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Abstract large number of concurrent connections: to reduce trans-
fer latencies for both cache hits and misses, proxies have
This paper proposes two mechanisms for reducing théo keep open connections to as many clients, peer caches,
communication-related overheads of Web applicationsand origin servers as possible [8]. Second, a significant
One mechanism igser-level connection trackingvhich  ratio of the requests arriving at forward Web proxies re-
allows an application to coordinate its non-blocking I/O quire transfers from origin servers or peer caches [42]. In
operations with significantly fewer system calls than pre-serving these requests, content is transferred from server
viously possible. The other mechanismdiata-stream to client connections by copying it twice between ker-
splicing which allows a Web proxy application to for- nel and application address spaces. Reverse Web proxies
ward data between server and client streams in the keperform a similar processing, but cache misses represent
nel with no restrictions on connection persistency, objecta smaller fraction of their load.
cacheability, and request pipelining. These mechanisms Commercial operating systems include limited sup-
remove elements that scale poorly with CPU speed, sucport for high-performance user-level Web proxies. Be-
as context switches and data copies, from the code patbides sendf i | e, the event notification mechanism
of Web-request handling. / dev/ epol | is being considered for inclusion in the
The two mechanisms are implemented as Linux loadLinux 2.6 kernel and a splice service for TCP connec-
able kernel modules. User-level connection tracking istion tunneling is included in the AIX 5.1 kernel. How-
used to implemenusel ect, a user-level select API. ever, the existing support is not sufficient, and, as a re-
The Squid Web proxy and the Polygraph benchmarkingsult, network appliances are used in many high-traffic
tool are used in the evaluation. With Polymix-4, a real- proxy installations. Appliances are carefully optimized
istic forward proxy workload biased towards cache hitsfor 1/O intensive workloads, but compared to general-
and small files, the reductions in CPU overheads relapurpose servers, have higher costs and limited flexibil-
tive to the original Squid (wittsel ect) are 52-72% ity. We submit that extending general-purpose operating
for usel ect , up to 12% forspl i ce, and 58-78% for  systems with support targeted for Web proxy caches will
the two mechanisms combined. Relative to Squid withboost the performance of off-the-shelf Web proxy appli-
/dev/epollusel ect provides 50% overhead reduction. cations and cache infrastructures, like Squid [27] and IR-
Cache [28], respectively.
1 Introduction This paper proposes enhancing general-purpose op-
erating systems with two mechanismsser-level con-

The advent of the World Wide Web has motivated anection trackingand data stream splicing These
large body of research on improving Web server per-mechanisms enable Web applications to reduce their
formance. Work has focused on improving the per-communication-related overheads by reducing the num-
formance of the TCP/IP stack [25] (e.g., NewReno,ber of system calls and the amount of data copied
SACK, Limited Transmit), of the Web server architec- between user and kernel domains, operations that are
ture (e.g. ZEUS[43], Apache [2], Flash[30], Squid[27], known to scale poorly with processor speeds [1, 29].
SEDA[41]), and of the interface between them (e.g., User-level connection tracking allows an application
sel ect [4], / dev/ epol | [34], sendfi | e[24]). to coordinate its non-blocking network operations and to

In spite of the recent progress, the ability of exist- monitor the state of its connections with minimal switch-
ing operating system architectures to handle communicalng between application and kernel domains. The mech-
tion intensive workloads remains limited for server 'in- anism is based on a shared memory region between ker-
the-middle’ configurations, such as Web proxies, CDNNel and application in which the kernel propagates el-
servers, and Edge Servers. First, these servers handleeients of the application’s transport and socket-layer
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state, such as the existence of data in receive buffers dayer state of their connections. Peer-to-peer infrastruc-
of free space in send buffers. The application can actures that include content forwarding, like Squirrel [14],
cess these state elements directly, without system callgan use the data-stream splice to lower node overheads.
The mechanism is secure as only information pertaining Modular implementations of the networking stack and
to the application’s connections is provided in its mem-the socket layer enable simple implementations for the
ory region. The mechanism can be used to implementwo mechanisms as loadable extension modules. Our ap-
low-overhead versions of theel ect/ pol | APIls, as proach is to replace methods of the transport and socket
well as new connection-tracking APIs. For instance, withlayers with new implementations, or with wrappers for
socket-buffer availability propagated as actual numbethe original methods. The Linux implementation pre-
of bytes, applications can perform more efficient I/O by sented in this paper does not require modifications of the
issuing 1/0 operations only when the number of byteskernel source tree.
that can be transferred is greater than a specified thresh- The remainder of this paper is organized as follows.
old. Similarly, with transport-layer state like congestion Sections 2-3 describe the proposed mechanisms. Sec-
window size and round-trip time, applications can learntion 4 describes the experimental testbed and methodol-
about the latency characteristics of their connections andgy. Section 5 presents the results of the experimental
selectively customize their replies to improve the clientevaluation. Section 6 discusses related research and Sec-
response times [18]. tion 7 summarizes our contributions.

Data-stream splicing allows an application to perform
data forwarding between corresponding server and clien?  User-level Connection Tracking
TCP streams in the kernel, at the socket level. This pro-
posal is the first to address the whole range of data trans- Experiences with communication-intensive applica-
fer operations performed by a Web proxy cache applications, such as Web servers, demonstrate that restricting
tion, supporting persistent connections, cacheable conthe number of kernel threads used by the application is
tent, pipelined requests, and tunneled transfers. Thigritical to achieving good performance. The most ef-
mechanism draws significant benefits from the decisiorficient architectures are event-driven [27, 30] because,
to implement it at socket level. Compared to user-levelpy avoiding blocking 1/O operations, they handle a large
data forwarding, the mechanism eliminates data copiefumber of connections with a small number of control
and system calls [11, 37]. Compared to IP-level alter-threads. Efficient non-blocking 1/O requires a mecha-
natives [21, 39], the mechanism can be applied to datajsm for tracking connection state, such that I/O opera-
streams with different TCP connection characteristicsions are issued only when guaranteed to be successful.
(e.g., SACK) and it provides the application with fulland  The traditional OS mechanisms for connection-state
efficient control over unsplicing and payload caching.  tracking,sel ect andpol | , retrieve connection state

