
Kernel Support for Faster Web Proxies
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Abstract

This paper proposes two mechanisms for reducing the
communication-related overheads of Web applications.
One mechanism is user-level connection tracking, which
allows an application to coordinate its non-blocking I/O
operations with significantly fewer system calls than pre-
viously possible. The other mechanism is data-stream
splicing, which allows a Web proxy application to for-
ward data between server and client streams in the ker-
nel with no restrictions on connection persistency, object
cacheability, and request pipelining. These mechanisms
remove elements that scale poorly with CPU speed, such
as context switches and data copies, from the code path
of Web-request handling.

The two mechanisms are implemented as Linux load-
able kernel modules. User-level connection tracking is
used to implement uselect, a user-level select API.
The Squid Web proxy and the Polygraph benchmarking
tool are used in the evaluation. With Polymix-4, a real-
istic forward proxy workload biased towards cache hits
and small files, the reductions in CPU overheads rela-
tive to the original Squid (with select) are 52-72%
for uselect, up to 12% for splice, and 58-78% for
the two mechanisms combined. Relative to Squid with
/dev/epoll, uselect provides 50% overhead reduction.

1 Introduction

The advent of the World Wide Web has motivated a
large body of research on improving Web server per-
formance. Work has focused on improving the per-
formance of the TCP/IP stack [25] (e.g., NewReno,
SACK, Limited Transmit), of the Web server architec-
ture (e.g. ZEUS[43], Apache [2], Flash[30], Squid[27],
SEDA[41]), and of the interface between them (e.g.,
select[4], /dev/epoll[34], sendfile[24]).

In spite of the recent progress, the ability of exist-
ing operating system architectures to handle communica-
tion intensive workloads remains limited for server ’in-
the-middle’ configurations, such as Web proxies, CDN
servers, and Edge Servers. First, these servers handle a

large number of concurrent connections: to reduce trans-
fer latencies for both cache hits and misses, proxies have
to keep open connections to as many clients, peer caches,
and origin servers as possible [8]. Second, a significant
ratio of the requests arriving at forward Web proxies re-
quire transfers from origin servers or peer caches [42]. In
serving these requests, content is transferred from server
to client connections by copying it twice between ker-
nel and application address spaces. Reverse Web proxies
perform a similar processing, but cache misses represent
a smaller fraction of their load.

Commercial operating systems include limited sup-
port for high-performance user-level Web proxies. Be-
sides sendfile, the event notification mechanism
/dev/epoll is being considered for inclusion in the
Linux 2.6 kernel and a splice service for TCP connec-
tion tunneling is included in the AIX 5.1 kernel. How-
ever, the existing support is not sufficient, and, as a re-
sult, network appliances are used in many high-traffic
proxy installations. Appliances are carefully optimized
for I/O intensive workloads, but compared to general-
purpose servers, have higher costs and limited flexibil-
ity. We submit that extending general-purpose operating
systems with support targeted for Web proxy caches will
boost the performance of off-the-shelf Web proxy appli-
cations and cache infrastructures, like Squid [27] and IR-
Cache [28], respectively.

This paper proposes enhancing general-purpose op-
erating systems with two mechanisms, user-level con-
nection tracking and data stream splicing. These
mechanisms enable Web applications to reduce their
communication-related overheads by reducing the num-
ber of system calls and the amount of data copied
between user and kernel domains, operations that are
known to scale poorly with processor speeds [1, 29].

User-level connection tracking allows an application
to coordinate its non-blocking network operations and to
monitor the state of its connections with minimal switch-
ing between application and kernel domains. The mech-
anism is based on a shared memory region between ker-
nel and application in which the kernel propagates el-
ements of the application’s transport and socket-layer



state, such as the existence of data in receive buffers or
of free space in send buffers. The application can ac-
cess these state elements directly, without system calls.
The mechanism is secure as only information pertaining
to the application’s connections is provided in its mem-
ory region. The mechanism can be used to implement
low-overhead versions of the select/poll APIs, as
well as new connection-tracking APIs. For instance, with
socket-buffer availability propagated as actual number
of bytes, applications can perform more efficient I/O by
issuing I/O operations only when the number of bytes
that can be transferred is greater than a specified thresh-
old. Similarly, with transport-layer state like congestion
window size and round-trip time, applications can learn
about the latency characteristics of their connections and
selectively customize their replies to improve the client
response times [18].

Data-stream splicing allows an application to perform
data forwarding between corresponding server and client
TCP streams in the kernel, at the socket level. This pro-
posal is the first to address the whole range of data trans-
fer operations performed by a Web proxy cache applica-
tion, supporting persistent connections, cacheable con-
tent, pipelined requests, and tunneled transfers. This
mechanism draws significant benefits from the decision
to implement it at socket level. Compared to user-level
data forwarding, the mechanism eliminates data copies
and system calls [11, 37]. Compared to IP-level alter-
natives [21, 39], the mechanism can be applied to data
streams with different TCP connection characteristics
(e.g., SACK) and it provides the application with full and
efficient control over unsplicing and payload caching.

The two mechanisms are implemented in Linux and
are evaluated using Squid [27], a popular Web proxy
cache application, and Polygraph [40], a benchmarking
tool for Web proxies. User-level connection tracking is
used to implement a user-level wrapper for the native
select system call, called uselect. Microbench-
marks demonstrate that uselect enables reductions in
CPU utilization of 60-95% relative to select and of
20-90% relative to /dev/epoll for 4-128KByte ob-
jects and 100% cache hits. Data-stream splicing en-
ables overhead reductions of 10-70% for a workload with
100% cache misses. With Polymix-4, a realistic forward-
proxy workload biased towards small file sizes and cache
hits, the reductions in CPU overheads relative to the orig-
inal Squid (using select) are 52-72% for user-level se-
lect, up to 12% for splice, and 58-78% for the two mech-
anisms combined.

While our mechanisms have been proposed and eval-
uated in the context of Web proxies, they can benefit a
wider range of applications. CDNs, Edge Servers, and
internet applications based on SEDA [41] can benefit
from low-overhead access to the socket- and network-

layer state of their connections. Peer-to-peer infrastruc-
tures that include content forwarding, like Squirrel [14],
can use the data-stream splice to lower node overheads.

