance scales over time, we
ran a number of experiments using several generations
of machines, described in detail in Table 1. We break
the machines into 2 classes: desk-side workstations and
rack-mounted servers with aggressive memory systems
and I/O busses. The workstations include a a 500 MHz
Intel Pentium 3, a 933 MHz Intel Pentium 3, and a a 1.7
GHz Pentium 4. The servers include a 450 MHz Pen-
tium II-Xeon, a 1.6 GHz P4 Xeon, and a 3.2 GHz P4
Xeon. In addition, each of the P4-Xeon servers have
1 MB L3 caches. Each machine runs Linux 2.6.9 and
has a number of Intel E1000 MT server gigabit Ethernet
adapters, connected via a Dell gigabit switch. Load is
generated by five 3.2 GHz P4-Xeons acting as clients,
each using an E1000 client gigabit adapter and running
Linux 2.6.5. We chose the E1000 MT adapters for the
servers since these have been shown to be one of the
highest-performing conventional adapters on the market
[32], and we did not have access to a 10 gigabit adapter.

We measured the time to access various locations
in the memory hierarchy for these machines, includ-
ing from the L1 and L2 caches, main memory, and the
memory-mapped I/O registers on the E1000. Memory
hierarchy times were measured using LMBench [25]. To
measure the device I/O register times, we added some
modifications to the initialization routine of the Linux
2.6.9 E1000 device driver code. Table 2 presents the re-
sults. Note that while L1 and L2 access times remain rel-
atively consistent in terms of processor cycles, the time
to access main memory and the device registers is in-
creasing over time. If access times were improving at
the same rate as CPU speeds, the number of clock cy-
cles would remain constant.

To see how actual server performance is scaling over
time, we ran the static portion of SPECweb99 [12] us-
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Machine L1 Cache L2 Cache Main I/O Register I/O Register
Hit Hit Memory Read Write

Time Clock Time Clock Time Clock Time Clock Time Clock
(ns) Cycles (ns) Cycles (ns) Cycles (ns) Cycles (ns) Cycles

Workstation-Class
500 MHz P3 6 3 44 22 162 80 600 300 300 150
933 MHz P3 3.25 3 7.5 7 173 161 700 654 400 373
1.7 GHz P4 1.2 2 10.9 18 190 323 800 1355 100 169
Server-Class
450 MHz P2-Xeon 6.75 3 38.3 17 207 93 800 363 200 90
1.6 GHz Xeon 1.37 2 11.57 18 197 315 900 1440 300 480
3.2 GHz Xeon 0.6 2 5.8 18 111 376 500 1724 200 668

Table 2: Memory Access Times for Multiple Generations of Machines

ing a recent version of Flash [33, 37]. In these experi-
ments, Flash exploits all the available performance opti-
mizations on Linux, including sendfile() with zero
copy, TSO, and checksum offload on the E1000. Table
3 shows the results. Observe that server performance is
not scaling with CPU speed, even though this is a heavily
optimized server making use of all current best practices.
This is not because of limitations in the network band-
width; for example, the 3.2 GHz Xeon-based machine
has 4 gigabit interfaces and multiple 10 gigabit PCI-X
busses.

2.3 Offload: Critiques and Responses
In this paper, we study TCP offload as a solution to the
scalability problem. However, TCP offload has been
hotly debated by the research community, perhaps best
exemplified by Mogul’s paper, “TCP offload is a dumb
idea whose time has come” [27]. That paper effectively
summarizes the criticisms of TCP offload, and so, we
use the structure of that paper to offer our counterargu-
ments here.

Limited processing requirements. One argument is
that Clark et al. [9] show that the main issue in TCP
performance is implementation, not the TCP protocol it-
self, and a major factor is data movement; thus Offload
does not address the real problem. We point out that
Offload does not simply mean TCP header processing;
it includes the entire TCP/IP stack, including poorly-
scaling, performance-critical components such as data
movement, bus crossings, interrupts, and device inter-
action. Offload provides an improved interface to the
adapter that reduces the use of these scalability-limiting
operations.

Moore’s Law: Moore’s Law states that CPU speeds
are doubling every 18 months, and thus one claim is that
Offload cannot compete with general-purpose CPUs.
Historically, chips used by adapter vendors have not in-
creased at the same rate as general-purpose CPUs due to

the economies of scale. However, offload can use com-
modity CPUs with software implementations, which we
believe is the proper approach. In addition, speed needs
only to be matched with the interface (e.g., 10 giga-
bit Ethernet), and we argue proper design reduces the
code path relative to the non-offloaded case (e.g. with
fewer memory copies). Sarkar et al. [38] and Ang [1]
show that when the NIC CPU is under-provisioned with
respect to the host CPU, performance can actually de-
grade. Clearly the NIC processing capacity must be
sized properly. Finally, increasing CPU speeds does not
address the scalability issue, which is what we focus on
here.