The two mechanisms are implemented in Linux andfrom the kernel by performing two context switches and
are evaluated using Squid [27], a popular Web proxytwo data copy operations; the amount of data copied is
cache application, and Polygraph [40], a benchmarkingyroportional to the number of existing connections. Re-
tool for Web proxies. User-level connection tracking is cently proposed event delivery mechanisms [5, 19, 34]
used to implement a user-level wrapper for the nativeallow more efficient in-kernel implementations, avoid the
sel ect system call, calledisel ect. Microbench-  application-to-kernel data copy, and even the kernel-to-
marks demonstrate thesel ect enables reductions in  gpplication copy [33, 34]. However, the benefits of these
CPU utilization of 60-95% relative tsel ect and of  optimizations are partially offset by the possible increase
20-90% relative td dev/ epol | for 4-128KByte ob-  in the number of system calls since the application has

jects and 100% cache hits. Data-stream splicing ento register and cancel its interests’ for every socket. The
ables overhead reductions of 10-70% for a workload withadditional system calls are shown to represent a relatively

100% cache misses. With Polymix-4, a realistic forward-high overhead for sockets with short lifetimes [19].
proxy workload biased towards small file sizes and cache The user-level connection trackinmechanism pro-
hits, the reductions in CPU overheads relative to the origposed in this paper attempts to further reduce the number
inal Squid (usingsel ect ) are 52-72% for user-level se- of system calls related to connection-state tracking and to
lect, up to 12% for splice, and 58-78% for the two mech-extend the set of connection-state elements that applica-
anisms combined. tions can exploit. The approach is to propagate certain
While our mechanisms have been proposed and evaklements of a connection’s socket- and/or transport-layer
uated in the context of Web proxies, they can benefit astate at the user level, in a memory region shared between
wider range of applications. CDNs, Edge Servers, andhe kernel and the application (see Figure 1). The appli-
internet applications based on SEDA [41] can benefitcation can retrieve the propagated state using memory
from low-overhead access to the socket- and networkread operations, without any context switches and data
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Memory Read

forever {
check state
for each socket
read/write/accept

updating variables in the shared memory region is a neg-
ligible fraction of the CPU overhead of sending/receiving
a packet or of executing a read/write system call.

The kernel component exploits the modular imple-

& Updag\ ggggk mentation of the_socket a_nd transport layers. In L_inux,
Kernel Update the socket layer interface is structured as a collection of
’ function pointers, aggregated as fields of st r uct

prot o_ops’ structure. For IPv4 stream sockets, the
corresponding variable isi net _st r eamops’ . This
is accessible through pointers from each TCP socket and

copies. The mechanism is secure because each appncig_gludes pointers to the functions that support the read,
tion has a separate memory region which contains onlyVfte, select/poll, accept, connect, and close system calls.
information pertaining to the application’s connections. Similarly, the transport layer interface is described by a
The mechanism does not require any system calls fopt Fuct proto variable called t cp_prot’ , which

connection registration/deregistration. All connectionsincludes pointers for the functions invoked upon TCP
created after the application registers with the mechaSOocketcreation and destruction. Also, each TCP socketis

nism are automatically tracked at user-level until closed @ssociated with several callbacks that are invoked when
The mechanism allows for multiple implementations, events occur on the associated connection, such as packet

depending on the set of state elements propagated &ffival or state change. _

user level. For instance, in order to implement the In order to track a TCP connection at user level, the

sel ect / pol | -type connection state tracking APIs, kernel component replaces some of these functions and

the set includes elements that describe the states of sef@!/backs; the replacements capture socket state changes,
and receive socket buffers. Similarly, the representafiltér and propagate them in the shared region. Con-
tion of state elements in the shared memory region del€ction tracking starts upon return from tbennect

pends on the implementation. For instance, for thedr accept system calls. To avoid changing the ker-
sel ect/ pol | -type tracking, the representation can be nel source tree, in t_hls implementation, the tracklng_ of

a bit vector, with bits set if read/write can be performed CCept -ed connections starts upon return from the first
on the corresponding sockets without blocking, or it canS€! €ct/ pol | system call. _

be an integer vector, with values indicating the numberJser-level Tracking with select API.In this paper, we

of bytes available for read/write. use the proposed connection-state tracking mechanism to

The same set of state elements is associated with all dffPlementusel ect , a user-level tracking mechanism
the application’s connections. The data structures in thaVith the same APl asel ect . _
shared region should be large enough to accommodate FOr this implementation, the shared memory region
the maximum number of files a process can open. HowPetween kernel and application includes four bitmaps:
ever, the shared memory region is typically small. For in-the Active Read Write, and Exceptbitmaps. The Ac-
stance, an application with 65K concurrent connectiondiVe bitmap A-bits, records whether a socket/file descrip-
and using 16 bytes per connection requires a IMByte relOr IS tracked, i.e., monitored, at user level. The Read
gion, which is a small fraction of the physical memory and Write bitmapsR- andWhits, signal the existence of
of an Internet server. data in receive buffers and of free space in send buffers,

In addition to direct memory reads, applications canf€Spectively. The Except bitmaf;bits, signals excep-
access the shared memory region through user-level fitional conditions. _ o
brary calls. For instance, when the shared state includes The implementation comprises an application-level
information on socket-buffer availability, the application library and a kernel component. The library includes
can use user-level wrappers foel ect/ pol | . Such (1) usel ect, a wrapper for thesel ect system call,
wrappers can return a non-zero reply using only the in-(z_) ugel ect _i ni t, a function that initializes the ap-
formation in the shared region; otherwise, if parameterdPlication and kernel components and the shared memory
include file descriptors not tracked at user level or a nonf€gion, and (3yet _socket _st at e, afunction thatre-
zero timeout, the wrappers fall back on the correspond{Urns the_ read/write state o_f asocket by accessing the cor-
ing system calls. responding R- and W-bits in the sha_red region.

The kernel component updates the shared memory re- The usel ect wrapper, consisting of about 650
gion during transport and socket layer processing, andnes of C code, is composed of several steps (see Fig-
at the end of read and write system calls (see Figure 1)iT€ 2). First, the procedure checks the relevant informa-
The shared region is not pageable and updates are injlon available at user level by performing bitwise AND
plemented using atomic memory operations. The cost oPétween the bitmaps provided as parameters and the

Application

Shared Memory

Figure 1: User-level connection tracking.
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i nt uselect maxfd, readfds, witefds,
exceptfds, tineout) {

static int nunPass = O;

int nbits;

nbits = BI TS.ON(readf ds& R-bits& A-bits)
+ BITSON(witefds& Whits& A-bits)
+ BI TS.ON(exceptfds& E-bits& A-bits);

if(nbits > 0 & nunPass < MaxPass) {
adj ust readfds,witefds, exceptfds

nunmPass++;
} else {
adj ust & save nmaxfd, readfds, witefds,
except f ds
nbi ts = select maxfd, readfds,...)

nunmPass = O;
i f( proxy_socket set in readfds) {
check RRWE-bits
adj ust nbits, readfds,witefds,
except f ds
}
}

return nbits;

}

Figure 2: User-level select.

shared-memory bitmaps. For instance, treadf ds

bitmap is checked against the and R- bitmaps.

counting the 'on’ bits, adjusting the input arrays, and sav-
ing the bits reset during the adjustment performed before
callingsel ect are all executed in the same pass.