Modular implementations of the networking stack and
the socket layer enable simple implementations for the
two mechanisms as loadable extension modules. Our ap-
proach is to replace methods of the transport and socket
layers with new implementations, or with wrappers for
the original methods. The Linux implementation pre-
sented in this paper does not require modifications of the
kernel source tree.

The remainder of this paper is organized as follows.
Sections 2-3 describe the proposed mechanisms. Sec-
tion 4 describes the experimental testbed and methodol-
ogy. Section 5 presents the results of the experimental
evaluation. Section 6 discusses related research and Sec-
tion 7 summarizes our contributions.

2 User-level Connection Tracking

Experiences with communication-intensive applica-
tions, such as Web servers, demonstrate that restricting
the number of kernel threads used by the application is
critical to achieving good performance. The most ef-
ficient architectures are event-driven [27, 30] because,
by avoiding blocking I/O operations, they handle a large
number of connections with a small number of control
threads. Efficient non-blocking I/O requires a mecha-
nism for tracking connection state, such that I/O opera-
tions are issued only when guaranteed to be successful.

The traditional OS mechanisms for connection-state
tracking, select and poll, retrieve connection state
from the kernel by performing two context switches and
two data copy operations; the amount of data copied is
proportional to the number of existing connections. Re-
cently proposed event delivery mechanisms [5, 19, 34]
allow more efficient in-kernel implementations, avoid the
application-to-kernel data copy, and even the kernel-to-
application copy [33, 34]. However, the benefits of these
optimizations are partially offset by the possible increase
in the number of system calls since the application has
to register and cancel its ’interests’ for every socket. The
additional system calls are shown to represent a relatively
high overhead for sockets with short lifetimes [19].

The user-level connection tracking mechanism pro-
posed in this paper attempts to further reduce the number
of system calls related to connection-state tracking and to
extend the set of connection-state elements that applica-
tions can exploit. The approach is to propagate certain
elements of a connection’s socket- and/or transport-layer
state at the user level, in a memory region shared between
the kernel and the application (see Figure 1). The appli-
cation can retrieve the propagated state using memory
read operations, without any context switches and data



Kernel

Call handler
Packet handler

Packet

Shared Memory

Update
Update

Application check state
for each socket
read/write/accept

forever  {

}

Memory Read

Network

Figure 1: User-level connection tracking.

copies. The mechanism is secure because each applica-
tion has a separate memory region which contains only
information pertaining to the application’s connections.
The mechanism does not require any system calls for
connection registration/deregistration. All connections
created after the application registers with the mecha-
nism are automatically tracked at user-level until closed.

The mechanism allows for multiple implementations,
depending on the set of state elements propagated at
user level. For instance, in order to implement the
select/poll-type connection state tracking APIs,
the set includes elements that describe the states of send
and receive socket buffers. Similarly, the representa-
tion of state elements in the shared memory region de-
pends on the implementation. For instance, for the
select/poll-type tracking, the representation can be
a bit vector, with bits set if read/write can be performed
on the corresponding sockets without blocking, or it can
be an integer vector, with values indicating the number
of bytes available for read/write.

The same set of state elements is associated with all of
the application’s connections. The data structures in the
shared region should be large enough to accommodate
the maximum number of files a process can open. How-
ever, the shared memory region is typically small. For in-
stance, an application with 65K concurrent connections
and using 16 bytes per connection requires a 1MByte re-
gion, which is a small fraction of the physical memory
of an Internet server.

In addition to direct memory reads, applications can
access the shared memory region through user-level li-
brary calls. For instance, when the shared state includes
information on socket-buffer availability, the application
can use user-level wrappers for select/poll. Such
wrappers can return a non-zero reply using only the in-
formation in the shared region; otherwise, if parameters
include file descriptors not tracked at user level or a non-
zero timeout, the wrappers fall back on the correspond-
ing system calls.

The kernel component updates the shared memory re-
gion during transport and socket layer processing, and
at the end of read and write system calls (see Figure 1).
The shared region is not pageable and updates are im-
plemented using atomic memory operations. The cost of

updating variables in the shared memory region is a neg-
ligible fraction of the CPU overhead of sending/receiving
a packet or of executing a read/write system call.

The kernel component exploits the modular imple-
mentation of the socket and transport layers. In Linux,
the socket layer interface is structured as a collection of
function pointers, aggregated as fields of a ’struct
proto ops’ structure. For IPv4 stream sockets, the
corresponding variable is ’inet stream ops’. This
is accessible through pointers from each TCP socket and
includes pointers to the functions that support the read,
write, select/poll, accept, connect, and close system calls.
Similarly, the transport layer interface is described by a
struct proto variable called ’tcp prot’, which
includes pointers for the functions invoked upon TCP
socket creation and destruction. Also, each TCP socket is
associated with several callbacks that are invoked when
events occur on the associated connection, such as packet
arrival or state change.

In order to track a TCP connection at user level, the
kernel component replaces some of these functions and
callbacks; the replacements capture socket state changes,
filter and propagate them in the shared region. Con-
nection tracking starts upon return from the connect
or accept system calls. To avoid changing the ker-
nel source tree, in this implementation, the tracking of
accept-ed connections starts upon return from the first
select/poll system call.
User-level Tracking with select API. In this paper, we
use the proposed connection-state tracking mechanism to
implement uselect, a user-level tracking mechanism
with the same API as select.

For this implementation, the shared memory region
between kernel and application includes four bitmaps:
the Active, Read, Write, and Except bitmaps. The Ac-
tive bitmap, A-bits, records whether a socket/file descrip-
tor is tracked, i.e., monitored, at user level. The Read
and Write bitmaps, R- and W-bits, signal the existence of
data in receive buffers and of free space in send buffers,
respectively. The Except bitmap, E-bits, signals excep-
tional conditions.

The implementation comprises an application-level
library and a kernel component. The library includes
(1) uselect, a wrapper for the select system call,
(2) uselect init, a function that initializes the ap-
plication and kernel components and the shared memory
region, and (3) get socket state, a function that re-
turns the read/write state of a socket by accessing the cor-
responding R- and W-bits in the shared region.