Ef�cient host interface: Early critiques are that
TCP Offload Engines (TOE) vendors recreated ”TCP
over a bus”. Development of an elegant and efficient
host/adapter interface for offload is a fundamental re-
search challenge, one we are addressing in this paper.

Bad buffer management: Unless Offload engines
understand higher-level protocols, there is still an
application-layer header copy. While true, copying of
application headers is not as performance-critical as
copying application data. One complication is the ap-
plication combining its own headers on the same con-
nection with its data. This can only be solved by chang-
ing the application, which is already proposed in RDMA
extensions for NFS and iSCSI [7, 8].

Connection management overhead: Unlike con-
ventional NICs, offload adapters must maintain per-
connection state. Opponents argue that offload cannot
handle large numbers of connections, but Web server
workloads have forced host TCP stacks to discover tech-
niques to efficiently manage 10,000’s of connections.
These techniques are equally applicable for an interface-
based implementation.

Resource management overhead: Critics argue that
tracking resource management is ”more difficult” for of-
fload. We do not believe this is the case. It is straight-
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Machine Throughput Requested Conforming Scale Scale Ratio
(ops/sec) Connections Connections (achieved) (ideal) (%)

Workstation-Class
500 MHz P3 1231 375 375 1.00 1.00 100
933 MHz P3 1318 400 399 1.06 1.87 56
1.7 GHz P4 3457 1200 1169 3.20 3.40 94
Server-Class
450 MHz P2-Xeon 2230 700 699 1.00 1.00 100
1.6 GHz P4-Xeon 8893 2800 2792 4.00 3.56 112
3.2 GHz P4-Xeon 11614 2500 3490 5.00 7.10 71

Table 3: SPECWeb99 Performance Scalability over Multiple Generations of Machines

forward to extend the notion of resource management
across the interface without making the adapter aware of
every process as we will show in Sections 3 and 4.

Event management: The claim is that offload does
not address managing the large numbers of events that
occur in high-volume servers. It is true that offload, per
se, does not address application visible events, which
are better addressed by the API. However, offload can
shield the host operating system from spurious unneces-
sary adapter events, such as TCP acknowledgments or
window advertisements. In addition, it allows batching
of other events to amortize the cost of interrupts and bus
crossings.

Partial offload is sufficiently effective: Partial of-
fload approaches include checksum offload and large
send (or TCP Segmentation Offload), as discussed in
Section 2.1. While useful, they have limited value and
do not fully solve the scalability problem as was shown
in Section 2.2. Other arguments include that checksum
offload actually masks errors to the host [41]. In con-
trast, offload allows larger batching and the opportunity
to perform more rigorous error checking (by including
the CRC in the data descriptors).

Maintainability: Opponents argue that offload-based
approaches are more difficult to update and maintain in
the presence of security and bug patches. While this
is true of an ASIC-based approach, it is not true of
a software-based approach using general-purpose hard-
ware.

Quality assurance: The argument here is that offload
is harder to test to determine bugs. However, testing
tools such as TBIT [31] and ANVL [11] allow remote
testing of the offload interface. In addition, software
based approaches based on open-source TCP implemen-
tations such as Linux or FreeBSD facilitate both main-
tainability and quality assurance.

System management interface: Opponents claim
that offload adapters cannot have the same management
interface as the host OS. This is incorrect: one example

is SNMP. It is trivial to extend this to an offload adapter.
Concerns about NIC vendors: Third-party vendors

may go out of business and strand the customer. This has
nothing to do with offload; it is true of any I/O device:
disk, NIC, or graphics card. Economic incentives seem
to address customer needs. In addition, one of the largest
NIC vendors is Intel.

3 System Design

In this Section we describe our Offload design and how
it addresses scalability.

3.1 How Offload Addresses Scalability

A higher-level interface. Offload allows the host oper-
ating system to interact with the device at a higher level
of abstraction. Rather than simply queuing MTU-sized
packets for transmission or reception, the host issues
commands at the transport layer (e.g., connect(),
accept(), send(), close()). This allows the
adapter to shield the host from transport layer events
(and their attendant interrupt costs) that may be of no
interest to the host, such as arrivals of TCP acknowl-
edgments or window updates. Instead, the host is only
notified of meaningful events. Examples include a com-
pleted connection establishment or termination (rather
than every packet arrival for the 3-way handshake or
4-way tear-down) or application-level data units. Suf-
ficient intelligence on the adapter can determine the ap-
propriate time to transfer data to the host, either through
knowledge of standardized higher-level protocols (such
as HTTP or NFS) or through a programmable inter-
face that can provide an application signature (i.e., an
application-level equivalent to a packet filter). By inter-
acting at this higher level of abstraction, the host will
transfer less data over the bus and incur fewer interrupts
and device register accesses.

