
Auto-pilot: A Platform for System Software Benchmarking

Charles P. Wright, Nikolai Joukov, Devaki Kulkarni, Yevgeniy Miretskiy, and Erez Zadok
Stony Brook University

Abstract
When developing software, it is essential to evaluate its
performance and stability, making benchmarking an es-
sential and significant part of the software development
cycle. Benchmarking is also used to show that a sys-
tem is useful or provide insight into how systems be-
have. However, benchmarking is a tedious task that
few enjoy, but every programmer or systems researcher
must do. Developers need an easy-to-use system for col-
lecting and analyzing benchmark results. We introduce
Auto-pilot, a tool for producing accurate and informative
benchmark results. Auto-pilot provides an infrastructure
for running tests, sample test scripts, and analysis tools.
Auto-pilot is not just another metric or benchmark: it
is a system for automating the repetitive tasks of run-
ning, measuring, and analyzing the results of arbitrary
programs. Auto-pilot can run a given test until results
stabilize, automatically highlight outlying results, and
automatically detect memory leaks. We have used Auto-
pilot for over three years on eighteen distinct projects
and have found it to be an invaluable tool that saved us
significant effort.

1 Introduction
Benchmarking contributes evidence to the value of
work, lends insight into the behavior of systems, and
provides a mechanism for stress-testing software. How-
ever, benchmarking can be an arduous task. Bench-
marking takes a lot of time, and the initial iteration of
benchmarks often exposes bugs or inefficient code. Af-
ter changes are made to the code, the benchmarks need
to be repeated, time and time again. Once the code is
bug free and stable, there are sometimes unexpected re-
sults. The output then needs to be examined to deter-
mine a cause. If no cause for the suspicious results is
found, then the benchmarks need to be repeated with-
out changing any parameters to verify the unexpected
results. After the results are verified, one variable needs
to be changed at a time to narrow down the source of the
erroneous data. This cycle of benchmarking and analy-
sis is often repeated many times.

We have identified two primary considerations when
collecting and analyzing benchmark results:

Accuracy The numbers that benchmarks produce need
to be mathematically correct, but an even more dif-
ficult requirement to satisfy is that they need to be

reproducible, stable, and fair. They should be re-
producible so that you can re-run the test and get
similar results. This way if you need to make slight
modifications, it is possible to go back and compare
results. To help achieve this, Auto-pilot records
pertinent system information (e.g., the OS version,
hard disk model, and partitions) so that you can re-
produce the test environment as closely as possible.
Tests also need to be reproducible so that others can
verify your results. For example, each test should
be run under similar circumstances (e.g., a cold or
warm cache). If one test fails, then it may impact
all future tests, so a series of tests should be stopped
so that erroneous results are not included.

Presentation The accuracy of results is inconsequen-
tial if the results can not be understood and cor-
rectly interpreted. Each benchmark usually results
in hundreds or thousands of numbers. For exam-
ple, each execution of a program results in elapsed,
user, and system time. Additionally, the CPU uti-
lization and wait (I/O) time are reported. If there
is a four-threaded benchmark that is run twenty
times, then 400 values are produced. There are
also usually many configurations of a benchmark.
Each variable that is introduced multiplicatively in-
creases this value. In this example, if we ran the test
for 1, 2, 4, 8, 16 and 32 threads, there would be a
total of 6,300 values. For every additional quantity
that is measured, another 1,260 numbers are gener-
ated. Without assistance it is rather tedious to wade
through this sea of numbers.

Auto-pilot is an infrastructure that produces accurate
and informative results. Auto-pilot is not a metric or
a specific benchmark, but rather a framework to run
benchmarks. Auto-pilot includes a language for describ-
ing a series of benchmarks using a simple syntax that
includes basic loops and conditionals. The Auto-pilot
distribution includes a set of scripts for several com-
pile benchmarks and also for running multiple concur-
rent Postmark processes [12]. Auto-pilot also provides
useful analysis tools that handle multi-process bench-
marks that can also account for background processes
or kernel threads. Auto-pilot can automatically stop the
benchmarks after reliable results are obtained, highlight
outlying values, and detect memory leaks. Results are
presented in a tabular format that can easily be imported

FREENIX Track: 2005 USENIX Annual Technical ConferenceUSENIX Association 175

into spreadsheets. Auto-pilot also includes a bar and line
graph script that generates graphs from the tabular re-
sults using Gnuplot.

One of the most frustrating tasks when benchmarking
is deciding how many times to run a test. The ideal sit-
uation is to run the benchmark precisely as many times
as needed to obtain stable results, but not any more than
that (to save time for both the benchmarker and to free
the testbed for more tests). Auto-pilot can automatically
determine when test results have met an arbitrary sta-
bility condition (e.g., the half-width of the confidence
interval is within 5% of the mean) and stop the tests at
that point.

Benchmarking is often used to debug software. Soft-
ware may leave some state behind that affects future re-
sults. For example, a kernel module may have small
memory leaks that eventually exhaust system resources.
Auto-pilot uses linear regression to determine if there
are memory leaks (which reduce the total amount of free
memory) , or a performance degradation after each iter-
ation of the benchmark.

Even software that works correctly changes the state
of the system. For example, a working set of files is
loaded into OS caches. Often, researchers unmount
and remount the file system to provide cold cache re-
sults, but rebooting has measurable advantages over sim-
ply remounting the file system. Unfortunately, reboot-
ing usually adds time-consuming manual intervention to
the benchmarking process. To ensure a consistent sys-
tem state, Auto-pilot provides checkpointing support.
Checkpointing and rebooting is fully automated: all
Auto-pilot state is written to a file, the machine restarts,
and after system initialization completes Auto-pilot re-
sumes the benchmarks from where it left off.

Systems have a long life cycle and benchmark results
may need to be analyzed months or years after they were
taken (e.g., after a paper is accepted, reviewers often ask
questions about the performance evaluation). Complete
results must be saved for future analysis in a meaningful
way. Auto-pilot carefully stores relevant system infor-
mation and all program output.

The rest of this paper is organized as follows. We
describe previous work in Section 2. In Section 3 we
describe the design and implementation of Auto-pilot.
We conclude in Section 4.

2 Background
There are many metrics and benchmarks available to test
systems. In this section we describe a few notable sys-
tems and how they differ from Auto-pilot.

Several tools seek to measure precisely (down to mi-
croseconds, nanoseconds, or CPU cycles) the amount of
time it takes to perform a single operation. Two exam-
ples of these tools are lmbench [14] and hbench:OS [5].

These tools include both a set of tests, and also analy-
sis tools for these specific tests. For example, lmbench
measures latency and bandwidth for memory, IPC, file
system operations, disk I/O, cached I/O, TCP, UDP, and
RPC. Several O/S primitives are also measured by lm-
bench, including system call entry, context switching,
signal handling, process creation, and program execu-
tion (fork+exec). These precise measurements are
useful to debug parts of a system, but they do not mea-
sure the interactions between system calls that exist in
more realistic workloads. The lmbench suite contains
not only the infrastructure to run and report these bench-
marks, but defines the tests as well. In contrast, for Auto-
pilot we focus on running relatively large scale tests
(whole programs), like Postmark, a compile, or micro-
benchmarks that perform some operation many times.
For example, we have used Auto-pilot to benchmark
specific file system operations like stat and readdir
by running find over a tree of files.