The uselect wrapper, consisting of about 650
lines of C code, is composed of several steps (see Fig-
ure 2). First, the procedure checks the relevant informa-
tion available at user level by performing bitwise AND
between the bitmaps provided as parameters and the



int uselect(maxfd, readfds, writefds,
exceptfds, timeout) �

static int numPass = 0;
int nbits;
nbits = BITS ON(readfds& R-bits& A-bits)

+ BITS ON(writefds& W-bits& A-bits)
+ BITS ON(exceptfds& E-bits& A-bits);

if(nbits > 0 && numPass < MaxPass) �
adjust readfds,writefds,exceptfds
numPass++;�

else �
adjust & save maxfd,readfds,writefds,

exceptfds
nbits = select(maxfd,readfds,...)
numPass = 0;
if( proxy socket set in readfds) �
check R/W/E-bits
adjust nbits,readfds,writefds,

exceptfds��
return nbits;�

Figure 2: User-level select.

shared-memory bitmaps. For instance, the readfds
bitmap is checked against the A- and R-bitmaps. If
the result of any of the three bitwise ANDs is nonzero,
uselect modifies the input bitmaps appropriately and
returns the total number of bits set in the three ar-
rays; otherwise, uselect calls select. In addition,
select is called after a predefined number of success-
ful user-level executions in order to avoid starving I/O
operations on descriptors that do not correspond to con-
nections tracked at user level (e.g., files, UDP sockets).

When calling select, the wrapper uses a dedicated
TCP socket, called proxy socket, to communicate with
the kernel component; the proxy socket is created at ini-
tialization time and it is unconnected. Before the sys-
tem call, the bits corresponding to the active sockets
are masked off in the input bitmaps, and the bit for the
proxy socket is set in the read bitmap. maxfd is ad-
justed accordingly, typically resulting in a much lower
value; timeout is left unchanged. When an I/O event
occurs on any of the ’active’ sockets, the kernel compo-
nent wakes-up the application which is waiting on the
proxy socket. Note that the application never waits on
active sockets, as these bits are masked off before calling
select. Upon return from the system call, if the bit for
the proxy socket is set, a search is performed on the R-,
W-, and E-bit arrays. Using a saved copy of the input
bitmaps, bits are set for the sockets tracked at user level
and whose new states match the application’s interests.

The uselect implementation includes optimiza-
tions not shown in Figure 2 for simplicity. For instance,

counting the ’on’ bits, adjusting the input arrays, and sav-
ing the bits reset during the adjustment performed before
calling select are all executed in the same pass.

Despite the identical API, uselect has a slightly
different semantics than select. Namely, select
collects information on all file descriptors indicated in
the input bitmaps. In contrast, uselect might ignore
the descriptors not tracked at user level for several invo-
cations. This difference is rarely an issue for Web appli-
cations, which call uselect in an infinite loop.

The uselect kernel component is structured as a
device driver module, consisting of about 1500 lines of
C code. Upon initialization, this module modifies the
system’s tcp prot data structure, replacing the han-
dler used by the socket system call with a wrapper.
For processes registered with the module, the wrapper
assigns to the new socket a copy of inet stream ops
with new handlers for recvmsg, sendmsg, accept,
connect, poll, and release.

The new handlers are wrappers for the original rou-
tines. Upon return, these wrappers update the bitmaps
in the shared region according to the new state of the
socket; the file descriptor index of the socket is used to
determine the update location in the shared region.

The recvmsg, sendmsg, and accept handlers up-
date the R-, W-, or E-bits under the same conditions as
the original poll function. In addition, accept as-
signs the modified copy of inet stream ops to the
newly created socket.

Replacing the poll handler, which supports
select/poll system calls, is necessary in our Linux
implementation because a socket created by accept
is assigned a file descriptor index after the return from
the accept handler. For a socket of a registered
process, the new poll handler determines its file de-
scriptor index by searching the file descriptor array of
the current process. The index is saved in an unused
field of the socket data structure, from where it is re-
trieved by event handlers. Further, this function (1) re-
places the socket’s data ready, write space,
error report, and state change event handlers,
and (2) sets the corresponding A-bit, which initiates
the user-level tracking and prevents future poll in-
vocations. On return, the handler calls the original
tcp poll.

The connect handler performs the same actions as
the poll handler. The release handler reverses the
actions of the connect/poll handlers.

The event handlers update the R-, W-, and E-bits like
the original poll, set the R-bit of the proxy socket, and
unblock any waiting threads.
Exploiting uselect in Squid. In order to use uselect,
Squid is changed as follows. During initializa-
tion, before creating the accept socket, Squid invokes



uselect init; as a result, the accept socket is tracked
at user level. In each processing cycle, Squid invokes
uselect instead of select to determine the states of
all of its sockets. Finally, when trying to prevent starva-
tion of the accept socket during a processing cycle, Squid
uses get socket state instead of select to check
the ready-to-read state of this socket.

Overall, uselect enables Squid to eliminate a sig-
nificant number of systems calls with very few code
modifications. Furthermore,uselect reduces the over-
head of the remaining select system calls through the
use of the proxy socket.

3 Data-Stream Splicing

The data-stream splicing mechanism proposed and
evaluated in this paper enables a Web proxy to forward
data between its server and client connections in the ker-
nel, with support for content caching, persistent connec-
tion, and pipelined requests. The mechanism helps re-
duce the number of context switches and data copy op-
erations incurred when serving cache misses, POST re-
quests, and connection tunnels.

In its basic functionality, the mechanism establishes,
in the socket layer, a data path between two data streams,
such that packets received on one stream are forwarded
on the other stream immediately, in interrupt context. On
servers with zero-copy networking stacks and adapter
support for checksum computation, the payload of for-
warded packets is not touched by the proxy CPU.

The proposed mechanism extends previous proposals
[22, 37, 39] with support for the following functionality:� request pipelining and persistent connections;� content caching decoupled from client aborts;� efficient splicing for short transfers.

The new socket-level splicing mechanism can estab-
lish bi- and unidirectional data paths. Figure 3 illustrates
the corresponding data flows. In the bidirectional mode,
the traditional model for in-kernel splicing [21, 22, 37],
data received on either of the two connections is for-
warded to the peer endpoint. Connection close events
are also forwarded. Splicing terminates when both con-
nections are in CLOSE state. Bidirectional splice is typ-
ically used for SSL tunneling; it cannot support request
pipelining and persistent connections.

The unidirectional mode addresses these limitations.
Data coming from one endpoint, the source, is forwarded
on the peer connection, towards the destination, while
data coming from destination is provided to the applica-
tion and not forwarded to the source. Connection close
events are not forwarded. Splicing terminates (1) after
transferring a specified number of bytes, or (2) when the
source closes the connection.