Ability to move data in larger sizes. As described
in Section 2.1, the ability to use large MTUs has a sig-
nificant impact on performance for both sending and re-
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ceiving data. Large send/TSO only approximates this
optimization, and only for the send side. In contrast, of-
�oad allows the host to send and receive data in large
chunks unaffected by the underlying MTU size. This re-
duces use of poorly scaling components by making more
ef�cient use of the I/O bus. Utilization of the I/O bus is
not only affected by the data sent over it, but also by the
DMA descriptors required to describe that data; of�oad
reduces both. In addition, data that is typically DMA’ed
over the I/O bus in the conventional case is not trans-
ferred here, for example TCP/IP and Ethernet headers.

Improving memory reference behavior. We believe
of�oad will not only increase available cycles to the ap-
plication but improve application memory reference be-
havior. By reducing cache and TLB pollution, cache hit
rates and CPI will improve, increasing application per-
formance.

3.2 Current Adapter Designs

Perhaps the simplest way to understand an architecture
that of�oads all TCP/IP processing is to outline the ways
in which of�oad differs from conventional adapters in
the way it interacts with the OS. Figure 1 illustrates a
conventional protocol architecture in an operating sys-
tem. Operating systems tend to communicate with con-
ventional adapters only in terms of data transfer by pro-
viding them with two queues of buffers. One queue is
made up of ready-made packets for transmission; the
other is a queue of empty buffers to use for packet recep-
tion. Each queue of buffers is identi�ed, in turn, by a de-
scriptor table that describes the size and location of each
buffer in the queue. Buffers are typically described in
physical memory and must be pinned to ensure that they

are accessible to the card, i.e., so that they are not paged
out. The adapter provides a memory-mapped I/O inter-
face for telling the adapter where the descriptor tables
are located in physical memory, and provides an inter-
face for some control information, such as what interrupt
number to raise when a packet arrives. Communication
between the host CPU and the adapter tends to be in one
of three forms, as is shown in Figure 1: DMA’s of buffers
and descriptors to and from the adapter; reads and writes
of control information to and from the adapter, and in-
terrupts generated by the adapter.

3.3 Offloaded Adapter Design

An architecture that seeks to of�oad the full TCP/IP
stack has both similarities and differences in the way it
interacts with the adapter. Figure 2 illustrates our of�oad
architecture. As in the conventional scenario, queues
of buffers and descriptor tables are passed between the
host CPU and the adapter, and DMA’s, reads, writes and
interrupts are used to communicate. In the of�oad ar-
chitecture, however, the host and the adapter communi-
cate using a higher level of abstraction. Buffers have
more explicit data structures imposed on them that in-
dicate both control and data interfaces. As with a con-
ventional adapter, passed buffers must be expressed as
physical addresses and must be in pinned memory. The
control interface allows for the host to command the
adapter (e.g., what port numbers to listen on) and for
the adapter to instruct the host (e.g., to notify the host of
the arrival of a new connection). The control interface
is invoked, for example, by conventional socket func-
tions that control connections: socket(), bind(),
listen(), connect(), accept(), setsock-
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opt(), etc. The data interface provides a way to
transfer data on established connections for both send-
ing and receiving and is invoked by socket functions
such as send(), sendto(), write(), writev(),
read(), readv(), etc. Even the data interface is at a
higher layer of abstraction, since the passed buffers con-
sist of application-specific data rather than fully-formed
Ethernet frames with TCP/IP headers attached. In ad-
dition, these buffers need to identify which connection
that the data is for. Buffers containing data can be in
units much larger than the packet MTU size. While con-
ceptually they could be of any size, in practice they are
unlikely to be larger than a VM page size.

As with a conventional adapter, the interface to the of-
fload adapter need not be synchronous. The host OS can
queue requests to the adapter, continue doing other pro-
cessing, and then receive a notification (perhaps in the
form of an interrupt) that the operation is complete. The
host can implement synchronous socket operations by
using the asynchronous interface and then block the ap-
plication until the results are returned from the adapter.
We believe asynchronous operation is key in order to
ameliorate and amortize fixed overheads. Asynchrony
allows larger-scale batching and enables other optimiza-
tions such as polling-based approaches to servers [3, 28].

The offload interface allows supporting conventional
user-level APIs, such as the socket interface, as well as
newer APIs that allow more direct access to user mem-
ory such as DAFS, SDP, and RDMA. In addition, offload
allows performing zero-copy sends and receives without
changes to the socket API. The term zero-copy refers
to the elimination of memory-to-memory copies by the
host. Even in the zero-copy case, data is still transferred
across the I/O bus by the adapter via DMA.