Brown and Seltzer developed hbench:OS, which is a
modified version of lmbench that improves timing and
statistical methodology, adds more parameters to tests,
and improves individual benchmarks. In lmbench many
tests are run in a loop and a final result is calculated
based on all the runs, but some tests are only run once.
Because some architectures have coarse-grained timing
infrastructures, running the test may produce inaccurate
results (e.g., 0 microseconds to perform an operation like
a TCP connect). To remove this deficiency, hbench:OS
uses a self-scaling loop that runs the test for at least one
second, which is several orders of magnitude more than
even the worst timing mechanisms. For tests that can be
run only once, hbench:OS uses CPU cycle counters. Dif-
ferent methods are used to report results in lmbench and
hbench:OS. For some lmbench tests a mean is reported,
for others a minimum. In hbench:OS each individual
measurement is recorded so that data analysis is sepa-
rated from reporting. In hbench:OS, n% trimmed means
are used for all results. The lowest and highest n% re-
sults are discarded, and the remaining (100 − 2n%) re-
sults are used to compute an arithmetic mean. Whether
trimmed means are a better method for results anal-
ysis is disputed by the lmbench authors, but because
hbench:OS stores raw results, different types of analy-
sis are still possible. Overall, hbench:OS and Auto-pilot
are different for the same reasons lmbench and Auto-
pilot are different: we focus on large general purpose
benchmarks, whereas these two systems focus on small
micro-benchmarks. However, in Auto-pilot we have
made some similar decisions to hbench:OS for reporting
and analysis. In Auto-pilot, we record all results and test
output. Auto-pilot is also flexible with support for arbi-
trary metrics (e.g., elapsed time, I/O operations, or pack-
ets sent). Our analysis tools can then operate on the raw

FREENIX Track: 2005 USENIX Annual Technical Conference USENIX Association176

output to produce reports and graphs. Like hbench:OS,
Auto-pilot can also automatically scale benchmarks to
the testbed (e.g., run a benchmark for one hour or until
the confidence interval’s half-width meets a threshold).

Profilers and other tools measure how long specific
sections of code are executed (e.g., functions, blocks,
lines or instructions) [3, 9]. Profilers can be useful be-
cause they often tell you how to make your program
faster, but the profiling itself often changes test condi-
tions and adds overhead, making it unsuitable for com-
paring the performance of two systems. The Perl Bench-
mark::Timer module [10] times sections of Perl code
within a script. Before the code section, a start function
is called; and after the section an end function is called.
Benchmark::Timer can run a code section for a fixed
number of times, or alternatively until the width of a con-
fidence interval meets some specified value. Auto-pilot
can use similar methodology to determine how many it-
erations of a test should be run.

Other benchmarks like SDET [7] and AIM7 [1] are
system-level benchmarks. Both SDET and AIM7 run a
pre-configured workload with increasing levels of con-
currency. The metric for each benchmark is the peak
throughput. These systems focus on developing a met-
ric, and measuring that specific metric, not running arbi-
trary benchmarks.

The closest system to Auto-pilot is Software Testing
Automation Framework (STAF) [11] developed by IBM.
STAF is an environment to run specified test cases on a
peer-to-peer network of machines. Rather than measur-
ing the performance of a given test, STAF aims to vali-
date that the test case behaved as expected. STAF runs
as a service on a network of machines. Each machine
has a configuration file that describes what services the
other machines may request it to perform (e.g., execute
a specific program). STAF also provides GUI monitor-
ing tools for tests. The major disadvantage with STAF is
that it requires complex setup, does not focus on perfor-
mance measurement, and is a heavy-weight solution for
running multiple benchmarks on a single machine

The Open Source Development Lab (OSDL), pro-
vides a framework called the Scalable Test Platform
(STP) that allows developers to test software patches
on systems with 1–8 processors [13]. STP allows de-
velopers to submit a patch for testing, and then auto-
matically deploys the patch on a system, executes the
test, and posts the results on a Web page. STP makes it
relatively simple to add benchmarks to the framework,
but the benchmarks themselves need to be changed to
operate within the STP environment. Auto-pilot is dif-
ferent from STP in two important ways. First, STP is
designed for many users to share a pool of machines,
whereas Auto-pilot is designed to repeatedly run a single
researcher’s set of tests on a specific machine. Second,

STP provides no analysis tools; it simply runs tests and
logs the output, whereas Auto-pilot measures processes
and provides tools to analyze results.

3 Design

To run a benchmark, you must write a configuration file
that describes which tests to run and how many times.
The configuration file does not describe the benchmark
itself, but rather points at another executable. This exe-
cutable is usually a small wrapper shell script that pro-
vides arguments to a program like Postmark or a com-
pile benchmark. The wrapper script is also responsible
for measurement. We provide sample configuration files
and shell scripts for benchmarking file systems. These
can be run directly for common file systems, or easily
adapted for other types of tests. Given a configuration
file and shell scripts, the next step is to run the config-
uration file with Auto-pilot. Auto-pilot parses the con-
figuration file and runs the tests, producing two types of
logs. The first type is simply the output from the pro-
grams. This can be used to verify that benchmarks ex-
ecuted correctly and to investigate any anomalies. The
second log file is a more structured results file that con-
tains a snapshot of the system and the measurements that
were collected. The results file is then passed through
our analysis program, Getstats, to create a tabular report.
Optionally, the tabular report can be used to generate a
bar or line graph.

In Section 3.1 we describe auto-pilot, the Perl
script that runs the benchmarks and logs the results. In
Section 3.2 we describe the sample shell scripts specific
to the software being benchmarked. In Section 3.3 we
describe Getstats, which produces summaries and statis-
tical reports of the Auto-pilot output. In Section 3.4 we
describe our plotting scripts. In Section 3.5 we describe
and evaluate checkpointing and resuming benchmarks
across reboots. In Section 3.6 we describe using hooks
within the benchmarking scripts to benchmark NFS.

3.1 auto-pilot

The core of the Auto-pilot system is a Perl script that
parses and executes the benchmark scripts. Each line
of a benchmark script contains a command (blank lines
and comments are ignored). The command interface has
been implemented to resemble the structure of a typi-
cal programming language. This makes Auto-pilot easy
and intuitive to enhance when writing new benchmarks.
Next, we describe the thirteen primary commands.

FREENIX Track: 2005 USENIX Annual Technical ConferenceUSENIX Association 177

TEST begins a benchmark. The test directive takes be-
tween two and four arguments. The first argument is the
name of the test, which is also used to build the name
of the output file. The second argument is the minimum
number of times to run the test. The third and fourth
arguments are optional. The fourth argument specifies
a program that determines if the test should continue.
If the program’s exit status is zero, then the benchmark
stops otherwise it continues. The third argument is how
many iterations of the benchmark to execute before re-
running the program specified in the fourth argument.
This argument is useful because it may be more effi-
cient to execute several iterations of the benchmark be-
tween runs of the program rather than running a poten-
tially computationally intensive program after a single
iteration. Using a program to determine if tests should
continue allows the benchmark to execute until there are
stable results, thereby saving time on the testbed, and
leaving more time for analysis. Getstats, described in
Section 3.3, has support for arbitrary predicates to deter-
mine stability. The test directive contains SETUP, EXEC,
and CLEANUP directives (described below). Other con-
trol directives are also allowed (e.g., IF directives, vari-
able declarations, and loops).