Unidirectional mode is typically used to support re-

quest pipelining and persistent connections for HTTP
GET and POST. For instance, for an HTTP GET, the
source is the origin server, and the destination is the
client; the server response is forwarded inside the kernel
from the server to the client connection, while additional
client requests are handled by the application and, if nec-
essary, forwarded to the server. After unsplice, the same
client connection can be used to transfer cached objects
or it can be spliced with a connection to a different server.

Optionally, in unidirectional mode, a copy of the
transferred payload is provided to the application. This
mode, called KeepCopy, enables a Web proxy to popu-
late its cache while exploiting kernel-level data forward-
ing. The application receives the content via the tradi-
tional read interface. The input stream is not termi-
nated if the client aborts its connection, thus the cache
operation can be completed.

Our experience with Web proxy workloads led us to
develop a splice API that minimizes system call over-
heads, even for short transfers. The approach is to allow
the application to combine several system calls that are
typically issued in sequence by the application, and to
eliminate some of the remaining system calls. Specifi-
cally, the basic splice interface, which specifies the con-
nections, the type of splicing, and the termination con-
dition, can be combined with: (1) a write to the client
connection, used for the HTTP headers and the first con-
tent segment, and (2) a read from the server connection
in KeepCopy mode. In addition, an application can save
a system call when not interested in acquiring the amount
of forwarded data returned by the unsplice command.
Namely, with the AutoRelease option set in the splice re-
quest, the kernel releases the splicing context upon termi-
nation, eliminating the need for an explicit unsplice com-
mand from the application. Also, in KeepCopy mode, the
application can specify a minimum input size, which is
used to reduce the number of read system calls.
Implementation. The implementation of data-stream
splice, about 4000 lines of C code, is structured as a
loadable module. The module maintains a description
and state for each spliced connection. Connection de-
scriptors are maintained in a hash table with hash entries
computed from the addresses of related TCP sockets.

The application uses ioctl calls to issue Splice and
Unsplice commands to the kernel. Parameters and results
are represented in a SpliceRequest data structure. For
Splice, this data structure identifies the two connections
(fd0, fd1), the type of splicing (e.g., bi- or unidirectional,
termination type, with or without KeepCopy and AutoRe-
lease), and the data to send on fd1 before splicing is ini-
tiated. For unidirectional splice, fd0 is the source and
fd1 is the destination. The data structure also includes
parameters used in one or more of the splicing modes,
such as the payload limit, when termination is based on
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the transferred amount. For KeepCopy, the application
can indicate the minimum input size, (min2read), the
maximum amount of data forwarded and not yet read
(max2cache), and an input buffer, to be filled by the
Splice command if data is already available. max2cache
helps prevent slow applications from overloading the
kernel buffer cache.

After the Splice command, the application waits for
notification of splicing termination, provided by the ker-
nel as a POLLOUT event on the destination connection.
This occurs when the transfer reaches the payload limit
or the FIN packet is processed, and, for KeepCopy, when
the application reads the last segment of the forwarded
payload. If termination is due to connection abort, an
error condition is signaled to the user.

For short transfers, the splicing can terminate in the
Splice call. In this case, the application is informed by an
appropriate return code and the splice context is released.

The application uses the Unsplice command to re-
lease the splicing context after termination notification
or when it wants to abort the splice, such as on timeout
or application shut-down. The Unsplice request specifies
the two connections and it returns the number of bytes
forwarded in each direction.

In the kernel, the splicing is established if the con-
nections are in the ESTABLISHED or CLOSE WAIT
states. Upon splicing, the two TCP sockets are
assigned new data ready, write space,
error report, and state change handlers
and a new inet stream ops data structure, with the
recvmsg, sendmsg, and poll entries replaced.

The new data ready and write space handlers,
invoked when data and ACKs are received, perform most
of the data forwarding. Packet forwarding is started at
end of the Splice call and it is driven by data and ACK
packet arrivals on the two connections. Forwarding never
stalls except for KeepCopy transfers when the amount of
data forwarded and not read reaches max2cache. In this
case, forwarding is restarted at the end of recvmsg.

For lower overheads, the TCP checksum is computed
incrementally, from the old value, when forwarding an
entire packet; it is computed from scratch only when for-

warding a fraction of the packet, as it might occur at the
beginning and the end of splicing.

The recvmsg and sendmsg handlers in the new
inet stream ops are replaced with error-returning
handlers when the corresponding operations are not per-
mitted for the spliced socket. For instance, in bidirec-
tional splicing, both handlers are replaced for both sock-
ets. For unidirectional splicing, write is not permitted for
the destination socket, and read is not permitted for the
source socket unless splicing with KeepCopy.

For KeepCopy, the application uses the read sys-
tem call, supported by the recvmsg handler, to re-
trieve a copy of the forwarded data. A local copy is
created by cloning the packets, i.e., the sk buff’s, and
adding them to a list in the splice descriptor of the source
socket. The new poll returns a POLLIN event when
the local copy reaches the specified minimum input size
(min2read) or when no more data is to be forwarded. The
new recvmsg of the source socket transfers the data
from the cloned sk buff’s to the application buffer.
Using the mechanism in Squid. The original Squid 2.4
implementation handles cache misses as follows. The
http module reads from a server connection in a 85KByte
buffer allocated on the call stack. The data is transferred
to the store module, which copies it in 4KByte memory
blocks and notifies the client-side module of the new data
arrival. The client-side processes the reply, generating
the HTTP headers. If it can fill a 4KByte block, it copies
data from the store into a send buffer, and it registers for
a ready-to-write notification on the client socket. When
the notification is received, the block is written, the com-
pletion routine updates the state, and the client registers
to receive the next block from the store.

In order to exploit the data-stream splice mechanism
for GET requests, we made the following changes. The
http reads the first segment of a server reply in a 2896-
byte buffer, attempting to consume only the first 2 MTUs.
This size is chosen because: (1) a multiple of MTU size
minimizes checksum overheads by enabling incremental
checksum computation; (2) the included content and the
proxy HTTP headers are below the 4Kbyte limit that can
be sent in one operation by the client-side; and (3) a large



fraction (approx. 40%) of the objects in proxy workloads
can be received in one read operation.