Despite the identical APlysel ect has a slightly
different semantics thasel ect. Namely, sel ect
collects information on all file descriptors indicated in
the input bitmaps. In contrastisel ect might ignore
the descriptors not tracked at user level for several invo-
cations. This difference is rarely an issue for Web appli-
cations, which calusel ect in an infinite loop.

The usel ect kernel component is structured as a
device driver module, consisting of about 1500 lines of
C code. Upon initialization, this module modifies the
system’st cp_pr ot data structure, replacing the han-
dler used by thesocket system call with a wrapper.
For processes registered with the module, the wrapper
assigns to the new socket a copy ofet _st r eamops
with new handlers for ecvirsg, sendnsg, accept ,
connect,pol | ,andr el ease.

The new handlers are wrappers for the original rou-
tines. Upon return, these wrappers update the bitmaps
in the shared region according to the new state of the
socket; the file descriptor index of the socket is used to
determine the update location in the shared region.

Ther ecvirsg, sendnsg, andaccept handlers up-
date theR- , W, or E- bits under the same conditions as

the result of any of the three bitwise ANDs is nonzero, the originalpol | function. In addition,accept as-
usel ect modifies the input bitmaps appropriately and signs the modified copy dfnet _st r eamops to the
returns the total number of bits set in the three ar-newly created socket.

rays; otherwiseyusel ect callssel ect. In addition,

Replacing the pol | handler, which supports

sel ect is called after a predefined number of successSel €ct/ pol I system calls, is necessary in our Linux
ful user-level executions in order to avoid starving 1/O implementation because a socket createdabgept
operations on descriptors that do not correspond to con's assigned a file descriptor indefter the return from

nections tracked at user level (e.g., files, UDP sockets). the accept handler.

For a socket of a registered

When Ca||ingse| ect, the wrapper uses a dedicated Process, the new0| | handler determines its file de-

TCP socket, calleghroxy socketto communicate with

scriptor index by searching the file descriptor array of

the kernel component; the proxy socket is created at inithe current process. The index is saved in an unused
tialization time and it is unconnected. Before the sys-field of the socket data structure, from where it is re-
tem call, the bits corresponding to the active socketdrieved by event handlers. Further, this function (1) re-
are masked off in the input bitmaps, and the bit for thePlaces the socket'slat a_ready, write._space,

proxy socket is set in the read bitmapaxf d is ad-

error _report, andst at e_.change event handlers,

justed accordingly, typically resulting in a much lower and (2) sets the correspondirfg bit, which initiates
value;t i meout is left unchanged. When an 1/O event the user-level tracking and prevents futysel | in-
occurs on any of the "active’ sockets, the kernel compo-vocations.  On return, the handler calls the original
nent wakes-up the application which is waiting on thet cp-pol I .

proxy socket. Note that the application never waits on Theconnect handler performs the same actions as
active sockets, as these bits are masked off before callinée pol | handler. Ther el ease handler reverses the
sel ect . Upon return from the system call, if the bit for actions of theconnect/ pol | handlers.

the proxy socket is set, a search is performed orRthe

The event handlers update tRe, W , andE- bits like

W, andE-bit arrays. Using a saved copy of the input the originalpol | , set theR- bit of theproxy socketand
bitmaps, bits are set for the sockets tracked at user levéinblock any waiting threads.
and whose new states match the application’s interests.Exploiting uselect in Squid. In order to usaisel ect ,

The usel ect implementation includes optimiza- Squid is changed as follows.

During initializa-

tions not shown in Figure 2 for simplicity. For instance, tion, before creating the accept socket, Squid invokes
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usel ect i ni t ; as aresult, the accept socket is trackedquest pipelining and persistent connections for HTTP
at user level. In each processing cycle, Squid invoke$&GET and POST. For instance, for an HTTP GET, the
usel ect instead osel ect to determine the states of sourceis the origin server, and thdestinationis the
all of its sockets. Finally, when trying to prevent starva- client; the server response is forwarded inside the kernel
tion of the accept socket during a processing cycle, Squidrom the server to the client connection, while additional
usegyet _socket _st at e instead okel ect tocheck clientrequests are handled by the application and, if nec-
the ready-to-read state of this socket. essary, forwarded to the server. After unsplice, the same
Overall,usel ect enables Squid to eliminate a sig- client connection can be used to transfer cached objects
nificant number of systems calls with very few code orit can be spliced with a connection to a different server.

modifications. Furthermoresel ect reduces the over- Optionally, in unidirectional mode, a copy of the
head of the remainingel ect system calls through the transferred payload is provided to the application. This
use of the proxy socket. mode, calledkeepCopy enables a Web proxy to popu-
late its cache while exploiting kernel-level data forward-
3 Data-Stream Splicing ing. The application receives the content via the tradi-

tional r ead interface. The input stream is not termi-

The data-stream splicing mechanism proposed and@ated if the client aborts its connection, thus the cache
evaluated in this paper enables a Web proxy to forwardperation can be completed.
data between its server and client connections in the ker- Our experience with Web proxy workloads led us to
nel, with support for content caching, persistent connecdevelop a splice API that minimizes system call over-
tion, and pipelined requests. The mechanism helps reheads, even for short transfers. The approach is to allow
duce the number of context switches and data copy Opthe application to combine several system calls that are
erations incurred when serving cache misses, POST rdypically issued in sequence by the application, and to
quests, and connection tunnels. eliminate some of the remaining system calls. Specifi-
In its basic functionality, the mechanism establishescally, the basic splice interface, which specifies the con-
in the socket layer, a data path between two data streamBgctions, the type of splicing, and the termination con-
such that packets received on one stream are forwardedtion, can be combined with: (1) a write to the client
on the other stream immediately, in interrupt context. Onconnection, used for the HTTP headers and the first con-
servers with zero-copy networking stacks and adaptetent segment, and (2) a read from the server connection
support for checksum computation, the payload of for-in KeepCopymode. In addition, an application can save
warded packets is not touched by the proxy CPU. a system call when not interested in acquiring the amount
The proposed mechanism extends previous proposaf forwarded data returned by the unsplice command.
[22, 37, 39] with support for the following functionality: Namely, with theAutoReleaseption set in the splice re-
e request pipelining and persistent connections; guest, the kernel releases the splicing context upon termi-
« content caching decoupled from client aborts: nation, eliminating t_he r_1eed for an explicit unsplice com-
o efficient splicing for short transfers. man_d frgmthe apphcgtlon. A.‘IS.O’ Iﬁengop)_mode,t_he .
The new socket-level splicing mechanism can estap@PPlication can specify a minimum input size, which is

lish bi- and unidirectional data paths. Figure 3 illustratesuSed to reduce the number of read system calls.