THREADS tells Auto-pilot how many concurrent
benchmark processes should be run at once. This can
be used to test the scalability of systems. Our analy-
sis tools, described in Section 3.3, aggregate the results
from these threads.

EXEC executes a test. If the THREADS directive is
used, then threads processes are simultaneously exe-
cuted. The results for each thread are logged to sep-
arate files. Auto-pilot sets the environment variable
APTHREAD to 1 in the first thread, 2 in the second thread,
and N in the n-th thread. This allows each thread to
perform slightly different tasks (e.g., performing tests in
different directories).

SETUP executes a setup script for a test. Setup scripts
are not multi-threaded, and are used for initialization that
is common to all threads (e.g., to mount a test file sys-
tem). We also support a PRESETUP directive that is run
only once. One possible use of PRESETUP is to format
a file system only once, and remount it before each test
using a SETUP directive.

CLEANUP scripts are used to undo what is done in a
setup script. CLEANUP scripts can be used to ensure a
cold cache for the next test. To run a script after all the
iterations of the test are completed, a POSTCLEANUP di-
rective can be used for final cleanup.

VAR sets an Auto-pilot variable. Simple variable sub-
stitution is performed before executing each line: %VAR%
is replaced with the value of VAR. These variables are not

exposed to external processes.

ENV sets an environment variable and the correspond-
ing Auto-pilot variable. This can be used to com-
municate with benchmark scripts without the need for
many command-line arguments. Auto-pilot also re-
places VAR with the contents of the environment vari-
able VAR. This is similar to the export command within
the Bourne shell.

IF is a basic conditional that supports equality, greater-
than, and less-than (and their inverses). If the condition
evaluates to true, then all statements until ELSE or FI

are executed. If the condition is false, then the optional
statements between ELSE and FI are executed. ELSE-IF

blocks are also supported.

WHILE repeatedly executes a block of code while
a certain condition holds true. The condition syntax
WHILE uses is the same as IF.

FOREACH assigns multiple values to one variable in
turn. This is useful because often a single test needs to
be repeated with several different configurations.

FOR is similar to FOREACH, but instead of specifying
each value explicitly, a start, end, increment, and factor
are specified. For example, FOR THREADCOUNT=1 TO

32 FACTOR 2 would execute the loop with a THREAD-
COUNT of 1, 2, 4, 8, 16, and 32.

FASTFAIL causes Auto-pilot to abort if one of the
benchmarks may not be successful. If the benchmarks
continue, then they may destroy important state that
could lend insight into the cause of the failure. An op-
tional fastfail script is also defined, which can be used
to send email to the person responsible for the bench-
marks. We have found it very useful to email pagers, so
that testbeds do not remain idle after a failed benchmark.

CHECKPOINT writes all Auto-pilot internal state to a
file. If Auto-pilot is invoked with the checkpoint file as
an argument, then it resumes execution from where it left
off. The return value of CHECKPOINT is similar to the
Unix fork system call. After restoring a checkpoint, the
value of the Auto-pilot variable RESTORE is 1, but after
writing the checkpoint, the value of RESTORE is 0. In
Section 3.5 we present and evaluate an in-depth example
of checkpointing across reboots.

FREENIX Track: 2005 USENIX Annual Technical Conference USENIX Association178

Configuration example Figure 1 shows the Postmark
configuration file included with Auto-pilot.
1 INCLUDE common.inc
2 FOREACH FS ext2 ext3 reiserfs
3 FOR THREADCOUNT=1 TO 32 FACTOR 2
4 THREADS=%THREADCOUNT%
5 TEST %FS%:%THREADS% 10 1 getstats \

--predicate ’("$delta" < 0.05 * $mean) \
|| ($count > 30)’

6 SETUP fs-setup.sh %FS%
7 EXEC postmark.sh
8 CLEANUP fs-cleanup.sh %FS%
9 DONE
10 DONE
11 DONE
12 INCLUDE ok.inc

Figure 1: A sample Auto-pilot configuration file

Line 1 includes common.inc, a configuration file
that performs actions that are common to all tests.
common.inc also turns off all excess services (e.g.,
Cron) to prevent them from interfering with a bench-
mark run. The common.inc file also includes
local.inc, which the user can create to set variables
including TESTROOT, which defines the directory where
the test will take place. Line 2 begins a FOREACH loop.
This loop is executed a total of three times. The first
time the value of FS is set to “ext2,” the second time it
is set to “ext3,” and on the third it is “reiserfs.” Line
3 begins a nested loop that will set the THREADCOUNT
variable to 1, 2, 4, 8, 16, and 32. Line 4 sets the number
of threads to use to THREADCOUNT. Lines 5–9 define the
test. The test is named %FS%:%THREADS%. For exam-
ple, the first test is named ext2:1. The test is executed
10 times, and then after each test the Getstats program
(described in Section 3.3), is used to determine whether
the confidence interval has an acceptable half-width for
elapsed, user, and system time. The test is stopped after
30 runs, to prevent a test from running forever. Line 6
calls fs-setup.sh with an argument of ext2. This is
our file system setup script, which formats and mounts a
file system (formatting can be disabled with environment
variables). Line 7 executes postmark.sh. This shell
script creates a Postmark configuration, and then exe-
cutes Postmark through our measurement facility (de-
scribed in Section 3.2). Line 8 unmounts the Ext2 file
system, so that the next run takes place with a cold
cache. Lines 9–11 close their corresponding loops. Line
12 turns services back on, and optionally sends an email
to the user indicating that the benchmarks are complete.

3.2 Benchmark Scripts

We provide a set of file system benchmarking scripts for
Postmark [12] and compiling various packages. We in-
cluded an example script for compiling Am-Utils [15],

GCC [8], and OpenSSL [17]. Most other packages can
be compiled by setting environment variables or with
minimal changes to the existing scripts.

Many applications can be benchmarked without any
scripts, but file systems require complex setup and
cleanup. Our scripts also serve as an example for bench-
marking applications in other domains. We wrote scripts
to test some of our complex file systems. These systems
required extensive testing and Auto-pilot allowed us to
methodically test and debug them.

The flow of the scripts is organized as two compo-
nents. The first component mounts and unmounts the file
system. The second performs the Postmark or the com-
pile benchmark. Though we distribute scripts for bench-
marking compilations and Postmark on Ext2, Ext3, and
Reiserfs, it is easy to add other benchmarks or platforms.
To test additional file systems, the Auto-pilot scripts
have hooks for mount, unmount, mkfs, tunefs, and
more. With these hooks, new file systems or new file
system features can be used. We provide example hooks
for enabling HTrees on Ext2/3 [16] and to benchmark on
top of stackable file systems [21]. We describe how we
used the hooks to concurrently benchmark an NFS client
and server in Section 3.6.