After the read, if HTTP headers indicate that more
data is expected, the http initializes a splice descriptor
before sending the content to the store and does not pre-
pare for a new read from the server. The splice descriptor
is attached to the StorageEntry data structure, which
is reachable from http and client-side request descriptors.

For a request with a splice descriptor, the client-side
does not wait to fill the first 4KByte block before prepar-
ing for output. When it receives the ready-to-write no-
tification on the client socket, it invokes the Splice com-
mand to write the available content and to initialize the
in-kernel transfer; it does not register with the store to
receive the rest of the content.

The Splice parameters define a unidirectional transfer,
with the server connection as source and the client con-
nection as destination. Splicing termination is set for a
payload limit, if ContentLength is defined, or, otherwise,
for the close of the server connection. The AutoRelease
flag is set. If the content is cacheable, the KeepCopy flag
is set and the related parameters are defined.

If the Splice command returns without error or in-
dication of termination, the client socket is registered
for (1) ready-to-write notification, to process the splic-
ing termination, and for (2) ready-to-read notification, to
receive the next request from the client. In KeepCopy
mode, the server socket is registered for ready-to-read
notification. Splice-related flags are set in both client and
server socket descriptors in the global fd table to en-
sure that spliced connections are handled appropriately
in the close procedure, such as when called from timeout
handlers. If Splice returns an error, the transfer resumes
at application level.

The Squid handler invoked upon splicing termination
performs the following actions. First, it checks if splicing
termination was abnormal, checking the server socket
EOF condition for KeepCopy, and the socket error other-
wise. Next, it invokes the client-side procedure for write
completion, providing the size of the spliced transfer.
This restarts the activity on the client connection, acti-
vating the output for the next pending request or closing
the connection. Finally, the server connection is added
to the pool of persistent connections or closed, accord-
ing to the request parameters. If splicing termination is
abnormal, both connections are closed.

On a timeout, the handler issues an Unsplice com-
mand, calls the client-side write completion procedure,
and closes both connections. We have also extended
Squid to splice HTTP CONNECTs and POSTs. Details
are available in [38].

Overall, with the proposed splice mechanism, a Web
proxy can move the ’data path’ for its cache misses (i.e.,
HTTP body transfers) into the kernel. This releases re-

sources for the ’control path’ (i.e., HTTP header process-
ing) and cache management, which remain at user level.

4 Experimental Environment

The experimental evaluation of the two mechanisms
proposed in this paper is conducted with Squid, a pop-
ular Web proxy application, and with Polygraph [40], a
benchmarking tool widely used by the industry.

4.1 Hardware, System Software, and Apps

Our testbed comprises five nodes: three Polygraph
nodes (two clients and one server), the Squid proxy, and
a wide-area network emulator. Except for the WAN emu-
lator which runs PicoBSD 0.445, all nodes run the Linux
2.4 kernel. An additional node, running the monitor-
ing and data collection applications, is attached to the
testbed. Table 1 describes the hardware configurations.

Table 1: Hardware configuration of the testbed.
CPU Type Speed Memory

(MHz) (MBytes)
PolyClient 1 PentiumIII 550 128
PolyClient 2 PentiumIII 667 256
PolyServer PentiumPro 2x200 224
Web Proxy PentiumIII 1000 512
WAN Emulator PentiumPro 200 128

Except for the Polygraph server, all nodes are attached
to a Gigabit Ethernet switch, the Alteon ACEswitch 180.
The Polygraph server is attached via the dual-homed
WAN emulator. The proxy node uses an Alteon Giga-
bit Ethernet adapter; the other nodes use Fast Ethernet
adapters. The network links and the WAN emulator are
never overloaded during the experiments. The network
configuration is similar to that used in Polygraph Cache-
Offs [23], with clients and servers on different subnets.
Polygraph. Web Polygraph 2.7.6 [40] is a benchmarking
tool for caching proxies and other Web intermediaries.
Polygraph includes high-performance HTTP clients and
servers, realistic traffic generation and content simula-
tion, and standard workloads. These standard work-
loads, including the Polymix-4 used in our evaluation,
are widely accepted in the web caching community.

Each client and server node (agent) runs one or more
’robots’, each robot handling one connection at a time,
and possibly sending several requests in a connection. A
client robot maintains a predefined request rate (e.g., 0.4
req/s). The overall request rate is determined by the num-
ber of client nodes, number of robots in a client node, and
per-robot request rates.

In our experiments, we use Polygraph 2.7.6, modi-



fied to allow client and server applications to open up
to 12,000 concurrent connections instead of the original
1024 limit; the kernel connection limit is set accordingly.
Proxy Application. The proxy application is Squid 2.4,
extended to exploit the splice and uselect in-
terfaces proposed in this paper, as well as the
/dev/epoll interface used for comparison with
uselect. Squid is a typical example of an event-driven
application that can manipulate a very large number of
communication streams. Squid is built around an infinite
select/poll-loop. In each cycle, the application per-
forms input and output operations on its active sockets,
depending on connection and request processing states.

We modified Squid to support up to 64K file descrip-
tors, more than the 1024 preset limit in Linux. In addi-
tion, we made several changes to improve its scalability
under high load. These changes are orthogonal to the
mechanisms evaluated in this paper and are deemed nec-
essary because of our interest in driving the application at
higher loads than previously published evaluations [40]
on comparable hardware. For instance, we reduced the
number of calls for memory allocation by extending the
use of pre-allocated buffers.

Squid can use several models of disk cache manage-
ment. In our experiments, we use the diskd and the
null models. The diskd model uses daemons to perform
the (blocking) disk I/O operations, one daemon for each
disk. Squid communicates with a daemon through two
message queues and a shared memory region; the mes-
sage queues are used for operation descriptors and com-
pletion notifications, and the shared memory is used for
the data blocks subject to I/O operations.

The null model emulates an infinite size, 0-overhead
disk cache. There is no disk I/O and the list of cacheable
objects read from the server is maintained in memory.