the corresponding data flows. In the bidirectional mode,lmlplemegtatmn. Thl_e mpl;amentzﬂoq of data-st[jeam
the traditional model for in-kernel splicing [21, 22, 37], SPlicé, about 4000 lines of C code, is structured as a
data received on either of the two connections is for-0@dable module. The module maintains a description

warded to the peer endpoint. Connection close event@Nd state for each spliced connection. Connection de-

are also forwarded. Splicing terminates when both Con_'scriptors are maintained in a hash table with hash entries

nections are ircL OSE state. Bidirectional splice is typ- computed from the addresses of related TCP sockets.

ically used for SSL tunneling; it cannot support request Thl‘? application uselsr?cr(l callls to issueSpliceand I
pipelining and persistent connections. Unsplicecommands to the kernel. Parameters and results

The unidirectional mode addresses these limitations2'€ represented in &pliceRequestata structure. For

Data coming from one endpoint, teeurce is forwarded Splice this data structure identifies the two connections
on the peer connection, towards tHestination while (fdo, _fdl)_’ the type qfsplicing (e.g., bi- or unidirectional,
data coming fromdestinationis provided to the applica- [€'mination type, with or withouteepCopyandAutoRe-
tion and not forwarded to thgource Connection close €259, and the data to send édl before splicing is ini-

events are not forwarded. Splicing terminates (1) after“ated' For unidirectional splicéd0 is the source and

transferring a specified number of bytes, or (2) when thdd1is the destinat_ion. The data structure ql;o includes
sourcecloses the connection. parameters used in one or more of the splicing modes,

Unidirectional mode is typically used to support re- such as the payload limit, when termination is based on
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Figure 3: Types of splice interactions.

the transferred amount. FéteepCopy the application warding a fraction of the packet, as it might occur at the
can indicate the minimum input sizemin2read, the  beginning and the end of splicing.
maximum amount of data forwarded and not yet read Therecvnsg andsendnsg handlers in the new
(max2cachg and an input buffer, to be filled by the i net streamops are replaced with error-returning
Splicecommand if data is already availablmax2cache handlers when the corresponding operations are not per-
helps prevent slow applications from overloading themitted for the spliced socket. For instance, in bidirec-
kernel buffer cache. tional splicing, both handlers are replaced for both sock-
After the Splicecommand, the application waits for ets. For unidirectional splicing, write is not permitted for
notification of splicing termination, provided by the ker- the destination socket, and read is not permitted for the
nel as aPOLLOUT event on the destination connection. source socket unless splicing witleepCopy
This occurs when the transfer reaches the payload limit For KeepCopy the application uses theead sys-
or the FIN packet is processed, and,keepCopywhen  tem call, supported by theecvnsg handler, to re-
the application reads the last segment of the forwardedrieve a copy of the forwarded data. A local copy is
payload. If termination is due to connection abort, ancreated by cloning the packets, i.e., #le buf f 's, and
error condition is signaled to the user. adding them to a list in the splice descriptor of the source
For short transfers, the splicing can terminate in thesocket. The newol | returns aPOLLI N event when
Splicecall. In this case, the application is informed by an the local copy reaches the specified minimum input size
appropriate return code and the splice context is releasedmin2read or when no more data is to be forwarded. The
The application uses the&nsplicecommand to re- newrecvinsg of the source socket transfers the data
lease the splicing context after termination notificationfrom the clonedsk _buf f ’s to the application buffer.
or when it wants to abort the splice, such as on timeoutUsing the mechanism in Squid.The original Squid 2.4
or application shut-down. THensplicerequest specifies implementation handles cache misses as follows. The
the two connections and it returns the number of byteshttpmodule reads from a server connection in a 85KByte
forwarded in each direction. buffer allocated on the call stack. The data is transferred
In the kernel, the splicing is established if the con-to thestoremodule, which copies it in 4KByte memory
nections are in theeSTABLI SHED or CLOSEWAI T blocks and notifies thelient-sidemodule of the new data
states. Upon splicing, the two TCP sockets arearrival. Theclient-sideprocesses the reply, generating
assigned new dat a_ready, witespace, theHTTP headers. If it can fill a 4KByte block, it copies
error report, and state_change handlers datafrom thestoreinto a send buffer, and it registers for
and a new net _st r eamops data structure, with the a ready-to-write naotification on the client socket. When
recvnsg, sendnsg, andpol | entries replaced. the natification is received, the block is written, the com-
The newdat a_r eady andwr i t e_space handlers, pletion routine updates the state, and the client registers
invoked when data and ACKs are received, perform mosto receive the next block from tretore
of the data forwarding. Packet forwarding is started at In order to exploit the data-stream splice mechanism
end of theSplicecall and it is driven by data and ACK for GET requests, we made the following changes. The
packet arrivals on the two connections. Forwarding nevehttp reads the first segment of a server reply in a 2896-
stalls except fokeepCopytransfers when the amount of byte buffer, attempting to consume only the first2 MTUs.
data forwarded and not read reachamx2cacheln this  This size is chosen because: (1) a multiple of MTU size
case, forwarding is restarted at the end etvnsg. minimizes checksum overheads by enabling incremental
For lower overheads, the TCP checksum is computed¢hecksum computation; (2) the included content and the
incrementally, from the old value, when forwarding an proxy HTTP headers are below the 4Kbyte limit that can
entire packet; it is computed from scratch only when for-be sent in one operation by thkent-side and (3) a large
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fraction (approx. 40%) of the objects in proxy workloads sources for the 'control path’ (i.e., HTTP header process-

can be received in one read operation. ing) and cache management, which remain at user level.
After the read, if HTTP headers indicate that more

data is expected, thlettp initializes a splice descriptor 4 Experimental Environment

before sending the content to te®reand does not pre-

pare for a new read from the server. The splice descriptor The experimental evaluation of the two mechanisms

is attached to th8t or ageEnt ry data structure, which  proposed in this paper is conducted with Squid, a pop-

is reachable frorhttp andclient-siderequest descriptors. ylar Web proxy application, and with Polygraph [40], a
For a request with a splice descriptor, #l@nt-side  benchmarking tool widely used by the industry.