The sample Auto-pilot scripts we distribute demon-
strate the following principles:

• Separating the test and the setup. Most benchmarks
involve performing several workloads on several
configurations. Each configuration has a setup and
a corresponding cleanup script. Each workload has
a script common to all configurations.

• Using variables for all values that may change. We
additionally have support for operating system and
host-specific options.

• Unmounting the file system on which the bench-
mark takes place between runs, even if the previous
run failed.

Auto-pilot includes common.inc, which calls
noservices.sh to shut down Cron, Sendmail,
Anacron, LPD, Inetd, and other services on the testbed.
If no user is logged in via SSH, then SSH is also turned
off. We create /etc/nologin to prevent users from
logging in while the test is being run. Swap space is
optionally disabled to prevent it from affecting results.
All these actions are taken to avoid unexpected user or
system activity from distorting the results.

The file system setup script loads in machine-specific
settings (e.g., which device and directory to use). Next,
the script logs some vital statistics about the machine
(OS version, CPU information, memory usage, hard disk
configuration, and partition layout). The script then un-
mounts any previously-mounted file systems, formats
the device, and mounts the new file system (e.g., Ext2,

FREENIX Track: 2005 USENIX Annual Technical ConferenceUSENIX Association 179

Ext3, or Reiserfs). This ensures a clean cache and con-
sistent disk layout. Because vital machine information
is recorded, the test conditions can be reproduced in the
future.

Next, the benchmark is executed. The compile script
unpacks, configures, and compiles the package speci-
fied. The compile commands are run through a func-
tion named ap measure. This function produces a block
of information that encapsulates the results for this test.
By default, the block includes the iteration of the test,
which thread was running, the elapsed time, the system
CPU time, the user CPU time, and the command’s exit
status. When analyzing the results, this block logically
becomes a row in a spreadsheet. Additional fields can be
added through the use of measurement hooks. Measure-
ment hooks are executed before and after the test. Each
hook can produce values to be included in the block. We
provide sample hooks that measure the number of I/O re-
quests for a given partition; the amount of free memory;
the amount of CPU time used by background processes;
network utilization; and more. Programs such as CFS
[4] or Cryptoloop [18] use a separate thread for some
processing. Even if the instrumented process itself does
not have additional threads, the kernel may use asyn-
chronous helper threads to perform certain tasks (e.g.,
bdflush to flush dirty buffers or kjournald to man-
age journalized block devices). This hook allows mea-
surement of daemons that expend effort on behalf of the
measured process. The measurement hook is also called
one final time so that it can produce its own blocks. This
feature is used for the CPU time difference measure-
ment hook to enumerate all processes that used addi-
tional CPU time. Our I/O measurement script also adds
a block with the number of I/O operations that occurred
on each partition.

The Postmark script is more complicated because
it can run several Postmark processes in parallel.
When running a multithreaded test, Auto-pilot sets
two environment variables: APTHREAD and APIPCKEY.
APTHREAD is the thread number for this test. APTHREAD
can be used, for example, so that different processes use
different directories. APIPCKEY is used for synchro-
nization. First, the Postmark script creates a directory
and then sets up a Postmark configuration file. Because
Auto-pilot starts each test sequentially, one test could
start before another and then the timing results would be
inaccurate. To solve this, Auto-pilot creates a System
V semaphore with the number of threads as its value.
Before executing Postmark, each test script decrements
the semaphore. We include a small C utility that calls
semctl to decrement the semaphore. All of the test pro-
cesses are suspended until the semaphore reaches zero,
at which point they all begin to execute concurrently.

After all the benchmark processes complete, Auto-

pilot executes the cleanup script, which unmounts the
file system. After all tests are executed successfully,
SSH is restarted and /etc/nologin is removed. This is
not meant to restore the machine to its previous state, but
rather to allow remote access, so that the benchmarker
can retrieve results, or begin another series of bench-
marks. Auto-pilot does not keep track of which services
it stopped. To restore the services the machine was run-
ning before the benchmarks, it can simply be rebooted.

3.3 Getstats
Getstats is a Perl script which processes the results log
file to generate useful tabular reports. In addition to
Auto-pilot results files, Getstats can process Comma
Separated Value (CSV) files or the output of GNU time.
Getstats is flexible in that it does not hardcode the types
of information it expects in these files; it simply reads
and displays the data. The parsers themselves are also
modular. Getstats searches the Perl library path for valid
Getstats parsers and loads them. To write a new parser,
two functions must be defined: a detection function and
a parsing function that reads the input file into a two-
dimensional array. We originally used this functionality
to add support for GNU time files, but have also used it
for some of our own custom formats. We discuss mostly
timing information, but we have also analyzed network
utilization, I/O operations, memory, and other quantities
with Getstats.

Getstats has a basic library of functions to transform
the data. Examples of transformations include adding
a column derived from previous values, selecting rows
based on a condition, raising warnings, grouping data
based on the value of a column, or aggregating data
from multiple rows to produce a single summary statis-
tic. If Getstats detects that it is being run on results files
with time data, it performs some default transformations
composed of the basic library transformations. These in-
clude raising warnings if a command failed, aggregating
multiple threads into a single value, computing a wait
time (the time the measured process was not running)
and a CPU-utilization column, raising warnings if any
test had a high z-score for one if its values, computing
overheads, and finally generating a tabular report.

Figure 2 shows a tabular report generated by Getstats
compares Ext2 with Ext3, when run on the Postmark
configuration discussed in Section 3.1. The first line of
the report is a high z-score warning for the third itera-
tion of ext2 with one thread. If there are tests with very
large z-scores, then there likely were problems with the
benchmark. A few other high z-score warnings were is-
sued, but are not shown to conserve space. Of note is
that Ext2 ran only ten times, but Ext3 needed to run 15
times to get an acceptable half-width percentage for the
measured quantities (the predicates are not run for Wait

FREENIX Track: 2005 USENIX Annual Technical Conference USENIX Association180

ext2:1.res: High z-score of 2.21853230276562 for elapsed in epoch 3.

. . .

ext2:1.res
NAME COUNT MEAN MEDIAN LOW HIGH MIN MAX SDEV% HW%
Elapsed 10 6.055 6.063 5.991 6.120 5.855 6.180 1.491 1.067
System 10 2.758 2.760 2.709 2.807 2.640 2.880 2.499 1.788
User 10 1.675 1.680 1.615 1.735 1.510 1.820 5.044 3.609
Wait 10 1.622 1.636 1.567 1.677 1.465 1.718 4.759 3.404
CPU% 10 73.221 73.079 72.572 73.871 72.007 74.981 1.240 0.887

ext3:1.res
NAME COUNT MEAN MEDIAN LOW HIGH MIN MAX SDEV% HW% O/H
Elapsed 15 77.861 76.865 74.156 81.567 64.308 88.209 8.594 4.759 1185.869
System 15 4.272 4.290 4.217 4.327 4.100 4.410 2.334 1.293 54.895
User 15 1.825 1.820 1.773 1.877 1.670 1.990 5.132 2.842 8.935
Wait 15 71.765 70.775 68.064 75.466 58.158 82.179 9.312 5.157 4324.025
CPU% 15 7.885 7.923 7.499 8.272 6.836 9.563 8.850 4.901 -89.231

Figure 2: The Getstats tabular report format showing the results for Postmark with a single thread on Ext2 and Ext3.

and CPU% which are computed quantities). This is not
unexpected because journaling adds complexity to the
file system’s I/O pattern, resulting in greater variability
[6]. The tabular format itself is useful as a mechanism
to present detailed results or to import data into spread-
sheets, but graphs present a better overall picture of the
results.