For /dev/epoll, we use ep patch-2.4.18-0.32[20].
/dev/epoll is an efficient event-delivery mechanism
which uses a shared memory between application and
kernel to eliminate the data copy of notification results.
However, it does not eliminate the system calls for event
notification retrieval, and requires system calls for socket
registration and deregistration. In order to use this inter-
face, we define a new Squid procedure for connection-
state tracking similar to the one used for poll, and we
extend the fd table to include flags for read and write
availability. The new procedure performs the following
steps. First, it traverses the file descriptor table, identi-
fying the sockets in which the application is interested
to read or write. For each of these sockets, the event
types of interest are saved. Also, sockets not registered
with epoll are registered at this time, indicating in-
terest in all types of events; their new read- and write-
availability flags are set. Second, epoll is invoked, and
if there is any returned list of events, this is used to set

the read/write availability flags of the indicated sockets.
Third, the list of sockets in which the application has in-
terest is traversed, and I/O operation(s) are performed if
the corresponding availability flags are set. Availability
flags are cleared when the corresponding I/O operations
return blocking indications (i.e., errno is EAGAIN).
Sockets are unregistered with epoll just before they are
closed. The two traversals in steps one and three are also
performed when using uselect, select, and poll.
WAN Emulation. To simulate WAN conditions, we use
the same tools and settings as the Polygraph Cache-Offs.
The WAN emulation tool is DummyNet [36]. For the
proxy-server link, this tool introduces round-trip packet
delays of 80 ms and packet losses of 0.05%. No delays
or losses are introduced on the client-proxy links.

4.2 Experimental Methodology

The goal of our experimental study is to evaluate
the performance of the proposed mechanisms and com-
pare them with related mechanisms. The evaluation fo-
cuses on performance metrics like CPU utilization and
response time. Towards this end, we use (1) microbench-
marks, in which the workload includes fixed size objects
and the Web proxy does not perform disk I/O opera-
tions, and (2) realistic experiments, in which the work-
load is Polymix-4, a Polygraph workload representative
for Web proxy caches, and the proxy stores cached ob-
jects on disks. Taking a high-level view at the benefits
of these mechanisms, we do not attempt to quantify the
individual components of the associated overhead reduc-
tion, such as data copies and context switches.

In microbenchmarks, we vary: (1) object cacheabil-
ity, (2) hit ratio, (3) object size, (4) request rate, and
(5) number of concurrent connections. In an experi-
ment, all requests are HTTP GETs for objects of identical
size and cacheability type (i.e., either cacheable or non-
cacheable). The set of object sizes includes 4, 8, 12, 25,
64, and 128KBytes. The selection is related to the distri-
bution of file sizes in Polymix-4, in which, with approx-
imation, 4KBytes is the 50-th percentile, 8KBytes is the
75-th percentile, and 25KBytes is the 95-th percentile.
Hit ratios are either 0% or (almost) 100%. Squid uses
the null disk manager. Each data point represents three
or more samples. For each sample, we collect statistics
for 15min, after a 10min warm-up.

In the Polymix-4 experiments, we vary only the
request rate. These experiments are similar to the
Fourth Polygraph Cache-Off benchmarking [23], but
with shorter phases. Namely, each experiment starts with
an empty cache and takes 4h 30min. The fill phase
runs at 160req/s for 90min. The first peak ’daily’ load
phase takes 25min, and the measurement peak ’daily’
load phase takes 120min; the rest of the time is spent



in ramp-up and down phases. Squid uses the diskd disk
manager, with 4 disks, each with 3GByte of caching
space. Each data point represents one sample.

In all experiments, request rates are selected such that
client and server nodes are never overloaded.

For each experiment, we collect the statistics pro-
duced by the Polygraph agents, by vmstat and
tcpstat running on the proxy node, and by Squid.
Polygraph statistics include request rates and response
times. vmstat provides information on CPU utiliza-
tion, and tcpstat provides information on TCP trans-
fers. Squid provides various statistics, such as rate of
cache hits and number of open sockets.

All the plots of performance metrics for a single con-
figuration include 90-percent confidence intervals, calcu-
lated with the T-student distribution. Note that for some
experiments, the confidence intervals are very small,
hardly visible on the plots. This is due to the workload
model and the large number of requests in each run.
Polygraph Parameters. In all experiments, except for
the parameters specified above, the Polygraph testbed is
configured as for the Polymix-4 workload. Among its
parameters we mention: client robot request rate of 0.4
req/s, and server delays normally distributed with a 2.5s
mean and 1s deviation. The number of requests that a
robot sends in a connection is drawn from a Zipf(64) dis-
tribution. Similarly, the server uses a Zipf(16) distribu-
tion to close active connections. The Polymix-4 work-
load has 58% hit rate, and about 70% cacheability ratio.
Squid Configuration. In all experiments, Squid runs
with the default configuration, except for a few changes.
No access log is maintained and no access control is per-
formed, as in the Squid evaluation at the Third Polygraph
Cache-Off [23]. The memory cache is 100MBytes (vs.
175MBytes used at the Cache-off). The diskd disk man-
ager spins, waiting for request completion, if a daemon
request queue is longer than 4K items, and it starts drop-
ping file open requests when the queue exceeds 2K items.
When using data-stream splice, all invocations use Au-
toRelease, 64K max2cache, and 16K min2read.

5 Experimental Evaluation

5.1 Microbenchmark: User-level Connection
Tracking

Two microbenchmarks are used to compare the per-
formance of the proposed uselect, with the select
and poll system calls, and with the /dev/epoll
event notification mechanism. The first microbenchmark
evaluates the scalability with the number of active con-
nections for a fixed file size, and the second microbench-
mark evaluates the impact of file size for a fixed rate.
For both microbenchmarks, the hit ratio is almost 100%,
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which emulates the behavior of an origin Web site.
For the first microbenchmark, the Polygraph clients

maintain a rate of 100 req/s, and a variable number of
robots: 250, 1000, 2500 and 10,000. The file size is fixed
at 8KBytes, which represents the � 75-th percentile of
the Polymix-4 object size distribution. Figure 4 presents
the proxy CPU utilization versus the mean number of
concurrent established connections as reported by Poly-
graph, which may be lower than the total number of
robots. The plots illustrate that, for this level of re-
quest rate, with uselect, the system load is indepen-
dent of the number of active connections, while with
/dev/epoll and select, the system loads are very
sensitive to the number of active connections. For in-
stance, the load difference between 1000 and 2500 con-
nections is 0% for uselect, 14% for dev/epoll,
and 55% for select.