For example, in the case of a send using a conven-
tional adapter, the host typically copies the data from
user space into to a pinned kernel buffer, which is then
queued to the adapter for transmission. With an intelli-
gent adapter, the host can block the user application and
pin its buffers, then invoke the adapter to DMA the data
directly from the user application buffer. This is similar
to previous “single-copy” approaches [13, 20], except
that the transfer across the bus is done by the adapter
DMA and not via an explicit copy by the host CPU.

Observe from Figure 2 that the interaction between
the host and the adapter now occurs between the socket
and TCP layers. A naive implementation may make
unnecessary transfers across the PCI bus for achieving
socket functionality. For example, accept() would now
cause a bus crossing in addition to a kernel crossing, as
could setsockopt() for actions such as changing the send
or receive buffer sizes or the Nagle algorithm. However,
each of these costs can be amortized via batching mul-
tiple requests into a single request that crosses the bus.

For example, multiple arrived connections can be aggre-
gated into a single accept() crossing which then trans-
lates into multiple accept() system calls. On the other
hand, certain events that would generate bus crossings
with a conventional adapter might not do so with a of-
fload adapter, such as ACK processing and generation.
The relative weight of these advantages and disadvan-
tages depends on the implementation and workload of
the application using the adapter.

4 System Implementation

To evaluate our design and the impact of design deci-
sions, we implemented a software prototype. Our de-
cision to implement the prototype purely in software,
rather than building or modifying actual adapter hard-
ware, was motivated by several factors. Since our goal
is to study not just performance, but scalability, we ul-
timately intend to model different hardware characteris-
tics, for both the host and adapter, using a cycle accurate
hardware simulator. Limiting our analysis to only cur-
rently available hardware would hinder our evaluation
for future hardware generations. Ultimately, we envision
an adapter with a general purpose processor, in addition
to specialized hardware to accelerate specific operations
such as checksum calculation. Our prototype software
is intended to serve as a reference implementation for a
production adapter.

Our prototype is composed of three main components:

• OSLayer, an operating system layer that provides
the socket interface to applications and maps it to
the descriptor interface shared with the adapter;

• Event-driven TCP, our offloaded TCP implementa-
tion;

• IOLib, a library that encapsulates interaction be-
tween OSLayer and Event-driven TCP.

At the moment, OSLayer is implemented as a li-
brary that is statically linked with the application. Ul-
timately, it will be decomposed into two components: a
library linked with applications and a component built
in the kernel. Event-driven TCP currently runs as a user-
level process that accesses the actual network via a raw
socket. It will eventually become the main software loop
on the adapter. The IOLib implementation currently
communicates via TCP sockets, but the design allows
for implementations that communicate over a PCI bus
or other interconnects such as Infiniband. This provides
a vehicle for experimentation and analysis and allows us
to measure bus traffic without having to build a detailed
simulation of a PCI bus or other interconnect.

We used the Flash Web server for our evaluation, with
Flash and OSLayer running on one machine and Event-
driven TCP running on another. We use httperf [29] run-
ning on a separate machine to drive load. To compare
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Figure 3: Offload Prototype

the behavior of the prototype with the conventional case,
we evaluate a similar client-server configuration using
an E1000 device driver that has been instrumented to
measure bus traffic. Figure 3 illustrates how the com-
ponents fit together. The implementation is described in
more detail below.

4.1 OSLayer
OSLayer is essentially the socket interface decoupled
from the TCP protocol implementation. OSLayer is a
library that exposes an asynchronous socket interface to
network applications. As seen in Figure 3, the appli-
cation employs the socket API and OSLayer commu-
nicates with Event-driven TCP via IOLib through de-
scriptors, discussed in more detail in Section 4.3. After
creating the descriptor appropriate to the particular API
function, the call is returned.

OSLayer and Event-driven TCP interact via a byte
stream abstraction. Towards that end, OSLayer transfers
buffers of 4 KB to Event-driven TCP. For large transfers,
this reduces the number of DMA’s and bus crossings sig-
nificantly.

To further limit bus crossings and increase scalabil-
ity, OSLayer employs several techniques. Descriptors
can be batched before transferring them to the card. In
the current implementation, we allow batching using a
configurable batching level. However, a timer is used to
ship over descriptors that have been waiting sufficiently
long before the batching level has been reached. Even if
batching is set to one, descriptors can still batch signif-
icantly with large data transfers. In addition, OSLayer
performs buffer coalescing (similar to the TCP CORK
socket option on Linux), which is utilized by the Flash
Web server. When using the sendfile() operation,
this allows HTTP headers and data to be aggregated,

thus sharing a descriptor and therefore a transfer. While
the conventional Linux stack is limited to two sk bufs,
OSLayer can combine any number of sk buffs into one.