Output Modes Getstats provides several useful op-
tions to analyze and view different output modes. The
simplest mode outputs the raw uninterpreted values,
which is useful when there are problems with the bench-
mark (e.g., one run had anomalous results). The tabu-
lar report also has information useful for plotting. The
LOW and HIGH columns are suitable for creating error
bars with Gnuplot. Getstats supports several methods of
creating error bars: Student-t confidence intervals, the
minimum and maximum value, or the standard devia-
tion. By default Getstats reports the count, mean, me-
dian, minimum, maximum, and Student-t confidence in-
terval error bar values (shown as low and high), and the
standard deviation and half-width of the confidence in-
terval as a percent of the mean. The standard deviation
is a measure of how much variance there is in the tests.
The half-width of the confidence interval describes how
far the true value may be from the mean with a given de-
gree of confidence (by default 95%). If multiple results
files are specified, then the first file is used as a base-
line to compute overheads for the subsequent files (this
is shown as “O/H”). This report gives a high-level yet
concise overview of a test.

Statistical Tests After changing your software you
would like to know if your changes actually had a mea-
surable effect on performance (or some other measured
quantity). In some cases it is sufficient to compare the
means, and if they are “close”, then you may assume that
they are the same or that your change did not noticeably

affect performance. In other circumstances, however, a
more rigorous approach should be used. For example, if
two tests are very close, it can be difficult to determine
if there is indeed a difference, or how large that differ-
ence really is. To compare two samples, Getstats can
compute the confidence interval for the difference be-
tween the means, and can also run a two-sample t-test.
The confidence interval quickly tells you if there is a dif-
ference, and how much it is. The confidence interval is
simply a range of numbers. If that range includes zero,
then the samples are not significantly different. Getstats
also can run a two-sample t-test to determine the rela-
tionship between two results files. A statistical test has a
null hypothesis, which is assumed to be true. An exam-
ple of a null hypothesis is u1 = u2. The result of a t-test
is a P-value, which is the probability that you would ob-
serve the data if the null hypothesis is true. If the P-value
is large (close to 1), then your data is consistent with the
null hypothesis. If the P-value is small (closer to 0), then
your data is not consistent with the null hypothesis. If
the P-value is smaller than a predetermined significance
level (e.g., .05), then you reject the original assumption
(i.e., the null hypothesis).

Figure 3 shows the output of a Getstats t-test for two
samples: CHILL and REMOUNT. We ran a recursive
grep benchmark over the GCC 3.4.3 source tree. For
CHILL we ran a program that we wrote called chill that
is designed to ensure cold-cache results. Our version
of chill was inspired by a similar program in SunOS 4
[20]. Chill allocates and dirties as much memory as pos-
sible, thereby forcing the kernel to evict unused objects.
We hypothesized that chill would provides more stable
results than simply unmounting the test file system, be-
cause it causes all caches to be purged, not just those
related to the test file system. The REMOUNT configura-
tion unmounts the file system and then mounts it again
instead of running chill.

FREENIX Track: 2005 USENIX Annual Technical ConferenceUSENIX Association 181

chill
NAME COUNT MEAN MEDIAN LOW HIGH MIN MAX SDEV% HW%
Elapsed 10 38.649 38.193 37.950 39.348 37.673 40.379 2.528 1.808
System 10 1.663 1.675 1.603 1.723 1.540 1.770 5.071 3.628

. . .

remount
NAME COUNT MEAN MEDIAN LOW HIGH MIN MAX SDEV% HW% O/H
Elapsed 10 38.751 38.699 38.580 38.921 38.465 39.307 0.614 0.439 0.262
System 10 1.796 1.790 1.677 1.915 1.580 2.080 9.255 6.620 7.998

. . .

Comparing remount (Sample 1) to chill (Sample 2).
Elapsed: 95%CI for remount - chill = (-0.567, 0.769)
Null Hyp. Alt. Hyp. P-value Result
u1 <= u2 u1 > u2 0.377 ACCEPT H 0
u1 >= u2 u1 < u2 0.623 ACCEPT H 0
u1 == u2 u1 != u2 0.754 ACCEPT H 0

System: 95%CI for remount - chill = (0.009, 0.257)
Null Hyp. Alt. Hyp. P-value Result
u1 <= u2 u1 > u2 0.018 REJECT H 0
u1 >= u2 u1 < u2 0.982 ACCEPT H 0
u1 == u2 u1 != u2 0.037 REJECT H 0

. . .

Figure 3: The Getstats t-test output. User time, Wait time, and CPU usage are omitted for brevity.

From the tabular report, we can see that elapsed time
differs by only 0.262%, and system time differs by only
7.998%. After the tabular report, each measured value
in the samples is compared (e.g, elapsed time from the
first sample is compared to elapsed time from the second
sample).

If we examine the confidence interval for the elapsed
time, we can see that it includes zero (the beginning of
the range is less than zero, but the end of the range is
greater than zero), which means that CHILL and RE-
MOUNT are not distinguishable. The next four lines
show the results of the t-test for elapsed time. Getstats
runs the t-test with three distinct assumptions: u1 ≤ u2,
u1 ≥ u2, and u1 = u2. For simplicity, we chose to dis-
play all of the tests rather than forcing the user to spec-
ify the tests of interest. It is up to the benchmarker to
determine which of these assumptions makes sense. In
all cases, the P-value was higher than the significance
level of (0.05), which means that we can not reject the
assumptions with 95% confidence. Therefore, we con-
clude that CHILL and REMOUNT are indistinguishable
for elapsed time.

For system time, the confidence interval does not con-
tain zero, which means the two tests have a significant
difference. This is supported by the P-value, which
shows us that there is only a 3.7% chance of observing
this data if the two samples were in fact equal. There
is also only a 1.8% chance that CHILL uses less system
time than REMOUNT. Because 3.7% and 1.8% are less
than the significance level, we can reject the null hypoth-
esis that u1 = u2 and that u1 ≤ u2 where u1 repre-
sents REMOUNT and u2 represents CHILL. Because our

assumption that REMOUNT used less system time than
CHILL is false, we know that REMOUNT did use more
system time because it needed to recreate objects that
the kernel evicted.

Detecting Anomalies Often, one or two bad runs are
not noticeable from summary statistics alone. Getstats
provides two mechanisms for finding anomalous results:

• Automatically highlighting outlying values
• Performing linear regression on the values

To automatically highlight outlying values, Getstats
uses the z-score of each point. The z-score is the dif-
ference between the value and the mean, divided by the
standard deviation. If the z-score is greater than a con-
figurable value (by default 2), a warning is printed be-
fore the summary statistics. The benchmarker can then
look into the results further to analyze the cause of the
outliers.