For the second microbenchmark, the Polygraph
clients maintain 5,000 and 10,000 robots, each with a
fixed rate of 0.01 req/s, resulting in overall request rates
of 50 req/s and 100 req/s, respectively. File size varies
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from 4 to 128KBytes. We could not experiment with
significantly more than 10K robots because of memory
limitations on the proxy.

Figure 5 presents the variation of proxy CPU utiliza-
tion. The plots illustrate that uselect is significantly
more scalable than the other three mechanisms. For 5K
active connections, the relative reduction in CPU utiliza-
tion is 85-96%. For the larger load, the relative reduction
is 68-94%. Moreover, the plot illustrates that uselect
can handle 10K connections with lower overheads than
/dev/epoll can handle 5K connections. The plot il-
lustrates also that /dev/epoll is more scalable than
select and poll, and that, at this loads, select is
slightly more scalable than poll.

The lower CPU overheads achieved with uselect
translate in significant response time reductions. Figure 6
presents the relative reductions computed as ���	��
������ �	����� ���

, where � � �
is mean response time measured

for configuration � . For 5K connections, the reduction
relative to /dev/epoll is 29-58%, relative to select
is 62-85%, and relative to poll is 70-85%.

0

20

40

60

80

100

0 20 40 60 80 100 120 140

Pr
ox

y 
U

til
iz

at
io

n 
(%

)

Request Size (KBytes)

App.Cache
App.Non-Cache

Splice Cache
Splice Non-Cache
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5.2 Microbenchmark: Data-stream Splicing

Two microbenchmarks are used to evaluate the per-
formance of data-stream splicing relative to application-
level forwarding. The first microbenchmark evaluates
the dependence on transfer lengths, and the second mi-
crobenchmark evaluates the dependence on system load.

For the first microbenchmark, Polygraph clients
maintain a fixed rate of 40 req/s and a hit ratio of 0% (i.e.,
all requests handled by Squid require transfers from the
server). Across experiments, we vary the object size and
cacheability (i.e., cacheable or non-cacheable). When
the object is cacheable, the splice mode is KeepCopy,
thus the application performs read operations to bring the
spliced content in its cache; no reads are performed for
non-cacheable objects.

Figure 7 presents the proxy CPU utilization when the
request rate is fixed at 40 req/s. This rate level is cho-
sen to avoid reaching overload on both proxy and net-
work. The plot illustrates that socket-level splice can
result in significant overhead reductions. These reduc-
tions increase with the object size. Also, for large ob-
jects, reductions are larger for non-cacheable than for
cacheable objects, for which KeepCopy is used. This is
due to the fewer system calls executed for serving non-
cacheable objects, difference which is relevant only for
large objects. For non-cacheable objects, the relative re-
duction varies from 15% for 4K files, to 68% for 64K
and 128K files. For cacheable objects, the relative reduc-
tion is 10-60%. For these experiments, the reduction in
response time is relatively insignificant (up to 1.7%) be-
cause the mean response times is large (2.7-3.4s) due to
server think time.

The performance benefit of data-stream splicing re-
mains relevant also when using uselect. Figure 8
presents the CPU utilization when the application uses
uselect instead of select to handle the same
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workload. The reduction relative to uselect with
application-level forwarding is up to 45% for cacheable
objects, and up to 65% for non-cacheable objects.

These experiments illustrate that data-stream splicing
is a necessary mechanism in the context of the heavy-tail
distribution of Web content sizes, because it helps Web
proxies to significantly reduce the performance perturba-
tions caused by serving atypically large files.

For the second microbenchmark, Polygraph clients
generate request rates between 40 and 200 req/s and the
file size is fixed at 8KBytes.

Figures 9 and 10 present the proxy CPU utilization
and the mean response time, respectively; note that the
plots for application-level forwarding overlap. These
plots demonstrate that the reduction in CPU overhead en-
abled by splice increases with the request rate. However,
as the system approaches overload, this reduction has a
smaller impact on CPU utilization, but a larger impact on
response time. For instance, for non-cacheable objects,
the difference in CPU utilization decreases from 8% (at
120 req/s) to 0.9% (at 200 req/s), while the response time
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difference increases from 2ms to 14ms.

5.3 Polymix-4 Workload

In order to estimate the benefits of the proposed mech-
anisms in a real Web proxy deployment, we experiment
with Polymix-4, a workload that provides a realistic mix
of file sizes, cacheability types, and HTTP request types;
it generates a realistic hit ratio, connection persistency
model, and server think-time. This experiment evaluates
uselect, select, /dev/epoll with application-
level forwarding, and splicing with select and with
uselect. Request rates vary from 120 to 260; swap-
ping impacts the results at higher rates.

Figure 11 presents the proxy CPU utilization and Fig-
ures 12 and 13 present the mean response times for hits
and misses, respectively. uselect provides reductions
in CPU utilization similar to those in the microbench-
marks, 50-70% relative to select and 50% relative to
/dev/epoll. These experiments also demonstrate that
the uselect implementation can handle effectively
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both connect and accept operations; the microbench-
marks exercise mostly the accept operation.

Similarly, splice provides reductions in CPU over-
heads comparable to the microbenchmarks, considering
that in Polymix-4 cache misses represent only about 40%
of the requests and that file size distribution is biased to-
wards small files (the 75-th percentile is 8KByte).

The CPU overhead reductions provided by
uselect, splice, and their combination trans-
late in reductions of mean response times for both hits
and misses compared to the configuration using select
and application-level forwarding. Reductions are larger
at higher request rates. More specifically, the reductions
for hits with uselect are 4-35ms, with splice are
1-28ms. Using both mechanisms, the reductions are
4-80ms, a 10-30% relative improvement. The reductions
for miss with uselect are 15-30ms, and with splice
are 6-16ms. Using both mechanisms yields reductions
similar to uselect alone, which is a 0.5-1.3% relative
improvement. We note that /dev/epoll provides
reductions for hit response times similar to uselect,
but the miss response times are the highest among the
tested configurations, 20-50ms more than with select.

5.4 Discussions

Overall, the experimental evaluation presented in this
paper illustrates that both user-level connection track-
ing and data-stream splice help lower the overheads and
improve the scalability of Web servers. The former
mechanism benefits any Web server that handles a very
large numbers of concurrent connections, while the latter
mechanism is mostly limited to Web proxy caches.