4.2 Event Driven TCP

Event-driven TCP (EDT) performs the majority of the
TCP processing for the adapter and was derived from
the Arsenic user-level TCP stack [34]. Normally a TCP
stack running on the host is animated by three types
of events: a calling user-space application process or
thread, a packet arrival, or a timer interrupt. Since there
are no applications on the adapter, an event-driven archi-
tecture was chosen since it scales better than a process
or thread-based approach. EDT is thus a single-threaded
event-based closed loop, implemented as a stand-alone
user-space process. On every iteration of the loop, each
of the following are checked: pending packets, new de-
scriptors, DMA completion and TCP timers. Execution
is thus animated by packet and descriptor arrivals, DMA
completions, and TCP timer firings.

Event-driven TCP does not necessarily notify
OSLayer of every packet. For example, instead
of informing OSLayer about every acknowledgment,
OSLayer is only alerted when an entire transfer com-
pletes. OSLayer receives only a single event for a con-
nection establishment or termination, rather than each
packet of the TCP handshake. This reduces the num-
ber of descriptors (and their corresponding events) to be
transferred and processed by the host.

EDT communicates to OSlayer by passing descriptors
through IOLib, discussed in Sections 4.3 and 4.4. Since
it is a user-space process, EDT sends and receives pack-
ets over the network using raw sockets and libpcap [21].
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4.3 Descriptors
Descriptors are a software abstraction intended to cap-
ture the hardware-level communication mechanism that
occurs over the I/O bus between host and adapter. De-
scriptors are primarily typed by how they are used:
request descriptors for issuing commands (e.g., CON-
NECT, SEND), and response descriptors for the results
of those commands (e.g., success, failure, retry, etc.).
Descriptors are further categorized as control (SOCKET,
BIND, etc.) or data (SEND, RECV). Two separate sets
of tables are used for each transfer direction.

When an application calls send, a SEND request de-
scriptor is transferred from OSLayer to Event-driven
TCP, containing the address and length of the buffer to
be sent. A request for DMA is queued at Event-driven
TCP and the next descriptor is processed. After the
DMA completes, the event is picked up by Event-driven
TCP, and a response descriptor is created with the ad-
dress of the buffer. This descriptor informs OSLayer that
the buffer is no longer used. Upon receipt of this SEND
response, OSLayer cleans up the send buffer. Of course,
many send descriptors can be sent to Event-driven TCP
at once. Buffers described by a SEND descriptor can be
up to 4 KB. We chose 4 KB since this is the standard
page size in most architectures; however, our implemen-
tation has the ability to transfer up to 64K bytes.

When receive() is called, the RECV descriptor is
transferred from OSLayer to Event-driven TCP, contain-
ing the address and length of the buffer to DMA received
data into. If data is available on Event-driven TCP’s re-
ceive queue, a DMA is immediately initiated. Later, af-
ter DMA is finished, a RECV response descriptor is cre-
ated, notifying OSLayer that the data is available, and
Event-driven TCP can free its own sk buff. If data is not
available upon receipt of a RECV descriptor, the buffer
is placed on a receive buffer queue for that connection.
When the data does arrive later on the appropriate con-
nection, the buffer is removed from the queue, the DMA
is performed, and a RECV response descriptor is created
and sent to the host.

Most of the control descriptors work in a relatively
straightforward manner; however, the CLOSE operation
is worth describing in more detail. A CLOSE descriptor
is transferred from OSLayer to Event-driven TCP when
the application initiates a close. After sending out all
of the sk buffs on the write queue, Event-driven TCP
will signal the close to the remote peer via sending a
packet with the FIN bit set. After the final ACK is sent
a response descriptor is created. In the event the other
side closes the connection, a CLOSE command descrip-
tor is created in Event-driven TCP and sent to OSLayer.
OSLayer need not reply with a CLOSE response de-
scriptor in this case; OSLayer just notifies the applica-
tion and cleans up appropriately.

All DMA’s involving data are initiated by Event-
driven TCP, allowing EDT to control the flow up to the
host. Note that a DMA is not necessarily performed im-
mediately. Since the request for a DMA is queued, it
may be some time before a response to a descriptor is
received by OSLayer.

This queued DMA approach required some changes
to the TCP stack because pending sends were not pre-
venting a CLOSE descriptor from being processed be-
fore the send’s DMA competed. Since it was difficult to
determine how many sends were queued for DMA (and
when they were finished), “empty” sk buffs are placed
on the write queue with a flag set indicating that the
data is not yet present. When the DMA completes, this
flag is set to true, and the sk buff is ready for sending.
Thus, this flag is checked before sending any sk buff.
This caused changes in several components in the TCP
stack. For example, close processing is now split into
two pieces. The first part indicates the connection is in
the process of closing; The second part actually com-
pletes the close, after the last DMA is complete and the
buffer is sent.