Getstats can also compute a least-squares linear re-
gression to fit the elapsed time, system time, user time,
and free memory. Linear regression computes the slope
and intercept of the line that best fits a set of points. If
the results are stable, then the slope of these should be
zero. The intercept is just the magnitude of the values,
so it is unimportant. If the magnitude of the slope is
not close to zero, then a warning is issued. If the free
memory slope is negative, then it indicates that on each
iteration the software is leaking memory. If the elapsed
or CPU times have positive slopes, it similarly indicates
that some resource is becoming more scarce, and caus-
ing a gradual performance degradation. Depending on
the system being analyzed, different thresholds are ap-

FREENIX Track: 2005 USENIX Annual Technical Conference USENIX Association182

propriate, so the default value can be overridden by the
benchmarker. To ensure that the amount of free memory
reported is accurate, we run our version of chill. Chill al-
locates as much memory as possible, then dirties every
page. Chill is terminated by the Linux out-of-memory
manager (or when malloc can no longer get additional
memory). At this point the kernel has evicted objects
and pages to make room for chill, and the amount of
memory consumed should be at a minimum.

Predicate Evaluation Getstats evaluates predicates
for use with auto-pilot’s TEST directive. Getstats
runs the predicate over each column in the results file,
and returns zero if the predicate is true. The predicates
are flexible. Getstats replaces several statistical variables
(e.g., mean, median, half-width of the confidence inter-
val, standard deviation, number of tests, and the slope of
the linear regression) with their actual values and then
passes the predicate to Perl’s eval function. This com-
bination of substitution and eval allows arbitrarily com-
plex predicates using simple math or Perl functions. For
example, the statement “0.05 ∗ $mean < $delta” returns
true if the half-width of the Student-t confidence interval
is less than 5% of the mean.

Combining Results Benchmarks often have too many
numbers for a user to interpret, so Auto-pilot automati-
cally combines results in two specific cases:

• Benchmarks that consist of multiple programs (e.g.,
compilations)

• Multi-threaded benchmarks

Some benchmarks consist of multiple commands. For
example, to compile GCC, three steps are required: tar
extracts the distribution, ./configure detects informa-
tion about the environment, and finally make builds the
package. Getstats unifies the results of each command
into one result per benchmark execution. Alternatively,
the user can use a select transformation to analyze one
specific command in isolation.

When analyzing multi-threaded data, Getstats aggre-
gates all of the threads in one test together to create a
single set of results for the test. The elapsed time that
is reported is the longest running thread and the system
and user times are the sum of the system and user times
for each thread. This allows a benchmark that is usu-
ally single-threaded to be run and analyzed in a multi-
threaded manner.

3.4 Plotting Tools
One of the most useful ways to present benchmark data
is through the use of graphs. In our experience, it is
desirable to have automatically-generated graphs in En-
capsulated Postscript (EPS) format, so the graphs are
more suitable for publication. Our requirement for au-
tomatic graph generation essentially dictates that we use

a command-line tool. We have found Gnuplot to be the
most flexible plotting package, but its interface is cum-
bersome, often requiring dozens of lines of code and a
specific data format to create a simple plot. Auto-pilot
uses a wrapper script, Graphit, that generates both line
and bar charts using Gnuplot. Although Gnuplot is our
preference, everyone has their own favorite plotting tool.
Each plotting wrapper script is specific to the plotting
tool used, but Getstats can produce CSV output which
can easily be imported into other programs (e.g., Excel).

 0

 10

 20

 30

 40

 50

 60

 70

 0 5 10 15 20 25 30 35

T
im

e
(s

ec
on

ds
)

Threads

Reiserfs (Elapsed)
Reiserfs (User)

Reiserfs (System)

Figure 4: The results for Postmark on Reiserfs, 1–32 threads

A sample line graph can be seen in Figure 4. This
graph shows the results from Postmark running on top
of Reiserfs with 1–32 threads. The elapsed time de-
creases as threads are added, because the kernel can bet-
ter schedule I/O operations. However, the user and sys-
tem CPU time remained relatively constant because the
same amount of work is being done.

This graph was generated with the following com-
mand line:

graphit --mode=line \
--components=Elapsed,User,System \
--graphfile=reiserfs-pm.eps \
-k ’top right’ -f 17 \
--xlabel Threads --ylabel "Time (seconds)" \
Reiserfs ’reiserfs:*.res’

The mode argument specifies a line graph (the other
supported mode is a bar graph). The --components
parameter informs Graphit which quantities are of inter-
est. The --graphfile parameter specifies an output
file. The next three parameters are optional: -k speci-
fies the legend location (Gnuplot refers to the legend as
a key); -f increases the font size to 17 points; and xlabel
and ylabel specify axis labels. The last two parameters
define a series. In this case it is named Reiserfs, and the
values are from the files named reiserfs:*.res. This
command line replaces an 11 line Gnuplot script, with

FREENIX Track: 2005 USENIX Annual Technical ConferenceUSENIX Association 183

566 characters (a savings of 70%). More importantly,
Graphit creates a properly-formatted Gnuplot data file
for the actual series.

Creating bar graphs in Gnuplot is not straightforward.
Rather than defining series and values as is done in other
plotting tools, you must create an artificial x-axis and lo-
cate each bar and its label along this axis. To properly
space and locate these bars without automated tools is te-
dious. Graphit automatically constructs this artificial x-
axis and spaces the bars appropriately. Using command-
line arguments, the width of the bars, the gap between
each bar, the gap between each group of bars, and sev-
eral other parameters can be controlled easily. An exam-
ple Graphit bar graph is shown in Figure 5. This graph
shows the same Postmark results for Ext2, Ext3, and
Reiserfs that are shown in Figures 2 and 4. Graphit au-
tomatically reads the results files, stacks user CPU time
over system CPU time; determines bar widths, spacing,
and error bars; formats a Gnuplot data file; generates a
Gnuplot script; and finally runs Gnuplot. We ran the fol-
lowing command to generate the graph:

graphit --mode=bar \
--ylabel ‘Time (seconds)’ -f 17 \
--components=Elapsed,User,System \
--graphfile=pm.eps Ext2 ext2:1.res \
Ext3 ext3:1.res Reiserfs reiserfs:1.res

This single command replaces a 15-line 764-character
Gnuplot script, and, more importantly, generates a data
file with appropriate spacing along the artificial axis.
Graphit has several spacing options to control the width
of each bar, the gap between bars (e.g., System and User
could be next to each other), and the gap between sets
of bars (e.g., Ext2 and Ext3). Figure 6 is another exam-
ple Graphit bar graph using the same options but with
more data sets, so the bars are thinner. We also passed
“--rotate 45” to Graphit to rotate the X-axis labels.

 0

 10

 20

 30

 40

 50

 60

 70

 80

ReiserfsExt3Ext2

T
im

e
(s

ec
on

ds
)

6.055

77.861

67.719

Elapsed
User

System

Figure 5: Postmark on Ext2, Ext3, and Reiserfs.