One lesson that we learned while experimenting with
data-stream splice is that it is detrimental to forward data
packets in process context. Our earlier implementations
attempted to forward as many packets as possible in the
Splice call, and upon the return from the read system

call, for the KeepCopy mode. This approach has a neg-
ative performance impact because holding socket locks
in process context interferes with the highly optimized
Linux TCP/IP stack: packets received while forwarding
in process context incur larger processing overheads.

As expected, the benefits of uselect and splice
are not cumulative. This is because part of the overhead
reduction achieved with splice is due to a reduction in
the number of select system calls.

From our experience of modifying Squid to use
/dev/epoll, we learned that it is not straightfor-
ward to change a complex application designed to use
select/poll-type connection state tracking to use event
notification-based mechanisms, like /dev/epoll. It
can be very difficult to identify all the code regions in
the application built on programmer’s assumptions about
the state-tracking model. The same argument applies
to a complex Web application implemented around an
event notification mechanism, such as /dev/epoll.
The connection state tracking mechanism proposed in
this paper enables effective user-level implementations
of mechanisms like select/poll and /dev/epoll;
applications can enjoy the performance benefits with
minimal modifications, just by linking to the library that
implements the desired API.

6 Related Work

Recent research on Web server performance has fo-
cused on optimizing the operating system functions on
the critical path of request processing. In this paper, we
focus on the same problem domain, proposing two mech-
anisms that Web servers, and in particular Web proxy
servers, can use in a flexible manner to reduce connection
handling and data forwarding overheads. Both mech-
anisms address the overheads of context switching and
data copy between application and kernel domains, one
for connection state tracking and the other for data for-
warding in TCP streams.

A large body of research has focused on improv-
ing the scalability of connection-state tracking mecha-
nisms, critical for event-driven architectures. Traditional
mechanisms for connection-state tracking, select and
poll exhibit poor scalability. Optimizations can reduce
the in-kernel overhead of collecting socket status infor-
mation [4], but cannot reduce context switching and data
copy overheads. Event delivery mechanisms with batch
notifications represent an alternative to select/poll
[5, 6, 19, 33, 34, 35]. This paradigm supports imple-
mentations that are more efficient, and reduces the over-
head of data copy between user and kernel space, in
particular when the number of active connections is a
small fraction of the total number of open connections.
The /dev/epoll proposed in [34] further reduces data



copy overheads by using a shared memory region be-
tween kernel and application for passing event notifica-
tions. Similarly, ECalls [33] uses shared memory for
application-to-kernel and kernel-to-application notifica-
tion. Overall, these proposals help reduce the system
call overheads, but cannot reduce the number of invo-
cations. Event delivery mechanisms with individual no-
tifications, like I/O completion ports (IOCP) [12], incur a
larger volume of system calls, but benefit a thread-based
architecture by implementing a thread dispatching policy
that minimizes thread context switches.

The connection state tracking mechanism introduced
in this paper enables significant reductions of the num-
ber and overheads of system call invocations. By us-
ing connection state elements propagated by the kernel
in a shared memory region, the application can acquire
the information necessary for connection state tracking
without context switching to the kernel domain. In the
Linux implementation, connection state is propagated
at user space automatically, after connect or the first
select/poll; no system call other than connect
and accept would be required if a file descriptor were
assigned to the socket prior to the invocation of the
accept handler. Existing APIs like select, event de-
livery [5, 34],x and IOCP [12] can be re-implemented to
exploit the mechanism and achieve significant overhead
reductions.

Numerous studies on TCP and server performance
demonstrate that achievable transfer bandwidths are lim-
ited by the overhead of copying data between kernel
and user-space buffers [7, 17]. Previous research has
proposed several in-kernel splicing mechanisms of data
streams produced by devices/files and sockets [11, 31].
In-kernel splicing of TCP connections has been pro-
posed, as well. Some of the solutions [3, 9, 13, 15, 16]
do not make the splicing interface available at applica-
tion level. These solutions are integrated with kernel-
level modules for HTTP request distribution and are im-
plemented either between the TCP and socket layers
[3, 15, 16] or in the IP layer [9, 13]. Existing solu-
tions that can be exploited at application level are imple-
mented in the IP layer [21, 22, 39] or in the socket layer
[37], and are restricted in their ability to effectively serve
the full range of connection characteristics and request
types handled by a Web proxy. For instance, the IP-
level implementations cannot handle pipelined requests
and client aborts. The mechanism in [37] cannot handle
cacheable content and persistent connections.

The data-stream splice mechanism proposed in this
paper enables a Web proxy application to exploit kernel-
level forwarding for all types of requests that involve
transfers between its server and client connections. Sim-
ilar to [37], the mechanism is implemented at socket
level but with extended functionality. Drawing from the

socket level implementation, the mechanism has several
advantages over the IP-level implementations. First, the
mechanism allows the splicing of TCP connections with
different maximum segment sizes or TCP options and
fosters faster loss recovery [37]. Second, it allows for
more efficient support for persistent connections (e.g.,
the mechanism in [39] unsplices at the first data received
in the client connection) and for caching the transferred
content (e.g., the mechanism in [22] aborts the caching
procedure if the client aborts the connection). These ad-
vantages offset the relatively small increase in forward-
ing overheads vs. IP-level splicing due to the transport-
layer processing on incoming and outgoing paths. We
submit that IP-level solutions need to re-implement sub-
stantial segments of the TCP stack in order to support a
flexible API, similar to the one proposed in this paper.

7 Conclusion

This paper proposes to enhance a general-purpose op-
erating system with mechanisms that reduce the system
overheads of applications such as Web servers, which
handle large numbers of concurrent connections, and of
applications such as Web proxies, which forward large
volumes of data.

Improved scalability with the number of active con-
nections is enabled by user-level connection tracking.
Promoting a new implementation paradigm, this mech-
anism is the first to provide notifications of connection
state changes without incurring any context switches
and data copies between application and kernel domains.
With a selectAPI, this mechanism demonstrates CPU
overhead reductions of 52-72% relative to select and
50% relative to /dev/epoll. In the future, we plan to
implement an event notification API similar to [5].

Lower data forwarding overheads are enabled by data-
stream splicing. Implemented in the socket layer, this
mechanism is the first to enable effective in-kernel for-
warding for the whole range of transfers performed by
a Web proxy cache, supporting persistent connections,
request pipelining, and content caching. Experiments
demonstrate up to 12% reductions in Squid’s forwarding
overheads.
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