4.4 IOLib

IOLib provides a communication library to the OSlayer
and Event- driven TCP code by abstracting the I/O
layer to a generic Put/Get interface. We chose this ap-
proach for ease of porting the offload prototype to bus,
fabric or serial communication interfaces. Thus, only
IOLib needs to understand the specific properties of the
underlying communication link, while the calls within
OSLayer and Event-driven TCP remain unchanged.

The IOLib Put/Get library has an asynchronous queu-
ing interface for sending and receiving data. This inter-
face is augmented by virtual interface registers that can
be used for base address references traditionally used
in the PCI bus interface. Communications support for
the Put/Get interface can be provided by several types
of communication: shared memory, message passing,
etc. Figure 3 shows an example of how the server and
adapter components communicate using IOLib, where
support for the Put/Get interface is provided over a stan-
dard TCP/IP socket.

Since IOLib provides the interface between the host
and the adapter, it is a natural place to monitor traffic
between the two. To facilitate comparisons to conven-
tional adapter implementations, we instrumented IOLib
to measure three different aspects of I/O traffic: number
of DMA’s requested, number of bytes transferred, and
number of I/O bus cycles consumed by a transfer. The
model for capturing the number of bus cycles consumed
is based on a 133 MHz, 64 bit PCI-X bus and is calcu-
lated as follows:
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Figure 4: Baseline Configuration

cycles = 4 + ((transfer size + 7)/8)

This is because four cycles are required for initiation
and termination [10], the bus is eight bytes (64 bits)
wide, and transfers that are less than a full multiple of
eight consume the bus for the entire cycle. Charges
are incurred for all data transferred; not only the packet
buffers transferred but also for the DMA descriptors that
describe them.

4.5 Limitations of the Prototype
OSLayer is still under active development. Many of the
socket options not used by Flash are not fully imple-
mented. OSLayer requires a single-threaded application
because there is no current mechanism to distinguish
descriptors between threads or processes. A feedback
mechanism is still required so that OSLayer knows how
many send buffers are available in Event-driven TCP. If
there are no send buffers available, then OSLayer can re-
turn a failure code to the application invoking the send.

More work can be done to improve and extend Event-
driven TCP. For example, it could be made current with
the latest version of the Linux TCP stack. We believe
performance would be improved if sk buffs could refer-
ence multiple noncontiguous pages.

Certain non-essential descriptors are not yet imple-
mented. An immediate mode descriptor, that is, one
with the data embedded directly in the descriptor, would
also reduce the number of bus crossings. Descriptors
for sending status (e.g., the number of available send
buffers) and option querying could also improve perfor-
mance and allow more dynamic behavior. Finally, de-
scriptors to cancel a send or a receive are needed.

Several new operations with associated descriptors
are planned. A batching ACCEPT operation will allow
OSLayer to instruct Event-driven TCP to wait for N con-
nections to be established before returning a response to
the host. A single response descriptor would contain all
of the requisite information about each connection. In
the appropriate scenarios, this should reduce ACCEPT
descriptor traffic. The next logical step is to provide the
option of delaying the connection notification until the
arrival of the first data on a newly-established connec-
tion. Another item is the addition of a “close” option to a
SEND descriptor that lets a close operation be combined
with a send. This eliminates the need for a separate close
descriptor, and can increase the likelihood that the FIN
bit is piggybacked on the final data segment.

We are also designing cumulative completion descrip-
tors. Instead of completing each send or receive re-
quest individually with its own SEND/RECV complete
descriptor, we intend to have a send complete descrip-
tor that indicates completion of all requests up to and
including that one. This change requires no syntactic
changes to the descriptors; it simply changes the seman-
tics of the response so that completion of a send/receive
implicitly indicates completion of any previous sends.
This approach is employed by OE [42], and we believe
the benefits can be achieved in our stack as well.

4.6 E1000 Driver
To provide comparisons with a baseline system, we
modified the Linux 2.6.9 Intel E1000 device driver code
to measure the same three components of bus traffic
as was done for IOlib: DMA’s requested, bytes trans-
ferred, and bus cycles consumed. The bus model is the
same as is described in Section 4.4. Sends are mea-
sured in e1000 tx queue(); receives are monitored
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1 KB 64 KB 512 KB
E1000 Offload Diff E1000 Offload Diff E1000 Offload Diff
(num) (num) (%) (num) (num) (%) (num) (num) (%)

Recv DMA Count 12 11 08 62 39 37 363 189 48
Recv Bus Cycles Consumed 119 78 34 559 269 52 3260 1394 57
Recv Bytes Transferred 538 252 53 2385 821 66 13900 4706 66
Send DMA Count 9 9 0 159 56 64 1222 370 70
Send Bus Cycles Consumed 237 200 16 9366 8532 9 74244 67683 8
Send Bytes Transferred 1572 1301 17 69474 66389 4 552132 529131 4

Table 4: Comparing IO Traffic for E1000 and Offload

in e1000 clean rx irq(). Figure 4 shows how the
instrumented driver is used in our experiments.