3.5 Checkpointing Across Reboots

Operating system code behaves very differently when
data is already cached (called a warm cache) and when
data is not yet in the cache (called a cold cache). This
concern is particularly acute for file systems, which de-
pend on caches to avoid disk or network operations,
which are orders of magnitude slower than in-memory
operations. Creating a warm cache situation is relatively
easy: to create n warm cache runs, you can run the test
n+1 times in sequence and discard the first result, which
is only used to warm the cache. However, testing a cold
cache situation is more difficult. For a perfectly cold
cache, all OS objects must be evicted from their caches
between each test. For file systems research, researchers
unmount the test file system between each test. This in-
validates inodes, directory name lookup caches, and the
page cache for the tested file system. Unfortunately, this
approach has two key disadvantages. First, even though
inodes (and other objects) are invalidated, they may not
be deallocated. This can expose subtle bugs when inodes
are not properly cleared before reuse. The second prob-
lem is that the kernel often keeps a pool of unused ob-
jects for faster allocation, so the second run may use less
system time because it does not need to get raw pages
for object caches. For these two reasons, we have ad-
ditionally run our version of chill, described in Section
3.3, to deallocate these objects.

To get a truly cold cache, a reboot is required because
all operating state is reset after a reboot. The disadvan-
tage of a reboot is that it takes a long time and usually
requires manual intervention. We have designed Auto-
pilot so that it can serialize all of its state into a plain text
file using the CHECKPOINT directive. The CHECKPOINT

directive is similar to UNIX fork in that it sets a variable
to “0” after writing a checkpoint, but the variable is set
to “1” after resuming from where the checkpoint left off.
After writing a checkpoint, an Auto-pilot script can re-
boot the machine. After the machine’s initialization pro-
cess completes (at the end of /etc/rc.d/rc.local),
we check whether the checkpoint file exists. If the
checkpoint file exists, is owned by root, and is not world-
writable, then we start Auto-pilot and it resumes from
where benchmark execution left off.

We wanted to quantify the differences between var-
ious methods of cooling the cache. We ran a recur-
sive grep -q benchmark over the GCC 3.4.3 source
tree. We chose grep because it is a simple read-oriented
benchmark, yet has a significant user component. We
used the six following configurations:

Sequential The benchmark is run repeatedly with a
warm cache.

Chill Chill is run between each iteration of the bench-
mark.

FREENIX Track: 2005 USENIX Annual Technical Conference USENIX Association184

Remount The test file system is remounted between
each iteration of the benchmark.

Remount+Chill The test file system is remounted be-
tween each iteration of the benchmark.

Reboot The machine is rebooted between each iteration
of the benchmark.

Reboot+Chill The machine is rebooted and Chill is run
between each iteration of the benchmark. We used
this configuration because the initialization process
after reboot may have caused some objects to be
loaded into the cache, and chill may evict them.

All tests were run on a 1.7Ghz Pentium IV with Fe-
dora Core 2 and a vanilla 2.4.23 kernel. The test partition
was on a Western Digital 5,400 RPM IDE disk. Each test
was run 10 times. The elapsed, system, and user time re-
sults are shown in Figure 6, and the error bars show the
95% confidence intervals for elapsed time.

 0

 5

 10

 15

 20

 25

 30

 35

 40

Reboot+Chill

Reboot

Rem
ount+Chill

Rem
ount

Chill
Sequential

T
im

e
(s

ec
on

ds
)

24.290

38.649 38.751 39.166 38.751 38.751
Elapsed

User
System

Figure 6: grep -r with various cache-cooling methods.

In all cases user time differences were indistinguish-
able. This was expected, because grep’s processing
does not change with the different configurations. The
Sequential configuration had the lowest elapsed and sys-
tem time, because it does not need to perform any I/O to
read objects from disk. For Chill and Remount, System
time was not distinguishable, but Chill used 13% less
system time, so remounting is a more effective way of
cooling the cache. Remount+Chill is indistinguishable
from remount. Reboot was 4.3% slower than remount-
ing the file system, and system time was indistinguish-
able. Reboot is not distinguishable from Reboot+Chill.
Therefore we conclude that rebooting the system is in
fact the best method of cooling the cache.

3.6 Benchmarking Script Hooks for NFS
We have found that we continually enhance our Auto-
pilots benchmarking scripts, yet each project often needs
its own slightly different setup and cleanup mechanisms
or needs to measure a new quantity. For example, our

tracing file system needed to measure the size of the
trace file that each test generated [2]. This made the
scripts hard to maintain. Projects that were started ear-
lier used older modified versions of the benchmarking
scripts. As the scripts improved, these older projects
would have progressively more out of date scripts. Re-
cently, we have redesigned Auto-pilot’s benchmarking
scripts to be extensible and provide hooks in critical lo-
cations. Our goal was to allow developers to test new file
systems and add new measurements to the benchmark-
ing scripts, without having to modify the originals.

To do this, Auto-pilot automatically reads in all files in
$APLIB/commonsettings.d ($APLIB is an environ-
ment variable that is set to the path where the scripts
were installed, but additional paths can be added to
it). These files define hooks for various events such as
mounting a file system, unmounting a file system, begin-
ning a measurement, and ending a measurement.

We prototyped a modified NFS client and server,
and therefore did not use the standard NFS benchmark,
SPEC-SFS [19], because it does not use the local client
(it hand-crafts RPCs instead). To benchmark our modi-
fied client and server, we used Auto-pilot to run standard
file system benchmarks, such as Postmark. We have in-
cluded the hooks we used for this project as an example
of what can be done with our hooks.

The simplest hook we have adds support for mounting
an NFS file system. The hook requires two environment
variables to be set (the server and the path to mount on
the server). The hook also loads and unloads the NFS
file system module (unless it is built into the kernel).

Because we were running a modified NFS server, we
needed to coordinate with the server and measure the
CPU time used by the NFS server (it does not make
sense to measure elapsed time, because the server runs
for precisely as long as the client). To coordinate be-
tween the client running the benchmarks and the server,
we used SSH to run remote commands on the server.
This follows the same model that SPEC SFS uses, but
replaces RSH using rhosts with SSH using public-key
based authentication. In the mount hook, we copy the
module to the server and then restart it. In the unmount
hook we unload the module. We also added a remote
process measurement hook. Each time a client process
is measured, we run a command on the NFS server to
record the amount of CPU time used by nfsd. After the
client process is terminated, we run another command
on the server to report the difference in CPU time used.

The current scripts make it relatively easy to bench-
mark one client machine accessing one server, which is
a relatively common benchmarking case. If you wanted
to benchmark one server with multiple clients, then you
would need to write new scripts in which the server runs
Auto-pilot and remotely executes the benchmark on the

FREENIX Track: 2005 USENIX Annual Technical ConferenceUSENIX Association 185

clients. The server-side scripts would need to be written
from scratch, but the client-side scripts could be very
similar to the current Auto-pilot benchmarking scripts.