does not wait to fill the first 4KByte block before prepar-

ing for output. When it receives the ready-to-write no- 4,1 Hardware, System Software, and Apps
tification on the client socket, it invokes tigplicecom-
mand to write the available content and to initialize the  Qur testbed comprises five nodes: three Polygraph
in-kernel transfer; it does not register with thtreto nodes (two clients and one server), the Squid proxy, and
receive the rest of the content. awide-area network emulator. Except for the WAN emu-
TheSpliceparameters define a unidirectional transfer,|ator which runs PicoBSD 0.445, all nodes run the Linux
with the server connection as source and the client con2 4 kernel. An additional node, running the monitor-
nection as destination. Splicing termination is set for ajng and data collection applications, is attached to the

payload limit, if ContentLengths defined, or, otherwise, testbed. Table 1 describes the hardware configurations.
for the close of the server connection. TAgtoRelease

flag is set. If the content is cacheable, KeepCopylag

is set and the related parameters are defined. Table 1: Hardware configuration of the testbed.

If the Splicecommand returns without error or in- CPU Type | Speed| Memory
dication of termination, the client socket is registered S Client T Sorturii ('\ggg) (M?%’;es)
for (1) ready-to-write notification, to process the splic- POIVCI!en: 5 Pen:!um“l oo TS
ing termination, and for (2) ready-to-read notification, to oy-aen entium

- . PolyServer PentiumPro| 2x200 224

receive the next request from the client. KeepCopy .

d h ket i . df d d Web Proxy Pentiumlll 1000 512
mode, the server socket is registered for ready-to-read —yaNEmulator | PentumProl 200 178

notification. Splice-related flags are set in both client and
server socket descriptors in the global_t abl e to en-

sure that spliced connections are handled appropriately Except for the Polygraph server, all nodes are attached

in the close procedure, such as when called from timeoulto a Gigabit Ethernet switch, the Alteon ACEswitch 180.
handlers. IfSplicereturns an error, the transfer resumespq Polygraph server is attached via the dual-homed
at a;;]pllcatpn Level.l ok o _ . WAN emulator. The proxy node uses an Alteon Giga-

The Squid handler invoked upon splicing termination p; ehernet adapter; the other nodes use Fast Ethernet
performs the following actions. First, it checks if splicing adapters. The network links and the WAN emulator are
term|nat|o.n.was abnormal, checking the server Sc’Ckeﬁever overloaded during the experiments. The network
E_OF condltlpn forKeepCopyanq the socket error other— configuration is similar to that used in Polygraph Cache-
wise. Next, it invokes thelient-sideprocedure for write g 153) with clients and servers on different subnets.
completion, providing the size of the spliced transfer. Polygraph. Web Polygraph 2.7.6 [40] is a benchmarking
This restarts the activity on the client connection, acti-t00| for caching proxies and other Web intermediaries.
vating the O‘Htp“t fgr the next pending reque_st or CIOSingPolygraph includes high-performance HTTP clients and
the connection. Fmally, the Server connection Is adde%ervers, realistic traffic generation and content simula-
to the pool of persistent connections or closed, accordﬁon and standard workloads. These standard work-
ing to the request parameters. If splicing termination isloads, including the Polymix-4 used in our evaluation,
abnormal, both connections are closed. are widely accepted in the web caching community.

On a timeout, the handler issues dnsplice com- Each client and server node (agent) runs one or more
mand, calls thelient-sidewrite completion procedure, robots’, each robot handling one connection at a time,

and.closesl_both connections. We have also exten(.jlegnd possibly sending several requests in a connection. A
Squid to splice HTTP CONNECTSs and POSTSs. DetailSjiont rohot maintains a predefined request rate (e.g., 0.4

are available in [38]. reg/s). The overall request rate is determined by the num-

Overall, with tr;]e E)(;oposedh,s?lic_e mecEaﬂiS_m a Webyer of client nodes, number of robots in a client node, and
proxy can move the 'data path’ for its cache misses ("e'per-robot request rates.

HTTP body transfers) into the kernel. This releases re- In our experiments, we use Polygraph 2.7.6, modi-
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fied to allow client and server applications to open upthe read/write availability flags of the indicated sockets.
to 12,000 concurrent connections instead of the originallThird, the list of sockets in which the application has in-
1024 limit; the kernel connection limit is set accordingly. terest is traversed, and I/O operation(s) are performed if
Proxy Application. The proxy application is Squid 2.4, the corresponding availability flags are set. Availability
extended to exploit thespl i ce and usel ect in- flags are cleared when the corresponding I/O operations
terfaces proposed in this paper, as well as theeturn blocking indications (i.eerr no is EAGAIN).

/ dev/ epol | interface used for comparison with Sockets are unregistered wépol | just before they are
usel ect . Squid is a typical example of an event-driven closed. The two traversals in steps one and three are also
application that can manipulate a very large number ofperformed when usingsel ect , sel ect , andpol I .
communication streams. Squid is built around an infiniteWAN Emulation. To simulate WAN conditions, we use
sel ect/ pol | -loop. In each cycle, the application per- the same tools and settings as the Polygraph Cache-Offs.
forms input and output operations on its active socketsThe WAN emulation tool is DummyNet [36]. For the
depending on connection and request processing statesroxy-server link, this tool introduces round-trip packet

We modified Squid to support up to 64K file descrip- delays of 80 ms and packet losses of 0.05%. No delays
tors, more than the 1024 preset limit in Linux. In addi- or losses are introduced on the client-proxy links.
tion, we made several changes to improve its scalability
under high load. These changes are orthogonal to thd.2 Experimental Methodology
mechanisms evaluated in this paper and are deemed nec-
essary because of our interest in driving the applicationat The goal of our experimental study is to evaluate
higher loads than previously published evaluations [40]the performance of the proposed mechanisms and com-
on comparable hardware. For instance, we reduced theare them with related mechanisms. The evaluation fo-
number of calls for memory allocation by extending the cuses on performance metrics like CPU utilization and
use of pre-allocated buffers. response time. Towards this end, we use (1) microbench-

Squid can use several models of disk cache managemnarks, in which the workload includes fixed size objects
ment. In our experiments, we use theskd and the and the Web proxy does not perform disk I/O opera-
null models. Thediskdmodel uses daemons to perform tions, and (2) realistic experiments, in which the work-
the (blocking) disk I/O operations, one daemon for eachoad is Polymix-4, a Polygraph workload representative
disk. Squid communicates with a daemon through twofor Web proxy caches, and the proxy stores cached ob-
message queues and a shared memory region; the mgeets on disks. Taking a high-level view at the benefits
sage queues are used for operation descriptors and corof these mechanisms, we do not attempt to quantify the
pletion notifications, and the shared memory is used foindividual components of the associated overhead reduc-
the data blocks subject to I/O operations. tion, such as data copies and context switches.