5 Experimental Results

In this Section, we present the results of our prototype
described in Section 4 and compare it to a baseline im-
plementation meant to represent the current state of the
art in conventional (i.e., non-offloaded) systems. The
goal is to show that offload provides a more efficient in-
terface between the host and the adapter for the metric
we are able to measure, namely, I/O traffic. We again
use a simple Web server workload to evaluate our pro-
totype. For software we use the Flash Web server [33]
and the httperf [29] client workload generator. We use
multiple nodes within an IBM Blade Center to produce
the offload prototype configuration depicted in Figure 3.
The baseline configuration is shown in Figure 4.

We examine three scenarios: transferring a small file
(1 KB), a moderately-sized file (64 KB), and a large file
(512 KB). This is intended to capture a spectrum of data
transfer sizes and vary the ratio of per-connection costs
to per-byte costs. We measure transfers in both direc-
tions (send and receive) using three metrics for utiliz-
ing the I/O bus: DMA count, which counts the number
of times a DMA is requested from the bus; bus cycles,
which measures the number of cycles consumed on the
bus (based on the model in Section 4.4); and bytes trans-
ferred, to determine the raw number of bytes sent over
the bus.

5.1 Baseline Results

Table 4 shows our results. Overall, we see that offload is
effective at reducing bus activity, with improvements up
to 70 percent. We look at each transfer size in turn. Ex-
amining the results for 1 KB transfers in Table 4, note
that there is a significant improvement on the receive
path, mainly due to shielding the host from ACK pack-
ets. However, this is a send-side test, and the number of
bytes sent from application to application do not change.
Even so, we see a moderate reduction (4-17 %) in bytes

transferred on the send side. This is partly because TCP,
IP and Ethernet headers are not transferred over the bus
in the offload prototype, whereas they are in the baseline
case. Note that the number of DMAs and the utiliza-
tion of the bus are also reduced, up to 70 % and 16 %,
respectively.

Looking at the results for 64 KB transfers, again we
see significant improvement on the receive side. A larger
amount of data is being sent in this experiment, and thus
the byte savings on the send side are relatively small at
four percent. However, note that the efficiency of the
bus has greatly improved: the number of send DMA’s
requested falls by 64 percent, and the bus utilization is
reduced by 9 percent. The amount of bus cycles con-
sumed has also improved by 9 percent. These trends are
also reflected in the 512 KB results.

5.2 Batching Descriptors
One obvious method to reduce bus crossings is to trans-
fer multiple descriptors at a time rather than one. The
results presented in Table 5 provide experimental results
for a minimum batching level of ten descriptors at a time,
using a idle timeout value of ten milliseconds. These can
be tuned to the transfer size, but are held constant for
these experiments.

Observe that the numbers have improved for the 1K,
64K and 512K transfers over the previous comparison
in Table 4. The improvements are limited since increas-
ing the minimum batching threshold and timeouts did
not significantly help for this type of traffic. This is be-
cause multiple response and socket descriptor messages
are provided at nearly the same time. This technique is
similar in concept to interrupt coalescing in adapters; the
distinction is that information batched at a higher level
of abstraction.

6 Related Work

Several performance studies on TCP offload have been
conducted using an emulation approach which partitions
an SMP and uses a processor as an offload engine. These
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1 KB 64 KB 512 KB
E1000 Offload Diff E1000 Offload Diff E1000 Offload Diff
(num) (num) (%) (num) (num) (%) (num) (num) (%)

Recv DMA Count 12 7 42 62 9 85 363 24 93
Recv Bus Cycles Consumed 119 60 50 559 134 76 3260 648 80
Recv Bytes Transferred 538 244 55 2385 761 68 13900 4375 69
Send DMA Count 9 5 44 159 21 87 1222 148 88
Send Bus Cycles Consumed 237 183 23 9366 8385 11 74244 66683 10
Send Bytes Transferred 1572 1294 18 69474 66319 5 552132 528686 4

Table 5: Comparing IO Traffic for E1000 and Offload Batching Descriptor Traffic.

studies have shown that offloading TCP processing to an
intelligent interface can provide significant performance
improvements when compared to the standard TCP/IP
networking stack. However, the study by Westrelin et
al. [42] lacks an effective way to model the I/O bus
traffic that occurs between the host and offload adapter.
They use the host memory bus to emulate the I/O bus,
but this emulation lacks the characteristics necessary to
capture the performance impact of an I/O bus such as
PCI. In practice, a high-speed memory bus is not rep-
resentative of the performance seen by an I/O bus. Our
implementation is designed with a modular I/O library
that can be used to model different I/O bus types. The
focus of our paper considers multiple performance im-
pacts on server scalability including I/O. Additionally,
when using a partitioned SMP emulation approach, there
is coherency traffic necessary to keep the memory state
consistent between processors. This coherency overhead
can affect the results, since it perturbs the interaction be-
tween the host and offload adapter and includes over-
head that will not exist in a real system. Our modeled
offload system does not suffer from this issue.