4 Conclusion

Auto-pilot provides a useful set of tools for accurately
and informatively benchmarking software. Auto-pilot
configurations are powerful scripts that describe a se-
ries of tests, including multi-threaded versions of tradi-
tional benchmarks. Auto-pilot includes sample scripts
for various compile-based benchmarks and Postmark.
Auto-pilot’s flexible infrastructure allows many other
tests and measurements to be added. For example, we
include hooks for testing over NFS, measuring I/O oper-
ations and CPU time used by background processes. We
have also used many different benchmarks aside from
the ones included in the package (e.g., grep and other
custom benchmarks).

We present results in an informative manner that can
easily be used with Gnuplot. Getstats generates easy-
to-read tabular reports, automatically displays outlying
points, detects memory leaks, and runs statistical tests.
In combination with Auto-pilot, Getstats can evaluate
predicates to run tests until an arbitrarily complex con-
dition is satisfied, thereby saving time on the testbed.
Graphit processes results files and automatically creates
Gnuplot scripts with properly formatted data files to cre-
ate bar and line graphs.

Auto-pilot can checkpoint its state, reboot the ma-
chine, and resume running tests from where it left off.
Rebooting provides a colder cache than simply remount-
ing the file system, and requires no manual intervention
on the part of the benchmarker. When benchmarks fail,
Auto-pilot can automatically send email or text pages to
the benchmarker to prevent the testbed from lying idle.

We have used Auto-pilot for over three years and for
eighteen projects. Auto-pilot saved us many days of
work in collecting performance results and reduced de-
bugging cycles by exposing bugs more quickly.

Auto-pilot is released under the GPL and can
be downloaded from ftp.fsl.cs.sunysb.edu/
pub/auto-pilot/. Auto-pilot contains 5,799 lines
of code. The Auto-pilot Perl script has 936 lines; Get-
stats has 1,647 lines; Graphit has 587 lines; the C utili-
ties have 758 lines; the configuration files have 221 lines;
and our shell scripts have 1,650 lines. All of our Perl
scripts also have basic Perldoc formatted documentation
that provides information on simple usage. We also in-
clude a full user manual that describes more detailed us-
age and has some brief tutorials in PDF and GNU info
formats.

4.1 Future Work
We plan to add support for regular system snapshots,
which can then be correlated with the output of the tests.
This will allow a person conducting benchmarks to de-
termine the context that the test was executed in. These
snapshots will include kernel messages, memory usage,
CPU usage, and other vital statistics.

Getstats currently uses a two-sample t-test to compare
different results files. A t-test makes three assumptions:

• The samples are independent
• The samples are normally distributed
• The samples have equal variance

Auto-pilot scripts attempt to ensure that each sample
is independent of the other samples by purging cached
data through remounting and rebooting. The last two
assumptions must currently be verified by the bench-
marker. If the sample size is sufficiently large (roughly
greater than 30 samples), the t-test will still be appro-
priate. The third assumption must still be verified. We
plan to automatically run an F -test on the variances. If
the test concludes that the variances are not equal, then
Getstats will use an approximate t-test for samples with
unequal variances instead of the standard t-test.

Acknowledgments
Joseph Spadavecchia developed the first simple version
of our benchmarking Perl script that has since morphed
into the current Auto-pilot. Amit Purohit, Kiran-Kumar
Muniswamy-Reddy, Michael Martino, Avishay Traeger,
and others in our group have provided valuable feedback
when using the system to benchmark their projects.

This work was partially made possible by NSF CA-
REER award EIA-0133589, NSF Trusted Computing
Award CCR-0310493, and HP/Intel gift numbers 87128
and 88415.1.

References
[1] AIM Technology. AIM Multiuser Benchmark -

Suite VII Version 1.1. http://sourceforge.
net/projects/aimbench, 2001.

[2] A. Aranya, C. P. Wright, and E. Zadok. Tracefs: A
File System to Trace Them All. In Proceedings of
the Third USENIX Conference on File and Storage
Technologies (FAST 2004), pages 129–143, San
Francisco, CA, March/April 2004.

[3] Bell Laboratories. prof, January 1979. Unix Pro-
grammer’s Manual, Section 1.

[4] M. Blaze. A cryptographic file system for Unix. In
Proceedings of the fir st ACM Conference on Com-
puter and Communications Security, 1993.

[5] A. Brown and M. Seltzer. Operating System
Benchmarking in the Wake of Lmbench: A Case

FREENIX Track: 2005 USENIX Annual Technical Conference USENIX Association186

Study of the Performance of NetBSD on the In-
tel x86 Architecture. In Proceedings of the 1997
ACM SIGMETRICS Conference on Measurement
and Modeling of Computer Systems, pages 214–
224. ACM Press, June 1997.

[6] R. Bryant, R. Forester, and J. Hawkes. Filesys-
tem Performance and Scalability in Linux 2.4.17.
In Proceedings of the Annual USENIX Techni-
cal Conference, FREENIX Track, pages 259–274,
Monterey, CA, June 2002.

[7] S. Gaede. Perspectives on the SPEC SDET bench-
mark. www.specbench.org/sdm91/sdet/,
January 1999.

[8] The GCC team. GCC online documentation, 3.3.2
edition, August 2003. http://gcc.gnu.org/
onlinedocs/.

[9] S. L. Graham, P. B. Kessler, and M. K. McKusick.
Gprof: A call graph execution profiler. In Proceed-
ings of the 1982 SIGPLAN symposium on Compiler
construction, pages 120–126, June 1982.

[10] A. Ho and D. Coppit. Benchmark::Timer -
Benchmarking with statistical confidence , Decem-
ber 2004. User Contributed Perl Documentation,
Section 3.

[11] IBM. Software testing automation framework
STAF. staf.sourceforge.net, 2001.

[12] J. Katcher. PostMark: A New Filesystem
Benchmark. Technical Report TR3022, Network
Appliance, 1997. www.netapp.com/tech_
library/3022.html.

[13] Open Source Development Labs. Scalable
test platform. www.osdl.org/lab_
activities/kernel_testing/stp/,
2004.

[14] L. McVoy and C. Staelin. lmbench: Portable tools
for performance analysis. In Proceedings of the
USENIX 1996 Annual Technical Conference, pages
279–295, January 1996.

[15] J. S. Pendry, N. Williams, and E. Zadok. Am-
utils User Manual, 6.1b3 edition, July 2003. www.
am-utils.org.

[16] D. Phillips. A directory index for EXT2. In Pro-
ceedings of the 5th Annual Linux Showcase & Con-
ference, pages 173–182, November 2001.

[17] The OpenSSL Project. Openssl: The open source
toolkit for SSL/TLS. www.openssl.org, April
2003.

[18] H. V. Riedel. The GNU/Linux CryptoAPI site.
www.kerneli.org, August 2003.

[19] SPEC: Standard Performance Evaluation Corpora-
tion. SPEC SFS97 R1 V3.0. www.spec.org/
sfs97r1, September 2001.

[20] Sun Microsystems, Inc. Chill – remove useful
pages from the virtual memory cache. SunOS 4
Reference Manual, Section 8.

[21] E. Zadok and J. Nieh. FiST: A Language for Stack-
able File Systems. In Proceedings of the Annual
USENIX Technical Conference, pages 55–70, San
Diego, CA, June 2000.

FREENIX Track: 2005 USENIX Annual Technical ConferenceUSENIX Association 187