The null model emulates an infinite size, 0-overhead In microbenchmarks, we vary: (1) object cacheabil-
disk cache. There is no disk I/0O and the list of cacheablety, (2) hit ratio, (3) object size, (4) request rate, and
objects read from the server is maintained in memory. (5) number of concurrent connections. In an experi-

For/ dev/ epol | , we useeppatch-2.4.18-0.320]. ment, all requests are HTTP GETs for objects of identical
/ dev/ epol | is an efficient event-delivery mechanism size and cacheability type (i.e., either cacheable or non-
which uses a shared memory between application andacheable). The set of object sizes includes 4, 8, 12, 25,
kernel to eliminate the data copy of naotification results.64, and 128KBytes. The selection is related to the distri-
However, it does not eliminate the system calls for evenbution of file sizes in Polymix-4, in which, with approx-
notification retrieval, and requires system calls for sockeimation, 4KBytes is the 50-th percentile, 8KBytes is the
registration and deregistration. In order to use this inter-75-th percentile, and 25KBytes is the 95-th percentile.
face, we define a new Squid procedure for connectionHit ratios are either 0% or (almost) 100%. Squid uses
state tracking similar to the one used fwl | , and we  thenull disk manager. Each data point represents three
extend thd d_t abl e to include flags for read and write or more samples. For each sample, we collect statistics
availability. The new procedure performs the following for 15min, after a 20min warm-up.
steps. First, it traverses the file descriptor table, identi- In the Polymix-4 experiments, we vary only the
fying the sockets in which the application is interestedrequest rate. These experiments are similar to the
to read or write. For each of these sockets, the evenFourth Polygraph Cache-Off benchmarking [23], but
types of interest are saved. Also, sockets not registeredith shorter phases. Namely, each experiment starts with
with epol | are registered at this time, indicating in- an empty cache and takes 4h 30min. The fill phase
terest in all types of events; their new read- and write-runs at 160req/s for 90min. The first peak 'daily’ load
availability flags are set. Secorghol | isinvoked,and phase takes 25min, and the measurement peak 'daily’
if there is any returned list of events, this is used to sefoad phase takes 120min; the rest of the time is spent

232 2003 USENIX Annual Technical Conference USENIX Association



in ramp-up and down phases. Squid usesdiskddisk 100

manager, with 4 disks, each with 3GByte of caching 90 f T
space. Each data point represents one sample. 80 Y.

In all experiments, request rates are selected suchthat ¢ 4
client and server nodes are never overloaded. g 60

For each experiment, we collect the statistics pro- § .
duced by the Polygraph agents, bystat and =1 20 Vi s ‘ﬂgﬁ‘:’: 7
t cpstat running on the proxy node, and by Squid. & y epoll --x-
Polygraph statistics include request rates and response ~ % / [ uselect e
times. vnst at provides information on CPU utiliza- 20 yooe
tion, andt cpst at provides information on TCP trans- 10 g @
fers. Squid provides various statistics, such as rate of 0 1000 2000 3000 4000 5000 6000 7000
cache hits and number of open sockets. Established Connections

All the plots of performance metrics for a single con-
figuration include 90-percent confidence intervals, calcu
lated with the T-student distribution. Note that for some
experiments, the confidence intervals are very small,
hardly visible on the plots. This is due to the workload

model and the large number of requests in each run. 60 % " o et 10K |

Figure 4: Proxy CPU utilization: 100%Hits, 100req/s,
8KByte files, null store.

100 e

Polygraph Parameters. In all experiments, except for o « Dol IOk
the parameters specified above, the Polygraph testbed is = . ) uselect 10K e |
configured as for the Polymix-4 workload. Among its & poll 5K --o--
parameters we mention: client robot request rate of 0.4 5 L L
reg/s, and server delays normally distributed with a 2.5s % 40 =

mean and 1s deviation. The number of requests that a & e e
robot sends in a connection is drawn from a Zipf(64) dis- 20 S P o ;
tribution. Similarly, the server uses a Zipf(16) distribu- o ORI TS WS

tion to close active connections. The Polymix-4 work- 0o L=

0 20 40 60 80 100 120 140

load has 58% hit rate, and about 70% cacheability ratio. Request Size (KBytes)

Squid Configuration. In all experiments, Squid runs

with the default configuration, except for a few changes.Figure 5: Proxy CPU utilization: 100%Hits, 5K robots
No access log is maintained and no access control is peft 50req/s and 10K robots at 100 reg/s, null store.
formed, as in the Squid evaluation at the Third Polygraph . o .
Cache-Off [23]. The memory cache is 100MBytes (VS_WhICh emulates the behavior of an origin Web site.
175MBytes used at the Cache-off). Tttiskddisk man- For the first microbenchmark, the Polygraph clients
ager spins, waiting for request completion, if a daemorimaintain a rate of 100 reg/s, and a varlable numbgr of
request queue is longer than 4K items, and it starts droptobots: 250, 10Q0, 2500 and 10,000. The file sizeis fixed
ping file open requests when the queue exceeds 2K item&! 8KBytes, which represents thers-th percentile of
When using data-stream splice, all invocations Ase the Polymix-4 object size distribution. Figure 4 presents

toRelease64K max2cache, and 16Kni n2r ead. the proxy CPU utilization versus the mean number of
concurrent established connections as reported by Poly-
5 Experimental Evaluation graph, which may be lower than the total number of

robots. The plots illustrate that, for this level of re-
guest rate, withusel ect , the system load is indepen-
dent of the number of active connections, while with
/ dev/ epol | andsel ect, the system loads are very
sensitive to the number of active connections. For in-

Two microbenchmarks are used to compare the per= :
formance of the proposassel ect , with thesel ect stance, the load difference between 1000 and 2500 con-

and pol | system calls, and with thedev/ epol | nections is 0% forusel ect, 14% fordev/ epol |,

event notification mechanism. The first microbenchmarkand 55% forsel ect . .
For the second microbenchmark, the Polygraph

evaluates the scalability with the number of active con- . T .
nections for a fixed file size, and the second microbenchgfIIentS maintain 5,000 and lQ,OQO robots, each with a
mark evaluates the impact of file size for a fixed rate.f'xed rate of 0.01 reqg/s, resulting in overall request rates

For both microbenchmarks, the hit ratio is almost 100%,Of 50 reg/s and 100 req/s, respectively. File size varies

5.1 Microbenchmark: User-level Connection
Tracking
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Figure 7: Proxy CPU utilization: 0%Hits, 40 req/s, null
store.

from 4 to 128KBytes. We could not experiment with

req/s, null store.