Rangarajan et al. [35], and Regnier et al. [36] also
use a partitioned SMP approach and show greater abso-
lute performance when dedicating a processor to packet
processing. This approach can measure server scalabil-
ity with respect to the CPU but does not address the un-
derlying scalability issues that exist in other parts of the
system, such as the memory bus.

TCP offload designs that do not address the scalabil-
ity issues discussed in this paper might improve CPU
utilization on the host for large block sizes but harm
throughput and latency for small block sizes. The cur-
rent generation of offload adapters in the market have
simply moved the TCP stack from the host to the offload
adapter without the necessary design considerations for
the host and adapter interface. For some workloads this
creates a bottleneck on the adapter [38]. Handshaking
across the host and adapter interface can be quite costly
and reduce performance especially for small messages.

Additionally, Ang [1] found that there appears to be no
cheap way of moving data between host memory and an
intelligent interface.

Performance analysis of current generation network
adapters only reveals the characteristics of networking
at a given point in time. In order to understand the per-
formance impacts of various design tradeoffs, all of the
components of the system need to be modeled so that
performance characteristics that change over time can
be revealed. Binkert et al. [6] propose the execution-
driven simulator M5 to model network-intensive work-
loads. M5 is capable of full system simulation includ-
ing the OS, the memory model, caching effects, DMA
activity and multiple networked systems. M5 faithfully
models the system so it can boot an unmodified OS ker-
nel and execute applications in the simulated environ-
ment. In Section 7 we describe the use of Mambo, an
instruction level simulator for the PowerPC R©, in order
to faithfully model network-intensive workloads.

Shivam and Chase [40] showed that offload can en-
able direct data placement, which can serve to eliminate
some communication overheads, rather than of shifting
them from the host to the adapter. They also provide a
simple model to quantify the benefits of offload based on
the ratio of communication to computation and the ratio
of the host CPU processing power to the NIC process-
ing power. Thus a workload can be characterized based
on the parameters of the model and one can determine
whether offload will benefit that workload. This paper
can be seen as an application of Amdahl’s Law to TCP
offload. Their analysis suggests that offload best sup-
ports low-lambda applications such as storage servers.

Foong et al. [15] found that performance is scaling
at about 60 percent of CPU speeds. This implies that
generally accepted rule of thumb that states 1 bps of net-
work link requires 1 Hz of CPU processing will not hold
up over time. They point out that as CPU speed increases
the performance gap widens between it and the memory
and I/O bus. However, their study did not generate an
implementation and their results are from using an em-
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ulated offload system. Our work has focused on these
server scalability issues and created a design and imple-
mentation to study them.

7 Summary and Future Work

We have presented experimental evidence that quantifies
how poorly server network throughput is scaling with
CPU speed even with sufficient link and I/O bandwidth.
We argue the scalability problem is due to specific op-
erations that limit scalability, in particular bus cross-
ings, cache misses and interrupts. Furthermore, we have
shown experimental evidence that quantifies how bus
crossings and cache misses are scaling poorly with CPU
speed. We have designed a new host/adapter interface
that exploits additional processing at the network inter-
face to reduce scalability-limiting operations. Experi-
ments with a software prototype of our offloaded TCP
stack show that it can substantially reduce bus crossings.
By allowing the host to deal with network data in fewer
pieces, we expect our design to reduce cache misses and
interrupts as well. Work is ongoing to continue develop-
ment of the prototype and extend our analysis to study
the effects on cache misses and interrupts.

As described in Section 4.5, the current prototype
does not yet implement all aspects of the design. We
are continuing development with an emphasis on further
aggregation and reduction of operations that limit scal-
ability. Future additions include a batching accept op-
eration, an accept that returns after data arrives on the
connection, a send-and-close function, and cumulative
completion semantics.

We are also preparing to evaluate our prototype in
Mambo, a simulation environment for PowerPC R© sys-
tems [39]. Running in Mambo provides the ability to
measure cache behavior and quantify the impact of hard-
ware parameters such as processor clock rates, cache
sizes, associativity and miss penalties. Mambo allows
us to run the OSLayer (host) and Event-driven TCP
(adapter) portions of the prototype on distinct simulated
processors. We can thus determine the hardware re-
sources needed on the adapter to support a given host
workload.

Finally, we intend to extend the prototype and simu-
lation to encompass low-level device interaction. This
will entail replacing the socket-based version of IOLib
with a version that communicates across a hardware in-
terconnect such as PCI or InfiniBand R©. This will allow
us to predict throughput and latency on simulated next-
generation interconnects.
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