5.2 Microbenchmark: Data-stream Splicing

Two microbenchmarks are used to evaluate the per-
formance of data-stream splicing relative to application-
level forwarding. The first microbenchmark evaluates
the dependence on transfer lengths, and the second mi-
crobenchmark evaluates the dependence on system load.

For the first microbenchmark, Polygraph clients
maintain a fixed rate of 40 reqg/s and a hit ratio of 0% (i.e.,
all requests handled by Squid require transfers from the
server). Across experiments, we vary the object size and
cacheability (i.e., cacheable or non-cacheable). When
the object is cacheable, the splice mod&keepCopy
thus the application performs read operations to bring the
spliced content in its cache; no reads are performed for
non-cacheable objects.

Figure 7 presents the proxy CPU utilization when the

significantly more than 10K robots because of memoryrequest rate is fixed at 40 req/s. This rate level is cho-
limitations on the proxy. sen to avoid reaching overload on both proxy and net-
Figure 5 presents the variation of proxy CPU utiliza- work. The plot illustrates that socket-level splice can
tion. The plots illustrate thaisel ect is significantly  result in significant overhead reductions. These reduc-
more scalable than the other three mechanisms. For 5Kons increase with the object size. Also, for large ob-
active connections, the relative reduction in CPU utiliza-jects, reductions are larger for non-cacheable than for
tion is 85-96%. For the larger load, the relative reductioncacheable objects, for whidkeepCopyis used. This is
is 68-94%. Moreover, the plot illustrates thetel ect due to the fewer system calls executed for serving non-
can handle 10K connections with lower overheads tharcacheable objects, difference which is relevant only for
/ dev/ epol | can handle 5K connections. The plot il- large objects. For non-cacheable objects, the relative re-
lustrates also thatdev/ epol | is more scalable than duction varies from 15% for 4K files, to 68% for 64K

sel ect andpol | , and that, at this loadsel ect is
slightly more scalable thapol | .
The lower CPU overheads achieved withel ect

and 128K files. For cacheable objects, the relative reduc-
tion is 10-60%. For these experiments, the reduction in
response time is relatively insignificant (up to 1.7%) be-

translate in significant response time reductions. Figure @ause the mean response times is large (2.7-3.4s) due to

presents the relative reductions computedl@@(1 —

server think time.

A.r/B.r), whereX.r is mean response time measured The performance benefit of data-stream splicing re-

for configurationX. For 5K connections, the reduction
relative to/ dev/ epol | is 29-58%, relative tgel ect
is 62-85%, and relative tpol | is 70-85%.
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mains relevant also when usingsel ect . Figure 8
presents the CPU utilization when the application uses
usel ect instead ofsel ect to handle the same
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workload. The reduction relative tasel ect with difference increases from 2ms to 14ms.
application-level forwarding is up to 45% for cacheable
objects, and up to 65% for non-cacheable objects. 5.3 Polymix-4 Workload
These experiments illustrate that data-stream splicing
is a necessary mechanism in the context of the heavy-tail In order to estimate the benefits of the proposed mech-
distribution of Web content sizes, because it helps Welanisms in a real Web proxy deployment, we experiment
proxies to significantly reduce the performance perturbawith Polymix-4, a workload that provides a realistic mix
tions caused by serving atypically large files. of file sizes, cacheability types, and HTTP request types;
For the second microbenchmark, Polygraph clientst generates a realistic hit ratio, connection persistency
generate request rates between 40 and 200 reg/s and thwdel, and server think-time. This experiment evaluates
file size is fixed at 8KBytes. usel ect, sel ect, / dev/ epol | with application-
Figures 9 and 10 present the proxy CPU utilizationlevel forwarding, and splicing witlsel ect and with
and the mean response time, respectively; note that thesel ect . Request rates vary from 120 to 260; swap-
plots for application-level forwarding overlap. These ping impacts the results at higher rates.
plots demonstrate that the reduction in CPU overhead en- Figure 11 presents the proxy CPU utilization and Fig-
abled by splice increases with the request rate. Howevegres 12 and 13 present the mean response times for hits
as the system approaches overload, this reduction hasand misses, respectivelysel ect provides reductions
smaller impact on CPU utilization, but a larger impact onin CPU utilization similar to those in the microbench-
response time. For instance, for non-cacheable objectsnarks, 50-70% relative teel ect and 50% relative to
the difference in CPU utilization decreases from 8% (at/ dev/ epol | . These experiments also demonstrate that
120 req/s) to 0.9% (at 200 req/s), while the response tim¢he usel ect implementation can handle effectively

USENIX Association 2003 USENIX Annual Technical Conference 235



2760 call, for theKeepCopymode. This approach has a neg-

[ N N " ative performance impact because holding socket locks

> select —— in process context interferes with the highly optimized

£ 2740} R Linux TCP/IP stack: packets received while forwarding

% 2730 | uselect+2‘1))ﬁge:-ﬂ-i‘-ﬂ-‘ - 8 in process context incur larger processing overheads.

2 2720 As expected, the benefits o6el ect andspl i ce

pe // _________ I are not cumulative. This is because part of the overhead

g M e reduction achieved withpl i ce is due to areduction in

B 2700 fuereee e : x_;—_—j_';‘_f the number ofel ect system calls.

D 00 e e From our experience of modifying Squid to use
/ dev/ epol | , we learned that it is not straightfor-

2680 P H ;
120 140 160 180 200 220 240 260 280 Ward to change a complex application designed to use

Request Rate (req/s) select/poll-type connection state tracking to use event
notification-based mechanisms, likelev/ epol | . It

can be very difficult to identify all the code regions in
the application built on programmer’s assumptions about

both connect and accept operations; the microbenchil€ State-tracking model. The same argument applies
marks exercise mostly the accept operation. to a complex Web application implemented around an

Similarly, spl i ce provides reductions in CPU over- event notification mechanism, such adev/ epol | .

heads comparable to the microbenchmarks, considering€ connection state tracking mechanism proposed in
is paper enables effective user-level implementations

that in Polymix-4 cache misses represent only about 409

of the requests and that file size distribution is biased to®f Mechanismslikeel ect/ pol | and/ dev/epol I ;
wards small files (the 75-th percentile is 8KByte). applications can enjoy the performance benefits with
The CPU overhead reductions provided by Minimal modifications, just by linking to the library that

usel ect, splice, and their combination trans- IMmplements the desired API.

late in reductions of mean response times for both hits

and misses compared to the configuration usiegect 6 Related Work

and application-level forwarding. Reductions are larger

at higher request rates. More specifically, the reductions Recent research on Web server performance has fo-
for hits with usel ect are 4-35ms, wittspl i ce are ~ cused on optimizing the operating system functions on
1-28ms. Using both mechanisms, the reductions aréhe critical path of request processing. In this paper, we
4-80ms, a 10-30% relative improvement. The reductiondocus on the same problem domain, proposing two mech-
for miss withusel ect are 15-30ms, and with splice anisms that Web servers, and in particular Web proxy

are 6-16ms. Using both mechanisms vyields reduction§ervers, can use in a flexible manner to reduce connection
similar tousel ect alone, which is a 0.5-1.3% relative handling and data forwarding overheads. Both mech-

improvement. We note thatdev/ epol | provides anisms address the overheads of context switching and

Figure 13: Miss Mean Response Time: Polymix-4, diskd
store.

reductions for hit response times similarusel ect,  data copy between application and kernel domains, one
but the miss response times are the highest among tHer connection state tracking and the other for data for-
tested configurations, 20-50ms more than wigh ect . ~ warding in TCP streams.

A large body of research has focused on improv-
5.4 Discussions ing the scalability of connection-state tracking mecha-

nisms, critical for event-driven architectures. Traditional

Overall, the experimental evaluation presented in thisnechanisms for connection-state trackisgl ect and
paper illustrates that both user-level connection trackfol | exhibit poor scalability. Optimizations can reduce
ing and data-stream splice help lower the overheads anée in-kernel overhead of collecting socket status infor-
improve the scalability of Web servers. The former mation [4], but cannot reduce context switching and data
mechanism benefits any Web server that handles a ver§opy overheads. Event delivery mechanisms with batch
large numbers of concurrent connections, while the lattepotifications represent an alternativestel ect / pol |
mechanism is mostly limited to Web proxy caches. [5, 6, 19, 33, 34, 35]. This paradigm supports imple-

One lesson that we learned while experimenting withmentations that are more efficient, and reduces the over-
data-stream splice is that it is detrimental to forward datahead of data copy between user and kernel space, in
packets in process context. Our earlier implementationarticular when the number of active connections is a
attempted to forward as many packets as possible in themall fraction of the total number of open connections.
Splicecall, and upon the return from theead system  The/ dev/ epol | proposed in [34] further reduces data
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copy overheads by using a shared memory region besocket level implementation, the mechanism has several
tween kernel and application for passing event notifica-advantages over the IP-level implementations. First, the
tions. Similarly, ECalls [33] uses shared memory for mechanism allows the splicing of TCP connections with
application-to-kernel and kernel-to-application notifica- different maximum segment sizes or TCP options and
tion. Overall, these proposals help reduce the systenfosters faster loss recovery [37]. Second, it allows for
call overheads, but cannot reduce the number of invomore efficient support for persistent connections (e.g.,
cations. Event delivery mechanisms with individual no- the mechanism in [39] unsplices at the first data received
tifications, like I/O completion ports (IOCP) [12], incur a in the client connection) and for caching the transferred
larger volume of system calls, but benefit a thread-basedontent (e.g., the mechanism in [22] aborts the caching
architecture by implementing a thread dispatching policyprocedure if the client aborts the connection). These ad-
that minimizes thread context switches. vantages offset the relatively small increase in forward-

The connection state tracking mechanism introducedng overheads vs. IP-level splicing due to the transport-
in this paper enables significant reductions of the numiayer processing on incoming and outgoing paths. We
ber and overheads of system call invocations. By ussubmit that IP-level solutions need to re-implement sub-
ing connection state elements propagated by the kerneitantial segments of the TCP stack in order to support a
in a shared memory region, the application can acquirdlexible API, similar to the one proposed in this paper.
the information necessary for connection state tracking
without context switching to the kernel domain. Inthe 7 Conclusion
Linux implementation, connection state is propagated
at user space automatically, afteonnect or the first This paper proposes to enhance a genera]-purpose op-
sel ect/ pol | ; no system call other thaconnect  erating system with mechanisms that reduce the system
andaccept would be required if a file descriptor were overheads of applications such as Web servers, which
assigned to the socket prior to the invocation of thehandle large numbers of concurrent connections, and of
accept handler. Existing APIs liksel ect , eventde-  applications such as Web proxies, which forward large
livery [5, 34],x and IOCP [12] can be re-implemented to yolumes of data.
exploit the mechanism and achieve significant overhead |mproved scalability with the number of active con-
reductions. nections is enabled by user-level connection tracking.

Numerous studies on TCP and server performancgromoting a new implementation paradigm, this mech-
demonstrate that achievable transfer bandwidths are limanism is the first to provide notifications of connection
ited by the overhead of copying data between kernektate changes without incurring any context switches
and user-space buffers [7, 17]. Previous research hagnd data copies between application and kernel domains.
proposed several in-kernel splicing mechanisms of datgvith asel ect API, this mechanism demonstrates CPU
streams produced by devices/files and sockets [11, 31bverhead reductions of 52-72% relativestel ect and
In-kernel splicing of TCP connections has been pro-509 relative to' dev/ epol | . In the future, we plan to
posed, as well. Some of the solutions [3, 9, 13, 15, 16lmplement an event notification API similar to [5].
do not make the splicing interface available at applica- | ower data forwarding overheads are enabled by data-
tion level. These solutions are integrated with kernel-stream splicing. Implemented in the socket layer, this
level modules for HTTP request distribution and are im-mechanism is the first to enable effective in-kernel for-
plemented either between the TCP and socket layergarding for the whole range of transfers performed by
[3, 15, 16] or in the IP layer [9, 13]. Existing solu- a Web proxy cache, supporting persistent connections,
tions that can be exploited at application level are imple-request pipelining, and content caching. Experiments
mented in the IP layer [21, 22, 39] or in the socket layerdemonstrate up to 12% reductions in Squid’s forwarding
[37], and are restricted in their ability to effectively serve gyerheads.
the full range of connection characteristics and requespcknowledgments. Authors thank John Tracey and
types handled by a Web proxy. For instance, the IPrich Nahum for providing the GigaBit equipment used
level implementations cannot handle pipelined requests the evaluation. Also, authors thank Anees Shaikh for
and client aborts. The mechanism in [37] cannot handleyis comments on earlier versions of this paper.
cacheable content and persistent connections.
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